JP2006026017A - Fluorescent ct apparatus - Google Patents

Fluorescent ct apparatus Download PDF

Info

Publication number
JP2006026017A
JP2006026017A JP2004207768A JP2004207768A JP2006026017A JP 2006026017 A JP2006026017 A JP 2006026017A JP 2004207768 A JP2004207768 A JP 2004207768A JP 2004207768 A JP2004207768 A JP 2004207768A JP 2006026017 A JP2006026017 A JP 2006026017A
Authority
JP
Japan
Prior art keywords
fluorescence
distribution
light
measurement object
tomographic image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004207768A
Other languages
Japanese (ja)
Other versions
JP4471162B2 (en
Inventor
Kazuhiro Tsujita
和宏 辻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2004207768A priority Critical patent/JP4471162B2/en
Publication of JP2006026017A publication Critical patent/JP2006026017A/en
Application granted granted Critical
Publication of JP4471162B2 publication Critical patent/JP4471162B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide the distribution of a fluorescence emission amount inside a body to be measured and to generate fluorescent tomographic images based on the distribution of the fluorescence emission amount. <P>SOLUTION: The breast 4 of a subject to which a fluorescent reagent is administered beforehand is irradiated with first extremely-short pulse light L2, the spatial distribution and time change of the light quantity of extremely-short pulse light L4 propagated inside the breast 4 are detected by a photodetection part 32, and the distribution of an optical characteristic value inside the breast 4 is calculated on the basis of the detected result of the photodetection part 32 by an optical characteristic value distribution calculation part 47. Also, second extremely-short pulse light L3 is emitted to the breast 4, the spatial distribution and time change of the light quantity of fluorescence L4 originated from the inside of the breast 4 and propagated inside the breast 4 by irradiation with the second extremely-short pulse light L3 are detected by the photodetection part 32, and the distribution of the fluorescence emission amount inside the breast 4 is calculated on the basis of the detected result and the optical characteristic value distribution in a fluorescence distribution calculation part 48. On the basis of the distribution of the fluorescence emission amount, the fluorescent tomographic image of the breast 4 is generated and displayed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、蛍光CT装置、すなわち蛍光を用いたCT(Computed Tomography)装置に関するものである。   The present invention relates to a fluorescence CT apparatus, that is, a CT (Computed Tomography) apparatus using fluorescence.

従来、X線を用いたX線CT装置が、医療等の分野で実現されており、近年では、光を使った断層撮影法(光CT)を生体に適用するための研究が盛んに行なわれている。生体は高散乱体であるため生体に照射された光は多重散乱を繰り返しながら吸収されて生体の外部に出てくる。このようにして生体の外部に出射した光を検出することにより生体の吸収係数分布または散乱係数分布等の光学特性値分布を得ることができる。このような検出を行う方法の一例として、時間幅の極めて狭い、ピコ秒程度の極短パルス光を用いるピコ秒時間分解計測法を用いたシステムが提案されている(非特許文献1参照)。   Conventionally, X-ray CT apparatuses using X-rays have been realized in the fields of medicine and the like, and in recent years, research for applying tomography using light (optical CT) to living bodies has been actively conducted. ing. Since the living body is a high scatterer, the light irradiated to the living body is absorbed while repeating multiple scattering and comes out of the living body. By detecting the light emitted to the outside of the living body in this way, an optical characteristic value distribution such as an absorption coefficient distribution or a scattering coefficient distribution of the living body can be obtained. As an example of a method for performing such detection, a system using a picosecond time-resolved measurement method using an extremely short pulsed light with an extremely narrow time width of about picoseconds has been proposed (see Non-Patent Document 1).

一般に生体等の被計測体内での光伝播を記述する方程式として、下記の光拡散方程式が知られている。

Figure 2006026017
In general, the following light diffusion equation is known as an equation describing light propagation in a measurement object such as a living body.
Figure 2006026017

ここで、cは被計測体内における光速、φ(r,t)は光の積分強度で位置rおよび時間tの関数、D(r)は拡散係数で等価散乱係数μ’(r)を用いて、D(r)=1/3μ’(r)で与えられ、μ(r)は吸収係数である。S(r,t)は、被計測体内の光源であるが、蛍光などの発光がなければ0である。 Here, c is the speed of light in the body to be measured, φ (r, t) is the integrated intensity of light, a function of position r and time t, D (r) is a diffusion coefficient, and an equivalent scattering coefficient μ ′ s (r) is used. D (r) = 1/3 μ ′ s (r), and μ a (r) is an absorption coefficient. S (r, t) is a light source in the body to be measured, but is 0 if there is no light emission such as fluorescence.

発光がない被計測体内において、等価散乱計数μ’(r)および吸収計数μ(r)の分布が与えられれば上式を有限要素法などの数値計算手法を用いて解くことができ、その結果、被測定体の表面で測定される光量の空間分布および時間変化を求めることができる。このように与えられた条件下で、上記の光拡散方程式を解いて、測定される光量を得るプロセスを順問題解析という。 If the distribution of the equivalent scattering count μ ′ s (r) and the absorption count μ a (r) is given in the measurement object that does not emit light, the above equation can be solved using a numerical calculation method such as the finite element method, As a result, the spatial distribution and temporal change of the light quantity measured on the surface of the measurement object can be obtained. The process of obtaining the light quantity to be measured by solving the above light diffusion equation under the given conditions is called forward problem analysis.

また、ピコ秒時間分解計測法を用いたシステムでは、被計測体へ入射させる入射光として、ピコ秒程度の極短パルス光を用い、被計測体内を伝播した光を複数点においてピコ秒の時間分解計測法を用いて検出する。この検出により、被計測体の表面の複数位置における光量の空間分布および時間変化を取得できる。一方で、被計測体内の光学特性値の分布、例えば吸収計数分布または散乱計数分布等を推定し、上記の入射光を被測定体へ入射させた場合の被計測体表面で測定される光量の空間分布および時間変化を光拡散方程式に基づいて、すなわち順問題計算を行って計算する。この計算結果と実際に測定した測定結果とが一致すれば、推定した光学特性値分布は正しいと考えられる。通常計算結果と測定結果は一致しないため、その誤差に基づいて光学特性値分布を推定しなおし、再度計算を行う。このプロセスを繰り返し、計算結果と測定結果の誤差が許容値以下になれば、そのときの光学測定値分布が解となる。また、このような光学測定値分布に基づいて、被計測体の光断層画像を生成することができる。このようなプロセスは逆問題解析と呼ばれている。なお、光路長を検出することにより、より高精度に光断層画像を生成することができる。
APPLIED OPTICS Vol.41, No.4 P778〜P791 by Fing Gao, et al.
Also, in a system using the picosecond time-resolved measurement method, an extremely short pulsed light of about picoseconds is used as the incident light incident on the measurement object, and the light propagated through the measurement object is measured at picosecond times at multiple points. Detect using decomposition measurement method. By this detection, it is possible to acquire the spatial distribution and temporal change of the light quantity at a plurality of positions on the surface of the measurement object. On the other hand, the distribution of optical characteristic values in the measurement object, for example, the absorption count distribution or the scattering count distribution, is estimated, and the amount of light measured on the measurement object surface when the incident light is incident on the measurement object. The spatial distribution and temporal change are calculated based on the light diffusion equation, that is, by performing forward problem calculation. If the calculated result and the actually measured result coincide with each other, the estimated optical characteristic value distribution is considered to be correct. Since the normal calculation result and the measurement result do not match, the optical characteristic value distribution is estimated again based on the error, and the calculation is performed again. If this process is repeated and the error between the calculation result and the measurement result falls below the allowable value, the optical measurement value distribution at that time becomes the solution. Moreover, an optical tomographic image of the measurement object can be generated based on such an optical measurement value distribution. Such a process is called inverse problem analysis. Note that an optical tomographic image can be generated with higher accuracy by detecting the optical path length.
APPLIED OPTICS Vol.41, No.4 P778〜P791 by Fing Gao, et al.

しかしながら上記のように、順問題解析を行う際には、被計測体内に光源がないこと、すなわち蛍光などの発光がないことを前提としている。このため、上記のような逆問題解析では、被計測対内に蛍光を発する部位が存在する場合には、光学特性値分布を求めることができず、ましてや蛍光射出量の分布を求め、該蛍光射出量の分布に基づいて蛍光断層画像を生成することはできないという問題がある。   However, as described above, when performing forward problem analysis, it is assumed that there is no light source in the body to be measured, that is, there is no light emission such as fluorescence. For this reason, in the inverse problem analysis as described above, when there is a portion that emits fluorescence in the pair to be measured, the optical characteristic value distribution cannot be obtained. There is a problem that a fluorescence tomographic image cannot be generated based on the distribution of the quantity.

本発明は上記事情に鑑みて、被計測体内における蛍光射出量の分布を求め、かつ該蛍光射出量の分布に基づいた蛍光断層画像を生成する蛍光CT装置を提供することを目的とするものである。   In view of the above circumstances, an object of the present invention is to provide a fluorescence CT apparatus that obtains a fluorescence emission amount distribution in a measured body and generates a fluorescence tomographic image based on the fluorescence emission amount distribution. is there.

本発明による蛍光CT装置は、第1の極短パルス光を被計測体へ照射する第1の光照射手段と、
第2の極短パルス光を前記被計測体へ照射する第2の光照射手段と、
前記被計測体内部を伝播した前記第1の極短パルス光の光量の空間分布および時間変化を検出する光検出手段と、
該光検出手段の検出結果に基づいて前記被計測体内における光学特性値の分布を算出する光学特性値分布算出手段と、
前記第2の極短パルス光を照射されることにより前記被計測体内から発せられ、前記被計測体内を伝播した蛍光の光量の空間分布および時間変化を検出する蛍光検出手段と、
該蛍光検出手段の検出結果と、前記光学特性値分布算出手段により算出された前記光学特性値分布とに基いて、前記被計測体内における蛍光射出量の分布を算出する蛍光分布算出手段と、
該蛍光分布算出手段により算出された前記蛍光射出量の分布に基いて、前記被計測体の蛍光断層画像を生成する蛍光断層画像生成手段とを備えたことを特徴とするものである。
A fluorescence CT apparatus according to the present invention includes a first light irradiation means for irradiating a measurement object with a first ultrashort pulse light;
Second light irradiation means for irradiating the object to be measured with second ultrashort pulse light;
A light detection means for detecting a spatial distribution and a temporal change in the amount of light of the first ultrashort pulse light propagated through the measurement object;
Optical characteristic value distribution calculating means for calculating a distribution of optical characteristic values in the measurement object based on a detection result of the light detecting means;
A fluorescence detection means for detecting a spatial distribution and temporal change of the amount of fluorescence emitted from the measured body by being irradiated with the second ultrashort pulse light and propagated through the measured body;
Based on the detection result of the fluorescence detection means and the optical characteristic value distribution calculated by the optical characteristic value distribution calculation means, a fluorescence distribution calculation means for calculating the distribution of the fluorescence emission amount in the measurement object;
Fluorescent tomographic image generation means for generating a fluorescent tomographic image of the measurement object based on the distribution of the fluorescence emission amount calculated by the fluorescent distribution calculating means.

ここで、「極短パルス光」とは、パルス長が500ps以下のパルス光を意味している。第1の極短パルス光と第2の極短パルス光は、波長およびパルス長が等しい同一のパルス光であってもよく、異なるパルス光であってもよい。また、「第1の極短パルス光」の波長は、被計測体内を伝播する波長を選択する必要がある。さらに、「第2の極短パルス光」の波長は、「第2の極短パルス光」を被計測体へ照射した場合に、被計測体から蛍光が発せられる波長である必要がある。例えば被計測体が蛍光試薬を投与された生体であれば、「第2の極短パルス光」の波長は、投与された蛍光試薬から蛍光を発生させる波長帯域のである必要がある。また、被計測体が蛍光試薬が投与されていない生体であれば、「第2の極短パルス光」の波長は、生体から自家蛍光を発生させる波長帯域の波長である必要がある。また、第1の極短パルス光と蛍光の波長は近いことが好ましい。   Here, “ultrashort pulse light” means pulse light having a pulse length of 500 ps or less. The first ultrashort pulse light and the second ultrashort pulse light may be the same pulse light having the same wavelength and the same pulse length, or may be different pulse lights. In addition, the wavelength of the “first ultrashort pulse light” needs to be selected as a wavelength that propagates through the measurement object. Furthermore, the wavelength of the “second ultrashort pulse light” needs to be a wavelength at which fluorescence is emitted from the measurement object when the measurement object is irradiated with the “second ultrashort pulse light”. For example, if the measurement target is a living body to which a fluorescent reagent is administered, the wavelength of the “second ultrashort pulse light” needs to be in a wavelength band for generating fluorescence from the administered fluorescent reagent. In addition, if the object to be measured is a living body to which a fluorescent reagent is not administered, the wavelength of the “second ultrashort pulse light” needs to be a wavelength band that generates autofluorescence from the living body. Moreover, it is preferable that the wavelength of the first ultrashort pulsed light and the fluorescence are close.

ここで、「光量の空間分布および時間変化を検出する」とは、被計測体の周囲の複数の位置において、被計測体内を伝播し、周囲に射出された光の光量を高い時間分解能で検出することを意味している。例えば、時間分解能が非常に大きい光検出装置であるTAC(Time-to-Amplitude-Converter)等を用いて、被計測体周囲の複数の位置において検出を行うことである。また前記被計測体内を透過した前記第1の極短パルス光の空間分布および時間変化を検出する際には、被計測体から発せられる蛍光をカットする蛍光カットフィルタ等を用いて蛍光の影響を受けないようにする必要がある。また同様に、前記被計測体を伝播した蛍光の光量の空間分布および時間変化を検出する際には、第2の極短パルス光をカットするカットフィルタ等を用いて、第2の極短パルス光の影響を受けないようにする必要がある。   Here, “detecting the spatial distribution and temporal change of the light quantity” means detecting the light quantity of light that has propagated through the measurement object and emitted to the surrounding area at a plurality of positions around the measurement object with high time resolution. Is meant to do. For example, detection is performed at a plurality of positions around the measurement object using a TAC (Time-to-Amplitude-Converter) that is a photodetection device having a very high time resolution. Further, when detecting the spatial distribution and temporal change of the first ultrashort pulse light that has passed through the measurement object, the influence of the fluorescence is measured using a fluorescence cut filter that cuts off the fluorescence emitted from the measurement object. It is necessary not to receive. Similarly, when detecting the spatial distribution and temporal change of the amount of fluorescent light propagated through the measurement object, a second ultrashort pulse is used using a cut filter or the like that cuts the second ultrashort pulse light. It is necessary to avoid the influence of light.

なお、「光学特性値」とは、例えば散乱係数や吸収係数等である。   The “optical characteristic value” is, for example, a scattering coefficient or an absorption coefficient.

また、前記被計測体の画像情報を担持する放射線を検出し、前記被計測体の放射線画像を生成する放射線画像取得手段と、
前記蛍光断層画像および前記放射線画像を同時に表示する表示手段とを備えたものであってもよい。
A radiation image acquiring means for detecting radiation carrying image information of the measurement object and generating a radiation image of the measurement object;
It may be provided with display means for simultaneously displaying the fluorescence tomographic image and the radiation image.

前記光検出手段および前記光照射手段と、前記被計測体とを相対的に螺旋状に移動させる移動手段を備え、
前記光学特性値算出手段が、複数位置で検出した、被計測体内を伝播した前記第1の極短パルス光の光量の前記空間分布および前記時間変化に基づいて前記被計測体内における3次元光学特性値分布を算出するものであり、
前記蛍光分布算出手段が、前記3次元光学特性値分布と、複数位置で検出した、前記被計測体内を伝播した前記蛍光の前記空間分布および前記時間変化とに基いて、前記蛍光射出量の3次元分布を算出するものであれば、
前記蛍光断層画像生成手段は、前記蛍光射出量の前記3次元分布に基いて、前記被計測体の3次元蛍光断層画像を生成するものであってもよい。
A moving means for moving the light detecting means and the light irradiating means and the measured object relatively in a spiral manner;
Based on the spatial distribution of the light quantity of the first ultrashort pulse light propagated through the measurement object and the time change detected by the optical characteristic value calculation means at a plurality of positions, the three-dimensional optical characteristic in the measurement object. Value distribution,
Based on the three-dimensional optical characteristic value distribution and the spatial distribution of the fluorescence propagated through the measurement object and the time change detected by the fluorescence distribution calculation means at a plurality of positions, the fluorescence emission amount of 3 If you want to calculate the dimensional distribution,
The fluorescent tomographic image generation means may generate a three-dimensional fluorescent tomographic image of the measurement object based on the three-dimensional distribution of the fluorescence emission amount.

前記被計測体が乳房であり、前記第1の極短パルス光および第2の極短パルス光が近赤外光であり、前記蛍光断層画像が、前記乳房の胸壁と平行な断面における蛍光断層画像であってもよい。なお、ここで「近赤外光」とは、波長700nm以上1500nm以下の光を意味している。   The measurement object is a breast, the first ultrashort pulse light and the second ultrashort pulse light are near-infrared light, and the fluorescence tomographic image is a fluorescence tomogram in a cross section parallel to the breast wall of the breast It may be an image. Here, “near infrared light” means light having a wavelength of 700 nm to 1500 nm.

前記乳房には、異常組織に対する親和性を有する蛍光試薬が予め投与され、前記蛍光が前記蛍光試薬から主に発せられるものであってもよい。   The breast may be preliminarily administered with a fluorescent reagent having affinity for abnormal tissue, and the fluorescence may be emitted mainly from the fluorescent reagent.

本発明の蛍光CT装置は、第1の極短パルス光を被計測体へ照射する第1の光照射手段と、第2の極短パルス光を前記被計測体へ照射する第2の光照射手段と、前記被計測体内部を伝播した前記第1の極短パルス光の光量の空間分布および時間変化を検出する光検出手段と、該光検出手段の検出結果に基づいて前記被計測体内における光学特性値の分布を算出する光学特性値分布算出手段と、前記第2の極短パルス光を照射されることにより前記被計測体内から発せられ、前記被計測体内を伝播した蛍光の光量の空間分布および時間変化を検出する蛍光検出手段と、該蛍光検出手段の検出結果と、前記光学特性値分布算出手段により算出された前記光学特性値分布とに基いて、前記被計測体内における蛍光射出量の分布を算出する蛍光分布算出手段と、該蛍光分布算出手段により算出された前記蛍光射出量の分布に基いて、前記被計測体の蛍光断層画像を生成する蛍光断層画像生成手段とを備えたことにより、被計測体の蛍光断層画像を取得することができる。すなわち、まず、極短パルス光を用いて、被計測体の光学特性値分布、例えば等価散乱係数逸数μ’(r)の分布および吸収係数μ(r)の分布を算出する。さらに、被計測体内を伝播した蛍光の光量の空間分布および時間変化を測定により求める。この算出した光学特性値分布と、測定した被計測体内を伝播した蛍光の光量の空間分布および時間変化が与えられれば、上述の光拡散方程式を解くことができ、その結果、被計測体内の光源S(r,t)の分布、すなわち蛍光射出量の分布を得ることができ、該蛍光射出量の分布に基いて蛍光断層画像を生成することができる。 The fluorescent CT apparatus of the present invention includes a first light irradiating means for irradiating a measurement object with a first ultrashort pulse light, and a second light irradiation for irradiating the measurement object with a second ultrashort pulse light. Means, light detection means for detecting a spatial distribution and temporal change of the light quantity of the first ultrashort pulse light propagated inside the measurement object, and based on a detection result of the light detection means in the measurement object Optical characteristic value distribution calculating means for calculating the distribution of optical characteristic values, and a space of the amount of fluorescent light emitted from the measured body by being irradiated with the second ultrashort pulse light and propagated through the measured body Fluorescence detection means for detecting distribution and temporal change, detection result of the fluorescence detection means, and fluorescence emission amount in the measurement object based on the optical characteristic value distribution calculated by the optical characteristic value distribution calculation means Fluorescence distribution calculation to calculate the distribution of And fluorescence tomographic image generation means for generating a fluorescence tomographic image of the measurement object based on the distribution of the fluorescence emission amount calculated by the fluorescence distribution calculation means. A tomographic image can be acquired. That is, first, the optical characteristic value distribution of the measurement object, for example, the distribution of the equivalent scattering coefficient miss number μ ′ s (r) and the distribution of the absorption coefficient μ a (r) are calculated using the ultrashort pulse light. Furthermore, the spatial distribution and temporal change of the amount of fluorescent light propagated through the body to be measured are obtained by measurement. Given this calculated optical characteristic value distribution and the spatial distribution and temporal change of the amount of fluorescent light propagated through the measured object, the above-mentioned light diffusion equation can be solved, and as a result, the light source in the measured object A distribution of S (r, t), that is, a fluorescence emission amount distribution can be obtained, and a fluorescence tomographic image can be generated based on the distribution of the fluorescence emission amount.

なお、「光量の空間分布および時間変化を検出する」際には、複数位置での検出を行うことが好ましく、検出位置数が増加することにより、光学特性値の分布あるは蛍光射出量の分布を高精度で算出することができる。   In addition, it is preferable to perform detection at a plurality of positions when “detecting spatial distribution of light quantity and temporal change”, and by increasing the number of detection positions, distribution of optical characteristic values or distribution of fluorescence emission amount Can be calculated with high accuracy.

また、前記被計測体の画像情報を担持する放射線を検出し、前記被計測体の放射線画像を生成する放射線画像取得手段と、前記蛍光断層画像および前記放射線画像を同時に表示する表示手段とを備えたことにより、観察者は前記蛍光断層画像と放射線画像とを容易に比較することができる。   A radiation image acquisition unit configured to detect radiation carrying image information of the measurement object and generate a radiation image of the measurement object; and a display unit configured to simultaneously display the fluorescence tomographic image and the radiation image. Thus, the observer can easily compare the fluorescence tomographic image and the radiation image.

前記光検出手段および前記光照射手段と、前記被計測体とを相対的に螺旋状に移動させる移動手段を備え、前記光学特性値算出手段が、複数位置で検出した、被計測体内を伝播した前記第1の極短パルス光の光量の前記空間分布および前記時間変化に基づいて前記被計測体内における3次元光学特性値分布を算出するものであり、前記蛍光分布算出手段が、前記3次元光学特性値分布と、複数位置で検出した、前記被計測体内を伝播した前記蛍光の前記空間分布および前記時間変化とに基いて、前記蛍光射出量の3次元分布を算出するものであり、前記蛍光断層画像生成手段が、前記蛍光射出量の前記3次元分布に基いて、前記被計測体の3次元蛍光断層画像を生成するものであれば、3次元蛍光断層画像を高分解能で取得することができる。   The optical detection unit includes a moving unit that relatively spirally moves the light detection unit, the light irradiation unit, and the measurement target, and the optical characteristic value calculation unit propagates through the measurement target detected at a plurality of positions. The three-dimensional optical characteristic value distribution in the measurement object is calculated based on the spatial distribution of the light quantity of the first ultrashort pulsed light and the temporal change, and the fluorescence distribution calculating means is the three-dimensional optical Calculating the three-dimensional distribution of the fluorescence emission amount based on the characteristic value distribution and the spatial distribution and the temporal change of the fluorescence propagated through the measurement object detected at a plurality of positions; If the tomographic image generating means generates a three-dimensional fluorescent tomographic image of the measurement object based on the three-dimensional distribution of the fluorescence emission amount, the three-dimensional fluorescent tomographic image can be acquired with high resolution. it can

前記被計測体が乳房であり、前記第1の極短パルス光および第2の極短パルス光が近赤外光であり、前記蛍光断層画像が、前記乳房の胸壁と平行な断面における蛍光断層画像であれば、近赤外光は乳房を透過しやすいため、高精度に蛍光断層画像を取得することができる。   The measurement object is a breast, the first ultrashort pulse light and the second ultrashort pulse light are near-infrared light, and the fluorescence tomographic image is a fluorescence tomogram in a cross section parallel to the breast wall of the breast In the case of an image, near-infrared light is likely to pass through the breast, so that a fluorescence tomographic image can be acquired with high accuracy.

前記乳房に、予め異常組織に対する親和性を有する蛍光試薬が投与され、前記蛍光が前記蛍光試薬から主に発せられるものであれば、蛍光断層画像を観察することにより、容易に異常組織を視認することができる。   If a fluorescent reagent having an affinity for abnormal tissue is administered to the breast in advance and the fluorescence is mainly emitted from the fluorescent reagent, the abnormal tissue can be easily visually recognized by observing a fluorescence tomographic image. be able to.

以下、図面を参照して本発明の実施の形態について詳細に説明する。図1は本発明による第1の実施形態である蛍光CT装置である。本蛍光CT装置は、乳房の蛍光断層画像およびX線断層画像を同時に取得できる装置である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a fluorescence CT apparatus according to a first embodiment of the present invention. This fluorescence CT apparatus is an apparatus that can simultaneously acquire a fluorescence tomographic image and an X-ray tomographic image of a breast.

蛍光CT装置は、図1に示すように、X線源21、X線検出部22およびX線断層画像取得部23からなるX線CT部と、極短パルス光を射出する光照射部31、光検出部32および蛍光断層画像取得部33とからなる蛍光CT部とが、回転リング10を中心に設けられている。また、回転リング10は、図2に示すように、台1に設けられた空間2内に、水平に配置されている。被検者3は、蛍光診断画像を取得する方の乳房4が回転リング10の内側に収容されるように、台1にうつ伏せる。なお、被検者3には、異常組織、例えば癌組織に対する親和性を有する蛍光試薬が予め投与されている。この蛍光試薬は、波長750nmの光を照射されることにより、波長800nm近傍の蛍光を発するものである。   As shown in FIG. 1, the fluorescence CT apparatus includes an X-ray CT unit including an X-ray source 21, an X-ray detection unit 22, and an X-ray tomographic image acquisition unit 23, a light irradiation unit 31 that emits ultrashort pulse light, A fluorescence CT unit including a light detection unit 32 and a fluorescence tomographic image acquisition unit 33 is provided around the rotating ring 10. Further, as shown in FIG. 2, the rotating ring 10 is horizontally disposed in a space 2 provided in the table 1. The subject 3 lies on the table 1 so that the breast 4 from which the fluorescent diagnostic image is acquired is accommodated inside the rotating ring 10. The subject 3 is preliminarily administered with a fluorescent reagent having affinity for an abnormal tissue such as a cancer tissue. This fluorescent reagent emits fluorescence in the vicinity of a wavelength of 800 nm when irradiated with light having a wavelength of 750 nm.

X線源21は、X線L1を射出するものであり、回転リング10の一端へ配置されている。回転リング10のX線源21とほぼ対向した位置に、X線検出部22が設けられている。X線検出部22は、多数のX線検出素子24a、24b、24c・・・からなり、各X線検出素子24a、24b、24c・・・は、X線が入射すると入射量に応じた可視光を射出するシンチレータと各シンチレータから射出された可視光の光強度を検出するフォトダイオードとから構成されている。   The X-ray source 21 emits X-rays L1 and is arranged at one end of the rotating ring 10. An X-ray detector 22 is provided at a position substantially opposite to the X-ray source 21 of the rotating ring 10. The X-ray detection unit 22 includes a large number of X-ray detection elements 24a, 24b, 24c..., And each X-ray detection element 24a, 24b, 24c. It consists of a scintillator that emits light and a photodiode that detects the light intensity of visible light emitted from each scintillator.

光照射部31は、一端が回転リング10内へ開放され、他端が半導体レーザへ接続されているファイバ35、ファイバ35へ波長800nm、パルス幅100psの第1極短パルス光L2を射出する半導体レーザ36およびファイバ35へ波長750nm、パルス幅100psの第2極短パルス光L3を射出する半導体レーザ37とからなる。なお、半導体レーザ36および半導体レーザ37は、不図示の切り替え部によりどちらか一方がファイバ35へ接続される。   The light irradiation unit 31 has a fiber 35 whose one end is opened into the rotary ring 10 and whose other end is connected to the semiconductor laser, and a semiconductor that emits the first ultrashort pulsed light L2 having a wavelength of 800 nm and a pulse width of 100 ps to the fiber 35. It consists of a laser 36 and a semiconductor laser 37 that emits a second ultrashort pulsed light L3 having a wavelength of 750 nm and a pulse width of 100 ps to the fiber 35. One of the semiconductor laser 36 and the semiconductor laser 37 is connected to the fiber 35 by a switching unit (not shown).

光検出部32は、時間分解能が100psの光検出装置であるTAC(Time-to-Amplitude-Converter)40a、40b、40c・・・と、一端が回転リング10内へ開放され、他端がそれぞれTAC40a、40b、40c・・・へ接続されている32本のファイバ41a、41b、41c・・・と、ファイバ41a、41b、41c・・・とTAC(Time-to-Amplitude-Converter)40a、40b、40c・・・との間にそれぞれ設けられた切り替えフィルタ42a、42b、42c・・・とからなる。各切り替えフィルタ42a、42b、42c・・・は、図3に示すように波長850nm以上の光をカットするフィルタ43と、波長800nm以下の光をカットするフィルタ44とが組み合わされたものであり、不図示の切り替え部により適宜切り替えて使用される。各ファイバ41a、41b、41c・・・は、回転リング10の光照射部31と対向している部位を中心に等間隔に配置されている。   The light detection unit 32 is a light detection device having a time resolution of 100 ps (TAC-Time-Amplitude-Converter) 40a, 40b, 40c... ... 32 fibers 41a, 41b, 41c... Connected to the TACs 40a, 40b, 40c..., And TACs (Time-to-Amplitude-Converters) 40a, 40b. , 40c... And switching filters 42a, 42b, 42c. Each switching filter 42a, 42b, 42c... Is a combination of a filter 43 that cuts light having a wavelength of 850 nm or more and a filter 44 that cuts light having a wavelength of 800 nm or less, as shown in FIG. It is used by appropriately switching by a switching unit (not shown). The fibers 41a, 41b, 41c,... Are arranged at equal intervals around the part of the rotating ring 10 facing the light irradiation part 31.

蛍光断層画像取得部33は、検出毎に各TAC40a、40b、40c・・・の検出結果を記憶するメモリ46と、乳房4内における光学特性値の分布を算出する光学特性値分布算出部47と、乳房4内における蛍光射出量の分布を算出する蛍光分布算出部48と、該蛍光分布算出部48により算出された蛍光射出量の分布に基いて、乳房4の蛍光断層画像を生成する蛍光断層画像生成部49と、3次元蛍光断層画像を生成する3次元蛍光断層画像生成部50とからなる。   The fluorescence tomographic image acquisition unit 33 stores a detection result of each TAC 40a, 40b, 40c... For each detection, an optical characteristic value distribution calculation unit 47 that calculates a distribution of optical characteristic values in the breast 4. A fluorescence distribution calculation unit 48 for calculating the distribution of the fluorescence emission amount in the breast 4, and a fluorescence tomography for generating a fluorescence tomographic image of the breast 4 based on the distribution of the fluorescence emission amount calculated by the fluorescence distribution calculation unit 48. The image generating unit 49 includes a three-dimensional fluorescent tomographic image generating unit 50 that generates a three-dimensional fluorescent tomographic image.

また、回転リング10は移動機構11により水平回転、上下移動、または螺旋状に回転しながらの上下移動を行うものである。   The rotating ring 10 is moved horizontally or vertically by the moving mechanism 11 or vertically moved while rotating in a spiral.

以下、まずX線画像の取得方法について説明する。被検者の乳房4を回転リング10の内側に収容した状態で、X線源21からX線L1を射出する。X線検出部22の各X線検出素子24a、24b、24c・・・では、乳房4を透過したX線が入射すると各シンチレータから入射量に応じた可視光が射出され、各フォトダイオードによりこの可視光の光強度が検出されて、X線断層画像生成部23へ出力される。その後、回転リング10が、移動機構11により僅かに回転され、再度X線源21からX線L1が射出され、次の検出が行われる。回転リング10を回転させる毎に、このようなX線源21からのX線L1の射出および検出が繰り返される。回転リング10が360度回転された後に、X線断層画像生成部23では、X線断層画像を生成する。また、必要であれば、回転リング10の上下位置を僅かに下降させ、同様にX線断層画像を生成する。乳房4全体のX線断層画像を生成後、乳房4の3次元X線断層画像を生成する。また、このように多数枚に輪切り状の断層画像を取得するのではなく、回転リング10を螺旋状に回転させながら下降する、すなわちヘリカルスキャンを行うことにより、3次元X線断層画像を生成するデータを取得すれば、高分解能で3次元X線断層画像を生成することができる。   Hereinafter, an X-ray image acquisition method will be described first. The X-ray L1 is emitted from the X-ray source 21 in a state where the breast 4 of the subject is housed inside the rotating ring 10. In each of the X-ray detection elements 24a, 24b, 24c,... Of the X-ray detection unit 22, when X-rays transmitted through the breast 4 are incident, visible light corresponding to the incident amount is emitted from each scintillator. The light intensity of visible light is detected and output to the X-ray tomographic image generation unit 23. Thereafter, the rotating ring 10 is slightly rotated by the moving mechanism 11, and the X-ray L1 is again emitted from the X-ray source 21, and the next detection is performed. Each time the rotating ring 10 is rotated, the emission and detection of the X-ray L1 from the X-ray source 21 are repeated. After the rotation ring 10 is rotated 360 degrees, the X-ray tomographic image generation unit 23 generates an X-ray tomographic image. Further, if necessary, the vertical position of the rotating ring 10 is slightly lowered to similarly generate an X-ray tomographic image. After the X-ray tomographic image of the entire breast 4 is generated, a three-dimensional X-ray tomographic image of the breast 4 is generated. Further, instead of acquiring a circular slice-like tomographic image on a large number of sheets in this way, a three-dimensional X-ray tomographic image is generated by moving down the rotating ring 10 while spirally rotating, that is, by performing a helical scan. If data is acquired, a three-dimensional X-ray tomographic image can be generated with high resolution.

次に蛍光断層画像の取得方法について説明する。まず、半導体レーザ36をファイバ35へ接続し、波長800nm、パルス幅100psの第1極短パルス光L2を乳房4へ射出する。なお、光検出部32のファイバ41a、41b、41c・・・の端部とTAC40a、40b、40c・・・との間にそれぞれ設けられた切り替えフィルタ42a、42b、42c・・・は、波長850nm以上の光をカットするフィルタ43が各TAC40a、40b、40c・・・の前面に配置されている。波長800nmの光が乳房4へ入射されると、乳房4の異常組織に蛍光試薬が集まっている場合には、蛍光試薬から蛍光が発せられる。通常発せられる蛍光の波長は、照射される光の波長から長波長側へずれるため、フィルタ43をTACの前面へ配置することにより、TACへ蛍光が入射することはない。   Next, a method for acquiring a fluorescence tomographic image will be described. First, the semiconductor laser 36 is connected to the fiber 35, and the first ultrashort pulsed light L 2 having a wavelength of 800 nm and a pulse width of 100 ps is emitted to the breast 4. The switching filters 42a, 42b, 42c,... Provided between the ends of the fibers 41a, 41b, 41c,... Of the light detection unit 32 and the TACs 40a, 40b, 40c,. A filter 43 for cutting the above light is disposed on the front surface of each TAC 40a, 40b, 40c. When light having a wavelength of 800 nm is incident on the breast 4, if the fluorescent reagent is gathered in the abnormal tissue of the breast 4, fluorescence is emitted from the fluorescent reagent. Since the wavelength of the fluorescence emitted normally deviates from the wavelength of the irradiated light to the longer wavelength side, the fluorescence does not enter the TAC by arranging the filter 43 on the front surface of the TAC.

各TAC40a、40b、40c・・・により、図4に示すように、各測定点において異なる時間分解曲線が検出され、蛍光断層画像取得部33のメモリ46へ出力され、検出位置データと組み合わせて記憶される。なお、この検出位置データおよび時間分解曲線が、本発明における「被計測体内部を伝播した第1の極短パルス光の光量の空間分布および時間変化」と対応するものである。   As shown in FIG. 4, each TAC 40a, 40b, 40c,... Detects a different time-resolved curve at each measurement point, outputs it to the memory 46 of the fluorescence tomographic image acquisition unit 33, and stores it in combination with the detected position data. Is done. The detected position data and the time-resolved curve correspond to “the spatial distribution and temporal change of the light amount of the first ultrashort pulse light propagated through the measurement object” in the present invention.

その後、回転リング10が、移動機構11により僅かに回転され、同様の検出が行われる。検出を繰り返しながら、回転リング10が360度回転された後に、光学特性値分布算出部47では、メモリ46に記憶された検出位置データおよび時間分解曲線に基いて、すなわち乳房4内を伝播した第1極短パルス光の光量の空間分布と時間変化に基いて、逆問題解析手法により光拡散方程式を解いて、光学特性値の分布、すなわち等価散乱計数μ’(r)および吸収計数μ(r)の分布を求める。 Thereafter, the rotating ring 10 is slightly rotated by the moving mechanism 11 and the same detection is performed. After the rotation ring 10 is rotated 360 degrees while repeating the detection, the optical characteristic value distribution calculation unit 47 performs the first propagation that propagates in the breast 4 based on the detected position data and the time resolution curve stored in the memory 46. Based on the spatial distribution and temporal change of the light quantity of one ultrashort pulse light, the light diffusion equation is solved by an inverse problem analysis method, and the distribution of optical characteristic values, that is, the equivalent scattering count μ ′ s (r) and the absorption count μ a The distribution of (r) is obtained.

次に、半導体レーザ37をファイバ35へ接続し、波長750nm、パルス幅100psの第2極短パルス光L3を乳房4へ射出する。なお、切り替えフィルタ42a、42b、42c・・・では、波長800nm以下の光をカットするフィルタ44が各TAC40a、40b、40c・・・の前面に配置されている。波長750nmの光が乳房4へ入射されると、乳房4の異常組織に蛍光試薬が集まっている場合には、蛍光試薬から波長850nm近傍の蛍光が発せられる。フィルタ44をTACの前面へ配置することにより、TACへ第2極短パルス光L3が入射することはない。   Next, the semiconductor laser 3 7 is connected to the fiber 35, and the second ultrashort pulsed light L 3 having a wavelength of 750 nm and a pulse width of 100 ps is emitted to the breast 4. In the switching filters 42a, 42b, 42c,..., A filter 44 that cuts light having a wavelength of 800 nm or less is disposed in front of each TAC 40a, 40b, 40c,. When light having a wavelength of 750 nm is incident on the breast 4, if the fluorescent reagent is gathered in the abnormal tissue of the breast 4, fluorescence having a wavelength of about 850 nm is emitted from the fluorescent reagent. By arranging the filter 44 in front of the TAC, the second ultrashort pulsed light L3 does not enter the TAC.

各TAC40a、40b、40c・・・により、各測定点における時間分解曲線が検出され、蛍光断層画像取得部33のメモリ46へ出力され、検出位置データと組み合わせて記憶される。なお、この検出位置データおよび時間分解曲線が、本発明における「被計測体内を伝播した蛍光の光量の空間分布および時間変化」と対応するものである。   A time-resolved curve at each measurement point is detected by each TAC 40a, 40b, 40c..., Output to the memory 46 of the fluorescence tomographic image acquisition unit 33, and stored in combination with the detected position data. The detected position data and the time-resolved curve correspond to the “spatial distribution and temporal change in the amount of fluorescent light propagated through the measurement object” in the present invention.

その後、回転リング10が、移動機構11により僅かに回転され、同様の検出が行われる。検出を繰り返しながら、回転リング10が360度回転された後に、蛍光分布算出部48では、蛍光検出部32の検出結果、すなわち乳房4内を伝播した蛍光の光量の空間分布および時間変化と、光学特性値分布算出部47により算出された光学特性値分布(等価散乱計数μ’(r)および吸収計数μ(r)の分布)とに基いて、逆問題解析手法により光拡散方程式を解いて、乳房4内における蛍光射出量の分布を算出する
また、蛍光断層画像生成部49は、蛍光分布算出部48により算出された蛍光射出量の分布に基いて、乳房4の蛍光断層画像を生成する。また、必要であれば、回転リング10の上下位置を僅かに下降させ、同様に蛍光断層画像を生成する。乳房4全体の蛍光断層画像を生成後、乳房4の3次元蛍光断層画像を生成する。また、このように多数枚に輪切り状の断層画像を取得するのではなく、回転リング10を螺旋状に回転させながら下降する、すなわちヘリカルスキャンを行うことにより、3次元蛍光断層画像を生成するデータを取得すれば、高分解能で3次元蛍光断層画像を生成することができる。なおこの場合には、蛍光分布算出部47において、3次元光学特性値分布を算出し、蛍光分布算出部48が、光検出部32の検出結果と、3次元光学特性値分布に基いて、蛍光射出量の3次元分布を算出し、蛍光断層画像生成部49は、該蛍光射出量の3次元分布に基いて3次元蛍光断層画像を生成するものである。
Thereafter, the rotating ring 10 is slightly rotated by the moving mechanism 11 and the same detection is performed. After the rotation ring 10 is rotated 360 degrees while repeating the detection, the fluorescence distribution calculation unit 48 detects the detection result of the fluorescence detection unit 32, that is, the spatial distribution and temporal change of the amount of fluorescence propagated in the breast 4, and the optical Based on the optical characteristic value distribution (distribution of equivalent scattering count μ ′ s (r) and absorption coefficient μ a (r)) calculated by the characteristic value distribution calculating unit 47, the light diffusion equation is solved by an inverse problem analysis method. In addition, the fluorescence emission amount distribution in the breast 4 is calculated. Further, the fluorescence tomographic image generation unit 49 generates a fluorescence tomographic image of the breast 4 based on the distribution of the fluorescence emission amount calculated by the fluorescence distribution calculation unit 48. To do. Further, if necessary, the vertical position of the rotating ring 10 is slightly lowered to generate a fluorescence tomographic image in the same manner. After generating the fluorescence tomographic image of the entire breast 4, a three-dimensional fluorescence tomographic image of the breast 4 is generated. Further, instead of acquiring a circular slice-like tomographic image on a large number of sheets in this way, data that generates a three-dimensional fluorescent tomographic image by performing a helical scan while descending while rotating the rotating ring 10 in a spiral shape. Is obtained, a three-dimensional fluorescence tomographic image can be generated with high resolution. In this case, the fluorescence distribution calculation unit 47 calculates a three-dimensional optical characteristic value distribution, and the fluorescence distribution calculation unit 48 determines the fluorescence based on the detection result of the light detection unit 32 and the three-dimensional optical characteristic value distribution. The three-dimensional distribution of the emission amount is calculated, and the fluorescence tomographic image generation unit 49 generates a three-dimensional fluorescence tomographic image based on the three-dimensional distribution of the fluorescence emission amount.

なお、説明を簡単にするためにX線断層画像と蛍光断層画像の取得動作を別個に説明したが、これらの動作は並行して行われる。例えば1回ヘリカルスキャンを行うのみで、3次元X線断層画像および3次元蛍光断層画像を取得することができる。   In order to simplify the description, the X-ray tomographic image and the fluorescence tomographic image acquisition operation have been described separately, but these operations are performed in parallel. For example, a three-dimensional X-ray tomographic image and a three-dimensional fluorescent tomographic image can be acquired by performing only one helical scan.

観察者は、X線断層画像および蛍光断層画像を取得後に図5に示すように不図示の表示部へ各画像を表示する。この際、X線断層画像61の隣に、同じ位置において取得した蛍光断層画像62を表示する。観察者は、同一断面から取得したX線断層画像と蛍光断層画像を同時に観察でき、容易に比較することができる。また、X線断層画像を読影する場合とほぼ同じ感覚で、蛍光断層画像を読影することができ、容易に発光している異常組織63を視認することができる。   After obtaining the X-ray tomographic image and the fluorescent tomographic image, the observer displays each image on a display unit (not shown) as shown in FIG. At this time, the fluorescent tomographic image 62 acquired at the same position is displayed next to the X-ray tomographic image 61. An observer can simultaneously observe an X-ray tomographic image and a fluorescent tomographic image acquired from the same cross section, and can easily compare them. In addition, the fluorescence tomographic image can be interpreted with almost the same feeling as when the X-ray tomographic image is interpreted, and the abnormal tissue 63 that is emitting light can be easily viewed.

さらに、X線断層画像と蛍光断層画像とを重畳した重畳画像65を形成して表示してもよい。重畳画像65を観察することにより、石灰化64の状態および蛍光を発している異常組織63の状態を同時に視認することができる。   Furthermore, a superimposed image 65 in which an X-ray tomographic image and a fluorescent tomographic image are superimposed may be formed and displayed. By observing the superimposed image 65, the state of the calcification 64 and the state of the abnormal tissue 63 emitting fluorescence can be simultaneously recognized.

3次元X線断層画像および3次元蛍光断層画像も同時にあるいは重畳して表示することができ、観察者は容易に異常組織の3次元分布状態を認識することができる。     A three-dimensional X-ray tomographic image and a three-dimensional fluorescent tomographic image can be displayed simultaneously or superimposed, and the observer can easily recognize the three-dimensional distribution state of the abnormal tissue.

なお、本実施の形態においては、予め蛍光試薬を投与したが、これに限定されものではない。ある種の、例えば癌等の異常組織は正常組織に比べ僅かではあるが強い蛍光(自家蛍光)を発する傾向がある。第2極短パルス光の強度および波長を適切に選択し、かつ光検出部の検出感度を上げることにより、蛍光試薬を投与せずに蛍光画像を取得することができる。   In this embodiment, the fluorescent reagent is administered in advance, but the present invention is not limited to this. Certain types of abnormal tissues, such as cancer, tend to emit slightly more intense fluorescence (autofluorescence) than normal tissues. By appropriately selecting the intensity and wavelength of the second ultrashort pulsed light and increasing the detection sensitivity of the light detection unit, a fluorescent image can be acquired without administering a fluorescent reagent.

本発明の実施の形態の蛍光CT装置Fluorescence CT apparatus according to an embodiment of the present invention 蛍光断層画像の取得状態の説明図Explanatory drawing of acquisition state of fluorescence tomographic image 切り替えフィルタの説明図Illustration of switching filter 時間分解曲線の説明図Illustration of time-resolved curve 蛍光断層画像およびX線断層画像の説明図Illustration of fluorescence tomographic image and X-ray tomographic image

符号の説明Explanation of symbols

3 被検者
4 乳房
10 回転リング
11 移動機構
21 X線源
22 X線検出部
23 X線断層画像取得部
31 光照射部
32 光検出部
33 蛍光断層が像取得部
35 ファイバ
36、37 半導体レーザ
40a、40b、40c・・・ TAC
41a、41b、41c・・・ ファイバ
42a、42b、42c・・・ 切り替えフィルタ
46 メモリ
47 光学特性値分布算出部
48 蛍光分布算出部
49 蛍光断層画像生成部
50 3次元蛍光断層画像生成部
DESCRIPTION OF SYMBOLS 3 Subject 4 Breast 10 Rotating ring 11 Moving mechanism 21 X-ray source 22 X-ray detection part 23 X-ray tomographic image acquisition part 31 Light irradiation part 32 Light detection part
33 Fluorescence tomography image acquisition unit 35 Fiber 36, 37 Semiconductor laser 40a, 40b, 40c ... TAC
41a, 41b, 41c... Fiber 42a, 42b, 42c... Switching filter 46 Memory 47 Optical characteristic value distribution calculating unit 48 Fluorescence distribution calculating unit 49 Fluorescent tomographic image generating unit 50 Three-dimensional fluorescent tomographic image generating unit

Claims (5)

第1の極短パルス光を被計測体へ照射する第1の光照射手段と、
第2の極短パルス光を前記被計測体へ照射する第2の光照射手段と、
前記被計測体内部を伝播した前記第1の極短パルス光の光量の空間分布および時間変化を検出する光検出手段と、
該光検出手段の検出結果に基づいて前記被計測体内における光学特性値の分布を算出する光学特性値分布算出手段と、
前記第2の極短パルス光を照射されることにより前記被計測体内から発せられ、前記被計測体内を伝播した蛍光の光量の空間分布および時間変化を検出する蛍光検出手段と、
該蛍光検出手段の検出結果と、前記光学特性値分布算出手段により算出された前記光学特性値分布とに基いて、前記被計測体内における蛍光射出量の分布を算出する蛍光分布算出手段と、
該蛍光分布算出手段により算出された前記蛍光射出量の分布に基いて、前記被計測体の蛍光断層画像を生成する蛍光断層画像生成手段とを備えたことを特徴とする蛍光CT装置。
First light irradiating means for irradiating the measurement object with the first ultrashort pulse light;
Second light irradiation means for irradiating the object to be measured with second ultrashort pulse light;
A light detection means for detecting a spatial distribution and a temporal change in the amount of light of the first ultrashort pulse light propagated through the measurement object;
Optical characteristic value distribution calculating means for calculating a distribution of optical characteristic values in the measurement object based on a detection result of the light detecting means;
A fluorescence detection means for detecting a spatial distribution and temporal change of the amount of fluorescence emitted from the measured body by being irradiated with the second ultrashort pulse light and propagated through the measured body;
Based on the detection result of the fluorescence detection means and the optical characteristic value distribution calculated by the optical characteristic value distribution calculation means, a fluorescence distribution calculation means for calculating the distribution of the fluorescence emission amount in the measurement object;
A fluorescence CT apparatus comprising: a fluorescence tomographic image generation unit configured to generate a fluorescence tomographic image of the measurement object based on the distribution of the fluorescence emission amount calculated by the fluorescence distribution calculation unit.
前記被計測体の画像情報を担持する放射線を検出し、前記被計測体の放射線画像を生成する放射線画像取得手段と、
前記蛍光断層画像および前記放射線画像を同時に表示する表示手段とを備えたことを特徴とする請求項1記載の蛍光CT装置。
Radiation image acquisition means for detecting radiation carrying image information of the measurement object and generating a radiation image of the measurement object;
The fluorescence CT apparatus according to claim 1, further comprising display means for simultaneously displaying the fluorescence tomographic image and the radiation image.
前記光検出手段および前記光照射手段と、前記被計測体とを相対的に螺旋状に移動させる移動手段を備え、
前記光学特性値算出手段が、複数位置で検出した、前記被計測体内を伝播した前記第1の極短パルス光の光量の前記空間分布および前記時間変化に基づいて前記被計測体の3次元光学特性値分布を算出するものであり、
前記蛍光分布算出手段が、前記3次元光学特性値分布と、複数位置で検出した、前記被計測体内を伝播した前記蛍光の前記空間分布および前記時間変化とに基いて、前記蛍光射出量の3次元分布を算出するものであり、
前記蛍光断層画像生成手段が、前記蛍光射出量の前記3次元分布に基いて、前記被計測体の3次元蛍光断層画像を生成するものであることを特徴とする請求項1または2記載の蛍光CT装置。
A moving means for moving the light detecting means and the light irradiating means and the measured object relatively in a spiral manner;
Based on the spatial distribution of the light quantity of the first ultrashort pulse light propagated through the measurement object and the time change detected by the optical characteristic value calculation means at a plurality of positions, the three-dimensional optical of the measurement object Calculating the characteristic value distribution,
Based on the three-dimensional optical characteristic value distribution and the spatial distribution of the fluorescence propagated through the measurement object and the time change detected by the fluorescence distribution calculation means at a plurality of positions, the fluorescence emission amount of 3 To calculate the dimensional distribution,
3. The fluorescence according to claim 1, wherein the fluorescence tomographic image generation unit generates a three-dimensional fluorescence tomographic image of the measurement object based on the three-dimensional distribution of the fluorescence emission amount. CT device.
前記被計測体が乳房であり、前記第1の極短パルス光および第2の極短パルス光が近赤外光であり、前記蛍光断層画像が、前記乳房の胸壁と平行な断面における蛍光断層画像であることを特徴とする請求項1から3いずれか1項記載の蛍光CT装置。 The measurement object is a breast, the first ultrashort pulse light and the second ultrashort pulse light are near-infrared light, and the fluorescence tomographic image is a fluorescence tomogram in a cross section parallel to the breast wall of the breast The fluorescence CT apparatus according to any one of claims 1 to 3, wherein the fluorescence CT apparatus is an image. 前記乳房には、異常組織に対する親和性を有する蛍光試薬が予め投与され、前記蛍光が前記蛍光試薬から主に発せられるものであることを特徴とする請求項1から4いずれか1項記載の蛍光CT装置。 The fluorescence according to any one of claims 1 to 4, wherein the breast is preliminarily administered with a fluorescent reagent having an affinity for an abnormal tissue, and the fluorescence is mainly emitted from the fluorescent reagent. CT device.
JP2004207768A 2004-07-14 2004-07-14 Fluorescence CT system Active JP4471162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004207768A JP4471162B2 (en) 2004-07-14 2004-07-14 Fluorescence CT system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004207768A JP4471162B2 (en) 2004-07-14 2004-07-14 Fluorescence CT system

Publications (2)

Publication Number Publication Date
JP2006026017A true JP2006026017A (en) 2006-02-02
JP4471162B2 JP4471162B2 (en) 2010-06-02

Family

ID=35893039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004207768A Active JP4471162B2 (en) 2004-07-14 2004-07-14 Fluorescence CT system

Country Status (1)

Country Link
JP (1) JP4471162B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087478A1 (en) * 2009-01-30 2010-08-05 富士フイルム株式会社 Method for generating optical tomographic information, optical tomographic information generating apparatus and storage medium
WO2010087477A1 (en) * 2009-01-30 2010-08-05 富士フイルム株式会社 Holding device for an item to be measured, holding device for living organisms and optical measuring device
JP2011069716A (en) * 2009-09-25 2011-04-07 Fujifilm Corp Measurement data correction method, optical tomographic measuring device, and program
JP2012525883A (en) * 2009-05-05 2012-10-25 ルミト・アーベー System, method, and luminescence marker for improved diffuse luminescence imaging or tomography of scattering media
WO2013112709A1 (en) * 2012-01-24 2013-08-01 Niedre Mark Systems and methods for sensing, enumerating and imaging rare cells with diffuse light
JP2014085188A (en) * 2012-10-22 2014-05-12 Shimadzu Corp Fluorescence image reconstruction method and device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087478A1 (en) * 2009-01-30 2010-08-05 富士フイルム株式会社 Method for generating optical tomographic information, optical tomographic information generating apparatus and storage medium
WO2010087477A1 (en) * 2009-01-30 2010-08-05 富士フイルム株式会社 Holding device for an item to be measured, holding device for living organisms and optical measuring device
JP2010175466A (en) * 2009-01-30 2010-08-12 Fujifilm Corp Method, device, and program for producing optical tomographic information
JP2010197381A (en) * 2009-01-30 2010-09-09 Fujifilm Corp Holding tool for measuring object, holding tool for living organism, and light measuring device
US8327804B2 (en) 2009-01-30 2012-12-11 Fujifilm Corporation Measurement object holder, living body holder, and optical measurement instrument
US8742371B2 (en) 2009-01-30 2014-06-03 Fujifilm Corporation Method for generating optical tomographic information, optical tomographic information generating apparatus, and storage medium
JP2012525883A (en) * 2009-05-05 2012-10-25 ルミト・アーベー System, method, and luminescence marker for improved diffuse luminescence imaging or tomography of scattering media
US9012869B2 (en) 2009-05-05 2015-04-21 Lumito Ab System, method, and luminescent marker for improved diffuse luminescent imaging or tomography in scattering media
JP2011069716A (en) * 2009-09-25 2011-04-07 Fujifilm Corp Measurement data correction method, optical tomographic measuring device, and program
WO2013112709A1 (en) * 2012-01-24 2013-08-01 Niedre Mark Systems and methods for sensing, enumerating and imaging rare cells with diffuse light
US9968259B2 (en) 2012-01-24 2018-05-15 Northeastern University Systems and methods for sensing, enumerating and imaging rare cells with diffuse light
JP2014085188A (en) * 2012-10-22 2014-05-12 Shimadzu Corp Fluorescence image reconstruction method and device

Also Published As

Publication number Publication date
JP4471162B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
US7742567B2 (en) Compton scattered X-ray visualization, imaging, or information provider with time of flight computation
US8041006B2 (en) Aspects of compton scattered X-ray visualization, imaging, or information providing
US7711089B2 (en) Scintillator aspects of compton scattered X-ray visualization, imaging, or information providing
US8837677B2 (en) Method and system for compton scattered X-ray depth visualization, imaging, or information provider
US8041005B2 (en) X-ray fluorescence visualizer, imager, or information provider
US7660385B2 (en) Time of flight aspects for X-Ray fluorescence visualizer, imager, or information provider
US20080253522A1 (en) Tool associated with compton scattered X-ray visualization, imaging, or information provider
US20080253520A1 (en) Compton scattered X-ray visualization, imaging, or information provider with scattering event locating
US10064584B2 (en) Combined x-ray and optical tomographic imaging system
Popescu et al. Assessment of early demineralization in teeth using the signal attenuation in optical coherence tomography images
JP2007313169A (en) Lesion extractor and lesion extraction method
US7702066B2 (en) Portable aspects for x-ray fluorescence visualizer, imager, or information provider
JP2015512709A (en) Integrated delayed optical feedback in image guidance
Sasazawa et al. Optical-fiber-based laser-induced breakdown spectroscopy for detection of early caries
JP4471162B2 (en) Fluorescence CT system
US7825376B2 (en) Scintillator aspects for X-ray fluorescence visualizer, imager, or information provider
US20090086896A1 (en) Tool based X-ray fluorescence visualizing, imaging, or information providing
US20090264772A1 (en) Fash fluorescence imaging device for diffuse optical tomography
JP2009516847A (en) Device for imaging the inside of a turbid medium
EP1797818A2 (en) Method and system for tomographic imaging using fluorescent proteins
US10229091B2 (en) Method for reconstructing the optical properties of a medium with computing of a signal corrected as a function of a first modeling function for a reference medium and of a second distribution for a medium to be characterized, and associated reconstruction system
KR20150060377A (en) Apparatus for multi-energy X-ray using laser plasma light source
Long et al. Dental optical tomography with upconversion nanoparticles—a feasibility study
JP6154613B2 (en) Cross-sectional image measuring apparatus and measuring method
US20130116553A1 (en) Biological measuring apparatus and biological measuring method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150