JP2006024806A - Substrate processor - Google Patents

Substrate processor Download PDF

Info

Publication number
JP2006024806A
JP2006024806A JP2004202599A JP2004202599A JP2006024806A JP 2006024806 A JP2006024806 A JP 2006024806A JP 2004202599 A JP2004202599 A JP 2004202599A JP 2004202599 A JP2004202599 A JP 2004202599A JP 2006024806 A JP2006024806 A JP 2006024806A
Authority
JP
Japan
Prior art keywords
temperature
wafer
flow rate
gas
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004202599A
Other languages
Japanese (ja)
Other versions
JP4463633B2 (en
Inventor
Masaaki Ueno
正昭 上野
Kazuo Tanaka
和夫 田中
Masashi Sugishita
雅士 杉下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2004202599A priority Critical patent/JP4463633B2/en
Publication of JP2006024806A publication Critical patent/JP2006024806A/en
Application granted granted Critical
Publication of JP4463633B2 publication Critical patent/JP4463633B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate processor having a temperature control function for holding a wafer at a prescribed temperature regardless of a great change of the gas flow rate. <P>SOLUTION: The relation of the temperature in a reactor tube 4 detected by an internal TC 7 and the flow rate of a gas to be fed into the reactor tube 4 from a gas inlet 6 to the temperature of a wafer 3 is previously recorded in data. A target temperature set value and a temperature correcting value for correcting the deviation from the temperature of the wafer 3 are previously recorded. A temperature correcting value for each zone is set at every gas flow rate and recoded on a table. For executing a heat treating process, the target temperature is corrected by a temperature correcting value corresponding to the feed rate of the gas from the gas inlet pipe 6. This holds the wafer 3 at a prescribed temperature regardless of a great change of the flow rate of the gas fed from the gas inlet pipe 6. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電気炉の温度制御を行うことができるバッチ式半導体製造装置のような基板処理装置に関し、特に、電気炉によって構成された反応室内の温度制御を行いながら基板(以下、ウェハという)に成膜処理を施す基板処理装置に関するものである。   The present invention relates to a substrate processing apparatus such as a batch type semiconductor manufacturing apparatus capable of performing temperature control of an electric furnace, and more particularly, a substrate (hereinafter referred to as a wafer) while performing temperature control in a reaction chamber constituted by the electric furnace. The present invention relates to a substrate processing apparatus that performs a film forming process.

基板処理装置として例えば半導体製造装置において、ウェハの製造歩留りを向上させるためには半導体製造装置における反応室内の温度を適正に制御する必要があり、このような反応室の温度制御に関する技術は種々報告されている。例えば、下記の特許文献1には、コンピュータシステムによって反応室内を均熱調整しながら温度制御を行うことにより、熟練作業者でなくても適正な目標温度でウェハの熱処理を行うことができる技術が開示されている。この技術によれば、反応室内の複数の加熱ゾーンに載置されたそれぞれのウェハの位置の温度を個別に検出し、検出された複数の検出温度の最大値と最小値の間に目標温度が含まれるように加熱装置を制御することによって反応室内の温度制御を自動で行っているので、オペレータの熟練度に関わらずウェハに対して最適な熱処理を施すことができる。
特開2002−175123号公報
For example, in a semiconductor manufacturing apparatus as a substrate processing apparatus, it is necessary to appropriately control the temperature in the reaction chamber in the semiconductor manufacturing apparatus in order to improve the wafer manufacturing yield, and various techniques relating to such reaction chamber temperature control are reported. Has been. For example, the following Patent Document 1 discloses a technique that allows a wafer to be heat-treated at an appropriate target temperature without being a skilled worker by performing temperature control while adjusting the temperature inside the reaction chamber with a computer system. It is disclosed. According to this technique, the temperature at the position of each wafer placed in a plurality of heating zones in the reaction chamber is individually detected, and the target temperature is between the maximum value and the minimum value of the detected plurality of detection temperatures. Since the temperature in the reaction chamber is automatically controlled by controlling the heating device so as to be included, an optimum heat treatment can be performed on the wafer regardless of the skill level of the operator.
JP 2002-175123 A

しかしながら、ウェハ成膜のアニールプロセス時には、通常、反応室内に反応ガスや不活性ガスを流しながら行うため、ガス流量が大きく変化すると反応室内の熱交換量が変化する。そのため、反応室内により多くの熱量を投下する必要があるが、熱量の投下に対する反応室内の温度上昇の時間遅れなどのためにウェハの温度が変化してしまうおそれがある。ウェハの温度が変化するとウェハの膜厚や電気的・機械的な特性に影響を与えるおそれがある。そのため、ガス流量が変化してもウェハの温度が所定の温度に保たれていることが重要であるが、上記の従来技術では、ガス流量が変化するとウェハの温度が変化してしまうなどの不具合がある。   However, since an annealing process for wafer deposition is usually performed while flowing a reaction gas or an inert gas into the reaction chamber, the amount of heat exchange in the reaction chamber changes when the gas flow rate changes greatly. For this reason, it is necessary to drop a large amount of heat into the reaction chamber, but there is a possibility that the temperature of the wafer may change due to a time delay in the temperature rise in the reaction chamber with respect to the dropping of the heat amount. If the temperature of the wafer changes, the film thickness and electrical / mechanical characteristics of the wafer may be affected. For this reason, it is important that the wafer temperature is maintained at a predetermined temperature even if the gas flow rate changes. However, in the above-mentioned conventional technology, the wafer temperature changes when the gas flow rate changes. There is.

本発明は、以上のような問題点に鑑みてなされたものであり、ガス流量が大きく変化してもウェハの温度が所定の温度に保持されるような制御機能を備えた基板処理装置を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a substrate processing apparatus having a control function that maintains the wafer temperature at a predetermined temperature even if the gas flow rate changes greatly. The purpose is to do.

上述した課題を解決するため、本発明に係る基板処理装置は、反応室内の温度制御を行いながら基板(ウェハ3)に成膜処理を施す基板処理装置であって、処理室内に収容された基板を加熱する加熱手段(ヒータ1)と、処理室内の温度を検出する温度検出手段(内部TC7)と、処理室内にガスを供給するガス供給手段(ガス導入口6)とを備え、ガス供給手段が供給するガス流量と、温度検出手段が検出する温度変化量と、基板の温度が変化する変化量との相関関係を予め求めておき、相関関係及びガス流量と温度検出手段の検出した温度とに基づいて基板の温度を求めるように構成したことを特徴とするものである。   In order to solve the above-described problems, a substrate processing apparatus according to the present invention is a substrate processing apparatus that performs a film forming process on a substrate (wafer 3) while controlling the temperature in a reaction chamber, and is a substrate accommodated in the processing chamber. Gas supply means (heater 1), temperature detection means (internal TC7) for detecting the temperature in the processing chamber, and gas supply means (gas inlet 6) for supplying gas into the processing chamber. The correlation between the gas flow rate supplied by the temperature detection means, the temperature change amount detected by the temperature detection means, and the change amount in which the temperature of the substrate changes is obtained in advance, and the correlation and the gas flow rate and the temperature detected by the temperature detection means The temperature of the substrate is obtained based on the above.

このような構成によれば、ガスの供給流量に応じた温度補正値によって目標温度の補正を行うので、ガス流量が大きく変化してもウェハの温度を所定の温度に保つことができる。従って基板の製品歩留りを向上させることができる。   According to such a configuration, the target temperature is corrected by the temperature correction value corresponding to the gas supply flow rate, so that the wafer temperature can be maintained at a predetermined temperature even if the gas flow rate changes greatly. Therefore, the product yield of the substrate can be improved.

本発明の基板処理装置によれば、予め、反応室内の温度とガス流量とウェハ温度との関係を補正値として取得し、実際の処理プロセスでは、ガス流量に応じて温度の補正を行う。これによって、ウェハの温度を予め設定した温度目標値に安定させることができ、結果的に、ウェハの製造品質を安定化させることができる。   According to the substrate processing apparatus of the present invention, the relationship between the temperature in the reaction chamber, the gas flow rate, and the wafer temperature is acquired in advance as a correction value, and in the actual processing process, the temperature is corrected according to the gas flow rate. As a result, the temperature of the wafer can be stabilized at a preset temperature target value, and as a result, the manufacturing quality of the wafer can be stabilized.

以下、図面を参照しながら本発明における実施の形態を基板処理装置としての半導体製造装置に例をとって詳細に説明する。図1は、一般的な半導体製造装置に適用される反応室の断面図である。図1において、ウェハ(半導体基板)3は、反応菅4内に格納されたボート2に複数枚多段に載置されている。また、反応管4の外側にはヒータ1が設けられており、さらに、反応管4の下部には、反応ガスを導入するためのガス導入口6及び処理済みのガスを排出するためのガス排気口5が設けられる。   Hereinafter, embodiments of the present invention will be described in detail by taking a semiconductor manufacturing apparatus as a substrate processing apparatus as an example with reference to the drawings. FIG. 1 is a cross-sectional view of a reaction chamber applied to a general semiconductor manufacturing apparatus. In FIG. 1, a plurality of wafers (semiconductor substrates) 3 are placed in a multistage manner on a boat 2 stored in a reaction vessel 4. Further, a heater 1 is provided outside the reaction tube 4, and further, a gas inlet 6 for introducing a reaction gas and a gas exhaust for discharging a processed gas are provided below the reaction tube 4. A mouth 5 is provided.

次に、図1に示す反応室によってウェハ3の処理を行う手順を説明する。ボート2は、ウェハ3の処理を開始する前は反応管4の下方に位置している。従って、図示しないウェハ搬送機構によって複数のウェハ3をボート2に収納した後、図示しないボート昇降機構によってボート2を反応管4内に収納する。この状態で、ガス導入口6から反応ガスを導入しながらガス排気口5から処理済みのガスの排気を行い、反応管4内を所定の圧力に調整する。このとき、反応ガスはボート2上のウェハ3の面上を通過してガス排気口5から排気される。この後、ヒータ1の温度を上昇させ、反応管4内を所定の温度まで加熱する。なお、反応管4内における圧力の目標値及び温度の目標値は予め設定されている。   Next, a procedure for processing the wafer 3 in the reaction chamber shown in FIG. 1 will be described. The boat 2 is located below the reaction tube 4 before starting the processing of the wafer 3. Therefore, after a plurality of wafers 3 are stored in the boat 2 by a wafer transfer mechanism (not shown), the boat 2 is stored in the reaction tube 4 by a boat lifting mechanism (not shown). In this state, the treated gas is exhausted from the gas exhaust port 5 while introducing the reaction gas from the gas introduction port 6, and the inside of the reaction tube 4 is adjusted to a predetermined pressure. At this time, the reaction gas passes through the surface of the wafer 3 on the boat 2 and is exhausted from the gas exhaust port 5. Thereafter, the temperature of the heater 1 is raised and the inside of the reaction tube 4 is heated to a predetermined temperature. The target value of pressure and the target value of temperature in the reaction tube 4 are set in advance.

このようにして所定の圧力および温度の状態となった反応管4内では、加熱されたウェハ3の面上において成膜処理が進行する。この状態を所定時間保つことによって成膜処理が完了したら、反応管4へのボート2の収納時とは逆の手順によってボート昇降機構でボート2を下降させた後、ボート2よりウェハ3を取り出して一連のウェハ成膜処理を終了する。   In the reaction tube 4 brought to a predetermined pressure and temperature in this way, a film forming process proceeds on the surface of the heated wafer 3. When the film formation process is completed by maintaining this state for a predetermined time, the boat 2 is lowered by the boat lifting mechanism by a procedure reverse to that for storing the boat 2 in the reaction tube 4, and then the wafer 3 is taken out from the boat 2. Then, a series of wafer film forming processes is completed.

また、図1に示す縦型半導体製造装置の場合は、ウェハ3の載置範囲は上下方向に長いため、ウェハ3の各載置位置におけるウェハ3の温度にはむらが生じるおそれがある。従って、ヒータ1のヒータ素線1aを上下方向に分割し、これらのヒータ素線1aをヒータコントローラ13によって別個に制御することによって、ウェハ3が載置される範囲全域に亘って均一な温度状態を確保するようにしている。   In the case of the vertical semiconductor manufacturing apparatus shown in FIG. 1, since the mounting range of the wafer 3 is long in the vertical direction, the temperature of the wafer 3 at each mounting position of the wafer 3 may be uneven. Therefore, the heater element wire 1a of the heater 1 is divided in the vertical direction, and these heater element wires 1a are separately controlled by the heater controller 13, whereby a uniform temperature state is obtained over the entire range where the wafer 3 is placed. To ensure.

図2は、図1に示す反応室における制御システムの構成図である。つまり、図2に示すように、図1に示す温度コントローラ12は装置操作部11に接続されている。なお、装置操作部11には、温度コントローラ12以外に圧力コントローラその他各種のコントローラが接続されているが、それらのコントローラは本発明とは直接的には関係ないので説明は省略する。   FIG. 2 is a block diagram of the control system in the reaction chamber shown in FIG. That is, as shown in FIG. 2, the temperature controller 12 shown in FIG. 1 is connected to the apparatus operation unit 11. In addition to the temperature controller 12, a pressure controller and other various controllers are connected to the device operation unit 11. However, these controllers are not directly related to the present invention, and thus description thereof is omitted.

図2に示す各構成要素は、例えば、LANや調歩同期等の通信回路を用いることにより接続されており、各構成要素間において情報のやり取りが行われる。ここで、装置操作部11は、半導体製造装置の運用のための操作や、各種設定の入力及び保存、自動運転制御など、作業者とのインタフェースを行う機能を備えている。   Each component shown in FIG. 2 is connected by using a communication circuit such as a LAN or start-stop synchronization, and information is exchanged between the components. Here, the apparatus operation unit 11 has functions for interfacing with an operator, such as operations for operating a semiconductor manufacturing apparatus, input and storage of various settings, and automatic operation control.

温度コントローラ12は、装置操作部11から制御目標温度値を受け取り、温度センサ、つまり、内部TC(内部熱電対)7及び外部TC(外部熱電対)8から現在温度を検出し、制御目標温度値と内部TC7の検出温度とが一致するようにPID(Proportion Integral Differential)演算等を行い、制御量としてヒータ出力信号を算出してヒータコントローラ13へ出力する。また、温度コントローラ12は温度履歴を保存する等の処理も行う。   The temperature controller 12 receives the control target temperature value from the device operation unit 11, detects the current temperature from the temperature sensors, that is, the internal TC (internal thermocouple) 7 and the external TC (external thermocouple) 8, and controls the control target temperature value PID (Proportion Integral Differential) calculation or the like is performed so that the detected temperature of the internal TC 7 and the detected temperature of the internal TC 7 coincide with each other, a heater output signal is calculated as a control amount, and is output to the heater controller 13. The temperature controller 12 also performs processing such as storing a temperature history.

ヒータコントローラ13は、温度コントローラ12からヒータ出力信号を受け取り、このヒータ出力信号に基づいてヒータ1への出力値の算出を行った後にヒータ1へ所望の電力供給を行う。これによって、各ヒータ素線1aは所望の電力供給量に基づいて反応管4の加熱制御を行う。半導体製造装置においては反応管4内の温度条件は極めて重要であり、上記のような温度制御による目標温度の精度がウェハ膜の均一性に大きく影響してくる。   The heater controller 13 receives a heater output signal from the temperature controller 12, calculates an output value to the heater 1 based on the heater output signal, and then supplies desired power to the heater 1. Thereby, each heater element wire 1a performs heating control of the reaction tube 4 based on a desired power supply amount. In the semiconductor manufacturing apparatus, the temperature condition in the reaction tube 4 is extremely important, and the accuracy of the target temperature by the temperature control as described above greatly affects the uniformity of the wafer film.

図3は、図1に示す反応室における温度制御システムの構成図である。上記で述べたような反応管4内の温度制御は、例えば、図3の温度制御システムのようなPIDカスケード制御方式が用いられている。ここで、ウェハ温度と内部TC7の温度が一致しない場合には、ウェハ温度が制御目標温度値(設定温度)と一致するように内部TC7の温度を補正することもある。例えば、実際に製品(ウェハ)を製造、処理する前準備として、熱電対付きウェハを反応管4内の加熱ゾーンであるU,CU,CL,Lゾーンに配置し、カスケード熱電対を目標温度に制御した場合に得られるウェハに付設された熱電対の検出温度と、目標温度との差に基づいて、それぞれのゾーンにおけるカスケード熱電対の目標温度を補正するようにすることができる。   FIG. 3 is a block diagram of the temperature control system in the reaction chamber shown in FIG. For the temperature control in the reaction tube 4 as described above, for example, a PID cascade control system such as the temperature control system of FIG. 3 is used. Here, if the wafer temperature and the temperature of the internal TC 7 do not match, the temperature of the internal TC 7 may be corrected so that the wafer temperature matches the control target temperature value (set temperature). For example, as a preparation before actually manufacturing and processing a product (wafer), a wafer with a thermocouple is placed in the U, CU, CL, and L zones, which are heating zones in the reaction tube 4, and the cascade thermocouple is set to a target temperature. The target temperature of the cascade thermocouple in each zone can be corrected based on the difference between the target temperature and the detected temperature of the thermocouple attached to the wafer obtained in the control.

図4は、図1に示す反応室内にて処理されたウェハ成膜のアニールプロセス時の温度特性の一例であり、横軸に時間(分)、縦軸に温度(℃)をとっている。この例では、比較的低温(450℃)を所定の目標設定温度として、その目標設定温度(450℃)で温度を安定させた状態で製品ウェハを移載したボート2を反応管4に収納してアニール処理を行うようにしている。   FIG. 4 shows an example of the temperature characteristics during the annealing process for film formation of the wafer processed in the reaction chamber shown in FIG. 1, with the horizontal axis representing time (minutes) and the vertical axis representing temperature (° C.). In this example, a relatively low temperature (450 ° C.) is set as a predetermined target set temperature, and the boat 2 on which the product wafers are transferred while the temperature is stabilized at the target set temperature (450 ° C.) is stored in the reaction tube 4. Annealing treatment is performed.

このような場合、ウェハ3に成膜処理を行うアニールプロセス時には、反応ガスや不活性ガスを反応管4の内部に流しながら処理を行う。ところが、このときにガス流量が大きく変化すると反応管4内の熱交換量が変化するため、ヒータ1からより多くの熱量を投下する必要があるので、結果的にウェハ3の温度が変化してしまうことがある。このようにウェハ3の温度が変化するとウェハ3の膜厚がばらついたり、ウェハ3の電気的・機械的な特性が不安定になったりする。   In such a case, during the annealing process for forming a film on the wafer 3, the process is performed while a reaction gas or an inert gas is allowed to flow inside the reaction tube 4. However, if the gas flow rate changes greatly at this time, the amount of heat exchange in the reaction tube 4 changes, so that it is necessary to drop a larger amount of heat from the heater 1, and as a result, the temperature of the wafer 3 changes. It may end up. Thus, when the temperature of the wafer 3 changes, the film thickness of the wafer 3 varies, and the electrical and mechanical characteristics of the wafer 3 become unstable.

そこで、実施の形態では、ガス流量が大きく変化してもウェハ3の温度が所定温度になるような制御を行っている。つまり、実施の形態の半導体製造装置では、予め、温度とガス流量とウェハ温度の関係をデータに記録しておく。次に、目標温度設定値とウェハ温度のずれを補正するための温度補正値を記録しておく。図5は、実施の形態における半導体製造装置の反応室に用いられる温度補正値のテーブルを示す図である。図5に示すように、ガス流量ごとに各ゾーンの温度補正値を設定してテーブルに記録しておく。   Therefore, in the embodiment, control is performed so that the temperature of the wafer 3 becomes a predetermined temperature even if the gas flow rate changes greatly. That is, in the semiconductor manufacturing apparatus of the embodiment, the relationship between the temperature, the gas flow rate, and the wafer temperature is recorded in advance in the data. Next, a temperature correction value for correcting a deviation between the target temperature setting value and the wafer temperature is recorded. FIG. 5 is a diagram showing a table of temperature correction values used in the reaction chamber of the semiconductor manufacturing apparatus in the embodiment. As shown in FIG. 5, the temperature correction value for each zone is set for each gas flow rate and recorded in a table.

例えば、ガス流量が5L(リットル)の場合は、Uゾーンの温度補正値は−3.2℃、CLゾーンの温度補正値は−2.0℃であり、ガス流量が20Lの場合は、CUゾーンの温度補正値は−7.3℃、Lゾーンの温度補正値は−12.8℃である。なお、負の温度補正値の場合は目標温度設定値から温度補正値を引き算し、正の温度補正値の場合は目標温度設定値に温度補正値を足し算した値が補正後の目標温度設定値となる。   For example, when the gas flow rate is 5 L (liter), the temperature correction value for the U zone is −3.2 ° C., the temperature correction value for the CL zone is −2.0 ° C., and when the gas flow rate is 20 L, the CU The temperature correction value for the zone is −7.3 ° C., and the temperature correction value for the L zone is −12.8 ° C. In the case of a negative temperature correction value, the temperature correction value is subtracted from the target temperature setting value. In the case of a positive temperature correction value, the value obtained by adding the temperature correction value to the target temperature setting value is the corrected target temperature setting value. It becomes.

実際に温度制御する際は、反応管4が複数ゾーンに分かれているので相互のゾーンで温度干渉がある。そのため、均熱長プロファイル補正で使用する干渉行列法を用いて補正温度の計算を行い、各ゾーンの温度補正値を求める。なお、干渉行列法とは、例えば、カスケード熱電対に対する目標温度の変化が、熱電対付きウェハの検出温度に与える影響の度合いを示す係数の行列である。(詳細は上記に紹介した特許文献1を参照)
また、実際のプロセスを行う場合は、温度とガス流量にしたがって求めた温度補正値で内部TC7の温度の補正を行う。これによってガス流量が変化してもウェハ3の温度は目的温度で処理することができる。
When the temperature is actually controlled, the reaction tube 4 is divided into a plurality of zones, so that there is a temperature interference between the zones. Therefore, the correction temperature is calculated using the interference matrix method used in the soaking length profile correction, and the temperature correction value of each zone is obtained. The interference matrix method is, for example, a matrix of coefficients indicating the degree of influence of a change in target temperature with respect to a cascade thermocouple on the detected temperature of a wafer with a thermocouple. (For details, see Patent Document 1 introduced above)
Further, when the actual process is performed, the temperature of the internal TC 7 is corrected with the temperature correction value obtained according to the temperature and the gas flow rate. As a result, even if the gas flow rate changes, the temperature of the wafer 3 can be processed at the target temperature.

次に、実施例を用いて実施の形態における反応室の温度制御について説明する。まず、予め、反応管4内に所望の温度と流量を与え、そのときのウェハ温度を記録する。図6は、ガス流量を20L、温度設定値を450℃としたとき、温度補正を行わないで内部TCの温度を制御した場合の内部TC温度とウェハ温度の特性図である。また、図7は、ガス流量を10L、温度設定値を450℃としたとき、温度補正を行わないで内部TCの温度を制御した場合の内部TC温度とウェハ温度の特性図である。なお、図6、図7において、横軸は時間(分)、縦軸は温度(℃)を示している。   Next, temperature control of the reaction chamber in the embodiment will be described using examples. First, a desired temperature and flow rate are given in advance in the reaction tube 4, and the wafer temperature at that time is recorded. FIG. 6 is a characteristic diagram of the internal TC temperature and the wafer temperature when the temperature of the internal TC is controlled without performing temperature correction when the gas flow rate is 20 L and the temperature set value is 450 ° C. FIG. 7 is a characteristic diagram of the internal TC temperature and the wafer temperature when the gas flow rate is 10 L and the temperature set value is 450 ° C., and the temperature of the internal TC is controlled without performing temperature correction. 6 and 7, the horizontal axis indicates time (minutes) and the vertical axis indicates temperature (° C.).

図6のガス流量20Lの場合においては、時刻24分のときに、反応管4内へウェハ3を載置して目標温度を450℃に設定し、ヒータ1によって反応室4内を加熱する。このとき、温度設定値450℃に対してウェハ3の温度は462℃となり、温度差が−12℃となる。   In the case of a gas flow rate of 20 L in FIG. 6, at time 24 minutes, the wafer 3 is placed in the reaction tube 4 and the target temperature is set to 450 ° C., and the inside of the reaction chamber 4 is heated by the heater 1. At this time, the temperature of the wafer 3 becomes 462 ° C. with respect to the temperature set value 450 ° C., and the temperature difference becomes −12 ° C.

一方、図7のガス流量10Lの場合においては、時刻24分のときに、反応室4内へウェハ3を載置して目標温度を450℃に設定し、ヒータ1によって反応室4内を加熱する。このとき、温度設定値450℃に対してウェハ3の温度は455℃となり、温度差は−5℃となる。   On the other hand, in the case of a gas flow rate of 10 L in FIG. 7, at time 24 minutes, the wafer 3 is placed in the reaction chamber 4 and the target temperature is set to 450 ° C., and the reaction chamber 4 is heated by the heater 1. To do. At this time, the temperature of the wafer 3 is 455 ° C. with respect to the temperature set value 450 ° C., and the temperature difference is −5 ° C.

したがって、例えば、ガス流量が20Lの時には、内部TC7の温度に対して補正値として12℃を引いて制御することにより、内部TC7の温度は438℃で制御されることになり、結果的にウェハ3の温度が450℃になることが期待できる。一方、ガス流量が10Lの時には、内部TC7の温度に対して補正値として5℃を引いて制御することにより、内部TC7の温度は445℃で制御されることになり、結果的にウェハ温度が450℃になることが期待できる。   Therefore, for example, when the gas flow rate is 20 L, the temperature of the internal TC 7 is controlled at 438 ° C. by subtracting 12 ° C. as the correction value for the temperature of the internal TC 7, and as a result, the wafer The temperature of 3 can be expected to be 450 ° C. On the other hand, when the gas flow rate is 10 L, the temperature of the internal TC 7 is controlled at 445 ° C. by controlling the temperature of the internal TC 7 by subtracting 5 ° C. as a correction value. It can be expected to be 450 ° C.

図8は、ガス流量を10L、温度設定値を450℃としたとき、温度補正を行って内部TCの温度を制御した場合の内部TC温度とウェハ温度の特性図である。つまり、温度設定値450℃でガス流量10Lのときに5℃の補正値を加えて制御した結果、ウェハ3の温度は温度設定値450℃で安定しているのがわかる。また、ガス流量が15Lのときなどは、10Lと20Lの補正値を補間して使用することによって対応することができる。つまり、ガス流量が10Lと20Lとの間にあるときは、重み付けによって補正の割合を決めたり、単純比例によって補正値を決めたりすることができる。   FIG. 8 is a characteristic diagram of the internal TC temperature and the wafer temperature when temperature correction is performed and the temperature of the internal TC is controlled when the gas flow rate is 10 L and the temperature set value is 450 ° C. That is, as a result of controlling by adding a correction value of 5 ° C. at a temperature setting value of 450 ° C. and a gas flow rate of 10 L, it can be seen that the temperature of the wafer 3 is stable at the temperature setting value of 450 ° C. Further, when the gas flow rate is 15 L, it can be dealt with by interpolating and using the correction values of 10 L and 20 L. That is, when the gas flow rate is between 10L and 20L, the correction ratio can be determined by weighting, or the correction value can be determined by simple proportionality.

以上説明したように、本実施の形態における半導体製造装置は、複数ゾーンに分割された発熱体により、それぞれのゾーンに対応した反応管の内部に挿入された内部熱電対(内部TC)で検出される温度を制御するバッチ式の半導体製造装置であって、ガス流量と内部熱電対温度とウェハ温度の変化量の関係を予め関連式として求めておいて、がス流量と内部熱電対温度からウェハの温度変化量を算出するように構成されている。   As described above, the semiconductor manufacturing apparatus in the present embodiment is detected by the internal thermocouple (internal TC) inserted into the reaction tube corresponding to each zone by the heating element divided into a plurality of zones. A batch type semiconductor manufacturing apparatus for controlling the temperature of the wafer, wherein the relationship between the gas flow rate, the internal thermocouple temperature, and the variation in the wafer temperature is obtained in advance as a related expression, and the wafer flow rate and the internal thermocouple temperature are The temperature change amount is calculated.

また、本実施の形態における半導体製造装置は、上記の関連式からウェハ温度を目的温度にするために必要な内部熱電対温度の変化量を算出する。さらに、上記の関連式から、ウェハの温度を目的温度にするために必要な内部熱電対の温度の変化量を算出し、この変化量を温度設定値の補正量として補正を行う。   In addition, the semiconductor manufacturing apparatus in the present embodiment calculates the amount of change in internal thermocouple temperature necessary to bring the wafer temperature to the target temperature from the above relational expression. Further, the amount of change in the temperature of the internal thermocouple necessary for setting the wafer temperature to the target temperature is calculated from the above-mentioned relational expression, and the amount of change is corrected as the amount of correction of the temperature set value.

以上の説明から、実施の形態の半導体製造装置は次のように構成することができる。すなわち、処理室内に収容された半導体基板(ウェハ3)を加熱する加熱手段(ヒータ1)と、加熱手段を制御する加熱制御手段(ヒータコントローラ13)と、半導体基板と加熱手段との間に位置し、処理室内の温度を検出する温度検出手段(内部TC7)と、半導体基板が収容された位置で半導体基板の温度を検出する基板温度検出手段と、処理室内にガスを供給するガス供給手段(ガス導入口6)とを備え、半導体基板を処理する前に、温度検出手段の検出温度が予め設定した設定温度になるように加熱制御手段が加熱手段を制御し、その際に基板温度検出手段が検出する温度と温度検出手段が検出する温度とを測定し、さらにその状態でガス供給手段が供給するガス流量を変化させ、ガス流量の違いによるそれぞれの温度検出手段の検出温度とそれぞれの基板温度検出手段が検出する温度との温度差を求め、ガス流量と設定温度と温度差とを関連させて記憶しておき、半導体基板を処理する際には基板温度検出手段を処理室内から取外し、ガス供給手段から流そうとするガス流量と設定温度とから予め記憶されたガス流量と設定温度と温度差との関係から温度差を選択し、その温度差を設定温度に加算し、加算後の設定温度になるように加熱制御手段が加熱手段を制御するように構成する。   From the above description, the semiconductor manufacturing apparatus of the embodiment can be configured as follows. That is, a heating means (heater 1) for heating the semiconductor substrate (wafer 3) accommodated in the processing chamber, a heating control means (heater controller 13) for controlling the heating means, and a position between the semiconductor substrate and the heating means. Temperature detecting means (internal TC7) for detecting the temperature in the processing chamber, substrate temperature detecting means for detecting the temperature of the semiconductor substrate at the position where the semiconductor substrate is accommodated, and gas supply means for supplying gas into the processing chamber ( Before the semiconductor substrate is processed, the heating control means controls the heating means so that the detected temperature of the temperature detecting means becomes a preset temperature, and the substrate temperature detecting means at that time Measure the temperature detected by the temperature detection means and the temperature detected by the temperature detection means, and further change the gas flow rate supplied by the gas supply means in that state, The temperature difference between the output temperature and the temperature detected by each substrate temperature detecting means is obtained, the gas flow rate, the set temperature and the temperature difference are stored in association with each other, and the substrate temperature detecting means is used when processing the semiconductor substrate. The temperature difference is selected from the relationship between the gas flow rate and the set temperature and the temperature difference stored in advance from the gas flow rate and the set temperature to be removed from the processing chamber, and the temperature difference is set to the set temperature. The heating control means controls the heating means so that the set temperature after the addition is obtained.

また、実施の形態によれば、本発明は基板(半導体基板)の製造方法を開示している。すなわち、処理室内に収容された基板を加熱する加熱手段(ヒータ1)と、処理室内の温度を検出する温度検出手段(内部TC7)と、処理室内にガスを供給するガス供給手段(ガス導入口6)とを備えて基板の製造を行う基板の製造方法であって、加熱手段が基板を加熱する工程と、ガス供給手段がガスを供給する工程と、温度検出手段が処理室内の温度を検出する工程と、ガス供給手段が供給するガス流量と、温度検出手段が検出する温度変化量と、基板の温度が変化する変化量との相関関係を求める工程と、相関関係及びガス流量と温度検出手段の検出する温度とに基づいて、基板の温度を求める工程と、を有することを特徴とする基板の製造方法を開示している。   According to the embodiment, the present invention discloses a method for manufacturing a substrate (semiconductor substrate). That is, a heating means (heater 1) for heating the substrate accommodated in the processing chamber, a temperature detection means (internal TC7) for detecting the temperature in the processing chamber, and a gas supply means (gas introduction port) for supplying gas into the processing chamber 6) including a step of heating the substrate by the heating means, a step of supplying the gas by the gas supply means, and a temperature detecting means for detecting the temperature in the processing chamber. A step of obtaining a correlation between a gas flow rate supplied by the gas supply means, a temperature change amount detected by the temperature detection means, and a change amount by which the temperature of the substrate changes, and the correlation and gas flow rate and temperature detection And a step of determining the temperature of the substrate based on the temperature detected by the means.

一般的な半導体製造装置に適用される反応室の断面図である。It is sectional drawing of the reaction chamber applied to a general semiconductor manufacturing apparatus. 図1に示す反応室における制御システムの構成図である。It is a block diagram of the control system in the reaction chamber shown in FIG. 図1に示す反応室における温度制御システムの構成図である。It is a block diagram of the temperature control system in the reaction chamber shown in FIG. 図1に示す反応室によって処理されたウェハ成膜のアニールプロセス時の温度特性の一例である。It is an example of the temperature characteristic at the time of the annealing process of the wafer film processing processed by the reaction chamber shown in FIG. 本実施の形態における半導体製造装置の反応室に用いられる温度補正値のテーブルを示す図である。It is a figure which shows the table of the temperature correction value used for the reaction chamber of the semiconductor manufacturing apparatus in this Embodiment. ガス流量を20L、温度設定値を450℃としたとき、温度補正を行わないで内部TCの温度を制御した場合の内部TC温度とウェハ温度の特性図である。FIG. 5 is a characteristic diagram of internal TC temperature and wafer temperature when the temperature of internal TC is controlled without performing temperature correction when the gas flow rate is 20 L and the temperature set value is 450 ° C. ガス流量を10L、温度設定値を450℃としたとき、温度補正を行わないで内部TCの温度を制御した場合の内部TC温度とウェハ温度の特性図である。FIG. 5 is a characteristic diagram of the internal TC temperature and the wafer temperature when the temperature of the internal TC is controlled without performing temperature correction when the gas flow rate is 10 L and the temperature set value is 450 ° C. ガス流量を10L、温度設定値を450℃としたとき、温度補正を行って内部TCの温度を制御した場合の内部TC温度とウェハ温度の特性図である。FIG. 6 is a characteristic diagram of the internal TC temperature and the wafer temperature when temperature correction is performed and the temperature of the internal TC is controlled when the gas flow rate is 10 L and the temperature set value is 450 ° C.

符号の説明Explanation of symbols

1 ヒータ
1a ヒータ素線
2 ボート
3 ウェハ
4 反応管
5 ガス排気口
6 ガス導入口
7 内部TC(内部熱電対)
8 外部TC(内部熱電対)
11 装置操作部
12 温度コントローラ
13 ヒータコントローラ
1 Heater 1a Heater Wire 2 Boat 3 Wafer 4 Reaction Tube 5 Gas Exhaust Port 6 Gas Inlet Port 7 Internal TC (Internal Thermocouple)
8 External TC (Internal thermocouple)
11 Device Operation Unit 12 Temperature Controller 13 Heater Controller

Claims (1)

処理室内に収容された基板を加熱する加熱手段と、
前記処理室内の温度を検出する温度検出手段と、
前記処理室内にガスを供給するガス供給手段とを備え、
前記ガス供給手段が供給するガス流量と、前記温度検出手段が検出する温度変化量と、前記基板の温度が変化する変化量との相関関係を予め求めておき、前記相関関係及び前記ガス流量と前記温度検出手段の検出した温度とに基づいて前記基板の温度を求めることを特徴とする基板処理装置。
Heating means for heating the substrate accommodated in the processing chamber;
Temperature detecting means for detecting the temperature in the processing chamber;
Gas supply means for supplying gas into the processing chamber,
A correlation between a gas flow rate supplied by the gas supply unit, a temperature change amount detected by the temperature detection unit, and a change amount by which the temperature of the substrate changes is obtained in advance, and the correlation and the gas flow rate A substrate processing apparatus, wherein the temperature of the substrate is obtained based on the temperature detected by the temperature detecting means.
JP2004202599A 2004-07-09 2004-07-09 Substrate processing apparatus and substrate manufacturing method Active JP4463633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004202599A JP4463633B2 (en) 2004-07-09 2004-07-09 Substrate processing apparatus and substrate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004202599A JP4463633B2 (en) 2004-07-09 2004-07-09 Substrate processing apparatus and substrate manufacturing method

Publications (2)

Publication Number Publication Date
JP2006024806A true JP2006024806A (en) 2006-01-26
JP4463633B2 JP4463633B2 (en) 2010-05-19

Family

ID=35797852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004202599A Active JP4463633B2 (en) 2004-07-09 2004-07-09 Substrate processing apparatus and substrate manufacturing method

Country Status (1)

Country Link
JP (1) JP4463633B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7700054B2 (en) * 2006-12-12 2010-04-20 Hitachi Kokusai Electric Inc. Substrate processing apparatus having gas side flow via gas inlet
US20230185268A1 (en) * 2021-12-10 2023-06-15 Applied Materials, Inc. Eco-efficiency monitoring and exploration platform for semiconductor manufacturing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7700054B2 (en) * 2006-12-12 2010-04-20 Hitachi Kokusai Electric Inc. Substrate processing apparatus having gas side flow via gas inlet
US20230185268A1 (en) * 2021-12-10 2023-06-15 Applied Materials, Inc. Eco-efficiency monitoring and exploration platform for semiconductor manufacturing

Also Published As

Publication number Publication date
JP4463633B2 (en) 2010-05-19

Similar Documents

Publication Publication Date Title
US7896649B2 (en) Heat system, heat method, and program
JP5766647B2 (en) Heat treatment system, heat treatment method, and program
JP5788355B2 (en) Heat treatment system, heat treatment method, and program
JP2008262492A (en) Heat treatment device, automatic adjustment method for control constant and storage medium
EP1548809B1 (en) Heat treatment method and heat treatment apparatus
WO2018100826A1 (en) Substrate processing device, method of manufacturing semiconductor device, and program
JP2010118605A (en) Substrate processing apparatus, method of manufacturing semiconductor device, and temperature controlling method
US9324591B2 (en) Heat treatment apparatus and heat treatment method
JP2016157771A (en) Heat treatment system, heat treatment method and program
JP6596316B2 (en) Heat treatment system, heat treatment method, and program
JP6353802B2 (en) Processing system, processing method, and program
CN114355998A (en) Compensation parameter acquisition method and device for semiconductor heat treatment equipment
JP2009260261A (en) Thermal processing apparatus, method for regulating temperature of thermal processing apparatus, and program
JP2013161857A (en) Thermal treatment apparatus and method of controlling thermal treatment apparatus
JP4463633B2 (en) Substrate processing apparatus and substrate manufacturing method
JP4222461B2 (en) Batch type heat treatment method
JP2004072030A (en) Semiconductor manufacturing apparatus
JPH09260294A (en) Temperature control method of electric furnace
JP2006093573A (en) Substrate processor
JP2005333032A (en) Forming method of temperature conversion function of processed materials for monitor, calculating method of temperature distribution, and sheet-fed type heat treatment equipment
US20220406631A1 (en) Temperature correction information calculating device, semiconductor manufacturing apparatus, recording medium, and temperature correction information calculating method
JP4021826B2 (en) Substrate processing apparatus and substrate manufacturing method
JP2005136370A (en) Substrate-processing equipment
JP2004119668A (en) Manufacturing method of substrate processing equipment and semiconductor device
JP6335128B2 (en) Heat treatment system, heat treatment method, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4463633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350