JP2006024711A - Organic electroluminescence element - Google Patents

Organic electroluminescence element Download PDF

Info

Publication number
JP2006024711A
JP2006024711A JP2004200976A JP2004200976A JP2006024711A JP 2006024711 A JP2006024711 A JP 2006024711A JP 2004200976 A JP2004200976 A JP 2004200976A JP 2004200976 A JP2004200976 A JP 2004200976A JP 2006024711 A JP2006024711 A JP 2006024711A
Authority
JP
Japan
Prior art keywords
dopant
organic
region
electron
light emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004200976A
Other languages
Japanese (ja)
Other versions
JP4649676B2 (en
Inventor
Rennie John
レニー ジョン
Tadaoki Mitani
忠興 三谷
Konosuke Uozumi
幸之助 魚住
Takeshi Masuda
剛 枡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Seiren Co Ltd
Japan Science and Technology Agency
Original Assignee
Komatsu Seiren Co Ltd
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Seiren Co Ltd, Japan Science and Technology Agency filed Critical Komatsu Seiren Co Ltd
Priority to JP2004200976A priority Critical patent/JP4649676B2/en
Publication of JP2006024711A publication Critical patent/JP2006024711A/en
Application granted granted Critical
Publication of JP4649676B2 publication Critical patent/JP4649676B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize high transportation efficiency for a positive hole and an electron, and excellent light emitting characteristics with a simplified structure. <P>SOLUTION: An organic electroluminescence element comprises at least an organic thin film 3 formed between an positive electrode 2 and an anode electrode 4, wherein the organic thin film 3 comprises a single host material layer and a plurality of different kinds of dopants which are doped to the single host material layer with a distribution in the film thickness direction. One of the dopants is a dopant 12 which is provided with light emitting characteristics, and the others are a dopant 11 provided with positive hole implanting characteristics and/or positive hole transport characteristics, and a dopant 13 provided with electron implanting characteristics and/or electron transport characteristics. The manufacturing method has a step of sequentially forming in the film thickness direction of the host material layer a positive hole dopant region where the dopant 11 is implanted which is provided with the positive the positive hole implanting characteristics and/or positive hole transport characteristics, a light emitting region where the dopant 12 is doped which is provided with the light emitting characteristics, and an electron dopant region where the dopant 13 provided with the electron implanting characteristics and/or electron transport characteristics is doped. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、単一のホスト材料層に対してドーパントがドープされている有機薄膜を備える有機エレクトロルミネッセンス素子に関する。   The present invention relates to an organic electroluminescent device comprising an organic thin film doped with a dopant with respect to a single host material layer.

有機エレクトロルミネッセンス(以下、有機ELと称する。)素子は、自発光型の面状光源であり、大型化やフレキシブル化等が比較的容易であるため、照明装置やディスプレイ等、幅広い分野への応用が期待されている。   An organic electroluminescence (hereinafter referred to as “organic EL”) element is a self-luminous planar light source and is relatively easy to increase in size and flexibility. Therefore, it can be applied to a wide range of fields such as lighting devices and displays. Is expected.

有機EL素子の基本的な構造は、発光材料が均一に分布した単層の有機薄膜を陰極及び陽極で挟み込んだ単層構造と呼ばれるものであるが、正孔及び電子を効率よく輸送し、また、優れた発光特性を得るといった全ての特性を兼ね備えた有機エレクトロルミネッセンス素子をこのような単層構造で実現することは、通常極めて困難である。   The basic structure of an organic EL element is called a single-layer structure in which a single-layer organic thin film in which a light-emitting material is uniformly distributed is sandwiched between a cathode and an anode, and efficiently transports holes and electrons. It is usually extremely difficult to realize an organic electroluminescence device having all the characteristics of obtaining excellent light emission characteristics with such a single layer structure.

そのため、図9に示すように、有機EL素子は、ガラス基板101上に形成された陽極102と陰極103との間に挟んだ有機薄膜104を、例えば正孔注入層105、正孔輸送層106、発光層107、電子輸送層108、電子注入層109をこの順に積層した多層構造とするのが一般的である。有機薄膜104を構成する各層に電荷の輸送又は発光等の機能を分離し、各層の目的に応じて最適な材料を選択することで、多層構造全体で有機EL素子の特性を向上するようにしている。   Therefore, as shown in FIG. 9, the organic EL element includes an organic thin film 104 sandwiched between an anode 102 and a cathode 103 formed on a glass substrate 101, for example, a hole injection layer 105 and a hole transport layer 106. In general, the light emitting layer 107, the electron transport layer 108, and the electron injection layer 109 are stacked in this order. By separating functions such as charge transport or light emission for each layer constituting the organic thin film 104 and selecting an optimum material according to the purpose of each layer, the characteristics of the organic EL element are improved over the entire multilayer structure. Yes.

有機EL素子の有機薄膜としては、これまでに様々な構造や組成のものが提案されており、例えば、発光層にドーピングする発光材料のドープ量を発光層の厚さ方向に変化させた有機EL素子が提案されている(例えば、特許文献1参照。)。
特開2003−229272号公報
As organic thin films of organic EL elements, various structures and compositions have been proposed so far. For example, an organic EL in which the light emitting material doping amount is changed in the thickness direction of the light emitting layer. An element has been proposed (see, for example, Patent Document 1).
JP 2003-229272 A

ところで、有機材料は固有のエネルギー準位(HOMOレベル及びLUMOレベル)を持っており、図9に示すような互いに異なる有機材料の層を積層してなる多層構造の有機薄膜のように、エネルギー準位の異なる層が積層された有機薄膜においては、層の界面でエネルギーオフセット及びエネルギー的な障壁が発生し、電荷の注入や輸送を妨げて素子の発光閾値電圧を増加させたり、発熱量を増加させたりする等の様々な問題を引き起こす。   By the way, an organic material has an inherent energy level (HOMO level and LUMO level), and the energy level is similar to an organic thin film having a multilayer structure in which layers of different organic materials are laminated as shown in FIG. In organic thin films in which layers with different levels are stacked, energy offsets and energy barriers occur at the interface between the layers, preventing charge injection and transport, increasing the light emission threshold voltage of the device, and increasing the amount of heat generation Cause various problems.

また、例えば蒸着法により多層構造の有機薄膜を成膜する場合、有機材料(層)ごとに蒸着用の真空チャンバーが必要となるため、製造コストが高くなるという問題がある。例えば、図9のように5層からなる有機薄膜104を蒸着法により成膜する場合、通常は5室の真空チャンバーを備える大規模且つ高価な成膜装置が必要となるため、有機EL素子の製造コストが著しく高くなってしまう。また、真空チャンバー間の基板の移動、及び各真空チャンバーへの基板の出し入れに時間がかかり、量産時の生産効率が悪いという問題もあり、この点も製造コストを押し上げる原因となっている。   Further, for example, when an organic thin film having a multilayer structure is formed by a vapor deposition method, a vacuum chamber for vapor deposition is required for each organic material (layer). For example, when forming a five-layer organic thin film 104 by vapor deposition as shown in FIG. 9, a large-scale and expensive film-forming apparatus having five vacuum chambers is usually required. The manufacturing cost is significantly increased. In addition, it takes time to move the substrate between the vacuum chambers and to put the substrate in and out of each vacuum chamber, and there is a problem that the production efficiency at the time of mass production is poor. This also raises the manufacturing cost.

特許文献1においては、発光層のドーパントのドープ量を厚み方向で変化させることについての記載はあるが、有機薄膜を多層として各層に機能を分離した構造が前提とされている。例えば電荷の輸送効率を高めようとする場合は、発光層の他に別の層を追加形成する必要があり、やはり製造コストが高くなるおそれがある。   In Patent Document 1, there is a description about changing the doping amount of the dopant in the light emitting layer in the thickness direction, but it is assumed that the organic thin film is a multilayer and the function is separated into each layer. For example, in order to increase the charge transport efficiency, it is necessary to additionally form another layer in addition to the light emitting layer, which may increase the manufacturing cost.

そこで本発明はこのような従来の実情に鑑みて提案されたものであり、簡単な構造で電荷の輸送効率を高め、また、優れた発光特性を得ることが可能な有機エレクトロルミネッセンス素子を提供することを目的とする。   Therefore, the present invention has been proposed in view of such conventional circumstances, and provides an organic electroluminescence device capable of improving charge transport efficiency with a simple structure and obtaining excellent light emission characteristics. For the purpose.

前述の課題を解決するために、本発明に係る有機エレクトロルミネッセンス素子は、陽極及び陰極間に少なくとも有機薄膜が形成されてなる有機エレクトロルミネッセンス素子であって、前記有機薄膜は、単一のホスト材料層に対して互いに異なる複数種類のドーパントが膜厚方向に分布をもってドープされることにより構成されていることを特徴とする。   In order to solve the above-mentioned problems, an organic electroluminescent device according to the present invention is an organic electroluminescent device in which at least an organic thin film is formed between an anode and a cathode, and the organic thin film is a single host material. A plurality of types of dopants different from each other in the layer are doped with distribution in the film thickness direction.

また、前記ドーパントのうちの1種は、発光特性を付与するドーパントであり、他のドーパントは、正孔注入特性及び/又は正孔輸送特性、電子注入特性及び/又は電子輸送特性のいずれかを付与するドーパントであることを特徴とする。   In addition, one of the dopants is a dopant that imparts light emission characteristics, and the other dopant has any one of hole injection characteristics and / or hole transport characteristics, electron injection characteristics, and / or electron transport characteristics. It is the dopant to provide, It is characterized by the above-mentioned.

さらに、前記ホスト材料層の膜厚方向に、正孔注入特性及び/又は正孔輸送特性を付与するドーパントが注入された正孔ドーパント領域、発光特性を付与するドーパントがドープされた発光領域、並びに電子注入特性及び/又は電子輸送特性を付与するドーパントがドープされた電子ドーパント領域が順次形成されていることを特徴とする。   Furthermore, in the film thickness direction of the host material layer, a hole dopant region in which a dopant imparting hole injection properties and / or hole transport properties is implanted, a light emitting region doped with a dopant imparting light emission properties, and An electron dopant region doped with a dopant imparting electron injection characteristics and / or electron transport characteristics is formed sequentially.

本発明の有機エレクトロルミネッセンス素子においては、単一のホスト材料層の膜厚方向でドーパントの種類や濃度分布を変化させることで、1つの有機薄膜の膜厚方向に各ドーパントの持つ特性が付与された領域が形成される。このとき、有機薄膜の主成分であるホスト材料は有機薄膜全体で共通とする。例えば、正孔注入特性及び/又は正孔輸送特性を付与するドーパント、発光特性を付与するドーパント、電子注入特性及び/又は電子輸送特性を付与するドーパント等が、有機薄膜の膜厚方向に分布をもってドープされることで、1つの有機薄膜内に正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層等に対応した機能を持つ領域が形成される。このため、有機薄膜を多層構造に分けることなく、電荷の注入及び/又は輸送効率、並びに発光特性のいずれにおいても優れる有機エレクトロルミネッセンス素子が実現される。つまり、本発明の有機エレクトロルミネッセンス素子においては、従来は多層構造の有機薄膜で実現していた機能が、例えば単層構造等の簡単な層構造の有機薄膜で実現される。   In the organic electroluminescence device of the present invention, the characteristics of each dopant are given in the film thickness direction of one organic thin film by changing the type and concentration distribution of the dopant in the film thickness direction of a single host material layer. Areas are formed. At this time, the host material which is the main component of the organic thin film is common to the entire organic thin film. For example, a dopant that imparts hole injection characteristics and / or hole transport characteristics, a dopant that imparts light emission characteristics, a dopant that imparts electron injection characteristics and / or electron transport characteristics, and the like have a distribution in the film thickness direction of the organic thin film. By doping, a region having a function corresponding to a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, or the like is formed in one organic thin film. For this reason, an organic electroluminescence device excellent in both charge injection and / or transport efficiency and light emission characteristics can be realized without dividing the organic thin film into a multilayer structure. That is, in the organic electroluminescence element of the present invention, the function that has been realized in the past by the organic thin film having a multilayer structure is realized by an organic thin film having a simple layer structure such as a single layer structure.

また、前記発光領域と、正孔ドーパント領域又は電子ドーパント領域のうち少なくとも一方とが、膜厚方向で一部重なり合うことが好ましい。各ドーパントの分布が一部重なり合うようにドーパントを配置することで、電荷の輸送がより効率的に達成される。   Further, it is preferable that the light emitting region and at least one of the hole dopant region or the electron dopant region partially overlap in the film thickness direction. By arranging the dopants so that the distributions of the respective dopants partially overlap, charge transport is achieved more efficiently.

なお、前述の特許文献1の発明は、発光層内部でドーパントのドープ量を変化させるだけであり、単一のホスト材料層に複数種類のドーパントをドープさせることにより1層の有機薄膜の内部に正孔注入層及び/又は正孔輸送層、発光層、電子注入層及び/又は電子輸送層等に対応する領域を作り出す本発明とは考え方が根本的に異なるものである。   In addition, the above-mentioned invention of Patent Document 1 only changes the doping amount of the dopant inside the light emitting layer, and by doping a single host material layer with a plurality of types of dopants, The idea is fundamentally different from the present invention that creates regions corresponding to a hole injection layer and / or a hole transport layer, a light emitting layer, an electron injection layer, and / or an electron transport layer.

本発明によれば、単一のホスト材料層に対して互いに異なる複数種類のドーパントが膜厚方向に分布をもってドープされることにより、例えば発光ドーパント領域、正孔ドーパント領域又は電子ドーパント領域等が有機薄膜の膜厚方向に形成されるので、有機薄膜を多層構造とすることなく、電荷の輸送効率及び発光特性の両方に優れた有機エレクトロルミネッセンス素子を提供することができる。また、有機薄膜を多層構造としなくてもよいので、異なる有機材料の層を積層することによるエネルギーオフセットやエネルギー的な障壁の影響が抑えられ、発光閾値電圧が低く、発熱量の小さい有機エレクトロルミネッセンス素子を提供することができる。また、本発明によれば、有機薄膜の構造が非常に簡単になるので、有機薄膜の成膜に必要な真空チャンバーの数が少なくて済み、また、生産効率の低下が抑えられるため、有機エレクトロルミネッセンス素子の製造コストを大幅に下げることができる。   According to the present invention, a plurality of different types of dopants are doped with a distribution in the film thickness direction with respect to a single host material layer, so that, for example, a light-emitting dopant region, a hole dopant region, or an electron dopant region is organic. Since it is formed in the film thickness direction of the thin film, it is possible to provide an organic electroluminescence device that is excellent in both charge transport efficiency and light emission characteristics, without forming the organic thin film into a multilayer structure. In addition, since the organic thin film does not have to have a multilayer structure, the influence of energy offset and energy barrier caused by stacking layers of different organic materials can be suppressed, the light emission threshold voltage is low, and the organic electroluminescence has a small calorific value. An element can be provided. In addition, according to the present invention, the structure of the organic thin film becomes very simple, so that the number of vacuum chambers required for forming the organic thin film can be reduced, and the decrease in production efficiency can be suppressed. The manufacturing cost of the luminescence element can be greatly reduced.

以下、本発明を適用した有機エレクトロルミネッセンス(以下、有機ELと称する。)素子について、図面を参照しながら詳細に説明する。   Hereinafter, an organic electroluminescence (hereinafter referred to as organic EL) element to which the present invention is applied will be described in detail with reference to the drawings.

図1(a)は、本発明を適用した有機EL素子の断面図である。図1(a)に示すように、有機EL素子は、例えばガラス等の透明絶縁材料からなる基板1上に、ITO(インジウム錫酸化物)等の透明導電性材料からなる陽極2、有機材料からなる有機薄膜3、Al等の金属等からなる陰極4がこの順に積層され、これらが封止膜(図示せず)等によって封止されて構成される。この有機EL素子においては、有機薄膜3での発光を有機EL素子の基板1の裏面から取り出すようにしている。   Fig.1 (a) is sectional drawing of the organic EL element to which this invention is applied. As shown in FIG. 1A, an organic EL element is formed on a substrate 1 made of a transparent insulating material such as glass, an anode 2 made of a transparent conductive material such as ITO (indium tin oxide), and an organic material. An organic thin film 3 and a cathode 4 made of a metal such as Al are laminated in this order, and these are sealed by a sealing film (not shown) or the like. In this organic EL element, light emitted from the organic thin film 3 is extracted from the back surface of the substrate 1 of the organic EL element.

有機薄膜3は、単一のホスト材料層に、複数種類のドーパントが膜厚方向に分布をもってドープされることにより構成される。有機薄膜3の主成分であるホスト材料は、有機薄膜3の全領域にわたって共通とする。図1(b)は、例えば有機薄膜3における3種類のドーパントの濃度分布を示す模式図であり、横軸はドーパント濃度、縦軸は有機薄膜の膜厚方向を示す。図1(b)に示すように、有機薄膜3は、陽極2側から、正孔注入特性及び/又は正孔輸送特性を付与するドーパント(以下、正孔ドーパントと称する。)11がドープされた正孔ドーパント領域、発光特性を付与するドーパント(以下、発光ドーパントと称する。)12がドープされた発光ドーパント領域、及び電子注入特性及び/又は電子輸送特性を付与するドーパント(以下、電子ドーパントと称する。)13がドープされた電子ドーパント領域を有し、各ドーパントのドープされた領域が膜厚方向に順次形成されている。   The organic thin film 3 is configured by doping a single host material layer with a plurality of types of dopants with distribution in the film thickness direction. The host material that is the main component of the organic thin film 3 is common to the entire region of the organic thin film 3. FIG. 1B is a schematic diagram showing, for example, the concentration distribution of three types of dopants in the organic thin film 3, where the horizontal axis indicates the dopant concentration and the vertical axis indicates the film thickness direction of the organic thin film. As shown in FIG. 1B, the organic thin film 3 is doped with a dopant (hereinafter referred to as a hole dopant) 11 imparting hole injection characteristics and / or hole transport characteristics from the anode 2 side. A hole dopant region, a light-emitting dopant region imparted with light-emitting properties (hereinafter referred to as light-emitting dopant) 12, and a dopant that imparts electron injection properties and / or electron transport properties (hereinafter referred to as electronic dopants). .) 13 has an electron dopant region doped, and doped regions of each dopant are sequentially formed in the film thickness direction.

各ドーパントは、膜厚方向で連続的に変化するような濃度分布を有している。例えば、図1(b)の正孔ドーパント11及び電子ドーパント13は、電極との界面で最も高濃度とされ、対極に向かうにしたがって次第に低濃度となるような濃度分布にてドープされている。また、発光ドーパント12は、高濃度領域を中心に陰極2及び陽極4に向かうにしたがって次第に低濃度となるような濃度分布にてドープされている。   Each dopant has a concentration distribution that continuously changes in the film thickness direction. For example, the hole dopant 11 and the electron dopant 13 in FIG. 1B are doped with a concentration distribution such that the concentration is highest at the interface with the electrode and gradually decreases toward the counter electrode. Further, the light emitting dopant 12 is doped with a concentration distribution such that the concentration gradually decreases toward the cathode 2 and the anode 4 with the high concentration region as the center.

本発明の有機EL素子では、例えば図1(b)に示すように、正孔ドーパント11の分布と発光ドーパント12の分布とが一部重なり合い、また、発光ドーパント12の分布と電子ドーパント13の分布とが一部が重なり合うように配置される。有機薄膜の主成分となるホスト材料を単一とし、発光領域と、正孔ドーパント領域又は電子ドーパント領域のうち少なくとも一方とが膜厚方向で一部重なり合うこと、すなわち各ドーパントの分布を適度に重ねることで、エネルギーオフセット及びエネルギー的な障壁の影響が確実に抑えられる。各領域の重なり合いの程度を適度に設定することで、電荷の輸送効率がさらに高まり、有機EL素子の発光閾値電圧を下げることができ、また、発熱量を小さくすることができる。各ドーパントの濃度分布の重なり合いの程度は、ドーパントの種類等に応じて適宜決定される。ドーパントの分布を重ねない場合、ドーパント濃度がゼロとされた領域が有機薄膜内で界面として働き、エネルギー的な障壁が生まれて電荷の輸送が妨げられるおそれがある。   In the organic EL device of the present invention, for example, as shown in FIG. 1B, the distribution of the hole dopant 11 and the distribution of the light emitting dopant 12 partially overlap, and the distribution of the light emitting dopant 12 and the distribution of the electron dopant 13. Are arranged so that they partially overlap. A single host material that is the main component of the organic thin film is used, and the light emitting region and at least one of the hole dopant region or the electron dopant region partially overlap in the film thickness direction, that is, the distribution of each dopant is appropriately overlapped. As a result, the effects of energy offset and energy barrier can be reliably suppressed. By appropriately setting the overlapping degree of each region, the charge transport efficiency can be further increased, the light emission threshold voltage of the organic EL element can be lowered, and the amount of heat generation can be reduced. The degree of overlapping of the concentration distributions of the respective dopants is appropriately determined according to the type of dopant. If the dopant distribution is not overlapped, the region where the dopant concentration is zero may act as an interface in the organic thin film, and an energy barrier may be created to hinder charge transport.

ホスト材料としては、基本的には広いエネルギーギャップを持つ材料、例えば2.7eV以上のバンドギャップを持つ材料が好ましい。具体的なホスト材料としては、4,4’,4’’−トリス[N−(1−ナフチル)−N−フェニルアミノ]−トリフェニルアミン(2−TNATA:4,4',4''-tris[N-(1-naphthyl)-N-phenylamino]-triphenylamine)、N,N’−ジ(ナフタレン−1−イル)−N,N'ジフェニル−ベンジジン(NPD:N,N'-Di(naphthalen-1-yl)-N,N'diphenyl-benzidine)、4,4’−ビス(カルバゾール−9−イル)ビフェニル(CBP:4,4'-Bis(carbazol-9-yl)biphenyl)等が挙げられる。このような広いエネルギーギャップを持つホスト材料は、例えば80℃以上の高いガラス転移点をもち、熱等に対して安定である。したがって、このようなホスト材料を有機薄膜3の主成分として用いることで、熱安定性に優れた有機EL素子が実現される。   As the host material, basically, a material having a wide energy gap, for example, a material having a band gap of 2.7 eV or more is preferable. As a specific host material, 4,4 ′, 4 ″ -tris [N- (1-naphthyl) -N-phenylamino] -triphenylamine (2-TNATA: 4,4 ′, 4 ″- tris [N- (1-naphthyl) -N-phenylamino] -triphenylamine), N, N′-di (naphthalen-1-yl) -N, N′diphenyl-benzidine (NPD: N, N′-Di (naphthalen) -1-yl) -N, N'diphenyl-benzidine), 4,4'-bis (carbazol-9-yl) biphenyl (CBP: 4,4'-Bis (carbazol-9-yl) biphenyl) It is done. A host material having such a wide energy gap has a high glass transition point of, for example, 80 ° C. or more and is stable against heat. Therefore, by using such a host material as the main component of the organic thin film 3, an organic EL element having excellent thermal stability is realized.

なお、有機薄膜が多層構造とされた従来の有機EL素子では、各層で機能を分離しているため、各層の特性に合わせた狭いエネルギーギャップを持つ材料の使用が前提とされており、前記のような広いエネルギーギャップを持つ材料の使用はほとんど想定されていなかった。一般に、狭いエネルギーギャップを持つ材料の熱安定性は低いため、これを有機薄膜に用いた従来の有機EL素子は耐熱性の点に問題があった。   In addition, in the conventional organic EL element in which the organic thin film has a multilayer structure, since the function is separated in each layer, the use of a material having a narrow energy gap according to the characteristics of each layer is assumed. The use of such a material having a wide energy gap was hardly expected. In general, since a material having a narrow energy gap has low thermal stability, a conventional organic EL element using the material for an organic thin film has a problem in heat resistance.

正孔ドーパント11としては、テトラフルオロテトラシアノキノジメタン(F4−TCNQ:tetrafluorotetracyanoquinodimethane)、2,3−ジクロロ−5,6−ジシアノ−1,4−ベンゾキノン(DDQ:2,3-dichrolo-5,6-dicyano-1,4-benzoquinone)、7,7,8,8−テトラシアノキノジメタン(TCNQ:7,7,8,8-tetracyanoquinodimethane)、1,4,5,8−ナフタレン−テトラカルボン酸二無水物(NTCDA:1,4,5,8- naphthalene-tetracaboxylic-dianhydride)、ペリレン−3,4,9,10−テトラカルボン酸−3,4,9,10−二無水物(PTCDA:perylene-3,4,9,10-tetracarboxylic-3,4,9,10-dianhydride)等が挙げられる。中でも、正孔注入特性を付与するドーパントとして、F4−TCNQ、DDQ等を用いることが好ましい。また、正孔輸送特性を付与するドーパントとしては、F4−TCNQ、PTCDA等を用いることが好ましい。   As the hole dopant 11, tetrafluorotetracyanoquinodimethane (F4-TCNQ: tetrafluorotetracyanoquinodimethane), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ: 2,3-dichrolo-5, 6-dicyano-1,4-benzoquinone), 7,7,8,8-tetracyanoquinodimethane (TCNQ: 7,7,8,8-tetracyanoquinodimethane), 1,4,5,8-naphthalene-tetracarboxylic Acid dianhydride (NTCDA: 1,4,5,8-naphthalene-tetracaboxylic-dianhydride), perylene-3,4,9,10-tetracarboxylic acid-3,4,9,10-dianhydride (PTCDA: perylene-3,4,9,10-tetracarboxylic-3,4,9,10-dianhydride). Among them, it is preferable to use F4-TCNQ, DDQ, or the like as a dopant imparting hole injection characteristics. Moreover, as a dopant which provides a hole transport characteristic, it is preferable to use F4-TCNQ, PTCDA, or the like.

従来の多層構造の有機EL素子では、抵抗値の増加を避けるために電極間の有機薄膜を非常に薄く形成する必要があるが、この場合、陽極に用いたITOのスパイクの悪影響を受けたり、光の共振効果が得られないために発光効率が低下する等の不都合がある。これに対し、本発明では正孔ドーパント11としてTCNQ等の電荷移動錯体等を用い、このドーパントがドープされた領域を厚くすることで、有機薄膜3を従来より厚膜とした場合であっても、有機薄膜3の抵抗値の増大が抑えられる。このため、従来に比べて有機EL素子の有機薄膜を厚くできるで、陽極2のスパイク等の影響を軽減することができる。また、従来に比べて有機EL素子の有機膜の厚膜化が可能となるので、光の共振構造をとる膜厚に有機薄膜3を設計することが容易となり、発光の減衰を抑えて光の効率を高めることができる。   In the conventional organic EL element having a multilayer structure, it is necessary to form an organic thin film between the electrodes very thinly in order to avoid an increase in resistance value. In this case, the organic EL element is adversely affected by the ITO spike used for the anode, There are inconveniences such as a reduction in luminous efficiency because the light resonance effect cannot be obtained. On the other hand, in the present invention, even when the organic thin film 3 is made thicker than before by using a charge transfer complex such as TCNQ as the hole dopant 11 and thickening the region doped with this dopant. The increase in the resistance value of the organic thin film 3 is suppressed. For this reason, since the organic thin film of an organic EL element can be thickened compared with the past, the influence of the spike of the anode 2, etc. can be reduced. In addition, since the organic film of the organic EL element can be made thicker than in the past, it is easy to design the organic thin film 3 with a film thickness having a light resonance structure, and the attenuation of light emission can be suppressed. Efficiency can be increased.

発光ドーパント12としては、ルブレン(橙色)、ペリレン(青色)、[7−ジエチルアミノ−3−(2−チエニル)クロメン−2−イリデン]−2,2−ジシアノビニラミン(ACY:[7-diethylamino-3-(2-thienyl)chromen-2-ylidene]-2,2-dicyanovinylamine)(赤色)、7,16−ジヒドロ−7,16−ジメチルベンゾ[a]ベンゾ[5,6]キノ[3,2−I]アクリジン−9,18−ジオン(QD:(7,16-dihydro-7,16-dimethylbenzo[a]benzo[5,6]quino[3,2-I]acridine-9,18-dion)(緑色)、クマリン(赤色〜青色)、これらドーパントの混合物等を用いることができる。   Examples of the luminescent dopant 12 include rubrene (orange), perylene (blue), [7-diethylamino-3- (2-thienyl) chromen-2-ylidene] -2,2-dicyanovinylamine (ACY: [7-diethylamino- 3- (2-thienyl) chromen-2-ylidene] -2,2-dicyanovinylamine) (red), 7,16-dihydro-7,16-dimethylbenzo [a] benzo [5,6] quino [3,2 -I] acridine-9,18-dione (QD: (7,16-dihydro-7,16-dimethylbenzo [a] benzo [5,6] quino [3,2-I] acridine-9,18-dion) (Green), coumarin (red to blue), a mixture of these dopants, and the like can be used.

電子ドーパント13としては、Cs(セシウム)、Li(リチウム)、K(カリウム)、Na(ナトリウム)、Rb(ルビジウム)等のアルカリ金属、アルカリ土類金属、ビス(エチレンジチオ)テトラチアフルバレン(BEDT−TFF:bis(ethylenedithio)tetrathiafulvalene)等の有機化合物等を用いることができる。中でも、電子注入特性を付与するドーパントとして、Cs等を用いることが好ましい。また、電子輸送特性を付与するドーパントとして、BEDT−TFFを用いることが好ましい。   Examples of the electron dopant 13 include alkali metals such as Cs (cesium), Li (lithium), K (potassium), Na (sodium), and Rb (rubidium), alkaline earth metals, bis (ethylenedithio) tetrathiafulvalene (BEDT). Organic compounds such as -TFF: bis (ethylenedithio) tetrathiafulvalene) can be used. Among them, Cs or the like is preferably used as a dopant that imparts electron injection characteristics. In addition, BEDT-TFF is preferably used as a dopant that imparts electron transport properties.

以上のように、有機EL素子においては、正孔ドーパント11、発光ドーパント12及び電子ドーパント13を、膜厚方向に分布をもたせてドープし、正孔ドーパント領域、発光ドーパント領域及び電子ドーパント領域を陽極2側から順に設けることで、例えば正孔注入及び/又は正孔輸送層、発光層、並びに電子注入及び/又は電子輸送層に対応する領域が有機薄膜3内に形成される。正孔注入及び/又は正孔輸送効率、電子注入及び/又は電子輸送効率を高める領域と、発光特性に優れる領域とが形成されるので、正孔及び電子の注入効率や輸送効率に優れ、また発光特性に優れた有機EL素子を極めて簡単な構造の有機薄膜で実現できる。このときホスト材料層は1層であるので、従来の多層構造の有機薄膜のような不要な界面が存在せず、エネルギーオフセットやエネルギー的な障壁の影響を軽減できる。よって、駆動電圧が低く、発熱量の少ない有機EL素子が実現される。また、各ドーパント領域を膜厚方向で一部重ね合わせることで、電荷の輸送効率をさらに向上できる。   As described above, in the organic EL device, the hole dopant 11, the light emitting dopant 12, and the electron dopant 13 are doped with distribution in the film thickness direction, and the hole dopant region, the light emitting dopant region, and the electron dopant region are anodes. By providing in order from the second side, for example, a hole injection and / or hole transport layer, a light emitting layer, and a region corresponding to the electron injection and / or electron transport layer are formed in the organic thin film 3. Since a region for improving hole injection and / or hole transport efficiency, electron injection and / or electron transport efficiency and a region having excellent light emission characteristics are formed, the hole and electron injection efficiency and transport efficiency are excellent. An organic EL element having excellent light emission characteristics can be realized with an organic thin film having a very simple structure. At this time, since the host material layer is a single layer, there is no unnecessary interface as in the conventional organic thin film having a multilayer structure, and the influence of energy offset and energy barrier can be reduced. Therefore, an organic EL element with a low driving voltage and a small calorific value is realized. Further, by partially overlapping each dopant region in the film thickness direction, the charge transport efficiency can be further improved.

以上のような有機EL素子の有機薄膜は、気相法、例えば蒸着法によって成膜される。蒸着法による有機薄膜の成膜には、例えば図2に示すような真空チャンバー(図示せず。)内に、ホスト材料用のるつぼ51aと、発光ドーパント用のるつぼ51bと、正孔ドーパント用のるつぼ51cと、電子ドーパント用のるつぼ51dとを備えた成膜装置を用いることができる。各るつぼ51a,51b,51c,51dの開口部付近には、るつぼ51に収容された材料の蒸着速度を制御するシャッター52a,52b,52c,52dと、膜厚及び蒸着レートを制御するために設けられる水晶発振式のセンサ53a,53b,53c,53dとが設けられる。また、各るつぼ51間は、隔壁54により仕切られている。   The organic thin film of the organic EL element as described above is formed by a vapor phase method, for example, a vapor deposition method. For forming an organic thin film by vapor deposition, for example, a crucible 51a for a host material, a crucible 51b for a light emitting dopant, and a hole dopant for a hole dopant in a vacuum chamber (not shown) as shown in FIG. A film forming apparatus including a crucible 51c and an electron dopant crucible 51d can be used. In the vicinity of the opening of each crucible 51a, 51b, 51c, 51d, there are provided shutters 52a, 52b, 52c, 52d for controlling the vapor deposition rate of the material contained in the crucible 51, and for controlling the film thickness and vapor deposition rate. Crystal oscillation sensors 53a, 53b, 53c, and 53d. Each crucible 51 is partitioned by a partition wall 54.

このような成膜装置を用いて有機薄膜を成膜する際には、ITO等からなる陽極2が形成された基板1が搬入された真空チャンバー内を所定の減圧状態とし、基板1を回転させながら各るつぼ51内の材料を陽極2上に蒸着し、ホスト材料とドーパントとを共蒸着する。このとき、ホスト材料用のるつぼ51aに対応したシャッター52aは開放したままにして、ホスト材料の蒸着を維持する。そして、ホスト材料を蒸着しながら、各シャッター52b,52c,52dの開閉を制御することにより、正孔ドーパント11、発光ドーパント12、及び電子ドーパント13を、各ドーパントの分布が一部重なるようにこの順に蒸着することで、図1(b)に示すような各領域を持つ有機薄膜3を形成する。   When an organic thin film is formed using such a film forming apparatus, the inside of the vacuum chamber into which the substrate 1 on which the anode 2 made of ITO or the like is formed is brought into a predetermined reduced pressure state, and the substrate 1 is rotated. However, the material in each crucible 51 is vapor-deposited on the anode 2, and a host material and a dopant are co-evaporated. At this time, the shutter 52a corresponding to the crucible 51a for the host material is kept open, and the deposition of the host material is maintained. Then, by controlling the opening and closing of the shutters 52b, 52c, and 52d while depositing the host material, the hole dopant 11, the light emitting dopant 12, and the electron dopant 13 are arranged so that the distribution of each dopant partially overlaps. By sequentially depositing, an organic thin film 3 having each region as shown in FIG. 1B is formed.

以上のように、有機EL素子の有機薄膜の成膜は、例えば1つの真空チャンバー内で、シャッターの開閉によりドーパントの蒸着のタイミングを制御することのみで実現される。このため、従来の有機薄膜の製造では3〜5室の真空チャンバーが必要であったのに対し、本発明では1又は2室程度の少数の真空チャンバーでよいので、成膜装置に必要なコストが大幅に下がり、有機EL素子を非常に安価に製造することができる。また、真空チャンバーの数が少なくてすむので、真空チャンバーに基板を出し入れする時間や真空チャンバー間で基板を移動させる際の時間が大幅に短縮され、量産時の生産効率を高めることができ、有機EL素子の製造コストをさらに下げることができる。   As described above, the formation of the organic thin film of the organic EL element can be realized only by controlling the deposition timing of the dopant by opening and closing the shutter, for example, in one vacuum chamber. For this reason, 3 to 5 vacuum chambers are required in the manufacture of the conventional organic thin film, whereas in the present invention, a small number of vacuum chambers such as 1 or 2 may be used. The organic EL element can be manufactured at a very low cost. In addition, since the number of vacuum chambers can be reduced, the time for moving the substrate in and out of the vacuum chamber and the time for moving the substrate between the vacuum chambers can be greatly shortened, and the production efficiency during mass production can be increased. The manufacturing cost of the EL element can be further reduced.

なお、前述の説明では、有機薄膜3が単層構造であり、正孔ドーパント11がドープされた領域、発光ドーパント12がドープされた領域及び電子ドーパント13がドープされた領域の3つの領域が有機薄膜3内に形成された有機EL素子を例に挙げたが、本発明はこれに限定されるものではない。   In the above description, the organic thin film 3 has a single layer structure, and the three regions of the region doped with the hole dopant 11, the region doped with the light emitting dopant 12, and the region doped with the electron dopant 13 are organic. Although the organic EL element formed in the thin film 3 was mentioned as an example, this invention is not limited to this.

例えば、発光ドーパント12としては、図1(b)に示すようにドーパントを単独で用いる他、任意の色の発光を得るために、複数種類のドーパントを用いてもよい。例えば白色の発光を得るためには、図3に示すように、発光ドーパントとして赤色(R)発光を付与するドーパント12R、緑色(G)発光を付与するドーパント12G、及び青色(B)発光を付与するドーパント12Bを混合して用いることで実現される。また、白色の発光は、図4に示すように、赤色(R)発光を付与するドーパント12R、緑色(G)発光を付与するドーパント12G、及び青色(B)発光を付与するドーパント12Bを、各ドーパントの分布が膜厚方向で一部重なり合うようにドープすること等によっても実現される。なお、発光ドーパント領域での発光の色等は上記の白色の例に限定されず、ドーパントの種類を適宜選択することで所望の色を発光させることができる。また、ドーパントの色の組み合わせやドーパントの配置順序も上記の例に限定されない。   For example, as the light emitting dopant 12, in addition to using the dopant alone as shown in FIG. 1B, a plurality of kinds of dopants may be used to obtain light emission of an arbitrary color. For example, in order to obtain white light emission, as shown in FIG. 3, as a light emission dopant, a dopant 12R that gives red (R) light emission, a dopant 12G that gives green (G) light emission, and blue (B) light emission are given. This is realized by mixing and using the dopant 12B. In addition, as shown in FIG. 4, white light emission includes a dopant 12R that imparts red (R) light emission, a dopant 12G that imparts green (G) light emission, and a dopant 12B that imparts blue (B) light emission, It is also realized by doping so that the dopant distribution partially overlaps in the film thickness direction. Note that the color of light emitted from the light-emitting dopant region is not limited to the above-described white example, and a desired color can be emitted by appropriately selecting the type of dopant. Further, the combination of dopant colors and the arrangement order of the dopants are not limited to the above examples.

また、本発明の有機EL素子においては、例えば図5に示すように、電子ドーパント13として金属系ドーパント14と有機系ドーパント15の2種類のドーパントを使用し、金属系ドーパント14がドープされた領域と発光ドーパント12がドープされた領域との間に有機系ドーパント15がドープされた領域を配置することが好ましい。陰極4からの電子の注入性を考慮すると電子ドーパント13として金属系ドーパント14を用いることが好ましいが、発光ドーパント12の分布に金属系ドーパント14の分布を一部重ねると、発光ドーパント領域で生じたエネルギーの一部が熱に変換されて発光効率が低下するおそれがあるためである。   In the organic EL device of the present invention, for example, as shown in FIG. 5, two types of dopants, that is, a metal dopant 14 and an organic dopant 15 are used as the electron dopant 13 and the metal dopant 14 is doped. It is preferable that a region doped with the organic dopant 15 is disposed between the region doped with the light emitting dopant 12. Considering the injectability of electrons from the cathode 4, it is preferable to use the metal dopant 14 as the electron dopant 13, but when the distribution of the metal dopant 14 is partially overlapped with the distribution of the light emission dopant 12, it is generated in the light emission dopant region. This is because part of the energy may be converted into heat and the luminous efficiency may decrease.

さらに、有機薄膜3の構成は、正孔ドーパント11がドープされた領域、発光ドーパント12がドープされた領域及び電子ドーパント13がドープされた領域の3つの領域が形成された例に限定されない。例えば、図6に示すように、正孔ドーパント11として正孔注入性に優れたドーパント(正孔注入ドーパント)16と正孔輸送性に優れたドーパント(正孔輸送ドーパント)17の2種類のドーパントを使用し、各ドーパントの分布が一部重なり合うように配置することにより、有機薄膜3に4つの領域が形成されてもよい。また、図7に示すように、電子ドーパント13として電子注入性に優れたドーパント(電子注入ドーパント)18と電子輸送性に優れたドーパント(電子輸送ドーパント)19との2種類のドーパントを使用し、各ドーパントの分布が一部重なり合うように配置することにより、有機薄膜3に4つの領域が形成されてもよい。また、図8に示すように、正孔ドーパント11として正孔注入ドーパント16と正孔輸送ドーパント17、電子ドーパント13として電子注入ドーパント18と電子輸送ドーパント19とを用い、有機薄膜3に5つの領域を形成してもよい。有機薄膜3の膜厚方向に、機能をより細かく分離した領域を形成することで、有機薄膜3の電荷の注入及び輸送効率をさらに高め、有機EL素子の特性のさらなる向上を図ることができる。   Further, the configuration of the organic thin film 3 is not limited to an example in which three regions of a region doped with the hole dopant 11, a region doped with the light emitting dopant 12, and a region doped with the electron dopant 13 are formed. For example, as shown in FIG. 6, two types of dopants, a dopant (hole injection dopant) 16 excellent in hole injection property and a dopant (hole transport dopant) 17 excellent in hole transport property, as the hole dopant 11. And four regions may be formed in the organic thin film 3 by arranging so that the distribution of each dopant partially overlaps. Moreover, as shown in FIG. 7, two types of dopants, ie, a dopant (electron injection dopant) 18 excellent in electron injection property and a dopant (electron transport dopant) 19 excellent in electron transport property are used as the electron dopant 13, Four regions may be formed in the organic thin film 3 by arranging so that the distributions of the respective dopants partially overlap. Further, as shown in FIG. 8, a hole injection dopant 16 and a hole transport dopant 17 are used as the hole dopant 11, an electron injection dopant 18 and an electron transport dopant 19 are used as the electron dopant 13, and five regions are formed in the organic thin film 3. May be formed. By forming a region in which the functions are more finely separated in the film thickness direction of the organic thin film 3, the charge injection and transport efficiency of the organic thin film 3 can be further increased, and the characteristics of the organic EL element can be further improved.

また、本発明の有機EL素子は、陽極と陰極との間に、有機薄膜以外の層を配置してもよい。例えば、有機薄膜と陰極との間に電子輸送層及び/又は電子注入層を追加してもよい。この場合、有機薄膜においては、陽極側から順に、正孔ドーパント、発光ドーパントを異なる濃度分布でドープする。また、有機薄膜と陽極との間に正孔輸送層及び/又は正孔注入層を追加してもよい。この場合、有機薄膜においては、陽極側から順に、発光ドーパント、電子ドーパントを異なる濃度分布でドープする。   In the organic EL device of the present invention, a layer other than the organic thin film may be disposed between the anode and the cathode. For example, an electron transport layer and / or an electron injection layer may be added between the organic thin film and the cathode. In this case, in the organic thin film, the hole dopant and the light emitting dopant are doped with different concentration distributions in order from the anode side. Further, a hole transport layer and / or a hole injection layer may be added between the organic thin film and the anode. In this case, in the organic thin film, the light emitting dopant and the electron dopant are doped with different concentration distributions in order from the anode side.

また、前述の実施形態においては、基板2上に陽極(透明電極)4、有機薄膜3及び陰極4をこの順に積層し、基板2の裏面から発光を取り出す構造の有機EL素子を例に挙げて説明したが、本発明はこれに限定されるものではない。本発明は、例えば基板上に陰極、有機薄膜及び陽極(透明電極)をこの順に積層し、陽極側から発光を取り出す、いわゆる上面発光型の有機EL素子に適用することも勿論可能である。   In the above-described embodiment, an organic EL element having a structure in which the anode (transparent electrode) 4, the organic thin film 3, and the cathode 4 are laminated in this order on the substrate 2 and light emission is extracted from the back surface of the substrate 2 is taken as an example. Although described, the present invention is not limited to this. For example, the present invention can be applied to a so-called top emission type organic EL element in which, for example, a cathode, an organic thin film, and an anode (transparent electrode) are laminated in this order on a substrate and light emission is taken out from the anode side.

また、本発明の有機EL素子を適用可能な装置は特に限定されないが、例えばディスプレイ、照明装置等に適用することができる。   Moreover, the apparatus which can apply the organic EL element of this invention is not specifically limited, For example, it can apply to a display, an illuminating device, etc.

(a)は、本発明を適用した有機EL素子の一例を示す概略断面図であり、(b)は、(a)に示す有機EL素子の有機薄膜の膜厚方向でのドーパントの濃度分布を模式的に示す図である。(A) is a schematic sectional drawing which shows an example of the organic EL element to which this invention is applied, (b) shows the dopant concentration distribution in the film thickness direction of the organic thin film of the organic EL element shown to (a). It is a figure shown typically. 有機薄膜を成膜するための成膜装置の真空チャンバー内を示す斜視図である。It is a perspective view which shows the inside of the vacuum chamber of the film-forming apparatus for forming an organic thin film. 本発明を適用した有機EL素子の他の例であり、有機薄膜の膜厚方向でのドーパントの濃度分布を模式的に示す図である。It is another example of the organic EL element to which this invention is applied, and is a figure which shows typically the dopant concentration distribution in the film thickness direction of an organic thin film. 本発明を適用した有機EL素子の他の例であり、有機薄膜の膜厚方向でのドーパントの濃度分布を模式的に示す図である。It is another example of the organic EL element to which this invention is applied, and is a figure which shows typically the dopant concentration distribution in the film thickness direction of an organic thin film. 本発明を適用した有機EL素子のさらに他の例であり、有機薄膜の膜厚方向でのドーパントの濃度分布を模式的に示す図である。It is a further example of the organic EL element to which this invention is applied, and is a figure which shows typically the dopant concentration distribution in the film thickness direction of an organic thin film. 本発明を適用した有機EL素子のさらに他の例であり、有機薄膜の膜厚方向でのドーパントの濃度分布を模式的に示す図である。It is a further example of the organic EL element to which this invention is applied, and is a figure which shows typically the dopant concentration distribution in the film thickness direction of an organic thin film. 本発明を適用した有機EL素子のさらに他の例であり、有機薄膜の膜厚方向でのドーパントの濃度分布を模式的に示す図である。It is a further example of the organic EL element to which this invention is applied, and is a figure which shows typically the dopant concentration distribution in the film thickness direction of an organic thin film. 本発明を適用した有機EL素子のさらに他の例であり、有機薄膜の膜厚方向でのドーパントの濃度分布を模式的に示す図である。It is a further example of the organic EL element to which this invention is applied, and is a figure which shows typically the dopant concentration distribution in the film thickness direction of an organic thin film. 従来の有機EL素子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the conventional organic EL element.

符号の説明Explanation of symbols

1 基板、2 陽極、3 有機薄膜、4 陰極、11 正孔ドーパント、12 発光ドーパント、13 電子ドーパント、14 金属系ドーパント、15 有機系ドーパント、16 正孔注入ドーパント、17 正孔輸送ドーパント、18 電子注入ドーパント、19 電子輸送ドーパント 1 substrate, 2 anode, 3 organic thin film, 4 cathode, 11 hole dopant, 12 light emitting dopant, 13 electron dopant, 14 metal dopant, 15 organic dopant, 16 hole injection dopant, 17 hole transport dopant, 18 electron Implanted dopant, 19 Electron transport dopant

Claims (7)

陽極及び陰極間に少なくとも有機薄膜が形成されてなる有機エレクトロルミネッセンス素子であって、
前記有機薄膜は、単一のホスト材料層に対して互いに異なる複数種類のドーパントが膜厚方向に分布をもってドープされることにより構成されていることを特徴とする有機エレクトロルミネッセンス素子。
An organic electroluminescence device in which at least an organic thin film is formed between an anode and a cathode,
The organic thin film is configured by doping a plurality of different dopants with a distribution in the film thickness direction with respect to a single host material layer.
前記ドーパントのうちの1種は、発光特性を付与するドーパントであり、他のドーパントは、正孔注入特性及び/又は正孔輸送特性、電子注入特性及び/又は電子輸送特性のいずれかを付与するドーパントであることを特徴とする請求項1記載の有機エレクトロルミネッセンス素子。   One of the dopants is a dopant that imparts light emission characteristics, and the other dopant imparts any of hole injection characteristics and / or hole transport characteristics, electron injection characteristics, and / or electron transport characteristics. The organic electroluminescence device according to claim 1, wherein the organic electroluminescence device is a dopant. 前記ホスト材料層の膜厚方向に、正孔注入特性及び/又は正孔輸送特性を付与するドーパントが注入された正孔ドーパント領域、発光特性を付与するドーパントがドープされた発光領域、並びに電子注入特性及び/又は電子輸送特性を付与するドーパントがドープされた電子ドーパント領域が順次形成されていることを特徴とする請求項2記載の有機エレクトロルミネッセンス素子。   In the film thickness direction of the host material layer, a hole dopant region in which a dopant imparting hole injection properties and / or hole transport properties is implanted, a light emitting region doped with a dopant imparting light emission properties, and electron injection 3. The organic electroluminescence device according to claim 2, wherein an electron dopant region doped with a dopant imparting characteristics and / or electron transport characteristics is formed sequentially. 前記発光領域と、正孔ドーパント領域又は電子ドーパント領域のうち少なくとも一方とは、膜厚方向で一部重なり合うことを特徴とする請求項3記載の有機エレクトロルミネッセンス素子。   The organic electroluminescence device according to claim 3, wherein the light emitting region and at least one of the hole dopant region and the electron dopant region partially overlap in the film thickness direction. 前記発光特性を付与するドーパントがドープされた発光領域には、赤色発光特性を付与するドーパント、緑色発光特性を付与するドーパント、及び青色発光特性を付与するドーパントが混合されてドープされていることを特徴とする請求項2〜4のいずれか1項記載の有機エレクトロルミネッセンス素子。   The light emitting region doped with the dopant that imparts the light emission characteristics is doped with a dopant that imparts red light emission characteristics, a dopant that imparts green light emission characteristics, and a dopant that imparts blue light emission characteristics. The organic electroluminescence element according to claim 2, wherein the organic electroluminescence element is characterized in that 前記発光特性を付与するドーパントがドープされた発光領域は、赤色発光特性を付与するドーパントがドープされた領域、緑色発光特性を付与するドーパントがドープされた領域、及び青色発光特性を付与するドーパントがドープされた領域を、膜厚方向に有することを特徴とする請求項2〜4のいずれか1項記載の有機エレクトロルミネッセンス素子。   The light emitting region doped with the dopant imparting the light emission characteristics includes a region doped with a dopant imparting red light emission characteristics, a region doped with a dopant imparting green light emission characteristics, and a dopant imparting blue light emission characteristics. The organic electroluminescence device according to any one of claims 2 to 4, wherein the organic electroluminescence device has a doped region in a film thickness direction. 前記電子注入特性及び/又は電子輸送特性を付与するドーパントがドープされた領域が、有機系ドーパントがドープされた有機系ドーパント領域と金属系ドーパントがドープされた金属系ドーパント領域とを膜厚方向に有し、前記発光特性を付与するドーパントがドープされた発光領域と、前記金属系ドーパント領域との間に前記有機系ドーパント領域が配置されることを特徴とする請求項2〜4のいずれか1項記載の有機エレクトロルミネッセンス素子。   The region doped with the dopant imparting the electron injection property and / or the electron transport property includes an organic dopant region doped with an organic dopant and a metal dopant region doped with a metal dopant in the film thickness direction. 5. The organic dopant region is disposed between a light emitting region doped with a dopant that imparts the light emission characteristics and the metal dopant region. 6. The organic electroluminescence element according to item.
JP2004200976A 2004-07-07 2004-07-07 Organic electroluminescence device Expired - Fee Related JP4649676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004200976A JP4649676B2 (en) 2004-07-07 2004-07-07 Organic electroluminescence device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004200976A JP4649676B2 (en) 2004-07-07 2004-07-07 Organic electroluminescence device

Publications (2)

Publication Number Publication Date
JP2006024711A true JP2006024711A (en) 2006-01-26
JP4649676B2 JP4649676B2 (en) 2011-03-16

Family

ID=35797777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004200976A Expired - Fee Related JP4649676B2 (en) 2004-07-07 2004-07-07 Organic electroluminescence device

Country Status (1)

Country Link
JP (1) JP4649676B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310748A (en) * 2005-03-28 2006-11-09 Fuji Photo Film Co Ltd Organic electroluminescence element
JP2007250716A (en) * 2006-03-15 2007-09-27 Konica Minolta Holdings Inc Organic electroluminescence element, display and illuminator
JP2007335214A (en) * 2006-06-14 2007-12-27 Matsushita Electric Works Ltd Organic light-emitting element
JP2010541144A (en) * 2007-09-25 2010-12-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Radiation emission device and method of manufacturing the same
US8017251B2 (en) 2005-03-28 2011-09-13 Fujifilm Corporation Organic electroluminescent device
KR101279315B1 (en) * 2006-04-18 2013-06-26 이 아이 듀폰 디 네모아 앤드 캄파니 High energy-potential bilayer compositions
US8658061B2 (en) 2007-04-13 2014-02-25 E I Du Pont De Nemours And Company Electrically conductive polymer compositions
JP2014199943A (en) * 2008-05-16 2014-10-23 株式会社半導体エネルギー研究所 Light emitting element
JP2015118948A (en) * 2015-02-20 2015-06-25 株式会社日立製作所 Manufacturing method of organic light-emitting element
JP7562176B2 (en) 2022-06-28 2024-10-07 北京夏禾科技有限公司 Organic electroluminescence element

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102057920B1 (en) 2013-06-27 2019-12-20 엘지디스플레이 주식회사 Organic Light Emitting Display Device and fabricating of the same
KR101759294B1 (en) 2015-01-05 2017-07-18 코닝정밀소재 주식회사 Tandem type organic light emitting device
KR20160084282A (en) 2015-01-05 2016-07-13 코닝정밀소재 주식회사 Tandem type organic light emitting device
JP6837810B2 (en) 2016-11-17 2021-03-03 株式会社ジャパンディスプレイ Organic electroluminescence display device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319780A (en) * 2000-05-02 2001-11-16 Fuji Photo Film Co Ltd Luminous element
JP2002033185A (en) * 2000-05-06 2002-01-31 Semiconductor Energy Lab Co Ltd Light emitting device and electric apparatus
WO2002074015A2 (en) * 2001-03-14 2002-09-19 The Trustees Of Princeton University Materials and devices for blue phosphorescence based organic light emitting diodes
JP2003229272A (en) * 2002-01-31 2003-08-15 Toyota Industries Corp Organic el element
WO2003069959A1 (en) * 2002-02-15 2003-08-21 Byoung-Choo Park Organic semiconductor devices and organic electroluminescent devices produced by using wet process
JP2004006102A (en) * 2002-05-31 2004-01-08 Canon Inc Electroluminescent element
JP2005085529A (en) * 2003-09-05 2005-03-31 Fuji Photo Film Co Ltd Organic electroluminescent element
JP2005100767A (en) * 2003-09-24 2005-04-14 Fuji Photo Film Co Ltd Organic electroluminescent element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319780A (en) * 2000-05-02 2001-11-16 Fuji Photo Film Co Ltd Luminous element
JP2002033185A (en) * 2000-05-06 2002-01-31 Semiconductor Energy Lab Co Ltd Light emitting device and electric apparatus
WO2002074015A2 (en) * 2001-03-14 2002-09-19 The Trustees Of Princeton University Materials and devices for blue phosphorescence based organic light emitting diodes
JP2003229272A (en) * 2002-01-31 2003-08-15 Toyota Industries Corp Organic el element
WO2003069959A1 (en) * 2002-02-15 2003-08-21 Byoung-Choo Park Organic semiconductor devices and organic electroluminescent devices produced by using wet process
JP2004006102A (en) * 2002-05-31 2004-01-08 Canon Inc Electroluminescent element
JP2005085529A (en) * 2003-09-05 2005-03-31 Fuji Photo Film Co Ltd Organic electroluminescent element
JP2005100767A (en) * 2003-09-24 2005-04-14 Fuji Photo Film Co Ltd Organic electroluminescent element

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310748A (en) * 2005-03-28 2006-11-09 Fuji Photo Film Co Ltd Organic electroluminescence element
US8017251B2 (en) 2005-03-28 2011-09-13 Fujifilm Corporation Organic electroluminescent device
JP2007250716A (en) * 2006-03-15 2007-09-27 Konica Minolta Holdings Inc Organic electroluminescence element, display and illuminator
KR101279315B1 (en) * 2006-04-18 2013-06-26 이 아이 듀폰 디 네모아 앤드 캄파니 High energy-potential bilayer compositions
JP2007335214A (en) * 2006-06-14 2007-12-27 Matsushita Electric Works Ltd Organic light-emitting element
US8658061B2 (en) 2007-04-13 2014-02-25 E I Du Pont De Nemours And Company Electrically conductive polymer compositions
JP2010541144A (en) * 2007-09-25 2010-12-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Radiation emission device and method of manufacturing the same
US8441004B2 (en) 2007-09-25 2013-05-14 Osram Opto Semiconductors Gmbh Radiation emitting device and method for the production thereof
EP2193559B1 (en) * 2007-09-25 2019-04-03 OSRAM OLED GmbH Device emitting radiation
JP2014199943A (en) * 2008-05-16 2014-10-23 株式会社半導体エネルギー研究所 Light emitting element
US9142794B2 (en) 2008-05-16 2015-09-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
JP2015118948A (en) * 2015-02-20 2015-06-25 株式会社日立製作所 Manufacturing method of organic light-emitting element
JP7562176B2 (en) 2022-06-28 2024-10-07 北京夏禾科技有限公司 Organic electroluminescence element

Also Published As

Publication number Publication date
JP4649676B2 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
KR101950836B1 (en) Organic light emitting device and method of fabricating the same
US10249838B2 (en) White organic light emitting device having emission area control layer separating emission areas of at least two emission layers
KR102104978B1 (en) Organic light emitting display and method for fabricating the same
US10522776B2 (en) OLED device structures
WO2022042037A1 (en) Organic electroluminescent device, display panel and display apparatus
KR101453874B1 (en) White organic light emitting device
TWI653772B (en) Organic light emitting diode device
JP4649676B2 (en) Organic electroluminescence device
WO2016155475A1 (en) Organic light-emitting diode device, display panel and display apparatus
US20120097989A1 (en) Organic Light Emitting Diode Device
CN106848084B (en) OLED display panel, manufacturing method and electronic equipment comprising OLED display panel
CN104241540A (en) Organic electroluminescent display device, manufacturing method thereof and display unit
CN106784354B (en) Organic light emitting display and its manufacturing method and organic light-emitting display device
KR20090010761A (en) White organic light emitting device
WO2023000961A1 (en) Organic electroluminescent device, display panel, and display device
GB2492855A (en) Organic light emitting diode (OLED)
WO2012124642A1 (en) Organic electroluminescent element
Liu et al. Improved color quality in double-EML WOLEDs by using a tetradentate Pt (II) complex as a green/red emitter
KR20150146290A (en) White organic light emitting device
KR20130046640A (en) Organic electroluminescent diode and method of fabricating the same
KR20120027294A (en) Electroluminescent device
WO2011148801A1 (en) Organic el element
CN106856205A (en) Organic light emitting display and its manufacture method and organic light-emitting display device
CN104752613B (en) Organic Light Emitting Diode and the organic LED display device including it
JP2004152700A (en) Organic light emitting element and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070704

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100830

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees