JP2006025688A - New thermostable amp deaminase and method for producing the same - Google Patents

New thermostable amp deaminase and method for producing the same Download PDF

Info

Publication number
JP2006025688A
JP2006025688A JP2004208785A JP2004208785A JP2006025688A JP 2006025688 A JP2006025688 A JP 2006025688A JP 2004208785 A JP2004208785 A JP 2004208785A JP 2004208785 A JP2004208785 A JP 2004208785A JP 2006025688 A JP2006025688 A JP 2006025688A
Authority
JP
Japan
Prior art keywords
thermostable
amp deaminase
producing
enzyme
aspergillus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004208785A
Other languages
Japanese (ja)
Inventor
Mitsuaki Moriguchi
充瞭 森口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amano Enzyme Inc
Original Assignee
Amano Enzyme Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amano Enzyme Inc filed Critical Amano Enzyme Inc
Priority to JP2004208785A priority Critical patent/JP2006025688A/en
Publication of JP2006025688A publication Critical patent/JP2006025688A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new thermostable AMP deaminase capable of being simultaneously used with a nuclease, enabling the contamination with various germs to be prevented by shortening the production process and carrying out a treating process of the enzyme at a high temperature, and having excellent thermal stability allowing the utilization at 65°C; and to provide a method for producing the AMP deaminase. <P>SOLUTION: The new thermostable AMP deaminase has the following physicochemical properties: (1) substrate specificity: catalyzing the reaction of 5'-adenylic acid+H<SB>2</SB>O→5'-inosinic acid+NH<SB>3</SB>; (2) stable temperature: stable up to 65°C; (3) optimum pH: about 6.0; (4) molecular weight: 85,000±3,000 (by SDS-PAGE), and 88,000±3,000 (by gel filtration). The method for producing the thermostable AMP deaminase comprises culturing microorganisms having thermostable AMP deaminase-producing ability in a nutrient medium to produce the thermostable AMP deaminase, and collecting the produced AMP deaminase. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、新規な耐熱性を有するAMPデアミナーゼ及びその製造法に関し、詳細には65℃まで安定な新規なAMPデアミナーゼ及びその製造法に関する。   The present invention relates to a novel heat-resistant AMP deaminase and a method for producing the same, and more particularly to a novel AMP deaminase stable up to 65 ° C. and a method for producing the same.

AMPデアミナーゼは、アデニルデアミナーゼ、AMPアミノヒドロラーゼ等とも呼ばれ、5'-アデニル酸を加水分解的に脱アミノして5'-イノシン酸とアンモニアを生成する反応を触媒する。AMPデアミナーゼは動物生体組織に広く存在し、これまでに様々な種の様々な組織から分離されている(非特許文献1、特許文献1参照)。一方、主に工業的利用の見地から、微生物由来のAMPデアミナーゼの探索が精力的に行われてきた。特に、糸状菌由来AMPデアミナーゼに関する研究は多く、アスペルギルス・メレウスのAMPデアミナーゼ等、一部のAMPデアミナーゼについては、酵母エキスの製造における旨味増強などを目的としてその工業的な利用が図られている。現在、酵母エキスの製造においては、旨味増強のためにAMPデアミナーゼとヌクレアーゼとが併用されている。
藤島鉄郎及び吉野宏,Amino Acid・Nucleic Acid,第16号,pp45-55(1967年) 特開昭55−120788号公報
AMP deaminase is also called adenyl deaminase, AMP aminohydrolase, etc., and catalyzes a reaction that hydrolyzes 5′-adenylic acid to produce 5′-inosinic acid and ammonia. AMP deaminase is widely present in animal biological tissues and has been separated from various tissues of various species so far (see Non-Patent Document 1 and Patent Document 1). On the other hand, mainly from the viewpoint of industrial use, search for AMP-derived deaminase derived from microorganisms has been energetically performed. In particular, there are many studies on filamentous fungus-derived AMP deaminase, and some AMP deaminases such as Aspergillus mereus AMP deaminase have been industrially used for the purpose of enhancing umami in the production of yeast extract. Currently, in the production of yeast extract, AMP deaminase and nuclease are used in combination to enhance umami.
Tetsuro Fujishima and Hiroshi Yoshino, Amino Acid / Nucleic Acid, No. 16, pp 45-55 (1967) Japanese Patent Laid-Open No. 55-120788

しかし、一般にヌクレアーゼの至適温度は約65℃である一方、現在使用されているアスペルギルス・メレウス由来のAMPデアミナーゼの至適温度は約50℃で65℃付近では著しく活性が低下する。したがって、製造上、高温で同時に二つの酵素を作用させることは不可能であり、ヌクレアーゼ処理とAMPデアミナーゼ処理とを別個の工程として行わざるを得ず、製造工程が煩雑であった。また、製造過程において処理温度をAMPデアミナーゼの反応温度である約50℃に一旦下げる工程が必要となるため、雑菌汚染を有効に防止できないという問題があった。   However, in general, the optimum temperature of nuclease is about 65 ° C., whereas the optimum temperature of AMP deaminase derived from Aspergillus mereus currently used is about 50 ° C., and the activity is remarkably reduced at around 65 ° C. Therefore, in production, it is impossible to cause two enzymes to act simultaneously at a high temperature, and nuclease treatment and AMP deaminase treatment must be performed as separate steps, and the production process is complicated. In addition, since a process for lowering the treatment temperature to about 50 ° C., which is the reaction temperature of AMP deaminase, is required in the production process, there is a problem that contamination with various bacteria cannot be effectively prevented.

本発明は、上記事情に鑑みなされたものであり、ヌクレアーゼと同時に使用でき、製造工程の短縮化と酵素の処理工程を高温により行うことにより雑菌汚染を有効に防止することができる65℃で利用可能な耐熱性に優れるAMPデアミナーゼ及びその製造法を提供することを課題とする。   The present invention has been made in view of the above circumstances, and can be used at the same time as nuclease. It can be used at 65 ° C., which can effectively prevent contamination by shortening the production process and treating the enzyme at a high temperature. It is an object of the present invention to provide an AMP deaminase having excellent heat resistance and a method for producing the same.

本発明者らは上記の事情に鑑み、耐熱性に優れたAMPデアミナーゼを微生物に求めてスクリーニングを実施した結果、土壌より新たに採取した微生物が熱安定性の高いAMPデアミナーゼを生産していることを見出し、本発明を完成するに至った。
すなわち、本発明は下記の理化学的性質を有する耐熱性AMPデアミナーゼを要旨とする。
(1)基質特異性:5'-アデニル酸+H2O→5'-イノシン酸+NH3の反応を触媒する。
(2)安定温度:65℃まで安定である。
(3)至適pH:6.0付近である。
(4)分子量:85,000±3,000(SDS-PAGEによる)、88,000±3,000(ゲルろ過による)である。
In light of the above circumstances, the present inventors conducted screening for microorganisms for AMP deaminase with excellent heat resistance, and as a result, microorganisms newly collected from soil produced AMP deaminase with high thermal stability. As a result, the present invention has been completed.
That is, the gist of the present invention is a thermostable AMP deaminase having the following physicochemical properties.
(1) Substrate specificity: Catalyze the reaction of 5′-adenylic acid + H 2 O → 5′-inosinic acid + NH 3 .
(2) Stable temperature: Stable up to 65 ° C.
(3) Optimal pH: around 6.0.
(4) Molecular weight: 85,000 ± 3,000 (by SDS-PAGE), 88,000 ± 3,000 (by gel filtration).

上記の耐熱性AMPデアミナーゼ生産能を有する微生物を栄養培地で培養し、培養液中に耐熱性AMPデアミナーゼを産生せしめ、これを採取することを特徴とする耐熱性AMPデアミナーゼの製造法を要旨とする。   Summary of the method for producing thermostable AMP deaminase characterized in that the above-mentioned microorganisms capable of producing thermostable AMP deaminase are cultured in a nutrient medium, and thermostable AMP deaminase is produced in the culture medium and collected. .

上記の耐熱性AMPデアミナーゼ及び耐熱性AMPデアミナーゼの製造法において、アスペルギルス属に属する微生物、アスペルギルス・フミガタス(Aspergillus fumigatus)、あるいはアルペルギルス・フミガタス(Aspergillus fumigatus)N0.4(FERM P-20075)としても良い。   In the production method of the above-mentioned thermostable AMP deaminase and thermostable AMP deaminase, a microorganism belonging to the genus Aspergillus, Aspergillus fumigatus, or Aspergillus fumigatus N0.4 (FERM P-20075) may be used. .

上記の理化学的性質を有する耐熱性AMPデアミナーゼ生産能を有するアスペルギルス・フミガタス(Aspergillus fumigatus)No.4(FERM P-20075)を要旨とする。   The gist is Aspergillus fumigatus No. 4 (FERM P-20075) having the above-mentioned physicochemical properties and the ability to produce thermostable AMP deaminase.

本発明の耐熱性AMPデアミナーゼは、65℃でも活性が高いので、かかる高温下での反応が望まれる用途に好適である。例えば、酵母エキスの製造過程において使用するヌクレアーゼなど、高温下で作用させる他の酵素と同時に作用させることができ、製造工程の短縮化と酵素反応を雑菌汚染のおそれの少ない状況下での実施ができる。   Since the thermostable AMP deaminase of the present invention has high activity even at 65 ° C., it is suitable for applications where a reaction at such a high temperature is desired. For example, it can be operated simultaneously with other enzymes that act at high temperatures, such as nucleases used in the production process of yeast extract, and the production process can be shortened and the enzyme reaction can be carried out in a situation where there is little risk of contamination. it can.

本発明の耐熱性AMPデアミナーゼは、上記の(1)基質特異性:5'-アデニル酸+H2O→5'-イノシン酸+NH3の反応を触媒する、(2)安定温度:65℃まで安定である、(3)至適pH:6.0付近である、(4)分子量:85,000±3,000(SDS-PAGEによる)、88,000±3,000(ゲルろ過による)という理化学的性質を有し、特に耐熱性に優れる。ここで、「65℃まで安定である」とは、リン酸緩衝液でpH6.0に調整した酵素溶液を65℃で30分処理したときに、未処理の場合の酵素活性を基準(100%)として80%以上の活性が残存することをいう。 The thermostable AMP deaminase of the present invention catalyzes the reaction of (1) substrate specificity: 5′-adenylic acid + H 2 O → 5′-inosinic acid + NH 3 , (2) stable temperature: stable to 65 ° C. (3) Optimal pH: around 6.0, (4) Molecular weight: 85,000 ± 3,000 (according to SDS-PAGE), 88,000 ± 3,000 (according to gel filtration), especially in heat resistance Excellent. Here, "stable up to 65 ° C" means that the enzyme activity adjusted to pH 6.0 with phosphate buffer at 65 ° C for 30 minutes is the standard (100% ) Means that 80% or more of the activity remains.

上記の理化学的性質を有する耐熱性AMPデアミナーゼを生産する限り、生産する微生物に限定はないが、アスペルギルス属に属する微生物が好ましく、アスペルギルス・フミガタス(Aspergillus fumigatus)がより好ましい。また、新たに土壌から採取された下記の菌学的性質を有する微生物が最も好ましい。   As long as the thermostable AMP deaminase having the above physicochemical properties is produced, the microorganism to be produced is not limited, but a microorganism belonging to the genus Aspergillus is preferable, and Aspergillus fumigatus is more preferable. Further, a microorganism having the following mycological properties newly collected from soil is most preferable.

各種培地における生育
(1)ポテトデキストロース寒天斜面
40℃、45℃で生育、粉状〜ベルベット状、表面は暗緑色。
(2)麦芽エキス寒天平板
集落表面は、ビロード状〜羊毛状。最初白色、分生子が多数形成されると暗緑色、集落表面は薄い黄色。
(3)ツァペック・ドックス寒天平板
暗緑、緑濃色、灰緑色、25℃で生育良好。
形態
(1)菌糸:白色(無色)
(2)分生子頭:放線状又は円柱状、直径16〜40μm
(3)分生子柄:160〜320μm長、直径4〜10μm
(4)頂嚢:直径12〜28μm、フラスコ型、へさじ型、淡緑色、通常、上部1/2くらいよりフィアライドを形成する。
(5)フィアライド:単列で互いに並列に並んでいる、4〜6x2μm。
(6)分生子:直径2〜3μm、球形〜亜球形、粗面だが突起はない。
(7)メトレ:形成されない。
(8)閉子嚢殻:形成されない。
Growth in various media (1) Potato dextrose agar slope
Grows at 40 ° C and 45 ° C, powder to velvet, surface is dark green.
(2) Malt extract agar plate The settlement surface is velvety to wooly. Initially white, dark green when many conidia are formed, the village surface is pale yellow.
(3) Czapek Docs agar plate Dark green, deep green, grayish green, good growth at 25 ° C.
Form (1) Mycelium: White (colorless)
(2) Conidial head: actuated or cylindrical, diameter 16-40μm
(3) Conidial pattern: 160-320 μm long, 4-10 μm in diameter
(4) Apical sac: 12 to 28 μm in diameter, flask-type, spatula-type, light green, usually forming phialide from about the upper half.
(5) Fear ride: 4-6 × 2 μm arranged in parallel in a single row.
(6) Conidia: 2 to 3 μm in diameter, spherical to subspherical, rough surface but no protrusions.
(7) Metre: Not formed.
(8) Closure capsular shell: not formed.

ポテトデキストロース寒天培地、麦芽エキス寒天培地で暗緑色のスラント表面を形成する。分生子頭は、放射状又は円柱状であって、こん棒状ではない。又、フィアライドは、厳密に単列で互いに並行に並んでいる。閉子嚢殻は、形成されない。本菌株は、以上の特徴と下記の参考文献を参照した結果、アスペルギルス・フミガタス(Aspergillu
fumigatus)と同定され、アスペルギルス・フミガタス(Aspergillu fumigatus)No.4と命名した。
A dark green slant surface is formed with potato dextrose agar and malt extract agar. The conidia head is radial or cylindrical and not a club. In addition, the phialides are strictly arranged in parallel in a single row. A closed crust is not formed. As a result of referring to the above characteristics and the following references, this strain was found to have Aspergillus fumigatus (Aspergillu
fumigatus) and named Aspergillu fumigatus No.4.

参考文献
(1)カビ検査マニュアルカラー図譜 2002年 298〜299頁(2002年3月29日発行)発行元:株式会社テクノシステム
(2)菌類図鑑 下巻 1018〜1021頁(1980年2月20日発行)発行元:講談社
(3)Identification of Common Aspergillus Species Maren A.Klich 2002年 50〜51頁 CBS UTRECHT
References (1) Mold Inspection Manual Color Chart 2002 298-299 pages (issued March 29, 2002) Publisher: Technosystem Co., Ltd. (2) Fungal Encyclopedia Volume 1018-1021 (issued February 20, 1980) Publisher: Kodansha (3) Identification of Common Aspergillus Species Maren A. Klich 2002 50-51 CBS UTRECHT

本菌株は、次の通り寄託されている。
寄託機関名:茨城県つくば市東1−1−1中央第6
独立行政法人産業技術総合研究所 特許生物寄託センター
寄託日:平成16年6月3日、
寄託番号 第20075号(FERM P-20075 )
This strain is deposited as follows.
Depositary institution name: Tsukuba City, Ibaraki Prefecture 1-1-1 Central 6th
National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center Date of deposit: June 3, 2004
Deposit No. 20075 (FERM P-20075)

本発明の耐熱性AMPデアミナーゼは、上記の理化学的性質を有するAMPデアミナーゼ生産能を有する微生物を栄養培地で培養し、培養液中に耐熱性AMPデアミナーゼを産生せしめ、これを採取することにより製造できる。   The thermostable AMP deaminase of the present invention can be produced by culturing a microorganism having the above-mentioned physicochemical properties with the ability to produce AMP deaminase in a nutrient medium, producing the thermostable AMP deaminase in the culture solution, and collecting it. .

本発明の耐熱性AMPデアミナーゼを生産する上記のアスペルギルス属に属する各微生物の培養は常法を用いて行うことができる。培地は、グルコース、シュクロース、ゲンチオビオース、可溶性デンプン、グリセリン、デキストリン、糖蜜、有機酸等の炭素源、硫酸アンモニウム、炭酸アンモニウム、リン酸アンモニウム、酢酸アンモニウム、あるいは、ポリペプトン、酵母エキス、コーンスティープリカー、カゼイン加水分解物、ふすま、肉エキス等の窒素源、必要に応じてカリウム塩、マグネシウム塩、ナトリウム塩、リン酸塩、マンガン塩、鉄塩、亜鉛塩等の無機塩(無機イオン)を含むものを用いることができる。アスペルギルス属に属する微生物の生育を促進するために、ビタミン、アミノ酸などを添加した培地を用いることもできる。培地のpHは、例えば5.0〜8.0、好ましくは5.5〜7.5に調整する。培養温度は、例えば15℃〜65℃の範囲であり、好ましくは30℃〜60℃の範囲であり、更に好ましくは40℃〜55℃の範囲である。培養時間は、特に限定されないが、例えば3日以上である。培養法は、例えば振盪培養法、ジャーファーメンターによる好気的深部培養法を利用できる。なお、上述した各種の培養条件などは培養する対象に応じて適宜変更され、本発明の耐熱性AMPデアミナーゼが生産される条件であれば、その条件等は特に限定されない。   The culture of each microorganism belonging to the genus Aspergillus that produces the thermostable AMP deaminase of the present invention can be carried out using a conventional method. Medium is glucose, sucrose, gentiobiose, soluble starch, glycerin, dextrin, molasses, organic acid and other carbon sources, ammonium sulfate, ammonium carbonate, ammonium phosphate, ammonium acetate, or polypeptone, yeast extract, corn steep liquor, casein Nitrogen sources such as hydrolysates, bran and meat extracts, and those containing inorganic salts (inorganic ions) such as potassium, magnesium, sodium, phosphate, manganese, iron, and zinc salts as required Can be used. In order to promote the growth of microorganisms belonging to the genus Aspergillus, a medium supplemented with vitamins, amino acids and the like can also be used. The pH of the medium is adjusted to, for example, 5.0 to 8.0, preferably 5.5 to 7.5. The culture temperature is, for example, in the range of 15 ° C to 65 ° C, preferably in the range of 30 ° C to 60 ° C, and more preferably in the range of 40 ° C to 55 ° C. The culture time is not particularly limited, but is, for example, 3 days or longer. As the culture method, for example, a shaking culture method or an aerobic deep culture method using a jar fermenter can be used. The various culture conditions described above are appropriately changed depending on the subject to be cultured, and the conditions are not particularly limited as long as the thermostable AMP deaminase of the present invention is produced.

本発明の耐熱性AMPデアミナーゼは、アスペルギルス属に属する微生物を所望時間培養した後に得た培養液又は菌体より分離できる。培養液から、例えば培養上清をろ過、遠心処理して不溶物を除去した後、硫酸プロタミン処理、透析、各種クロマトグラフィーなどを組み合わせるなど公知の精製法を用いて精製された耐熱性AMPデアミナーゼを得ることができるが、硫酸プロタミン処理の後、疎水性クロマトグラフィー及びゲルろ過を用いて行うことが好ましい。他方、菌体内から分離する場合、例えば菌体を加圧処理、超音波処理などによって破砕した後、上記と同様に精製を行うことにより精製されたAMPデアミナーゼを得ることができる。尚、ろ過、遠心処理などによって予め培養液から菌体を回収した後、上記一連の工程(菌体の破砕、分離、精製)を行ってもよい。尚、各精製工程では原則としてAMPデアミナーゼ活性を指標として分画を行うことができる。   The thermostable AMP deaminase of the present invention can be separated from a culture solution or cells obtained after culturing a microorganism belonging to the genus Aspergillus for a desired time. For example, after filtering and centrifuging the culture supernatant to remove insolubles from the culture solution, heat-stable AMP deaminase purified using a known purification method such as a combination of protamine sulfate treatment, dialysis, various chromatographies, etc. Although it can be obtained, it is preferable to carry out using hydrophobic chromatography and gel filtration after the protamine sulfate treatment. On the other hand, when the cells are separated from the cells, for example, after the cells are crushed by pressure treatment, ultrasonic treatment, etc., purified AMP deaminase can be obtained by performing purification in the same manner as described above. In addition, after collect | recovering a microbial cell from a culture solution previously by filtration, a centrifugation process, etc., you may perform said series of processes (crushing, isolation | separation, refinement | purification of a microbial cell). In each purification step, in principle, fractionation can be performed using AMP deaminase activity as an index.

次いで、本発明を実施例を挙げて詳細に説明するが、本発明は以下の実施例に限定されるものではない。     EXAMPLES Next, although an Example is given and this invention is demonstrated in detail, this invention is not limited to a following example.

〔参考例〕(耐熱性AMPデアミナーゼ活性測定方法)
耐熱性AMPデアミナーゼ(以下、「本酵素」という)の活性は、以下のように測定した。
(1)酵素反応
1mMの5’AMP-2Naと100mMリン酸カリ緩衝液(pH 6.0)を混合した溶液(0.9ml)に本酵素溶液(0.1ml)を添加して1mlの反応液とし、30℃で30分間反応させた。酵素反応液100μlに20%過塩素酸溶液を添加して反応を停止させた後、4℃、13,000rpmで10分間遠心した。上清5μlに995μlの20mMリン酸カリ緩衝液(pH7.0)を加え、100μlをHPLCに供した。
(2)HPLCによる生成IMPの定量
試薬A:5mM リン酸テトラ−n-ブチルアンモニウム、20mMリン酸カリ緩衝液(pH7.0)
試薬B:メタノール
試薬C:[試薬A:試薬B=4:1]
[分析条件] 使用カラム Type:5C18-AR-II Size: 4.6x150mm
流速1.0ml/min(試薬C使用)にて測定した。反応時間を0分として同様に測定したものをブランクとした。以上の条件下、1分間に1μmolのIMPを生成するときを1単位とした。
(3)GIDH法による生成アンモニアの定量
1mMのAMPと100mMリン酸カリ緩衝液(pH 6.0)を混合した溶液(0.9 ml)に本酵素溶液(0.1 ml)を添加して1mlの反応液とし、30℃で60分間反応させた。酵素反応液を煮沸(3分間)して反応を停止させた後、生成したアンモニアの量をGIDH法で定量した。
アンモニア定量反応組成(1ml中)
トリス−塩酸緩衝液(pH8.0) 50mM
2-オキソグルタール酸 5mM
β−NADH 0.12mM
ADP 2.5mM
酵素反応溶液 12.5U/ml
[Reference Example] (Method for measuring thermostable AMP deaminase activity)
The activity of thermostable AMP deaminase (hereinafter referred to as “the present enzyme”) was measured as follows.
(1) Enzymatic reaction
Add this enzyme solution (0.1ml) to a solution (0.9ml) of 1mM 5'AMP-2Na and 100mM potassium phosphate buffer (pH 6.0) to make 1ml reaction solution, and react at 30 ° C for 30 minutes I let you. The reaction was stopped by adding a 20% perchloric acid solution to 100 μl of the enzyme reaction solution, and then centrifuged at 4 ° C. and 13,000 rpm for 10 minutes. To 5 μl of the supernatant, 995 μl of 20 mM potassium phosphate buffer (pH 7.0) was added, and 100 μl was subjected to HPLC.
(2) Determination of IMP produced by HPLC Reagent A: 5 mM tetra-n-butylammonium phosphate, 20 mM potassium phosphate buffer (pH 7.0)
Reagent B: Methanol Reagent C: [Reagent A: Reagent B = 4: 1]
[Analysis conditions] Column type: 5C 18 -AR-II Size: 4.6x150mm
The measurement was performed at a flow rate of 1.0 ml / min (using reagent C). A blank that was measured in the same manner with a reaction time of 0 minutes was used. One unit was defined as 1 μmol of IMP produced per minute under the above conditions.
(3) Determination of produced ammonia by GIDH method
The enzyme solution (0.1 ml) was added to a solution (0.9 ml) in which 1 mM AMP and 100 mM potassium phosphate buffer (pH 6.0) were mixed to obtain a 1 ml reaction solution, which was reacted at 30 ° C. for 60 minutes. The enzyme reaction solution was boiled (3 minutes) to stop the reaction, and the amount of ammonia produced was quantified by the GIDH method.
Ammonia quantitative reaction composition (in 1 ml)
Tris-HCl buffer (pH 8.0) 50 mM
2-Oxoglutaric acid 5 mM
β-NADH 0.12mM
ADP 2.5mM
Enzyme reaction solution 12.5U / ml

〔実施例1〕(耐熱性AMPデアミナーゼの分離及び精製)
グルコース1%、ポリペプトン0.5%、酵母エキス0.05%、KH2PO4 0.1%、MgSO4 0.01%を加えてpH6.0に調整した培地を121℃で30分間殺菌した。該培地にアスペルギルス・フミガタス(Aspergillus fumigatus)No.4( FERM P−20075)を植菌し、50℃で9日間培養して得られた培養液をADVATEC FILTER PAPER 5Cでろ過し、蛋白100mg当たり10mgの硫酸プロタミンをゆっくりと添加した。その後、8000rpm、40分遠心処理して得られた酵素液をDEAE-トヨパール(直径3cm体積60ml;東ソー社製品名)に通し、酵素を吸着せしめた後、50mM NaClを含む20mMリン酸カリ緩衝液(pH6.0)で洗浄し、その後120mM NaClを含む20mMリン酸カリ緩衝液(pH6.0)で酵素を溶出した。続いて、酵素溶液をブチル−トヨパール(直径1.5cm体積12ml;東ソー社製品名)に通し、酵素を吸着させ、30%飽和硫安を含む20mMリン酸カリ緩衝液(pH6.0)で洗浄後、20%飽和硫安を含む20mMリン酸カリ緩衝液(pH6.0)で酵素を溶出した。更に、溶出した酵素溶液をオクチル−セルロファイン(直径1.5cm体積12ml;チッソ社製品名)に通し、酵素を吸着させ、20%飽和硫安を含む20mMリン酸カリ緩衝液(pH6.0)で洗浄した。その後、10%飽和硫安を含む20mMリン酸カリ緩衝液(pH6.0)で酵素を溶出し、酵素溶液をMono Q(1ml,FPLC;ファルマシア社製品名)に通し、酵素を吸着させ、205mM NaClを含む20mMリン酸カリ緩衝液(pH6.0)で洗浄後、210 ml NaClを含む20mMリン酸カリ緩衝液(pH6.0)で酵素を溶出せしめて精製酵素とした。得られた精製酵素を下記の理化学的性質の検討に供した。
なお、各段階における精製の結果を図1に示した。最終段階の比活性は粗酵素に比較して120倍となった。精製酵素をSDS-PAGE(CBB染色)に供したところ単一なバンドを示した。
[Example 1] (Separation and purification of thermostable AMP deaminase)
1% glucose, 0.5% of polypeptone, 0.05% yeast extract, KH 2 PO 4 0.1% was sterilized 30 minutes adjusted medium at 121 ° C. to pH6.0 by addition of MgSO 4 0.01%. Aspergillus fumigatus No. 4 (FERM P-20075) was inoculated into the medium, and the culture solution obtained by culturing at 50 ° C. for 9 days was filtered with ADVATEC FILTER PAPER 5C, and 10 mg per 100 mg of protein was obtained. Of protamine sulfate was added slowly. Thereafter, the enzyme solution obtained by centrifugation at 8000 rpm for 40 minutes was passed through DEAE-Toyopearl (diameter 3 cm volume 60 ml; product name of Tosoh Corporation) to adsorb the enzyme, and then 20 mM potassium phosphate buffer containing 50 mM NaCl. After washing with (pH 6.0), the enzyme was eluted with 20 mM potassium phosphate buffer (pH 6.0) containing 120 mM NaCl. Subsequently, the enzyme solution was passed through butyl-Toyopearl (diameter 1.5 cm volume 12 ml; product name of Tosoh Corporation), the enzyme was adsorbed, washed with 20 mM potassium phosphate buffer (pH 6.0) containing 30% saturated ammonium sulfate, The enzyme was eluted with 20 mM potassium phosphate buffer (pH 6.0) containing 20% saturated ammonium sulfate. Furthermore, the eluted enzyme solution was passed through octyl-cellulofine (diameter 1.5 cm volume 12 ml; product name of Chisso Corporation) to adsorb the enzyme and washed with 20 mM potassium phosphate buffer (pH 6.0) containing 20% saturated ammonium sulfate. did. Then, the enzyme is eluted with 20 mM potassium phosphate buffer (pH 6.0) containing 10% saturated ammonium sulfate, and the enzyme solution is passed through Mono Q (1 ml, FPLC; product name of Pharmacia) to adsorb the enzyme and 205 mM NaCl. After washing with 20 mM potassium phosphate buffer (pH 6.0) containing 20 ml, the enzyme was eluted with 20 mM potassium phosphate buffer (pH 6.0) containing 210 ml NaCl to obtain a purified enzyme. The purified enzyme thus obtained was subjected to the following physicochemical properties.
The results of purification at each stage are shown in FIG. The specific activity at the final stage was 120 times that of the crude enzyme. When the purified enzyme was subjected to SDS-PAGE (CBB staining), a single band was shown.

〔実施例2〕(耐熱性AMPデアミナーゼの理化学的性質〕
基質特異性:各基質濃度1mM と100mMリン酸カリ緩衝液(pH6.0)とを混合した基質溶液に本酵素を加え、50℃で20分反応を行い、酵素活性をGIDH法で測定し、基質特異性を検討した。結果は、図2に示した。酵素活性はAMP(5'-アデニル酸又はアデノシン一リン酸)に対する酵素活性を100%とした場合の相対活性で示した。図2より明らかなように、アデノシン、ATP(アデノシン三リン酸)、ADP(アデノシン二リン酸)、アデニン、NAD(ニコチンアミドアデニンジヌクレオチド)、NADP(ニコチンアミドアデニンジヌクレオチドリン酸)に対しても作用したが、3'−AMP、GMP、3'−CMPに対しては全く作用しなかった。以上の結果から、耐熱性AMPデアミナーゼは、AMP以外にアデノシン、ADP、NADなどを基質とする反応についても当該酵素を利用できる可能性のあることが分かった。
[Example 2] (Physicochemical properties of thermostable AMP deaminase)
Substrate specificity: This enzyme is added to a substrate solution in which each substrate concentration 1 mM and 100 mM potassium phosphate buffer (pH 6.0) are mixed, reacted at 50 ° C. for 20 minutes, and enzyme activity is measured by the GIDH method. Substrate specificity was examined. The results are shown in FIG. Enzyme activity was expressed as relative activity when the enzyme activity for AMP (5′-adenylic acid or adenosine monophosphate) was taken as 100%. As is clear from FIG. 2, for adenosine, ATP (adenosine triphosphate), ADP (adenosine diphosphate), adenine, NAD (nicotinamide adenine dinucleotide), NADP (nicotinamide adenine dinucleotide phosphate) However, it did not act at all on 3′-AMP, GMP, and 3′-CMP. From the above results, it was found that the thermostable AMP deaminase may be used for reactions using adenosine, ADP, NAD or the like as a substrate in addition to AMP.

作用温度:本酵素の反応温度と活性との関係を調べた。本酵素(0.1ml)をpH6.0のリン酸カリ緩衝液を用いてpH 6.0に調整した後、活性測定反応時の反応温度を10℃から80℃の各温度にそれぞれ変化させて1mM AMPと反応させ、その活性を調べた。結果は、図3に示した。なお、図3は最高値の活性を100%とした場合の相対活性(%)で示した。図3より明らかなように、至適温度は55℃付近で、30℃〜70℃の広い範囲で約70%以上の高い活性が認められ、当該酵素は広範囲の温度条件下で良好に作用することが分かった。   Working temperature: The relationship between the reaction temperature and activity of this enzyme was examined. After adjusting the enzyme (0.1 ml) to pH 6.0 using a potassium phosphate buffer solution of pH 6.0, the reaction temperature during the activity measurement reaction was changed from 10 ° C. to 80 ° C. to 1 mM AMP and The reaction was conducted and the activity was examined. The results are shown in FIG. FIG. 3 shows the relative activity (%) when the maximum activity is 100%. As is apparent from FIG. 3, the optimum temperature is around 55 ° C., and a high activity of about 70% or more is observed in a wide range of 30 ° C. to 70 ° C., and the enzyme works well under a wide range of temperature conditions. I understood that.

熱安定性:本酵素の熱安定性を調べた。本酵素(0.1ml)をpH6.0のリン酸カリ緩衝液を用いてpH 6.0に調整した後、各温度(30℃、40℃、50℃、60℃、65℃、70℃、80℃)で30分間処理し、1mM AMP、100mMリン酸カリ緩衝液(pH6.0)で50℃、20分間反応させた後、活性を測定した。結果は、図4に示した。図4より、未処理の場合の酵素活性を基準(100%)としたとき、65℃まで約80%以上の活性を維持していた。また、70℃で処理した場合でも約17%の活性を維持していた。これより、当該酵素は熱安定性に優れることが分かった。   Thermostability: The thermostability of this enzyme was examined. After adjusting the enzyme (0.1 ml) to pH 6.0 with potassium phosphate buffer solution at pH 6.0, each temperature (30 ° C, 40 ° C, 50 ° C, 60 ° C, 65 ° C, 70 ° C, 80 ° C) Then, the mixture was reacted with 1 mM AMP and 100 mM potassium phosphate buffer (pH 6.0) at 50 ° C. for 20 minutes, and then the activity was measured. The results are shown in FIG. From FIG. 4, when the enzyme activity in the untreated case was used as a reference (100%), the activity of about 80% or more was maintained up to 65 ° C. Further, even when treated at 70 ° C., the activity of about 17% was maintained. From this, it was found that the enzyme was excellent in thermal stability.

作用pH:本酵素のpHと活性との関係を調べた。本酵素を1mM AMP、100mMの各緩衝液存在下(pH3〜6は、クエン酸リン酸緩衝液、pH6〜8はリン酸カリ緩衝液(K.P.B.)、pH8〜9はトリス塩酸緩衝液、pH9〜11は炭酸緩衝液及びpH11〜12はリン酸ナトリウム緩衝液をそれぞれ使用)で30℃、30分間反応させ、pHと活性との関係を調べた。結果は、図5に示した。なお、図5は最高値の活性を100%とした場合の相対活性(%)で示した。図5より、至適pHは6.0付近であった。   Action pH: The relationship between pH and activity of the enzyme was examined. In the presence of 1 mM AMP and 100 mM buffer (pH 3 to 6 is citrate phosphate buffer, pH 6 to 8 is potassium phosphate buffer (KPB), pH 8 to 9 is Tris-HCl buffer, pH 9 to 11 was used with a carbonate buffer and pH 11-12 was used with a sodium phosphate buffer, respectively) at 30 ° C. for 30 minutes, and the relationship between pH and activity was examined. The results are shown in FIG. FIG. 5 shows the relative activity (%) when the maximum activity is 100%. From FIG. 5, the optimum pH was around 6.0.

pH安定性:耐熱性AMPデアミナーゼのpH安定性を調べた。本酵素溶液(0.1ml)を100mMの各緩衝液(pH3〜6は、クエン酸リン酸緩衝液、pH6〜8はリン酸カリ緩衝液(K.P.B.)、pH8〜9はトリス塩酸緩衝液及びpH9〜11は炭酸緩衝液をそれぞれ使用)中で50℃、30分間処理した後(最終量1ml)、1mM AMP、100mMリン酸カリ緩衝液(pH6.0)で50℃で20分間反応させた後、活性を測定した。結果は、図6に示した。図6より、未処理の場合の酵素活性を基準(100%)としたとき、pHが約4.0〜約9.0の範囲で比較的高い活性を維持し、約6.0〜約8.0の範囲では約80%以上の活性を維持していることが分かった。   pH stability: The pH stability of thermostable AMP deaminase was examined. This enzyme solution (0.1 ml) was added to 100 mM of each buffer solution (pH 3 to 6 is citrate phosphate buffer, pH 6 to 8 is potassium phosphate buffer (KPB), pH 8 to 9 is Tris-HCl buffer and pH 9 to 11 is treated with carbonate buffer solution at 50 ° C for 30 minutes (final amount 1ml), then reacted with 1mM AMP, 100mM potassium phosphate buffer solution (pH6.0) at 50 ° C for 20 minutes, Activity was measured. The results are shown in FIG. From FIG. 6, when the enzyme activity in the case of untreated is used as a reference (100%), a relatively high activity is maintained in the pH range of about 4.0 to about 9.0, and about 80% in the range of about 6.0 to about 8.0. It was found that the above activity was maintained.

動力学的パラメーター:耐熱性AMPデアミナーゼに対する動力学的パラメーターを反応温度50℃、20分反応の条件で決定した。Km値が1.1mM、Vmaxが10.63 U/mgであった。   Kinetic parameters: Kinetic parameters for thermostable AMP deaminase were determined under the conditions of reaction temperature of 50 ° C. and reaction for 20 minutes. The Km value was 1.1 mM, and the Vmax was 10.63 U / mg.

分子量:SDS-PAGEによる分子量は、85,000±3,000で、ゲルろ過による分子量は88,000±3,000であった。   Molecular weight: The molecular weight by SDS-PAGE was 85,000 ± 3,000, and the molecular weight by gel filtration was 88,000 ± 3,000.

金属イオンの影響:100mMリン酸カリ緩衝液(pH6.0)中の本酵素に1mM及び10mMの各種金属イオンをそれぞれ添加し、50℃、10分間処理した後、1mM AMPを添加して50℃、20分反応を行った。金属イオン無添加の場合を100として相対活性を調べた。結果は、図7に示した。図7より、本酵素はCuイオン及びFeイオンにより阻害が認められた。   Effect of metal ions: 1 mM and 10 mM metal ions were added to the enzyme in 100 mM potassium phosphate buffer (pH 6.0), treated at 50 ° C for 10 minutes, and then added with 1 mM AMP at 50 ° C. The reaction was performed for 20 minutes. The relative activity was examined with 100 as the case where no metal ion was added. The results are shown in FIG. From FIG. 7, inhibition of this enzyme was recognized by Cu ions and Fe ions.

修飾試薬、阻害剤の影響:100mMリン酸カリ緩衝液(pH6.0)中の本酵素に1mMの各種修飾試薬又は阻害剤を添加し、50℃、10分間処理した後、1mM AMPを添加して50℃、20分反応を行った。修飾試薬、阻害剤の無添加の場合を100として相対活性を調べた。 結果は、図8に示した。なお、図8中のPCMBは、パラクロオマーキュリベンゾエイト、PMSFはフェニルメタンスルホニルフルオライド、EDCは1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド、DEPCはジエチルピロカルボネート、TNBSはトリニトロベンゼンスルホン酸、DTTはジチオスレイトール、EDTAはエチレンジアミン四酢酸、 EGTAはエチレングリコールビス(β−アミノエチルエステル)四酢酸の略である。本酵素は、PCMB及びモノヨード酢酸によって強く阻害されるが、4−(2-アミノエチル)ベンゼンスルホリドヒドロクロリド、EDTA及びEGTAによっては阻害されないことが判明した。   Effect of modifying reagents and inhibitors: Add 1 mM of various modifying reagents or inhibitors to this enzyme in 100 mM potassium phosphate buffer (pH 6.0), treat at 50 ° C for 10 minutes, then add 1 mM AMP. The reaction was performed at 50 ° C. for 20 minutes. The relative activity was examined with 100 as the case where no modifier or inhibitor was added. The results are shown in FIG. In FIG. 8, PCMB is parachloromer benzoate, PMSF is phenylmethanesulfonyl fluoride, EDC is 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide, DEPC is diethyl pyrocarbonate, and TNBS is triphenyl. Nitrobenzenesulfonic acid, DTT is dithiothreitol, EDTA is an abbreviation for ethylenediaminetetraacetic acid, and EGTA is an abbreviation for ethylene glycol bis (β-aminoethyl ester) tetraacetic acid. This enzyme was found to be strongly inhibited by PCMB and monoiodoacetic acid, but not by 4- (2-aminoethyl) benzenesulfohydrochloride, EDTA and EGTA.

耐熱性AMPデアミナーゼの各精製過程における全酵素活性量、比活性、全蛋白量、全活性、活性倍率及び収率を示す表である。It is a table | surface which shows the total enzyme activity amount, specific activity, total protein amount, total activity, activity multiplication factor, and yield in each purification process of thermostable AMP deaminase. 耐熱性AMPデアミナーゼの基質特異性を示す表である。It is a table | surface which shows the substrate specificity of thermostable AMP deaminase. 耐熱性AMPデアミナーゼの作用温度を示すグラフである。It is a graph which shows the working temperature of thermostable AMP deaminase. 耐熱性AMPデアミナーゼの熱安定性を示すグラフである。It is a graph which shows the thermostability of thermostable AMP deaminase. 耐熱性AMPデアミナーゼの作用pHを示すグラフである。It is a graph which shows the action | operation pH of thermostable AMP deaminase. 耐熱性AMPデアミナーゼのpH安定性を示すグラフである。It is a graph which shows the pH stability of thermostable AMP deaminase. 耐熱性AMPデアミナーゼの金属イオンの影響を示す表である。It is a table | surface which shows the influence of the metal ion of thermostable AMP deaminase. 耐熱性AMPデアミナーゼの修飾試薬もしくは阻害剤の影響を示す表である。It is a table | surface which shows the influence of the modification reagent or inhibitor of thermostable AMP deaminase.

Claims (9)

下記の理化学的性質を有する耐熱性AMPデアミナーゼ。
(1)基質特異性:5'-アデニル酸+H2O→5'-イノシン酸+NH3の反応を触媒する。
(2)安定温度:65℃まで安定である。
(3)至適pH:6.0付近である。
(4)分子量:85,000±3,000(SDS-PAGEによる)、88,000±3,000(ゲルろ過による)である。
A thermostable AMP deaminase having the following physicochemical properties:
(1) Substrate specificity: Catalyze the reaction of 5′-adenylic acid + H 2 O → 5′-inosinic acid + NH 3 .
(2) Stable temperature: Stable up to 65 ° C.
(3) Optimal pH: around 6.0.
(4) Molecular weight: 85,000 ± 3,000 (by SDS-PAGE), 88,000 ± 3,000 (by gel filtration).
アスペルギルス属に属する微生物が生産する請求項1に記載の耐熱性AMPデアミナーゼ。   The thermostable AMP deaminase according to claim 1, which is produced by a microorganism belonging to the genus Aspergillus. アスペルスギルス属に属する微生物がアスペルギルス・フミガタス(Aspergillus
fumigatus)である請求項2に記載の耐熱性AMPデアミナーゼ。
The microorganism belonging to the genus Aspergillus is Aspergillus fumigatus (Aspergillus
The thermostable AMP deaminase according to claim 2, which is fumigatus).
アスペルギルス・フミガタス(Aspergillus fumigatus)がアスペルギルス・フミガタス(Aspergillus fumigatus)N0.4(FERM P-20075)である請求項3に記載の耐熱性AMPデアミナーゼ。   The thermostable AMP deaminase according to claim 3, wherein the Aspergillus fumigatus is Aspergillus fumigatus N0.4 (FERM P-20075). 請求項1記載の耐熱性AMPデアミナーゼ生産能を有する微生物を栄養培地で培養し、培養液中に耐熱性AMPデアミナーゼを産生せしめ、これを採取することを特徴とする耐熱性AMPデアミナーゼの製造法。   A method for producing a thermostable AMP deaminase, comprising culturing the microorganism having the ability to produce thermostable AMP deaminase according to claim 1 in a nutrient medium, producing the thermostable AMP deaminase in a culture solution, and collecting the same. 微生物がアスペルギルス属に属する請求項5に記載の耐熱性AMPデアミナーゼの製造法。   The method for producing a thermostable AMP deaminase according to claim 5, wherein the microorganism belongs to the genus Aspergillus. アスペルスギルス属に属する微生物がアスペルギルス・フミガタス(Aspergillus
fumigatus)である請求項6に記載の耐熱性AMPデアミナーゼの製造法。
The microorganism belonging to the genus Aspergillus is Aspergillus fumigatus (Aspergillus
fumigatus). The method for producing a thermostable AMP deaminase according to claim 6.
アスペルギルス・フミガタス(Aspergillus fumigatus)がアスペルギルス・フミガタス(Aspergillus fumigatus)No.4(FERM P-20075)である請求項7に記載の耐熱性AMPデアミナーゼの製造法。   The method for producing a thermostable AMP deaminase according to claim 7, wherein the Aspergillus fumigatus is Aspergillus fumigatus No. 4 (FERM P-20075). 請求項1に記載の耐熱性AMPデアミナーゼ生産能を有するアスペルギルス・フミガタス(Aspergillus fumigatus)No.4(FERM P-20075)。   Aspergillus fumigatus No. 4 (FERM P-20075) having the ability to produce the thermostable AMP deaminase according to claim 1.
JP2004208785A 2004-07-15 2004-07-15 New thermostable amp deaminase and method for producing the same Withdrawn JP2006025688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004208785A JP2006025688A (en) 2004-07-15 2004-07-15 New thermostable amp deaminase and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004208785A JP2006025688A (en) 2004-07-15 2004-07-15 New thermostable amp deaminase and method for producing the same

Publications (1)

Publication Number Publication Date
JP2006025688A true JP2006025688A (en) 2006-02-02

Family

ID=35892735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004208785A Withdrawn JP2006025688A (en) 2004-07-15 2004-07-15 New thermostable amp deaminase and method for producing the same

Country Status (1)

Country Link
JP (1) JP2006025688A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009183254A (en) * 2008-02-08 2009-08-20 Univ Of Tsukuba Amp deaminase originated from alga
CN106282146A (en) * 2015-06-05 2017-01-04 安琪酵母股份有限公司 A kind of process for solid state fermentation of adenylic acid deaminase
CN116731874A (en) * 2023-05-29 2023-09-12 天典(广东)生物科技有限公司 Aspergillus melidum 01 strain and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009183254A (en) * 2008-02-08 2009-08-20 Univ Of Tsukuba Amp deaminase originated from alga
CN106282146A (en) * 2015-06-05 2017-01-04 安琪酵母股份有限公司 A kind of process for solid state fermentation of adenylic acid deaminase
CN106282146B (en) * 2015-06-05 2019-08-27 安琪酵母股份有限公司 A kind of process for solid state fermentation of adenylic acid deaminase
CN116731874A (en) * 2023-05-29 2023-09-12 天典(广东)生物科技有限公司 Aspergillus melidum 01 strain and application thereof
CN116731874B (en) * 2023-05-29 2023-12-05 天典(广东)生物科技有限公司 Aspergillus melidum 01 strain and application thereof

Similar Documents

Publication Publication Date Title
JPS61162193A (en) Production of amide with bacterium
Ahmed et al. Process optimization of L-glutaminase production; a tumour inhibitor from marine endophytic isolate Aspergillus sp. ALAA-2000
CN107532185A (en) The manufacture method of hydroxyl L pipecolic acids
Aly et al. Production of the antitumor L-glutaminase enzyme from thermotolerant Streptomyces sp. D214, under submerged fermentation conditions.
Liu et al. Isolation and identification of a novel Rhodococcus sp. ML-0004 producing epoxide hydrolase and optimization of enzyme production
JP3563104B2 (en) Trehalose phosphorylase and method for producing the same
JP2006025688A (en) New thermostable amp deaminase and method for producing the same
CN115232801B (en) High-temperature-resistant alkaline lipase, and preparation method and application thereof
Upadhyay et al. Screening and production of tumour inhibitory L-asparaginase by bacteria isolated from soil
JP2003210164A (en) Hydrolyzing and synthesizing enzyme for capsaicin and method for producing the same
JP5022044B2 (en) Method for producing new uricase
US4357425A (en) Process for producing L-amino acid oxidase
JPS6362195B2 (en)
Sreenivasulu et al. Solid-state fermentation for the production of l-asparaginase by Aspergillus Sp
JP2011182778A (en) Method for producing l-homoserine and l-homoserine lactone
JP5010291B2 (en) Method for producing new uricase
JP5053648B2 (en) Method for producing new uricase
JP2007228926A (en) Enzyme for producing glyoxylic acid and method for producing glyoxylic acid by using the same
JP5204990B2 (en) Method for producing riboflavin-5&#39;-phosphate
JP4160417B2 (en) Secondary alcohol dehydrogenase and production method thereof
JPS6228678B2 (en)
KR810001055B1 (en) Process for preparation of mixture of phospho dinucleases
JP5333966B2 (en) Method for producing (S) -3-quinuclidinol
JP5954539B2 (en) Method for producing 1-benzyl-4-hydroxy-3-piperidinecarboxylic acid alkyl ester
JPH08131182A (en) Production of trehalose

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070713

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070724