JP2006022854A - Large-sized cryogenic liquefied gas reservoir - Google Patents

Large-sized cryogenic liquefied gas reservoir Download PDF

Info

Publication number
JP2006022854A
JP2006022854A JP2004199561A JP2004199561A JP2006022854A JP 2006022854 A JP2006022854 A JP 2006022854A JP 2004199561 A JP2004199561 A JP 2004199561A JP 2004199561 A JP2004199561 A JP 2004199561A JP 2006022854 A JP2006022854 A JP 2006022854A
Authority
JP
Japan
Prior art keywords
tank
liquefied gas
cryogenic liquefied
lng
inner tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004199561A
Other languages
Japanese (ja)
Other versions
JP4738766B2 (en
Inventor
Akira Yoshino
明 吉野
Koji Tanaka
耕治 田中
Ryosuke Matsubayashi
良祐 松林
Kiminori Hosoya
公憲 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Air Water Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Inc filed Critical Air Water Inc
Priority to JP2004199561A priority Critical patent/JP4738766B2/en
Publication of JP2006022854A publication Critical patent/JP2006022854A/en
Application granted granted Critical
Publication of JP4738766B2 publication Critical patent/JP4738766B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a large-sized cryogenic liquefied gas reservoir enabling a simple filling operation, reduced in the cost of a facility, enabling the easy control of flow, and preventing BOG (boil-off gas) from producing. <P>SOLUTION: This large-sized cryogenic liquefied gas reservoir comprises a plurality of inner reservoirs 2 to 5 and a cold insulating reservoir 1 storing the inner reservoirs 2 to 5. The inner reservoir 2 is an inner reservoir 2 used exclusively for filling a cryogenic liquefied gas from a lorry 6 into the inner reservoir 2 by utilizing a difference in operating pressure between the lorry 6 and the inner reservoir 2. A feed pump 7 for feeding and filling the cryogenic liquefied gas taken out from the exclusively used inner reservoir 2 to those reservoirs 3 to 5 other than the exclusively used inner reservoir 2 is installed in an LNG retrieval pipe 10 extended from the exclusively used inner reservoir 2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、LNG(液化天然ガス)等の極低温液化ガスを貯蔵するための大形極低温液化ガス貯槽に関するものである。   The present invention relates to a large cryogenic liquefied gas storage tank for storing a cryogenic liquefied gas such as LNG (liquefied natural gas).

従来から、LNGサテライト設備等に設置した、LNG等の極低温液化ガスを貯蔵する断熱貯槽では、これが空になる等してローリーからLNG等を充填する場合に、ローリーの運転圧力と断熱貯槽の運転圧力との差圧を利用した差圧充填が行われている。また、断熱貯槽に貯蔵するLNG等を工業用として供給する場合には、ローリーの運転圧力(法律の規定により、差圧充填の場合、0.55MPa程度の運転圧力が常用されている)より高い圧力(0.6MPa程度の中圧)で供給する必要がある場合がある。   Conventionally, in an adiabatic storage tank for storing a cryogenic liquefied gas such as LNG installed in an LNG satellite facility or the like, when the LNG or the like is filled from lorry due to emptiness, the operating pressure of the lorry and the insulation storage tank Differential pressure filling is performed using the differential pressure with the operating pressure. Moreover, when supplying LNG etc. which are stored in an adiabatic storage tank for industrial use, it is higher than the operating pressure of Raleigh (operating pressure of about 0.55 MPa is commonly used in the case of differential pressure filling according to the law). It may be necessary to supply at a pressure (medium pressure of about 0.6 MPa).

そこで、例えば、図3に示すように、内外二重槽(図示せず)で構成された複数基(図3では、2基)の断熱貯槽21,22を設置し、これら両断熱貯槽21,22の頂部からBOG(ボイルオフガス)排出管23,24を延ばすとともに、底部からLNG取出管25,26を延ばし、これら両LNG取出管25,26を連結管27を介して中圧ガス供給管28および低圧ガス供給管29に連結し、充填時には、まず、空になった断熱貯槽21(22)からBOGを排出して(0.7MPa程度から0.3MPa程度に)脱圧し、つぎに、ローリー30に搭載したLNG収容タンク30aから、充填ライン31により、脱圧した断熱貯槽21(22)へLNGを差圧充填したのち、断熱貯槽21(22)に設けた昇圧手段(図示せず)により断熱貯槽21(22)内を加圧して0.7MPa程度にまで昇圧するようにしている。また、需要者側への供給時には、両LNG取出管25,26に設けた開閉弁25a,26aおよび両ガス供給管28,29に設けた減圧弁28a,29aを操作し、中圧ガス供給管28から0.6MPa程度の中圧LNGを需要者側に供給し、低圧ガス供給管29から0.15MPa程度の低圧LNGを需要者側に供給するようにしている。図において、23a,24aはBOG排出管23,24に設けた開閉弁で、31a,31bは充填ライン31に設けた開閉弁である。   Therefore, for example, as shown in FIG. 3, a plurality of (two in FIG. 3) heat insulation storage tanks 21 and 22 constituted by inner and outer double tanks (not shown) are installed. The BOG (boil-off gas) discharge pipes 23 and 24 are extended from the top of 22, and the LNG take-out pipes 25 and 26 are extended from the bottom, and both the LNG take-out pipes 25 and 26 are connected to the intermediate pressure gas supply pipe 28 via the connecting pipe 27. And at the time of filling, first, BOG is discharged from the emptied heat insulation storage tank 21 (22) to depressurize (from about 0.7 MPa to about 0.3 MPa), and then the lorry After the LNG is differentially charged from the LNG storage tank 30a mounted on the tank 30a into the heat-insulated storage tank 21 (22) that has been depressurized by the filling line 31, the pressure-increasing means (not shown) provided in the heat-insulated storage tank 21 (22). Heat storage tank 21 (22) in pressurized and so as to boost up to approximately 0.7 MPa. At the time of supply to the consumer side, the on-off valves 25a and 26a provided on both LNG take-out pipes 25 and 26 and the pressure reducing valves 28a and 29a provided on both gas supply pipes 28 and 29 are operated to provide an intermediate pressure gas supply pipe. A medium pressure LNG of about 28 to 0.6 MPa is supplied to the consumer side, and a low pressure LNG of about 0.15 MPa is supplied to the consumer side from the low pressure gas supply pipe 29. In the figure, 23a and 24a are on-off valves provided on the BOG discharge pipes 23 and 24, and 31a and 31b are on-off valves provided on the filling line 31.

また、図4に示すように、LNG取出管25に供給ポンプ33を設け、この供給ポンプ33の下流側部分と断熱貯槽21の頂部とを流量調整弁34a付きバイパス管34で連結し、充填時には、空になった断熱貯槽21にローリー30(運転圧力は0.55MPa程度)から断熱貯槽21(運転圧力は0.3MPa程度)へLNGを差圧充填し、需要者側への供給時には、LNGを供給ポンプ33によりポンプアップして0.7MPa程度にまで加圧したのち、中圧ガス供給管28や低圧ガス供給管29に供給するようにしたものもある。このものでは、供給ポンプ33のミニマムフローを確保するため、LNG取出管25の流量が低下した場合には、これを流量指示調節計35で検出して流量調整弁34aを操作し、LNG取出管25内を通るLNGをバイパス管34を経由して断熱貯槽21に戻すようにしている。   Further, as shown in FIG. 4, a supply pump 33 is provided in the LNG take-out pipe 25, and a downstream portion of the supply pump 33 and the top of the heat insulation storage tank 21 are connected by a bypass pipe 34 with a flow rate adjusting valve 34a. , LNG is filled into the heat insulation storage tank 21 (the operation pressure is about 0.3 MPa) from the lorry 30 (the operation pressure is about 0.55 MPa) into the heat insulation storage tank 21 that has been emptied. In some cases, the gas is pumped up by the supply pump 33 and pressurized to about 0.7 MPa, and then supplied to the intermediate pressure gas supply pipe 28 and the low pressure gas supply pipe 29. In this case, in order to secure the minimum flow of the supply pump 33, when the flow rate of the LNG take-out pipe 25 decreases, this is detected by the flow rate indicating controller 35, and the flow rate adjusting valve 34a is operated, and the LNG take-out pipe is The LNG passing through the inside 25 is returned to the heat insulating storage tank 21 via the bypass pipe 34.

しかしながら、図3に示すものでは、充填時に、脱圧作業・差圧充填作業・加圧作業を行わなければならないため、充填を頻繁に行う場合には、作業が煩雑になる。しかも、脱圧の際に、断熱貯槽21,22からBOGを大気中に排出すると、温暖化を促進するという問題があるため、再利用する必要があり、そのための設備が高価であるうえ、断熱貯槽21,22が大形である場合には、BOGの排出量が大きくなるため、上記設備の規模も大きくする必要があり、一層高価になる。また、図4に示すものでは、需要者の使用量変動やミニマムフローによる流量制限等に対応するため、流量調整弁34aを調整して流量制御しなければならず、その制御が複雑になる。しかも、LNGをバイパス管34を経由して断熱貯槽21に戻す際に、LNGが供給ポンプ33通過時にその機械的エネルギーで加温されたり、バイパス管34通過時に外部からの侵入熱で加温されたりするため、BOGが発生する。   However, in the case shown in FIG. 3, since the depressurization work, the differential pressure filling work, and the pressurizing work must be performed at the time of filling, the work becomes complicated when the filling is performed frequently. In addition, when BOG is discharged from the heat-insulating storage tanks 21 and 22 to the atmosphere at the time of depressurization, there is a problem of promoting global warming, so it is necessary to reuse it, and the equipment for that purpose is expensive, and heat insulation When the storage tanks 21 and 22 are large, the amount of BOG discharged becomes large, so the scale of the equipment needs to be increased and the cost is further increased. Further, in the case shown in FIG. 4, in order to cope with a change in the usage amount of the consumer and a flow rate restriction due to the minimum flow, the flow rate control valve 34 a must be adjusted to control the flow rate, which is complicated. Moreover, when the LNG is returned to the heat insulating storage tank 21 via the bypass pipe 34, the LNG is heated by its mechanical energy when passing through the supply pump 33, or is heated by external intrusion heat when passing through the bypass pipe 34. As a result, BOG occurs.

本発明は、このような事情に鑑みなされたもので、充填作業が簡単で、設備が安価で、しかも、流量制御が簡単で、BOGが発生しない大形極低温液化ガス貯槽の提供をその目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to provide a large cryogenic liquefied gas storage tank in which filling work is simple, equipment is inexpensive, flow rate control is simple, and BOG is not generated. And

上記の目的を達成するため、本発明の大形極低温液化ガス貯槽は、極低温液化ガスを充填するための複数個の内槽と、これら複数個の内槽を収容する保冷槽とを備えた大形極低温液化ガス貯槽であって、1個の内槽が、ローリー搭載のタンク内に収容された極低温液化ガスをタンク内圧と内槽内圧との差圧を利用して内槽内に充填する専用の内槽であり、この専用の内槽から極低温液化ガス取出管を上記専用の内槽以外の内槽に延ばし、上記極低温液化ガス取出管に、上記専用の内槽から取り出した極低温液化ガスを上記専用の内槽以外の内槽に送給して充填するための送給ポンプを設けたという構成をとる。   In order to achieve the above object, the large cryogenic liquefied gas storage tank of the present invention comprises a plurality of inner tanks for filling the cryogenic liquefied gas and a cold storage tank for accommodating the plurality of inner tanks. A large cryogenic liquefied gas storage tank, where one inner tank uses the differential pressure between the tank internal pressure and the internal tank internal pressure to store the cryogenic liquefied gas contained in the tank equipped with the lorry. The cryogenic liquefied gas extraction pipe is extended from the dedicated inner tank to an inner tank other than the dedicated inner tank, and the cryogenic liquefied gas extraction pipe is connected to the inner tank from the dedicated inner tank. A configuration is adopted in which a feed pump is provided for feeding and filling the extracted cryogenic liquefied gas to an inner tank other than the dedicated inner tank.

すなわち、本発明の大形極低温液化ガス貯槽は、ローリーから供給される極低温液化ガスを充填するために用いられる受け入れ専用の内槽を1個有しており、この専用の内槽にのみ、ローリー搭載のタンク内に収容された極低温液化ガスを、タンク内圧(すなわち、ローリーの運転圧力)と内槽内圧(すなわち、内槽の運転圧力)との差圧を利用して充填するようにしている。この差圧充填では、上記内槽内圧はタンク内圧より低くなる。そこで、上記専用の内槽から延びる極低温液化ガス取出管に送給ポンプを設け、この送給ポンプにより、上記専用の内槽から取り出した極低温液化ガスを上記専用の内槽以外の内槽に送給して充填するようにしている。このように、本発明の大形極低温液化ガス貯槽では、上記専用の内槽の内圧がローリー搭載のタンクの内圧より低く設定されているため、ローリーから極低温液化ガスを上記専用の内槽に充填する場合に、上記専用の内槽に対し、充填前の脱圧作業および充填後の加圧作業を行う必要がなく、上記充填のための作業が簡単化する。しかも、上記脱圧作業を行わないため、BOGが発生せず、BOGを再利用するための設備を設ける必要がなくなり、安価になる。しかも、送給ポンプにより、上記専用の内槽と上記専用の内槽以外の内槽との間で極低温液化ガスを液移送させるだけであるため、送給ポンプ等の流量制御が簡単になる。しかも、上記専用の内槽に多量の極低温液化ガスを充填しておき、上記専用の内槽以外の内槽において極低温液化ガスが所定量減少すると、その都度送給ポンプを駆動させて極低温液化ガスを補給することで、ミニマムフローの心配がなくなり、従来例ではミニマムフロー使用時に生じていた、BOGの発生がなくなる。しかも、上記専用の内槽以外の内槽の内槽内圧を多用な供給条件ごとに設定できるため、供給圧力が数種ある場合にも送給ポンプを数種類持つ必要がない。しかも、上記複数個の内槽が保冷槽に収容されているため、この保冷槽で内部が保冷されており、極低温液化ガスを充填する貯槽として、内槽だけで構成したものを用いることができ(すなわち、各内槽に個別に外槽を設けて内外二重槽とする必要がなく)、その分上記大形極低温液化ガス貯槽の設置スペースを小さくすることができる。しかも、保冷槽で複数個の内槽を覆っているため、全貯蔵量に対する外表面積の比が小さくなり、単位貯蔵量に対する蒸発量が小さくなる。   That is, the large cryogenic liquefied gas storage tank of the present invention has one receiving-only inner tank that is used to fill the cryogenic liquefied gas supplied from the lorry, and only in this dedicated inner tank. The cryogenic liquefied gas contained in the tank mounted on the lorry is filled using the differential pressure between the tank internal pressure (ie, the operating pressure of the lorry) and the internal tank internal pressure (ie, the internal tank operating pressure). I have to. In this differential pressure filling, the inner tank internal pressure is lower than the tank internal pressure. Therefore, a feed pump is provided in the cryogenic liquefied gas take-out pipe extending from the dedicated inner tank, and the cryogenic liquefied gas taken out from the dedicated inner tank is sent to the inner tank other than the dedicated inner tank by the feed pump. It is sent to and filled. Thus, in the large cryogenic liquefied gas storage tank of the present invention, since the internal pressure of the dedicated inner tank is set lower than the internal pressure of the tank equipped with the lorry, the cryogenic liquefied gas is supplied from the lorry to the dedicated inner tank. In the case of filling in, it is not necessary to perform depressurization work before filling and pressurization work after filling for the dedicated inner tank, and the work for filling is simplified. In addition, since the depressurization operation is not performed, BOG does not occur, and it is not necessary to provide facilities for reusing BOG, and the cost is reduced. Moreover, since the cryogenic liquefied gas is merely transferred between the dedicated inner tank and the inner tank other than the dedicated inner tank by the feed pump, the flow rate control of the feed pump and the like is simplified. . In addition, a large amount of the cryogenic liquefied gas is filled in the dedicated inner tank, and when the cryogenic liquefied gas is reduced by a predetermined amount in the inner tank other than the dedicated inner tank, the feed pump is driven each time the cryogenic liquefied gas is reduced. By replenishing the low-temperature liquefied gas, there is no concern about the minimum flow, and the occurrence of BOG that has occurred when using the minimum flow in the conventional example is eliminated. And since the internal tank internal pressure of internal tanks other than the said exclusive internal tank can be set for every various supply conditions, even if there are several types of supply pressure, it is not necessary to have several types of feed pumps. Moreover, since the plurality of inner tanks are housed in the cold storage tank, the inside is kept cold in the cold storage tank, and a storage tank filled with the cryogenic liquefied gas can be used that is constituted only by the inner tank. It is possible (that is, it is not necessary to provide an outer tank separately for each inner tank to make an inner / outer double tank), and the installation space for the large cryogenic liquefied gas storage tank can be reduced accordingly. In addition, since the plurality of inner tanks are covered with the cold storage tank, the ratio of the outer surface area to the total storage amount is reduced, and the evaporation amount per unit storage amount is reduced.

また、上記専用の内槽以外の内槽が、その内圧を昇圧させるための昇圧手段を有していると、この昇圧手段で、上記専用の内槽以外の内槽の内圧を所定の圧力に昇圧,保持することができる。   Further, if the inner tank other than the dedicated inner tank has a pressure increasing means for increasing the internal pressure, the internal pressure of the inner tank other than the dedicated inner tank is set to a predetermined pressure by the pressure increasing means. Boost and hold.

つぎに、本発明を実施の形態にもとづいて詳しく説明する。   Next, the present invention will be described in detail based on embodiments.

図1は本発明の大形極低温液化ガス貯槽の一実施の形態を示している。図において、1は内周面に断熱層(図示せず)が形成された真空断熱用の保冷箱(保冷槽)であり、その内部が真空状態に保持されている。2〜5は上記保冷箱1の内部に配設された複数基(この実施の形態では、4基)の内槽であり、それぞれ外槽を備えていない(すなわち、内外二重槽で構成されていない)。上記内槽2〜5のうち、内槽(専用の内槽)2は、ローリー6から供給されるLNGを充填するために設けられた受け入れ専用の内槽であり、その運転圧力(すなわち、内槽内圧)が0.3MPa程度に設定されている。また、内槽3は、その運転圧力が0.3MPa程度に,内槽4は0.7MPa程度に、内槽5は2.2MPa程度にそれぞれ設定されている。また、これら各内槽2〜5は、その内部圧力を上記運転圧力に昇圧,保持するための昇圧手段(図示せず)を有している。これら各昇圧手段は、各内槽2〜5内のLNGを各内槽2〜5の底部から取り出し、気化器で気化したのち各内槽2〜5の頂部に戻すことにより、その内部圧力を上記運転圧力に昇圧,保持するものである。7は送給ポンプであり、上記受け入れ専用の内槽2の底部から延びるLNG取出管(極低温液化ガス取出管)10に設けられている。11〜13は上記LNG取出管10の送給ポンプ7の下流側部分から上記内槽3〜5の底部に延びる入口管で、14〜16は上記内槽3〜5の底部から延びるLNG導出管であり、内槽3の底部から延びるLNG導出管14は減圧弁17a付き低圧LNG供給管17に連結し、内槽4の底部から延びるLNG導出管15は減圧弁18a付き中圧LNG供給管18に連結し、内槽5の底部から延びるLNG導出管16は減圧弁19a付き高圧LNG供給管19に連結している。図において、1aは内槽2〜5の載置台で、11a,12a,13aは入口管11〜13に設けた開閉弁で、20は充填ラインである。   FIG. 1 shows an embodiment of a large cryogenic liquefied gas storage tank of the present invention. In the figure, reference numeral 1 denotes a vacuum insulation cold box (cooling tank) having a heat insulating layer (not shown) formed on the inner peripheral surface thereof, and the inside thereof is kept in a vacuum state. 2 to 5 are a plurality of (4 in this embodiment) inner tanks arranged in the inside of the cold box 1, and each has no outer tank (that is, an inner / outer double tank). Not) Among the inner tanks 2 to 5, the inner tank (dedicated inner tank) 2 is a receiving-only inner tank provided to fill the LNG supplied from the lorry 6, and its operating pressure (that is, the inner tank) The tank internal pressure) is set to about 0.3 MPa. Further, the operation pressure of the inner tank 3 is set to about 0.3 MPa, the inner tank 4 is set to about 0.7 MPa, and the inner tank 5 is set to about 2.2 MPa. Each of the inner tanks 2 to 5 has a boosting means (not shown) for boosting and maintaining the internal pressure at the above operating pressure. Each of these boosting means takes out the LNG in each of the inner tanks 2 to 5 from the bottom of each of the inner tanks 2 to 5, vaporizes it with a vaporizer and then returns it to the top of each of the inner tanks 2 to 5. The operating pressure is increased and maintained. Reference numeral 7 denotes a feed pump, which is provided in an LNG take-out pipe (cryogenic liquefied gas take-out pipe) 10 extending from the bottom of the inner tank 2 dedicated to reception. Reference numerals 11 to 13 denote inlet pipes extending from the downstream side portion of the feed pump 7 of the LNG take-out pipe 10 to the bottom of the inner tanks 3 to 5, and reference numerals 14 to 16 denote LNG lead-out pipes extending from the bottom of the inner tanks 3 to 5. The LNG lead-out pipe 14 extending from the bottom of the inner tank 3 is connected to a low-pressure LNG supply pipe 17 with a pressure reducing valve 17a, and the LNG lead-out pipe 15 extending from the bottom of the inner tank 4 is connected to an intermediate pressure LNG supply pipe 18 with a pressure reducing valve 18a. The LNG outlet pipe 16 extending from the bottom of the inner tank 5 is connected to a high pressure LNG supply pipe 19 with a pressure reducing valve 19a. In the figure, 1a is a mounting table for the inner tanks 2 to 5, 11a, 12a and 13a are on-off valves provided in the inlet pipes 11 to 13, and 20 is a filling line.

このような大形極低温液化ガス貯槽に、つぎのようにしてLNGを充填することができる。すなわち、まず、ローリー6に搭載されたLNG収容タンク6a(運転圧力0.55MPa)のLNGを差圧充填により受け入れ専用の内槽2に充填し、ついで、各入口管11〜13の開閉弁11a〜13aを開閉操作し、送給ポンプ7を駆動し、LNG取出管10により内槽2から取り出したLNGを、所定の圧力に保持された内槽3〜5に適時液移送して充填しながら、昇圧手段で所定の運転圧力に昇圧,保持する。そして、0.15MPa程度の低圧LNGを需要者側へ供給する場合には、内槽3のLNGを低圧LNG供給管17により供給し、0.6MPa程度の中圧LNGを需要者側へ供給する場合には、内槽4のLNGを中圧LNG供給管18により供給し、2.1MPa程度の高圧LNGを需要者側へ供給する場合には、内槽5のLNGを高圧LNG供給管19により供給することを行う。   Such a large cryogenic liquefied gas storage tank can be filled with LNG as follows. That is, first, LNG in the LNG storage tank 6a (operating pressure 0.55 MPa) mounted on the lorry 6 is filled into the inner tank 2 dedicated for reception by differential pressure filling, and then the on-off valves 11a of the inlet pipes 11 to 13 are filled. -13a is opened / closed, the feed pump 7 is driven, and the LNG taken out from the inner tank 2 by the LNG take-out pipe 10 is timely transferred to the inner tanks 3 to 5 held at a predetermined pressure and filled. The pressure is increased and maintained at a predetermined operating pressure by the pressure increasing means. And when supplying the low pressure LNG of about 0.15 MPa to the customer side, the LNG in the inner tank 3 is supplied by the low pressure LNG supply pipe 17 and the medium pressure LNG of about 0.6 MPa is supplied to the customer side. In this case, when the LNG in the inner tank 4 is supplied by the intermediate pressure LNG supply pipe 18 and the high pressure LNG of about 2.1 MPa is supplied to the customer side, the LNG in the inner tank 5 is supplied by the high pressure LNG supply pipe 19. To supply.

上記のように、この実施の形態では、受け入れ専用の内槽2の運転圧力がローリー6の運転圧力より低く設定されているため、充填時に、受け入れ専用の内槽2に対し、充填前の脱圧作業および充填後の加圧作業を行う必要がなく、上記充填のための作業が簡単化する。しかも、上記脱圧作業を行わないため、BOGが発生せず、BOGを再利用するための設備を設ける必要がなくなり、安価になる。しかも、送給ポンプ7により、受け入れ専用の内槽2と内槽3〜5との間でLNGを液移送させるだけであるため、送給ポンプ7等の流量制御が簡単になる。しかも、受け入れ専用の内槽2に多量のLNGを充填しておき、内槽3〜5のLNGが所定量減少すると、その都度送給ポンプ7を駆動してLNGを補給することで、ミニマムフローの心配がなくなり、BOGが発生しなくなる。しかも、内槽3〜5の運転圧力を多用な供給条件ごとに設定できるため、供給圧力が数種ある場合にも送給ポンプ7を数種類持つ必要がない。しかも、各内槽2〜5が保冷箱1に収容されているため、LNGを充填するための貯槽として、内槽2〜5だけで構成したものを用いることができ(すなわち、内外二重槽を用いる必要がなく)、その分上記大形極低温液化ガス貯槽の設置スペースを小さくすることができる。しかも、1つの保冷箱1で4個の内槽2〜5を覆っているため、全貯蔵量に対する外表面積の比が小さくなり、単位貯蔵量に対する蒸発量が小さくなる。   As described above, in this embodiment, since the operating pressure of the receiving-only inner tank 2 is set lower than the operating pressure of the lorry 6, the filling-only inner tank 2 is removed from the receiving-only inner tank 2 before filling. There is no need to perform the pressure work and the pressure work after filling, and the work for filling is simplified. In addition, since the depressurization operation is not performed, BOG does not occur, and it is not necessary to provide facilities for reusing BOG, and the cost is reduced. Moreover, since the LNG is merely transferred between the inner tank 2 and the inner tanks 3 to 5 by the feed pump 7, the flow rate control of the feed pump 7 and the like is simplified. In addition, when a large amount of LNG is filled in the inner tank 2 dedicated to reception, and the LNG in the inner tanks 3 to 5 decreases by a predetermined amount, the feed pump 7 is driven each time to replenish LNG. No more worries about BOG. Moreover, since the operating pressures of the inner tanks 3 to 5 can be set for various supply conditions, it is not necessary to have several types of feed pumps 7 even when there are several types of supply pressures. And since each inner tank 2-5 is accommodated in the cool box 1, what comprised only the inner tank 2-5 can be used as a storage tank for filling LNG (namely, inner and outer double tank) The installation space for the large cryogenic liquefied gas storage tank can be reduced accordingly. Moreover, since the four inner tubs 2 to 5 are covered with one cool box 1, the ratio of the outer surface area to the total storage amount is reduced, and the evaporation amount per unit storage amount is reduced.

図2は本発明の大形極低温液化ガス貯槽の他の実施の形態を示している。この実施の形態では、保冷箱1の内部に、4基の内槽2〜5以外に、LNG取出管10,入口管11〜13,LNG導出管14〜16,充填ライン19が配設されている。また、内槽2〜5を載置するための載置棚1bは、格子状に形成された棚本体上に断熱層を載置,固定したもの(図示せず)で構成されており、載置棚1bの下側空間も断熱真空されている。それ以外の部分は上記実施の形態と同様であり、同様の部分には同じ符号を付している。この実施の形態でも、上記実施の形態と同様の作用・効果を奏する。   FIG. 2 shows another embodiment of the large cryogenic liquefied gas storage tank of the present invention. In this embodiment, in addition to the four inner tanks 2 to 5, the LNG take-out pipe 10, the inlet pipes 11 to 13, the LNG outlet pipes 14 to 16, and the filling line 19 are disposed inside the cold box 1. Yes. Moreover, the mounting shelf 1b for mounting the inner tubs 2 to 5 is configured by mounting and fixing a heat insulating layer on a shelf body formed in a lattice shape (not shown). The lower space of the shelf 1b is also insulated and vacuumed. Other parts are the same as those in the above embodiment, and the same reference numerals are given to the same parts. This embodiment also has the same operations and effects as the above embodiment.

なお、上記両実施の形態において、保冷箱1の内部にパーライトを充填してもよい。   In both the above embodiments, pearlite may be filled in the cold box 1.

本発明の大形極低温液化ガス貯槽の一実施の形態を示す説明図である。It is explanatory drawing which shows one Embodiment of the large cryogenic liquefied gas storage tank of this invention. 本発明の大形極低温液化ガス貯槽の他の実施の形態を示す説明図である。It is explanatory drawing which shows other embodiment of the large cryogenic liquefied gas storage tank of this invention. 従来例を示す説明図である。It is explanatory drawing which shows a prior art example. 他の従来例を示す説明図である。It is explanatory drawing which shows another prior art example.

符号の説明Explanation of symbols

1 保冷箱
2〜5 内槽
6 ローリー
7 送給ポンプ
10 LNG取出管
1 Cold storage box 2-5 Inner tank 6 Raleigh 7 Feed pump 10 LNG take-out pipe

Claims (2)

極低温液化ガスを充填するための複数個の内槽と、これら複数個の内槽を収容する保冷槽とを備えた大形極低温液化ガス貯槽であって、1個の内槽が、ローリー搭載のタンク内に収容された極低温液化ガスをタンク内圧と内槽内圧との差圧を利用して内槽内に充填する専用の内槽であり、この専用の内槽から極低温液化ガス取出管を上記専用の内槽以外の内槽に延ばし、上記極低温液化ガス取出管に、上記専用の内槽から取り出した極低温液化ガスを上記専用の内槽以外の内槽に送給して充填するための送給ポンプを設けたことを特徴とする大形極低温液化ガス貯槽。   A large cryogenic liquefied gas storage tank comprising a plurality of inner tanks for filling a cryogenic liquefied gas and a cold storage tank for housing the plurality of inner tanks, wherein one inner tank is a lorry It is a dedicated inner tank that fills the inner tank with the cryogenic liquefied gas stored in the tank, using the differential pressure between the tank internal pressure and the inner tank internal pressure. The extraction pipe is extended to an inner tank other than the dedicated inner tank, and the cryogenic liquefied gas taken out from the dedicated inner tank is sent to the inner tank other than the dedicated inner tank. A large cryogenic liquefied gas storage tank provided with a feed pump for filling. 上記専用の内槽以外の内槽が、その内圧を昇圧させるための昇圧手段を有している請求項1記載の大形極低温液化ガス貯槽。
The large cryogenic liquefied gas storage tank according to claim 1, wherein an inner tank other than the dedicated inner tank has a pressure increasing means for increasing the internal pressure.
JP2004199561A 2004-07-06 2004-07-06 Large cryogenic liquefied gas storage tank Active JP4738766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004199561A JP4738766B2 (en) 2004-07-06 2004-07-06 Large cryogenic liquefied gas storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004199561A JP4738766B2 (en) 2004-07-06 2004-07-06 Large cryogenic liquefied gas storage tank

Publications (2)

Publication Number Publication Date
JP2006022854A true JP2006022854A (en) 2006-01-26
JP4738766B2 JP4738766B2 (en) 2011-08-03

Family

ID=35796282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004199561A Active JP4738766B2 (en) 2004-07-06 2004-07-06 Large cryogenic liquefied gas storage tank

Country Status (1)

Country Link
JP (1) JP4738766B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321935A (en) * 2006-06-02 2007-12-13 Toagosei Co Ltd Tank filling method of liquid chlorine
WO2008093186A1 (en) * 2007-02-01 2008-08-07 Single Buoy Moorings, Inc. Refrigerant storage in lng production
KR101242790B1 (en) 2012-10-30 2013-03-12 한국가스공사 Pressure reduction process for liquefying gas
JP2015025496A (en) * 2013-07-25 2015-02-05 東京ガス・エンジニアリング株式会社 Cryogenic liquid storage facility
JP2015055290A (en) * 2013-09-11 2015-03-23 東京ガス・エンジニアリング株式会社 Storage facility for low temperature liquefied gas

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146097A (en) * 1998-11-05 2000-05-26 Ihi Plantec:Kk Pressure dropping method for medium pressure lng storing tank
JP2001226684A (en) * 2000-02-17 2001-08-21 Air Liquide Japan Ltd Gas supply facility
JP2002228095A (en) * 2001-01-30 2002-08-14 Iwatani Industrial Gases Corp Cold evaporator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146097A (en) * 1998-11-05 2000-05-26 Ihi Plantec:Kk Pressure dropping method for medium pressure lng storing tank
JP2001226684A (en) * 2000-02-17 2001-08-21 Air Liquide Japan Ltd Gas supply facility
JP2002228095A (en) * 2001-01-30 2002-08-14 Iwatani Industrial Gases Corp Cold evaporator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321935A (en) * 2006-06-02 2007-12-13 Toagosei Co Ltd Tank filling method of liquid chlorine
JP4720624B2 (en) * 2006-06-02 2011-07-13 東亞合成株式会社 Liquid chlorine tank filling method
WO2008093186A1 (en) * 2007-02-01 2008-08-07 Single Buoy Moorings, Inc. Refrigerant storage in lng production
KR101242790B1 (en) 2012-10-30 2013-03-12 한국가스공사 Pressure reduction process for liquefying gas
JP2015025496A (en) * 2013-07-25 2015-02-05 東京ガス・エンジニアリング株式会社 Cryogenic liquid storage facility
JP2015055290A (en) * 2013-09-11 2015-03-23 東京ガス・エンジニアリング株式会社 Storage facility for low temperature liquefied gas

Also Published As

Publication number Publication date
JP4738766B2 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
JP5248607B2 (en) Filling tank with pressurized gas
US11953157B2 (en) Method and facility for storing and distributing liquefied hydrogen
US20110070103A1 (en) Device and Method for Pumping a Cryogenic Fluid
TWI632628B (en) Methods and systems for bulk ultra-high purity helium supply and usage
KR20200054884A (en) Method and installation for storing and dispensing liquefied hydrogen
JPH0771698A (en) High-pressure gas supply equipment
US20150316211A1 (en) Hydrogen dispensing system and method thereof
EP2446185A1 (en) System and method for the delivery of lng
US7165408B2 (en) Method of operating a cryogenic liquid gas storage tank
JP2007010058A (en) Natural gas supply system
JP4738766B2 (en) Large cryogenic liquefied gas storage tank
KR101584566B1 (en) Gas filling system and method for lng storage tank
JP5130235B2 (en) Hydrogen fuel supply method
JP2007009981A (en) Liquefied gas feeding apparatus and liquefied gas feeding method
KR102276359B1 (en) Safety apparatus of lngc unloading system
JP2021507178A (en) Methods and equipment for storing liquefied gas in a container and drawing evaporative gas out of the container
JP4738767B2 (en) Large cryogenic liquefied gas storage system
JP2007032696A (en) Hydrogen gas supplying equipment
US20190249829A1 (en) Liquefied gas regasification system and operation method therefor
JP6338517B2 (en) Portable liquefied natural gas supply equipment
WO2008097099A1 (en) Method and device for transport of gas
JP2005076640A (en) Storing method and device for natural gas hydrate
JP2008232258A (en) Gas hydrate re-gasifying device
KR20150080082A (en) A Treatment System of Liquefied Gas
KR20130023189A (en) A hydrogen dispensing system and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110427

R150 Certificate of patent or registration of utility model

Ref document number: 4738766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250