JP2006022251A - Barrier coat composition - Google Patents

Barrier coat composition Download PDF

Info

Publication number
JP2006022251A
JP2006022251A JP2004202884A JP2004202884A JP2006022251A JP 2006022251 A JP2006022251 A JP 2006022251A JP 2004202884 A JP2004202884 A JP 2004202884A JP 2004202884 A JP2004202884 A JP 2004202884A JP 2006022251 A JP2006022251 A JP 2006022251A
Authority
JP
Japan
Prior art keywords
barrier coat
weight
coat composition
parts
lithium silicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004202884A
Other languages
Japanese (ja)
Inventor
Toshiro Kimura
敏郎 木村
Daisuke Kumegawa
大輔 粂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUMEKAWA KOGYO KK
Original Assignee
KUMEKAWA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KUMEKAWA KOGYO KK filed Critical KUMEKAWA KOGYO KK
Priority to JP2004202884A priority Critical patent/JP2006022251A/en
Publication of JP2006022251A publication Critical patent/JP2006022251A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a barrier coat composition suitable for an under coat of a heat-curable water-based alkali silicate coating material. <P>SOLUTION: The barrier coat composition contains an aqueous solution of lithium silicate, an inorganic compound filler and a water repellant as essential components. Preferably, the lithium silicate is represented by the general formula: Li<SB>2</SB>O-nSiO<SB>2</SB>(wherein, n is the weight molar ratio of SiO<SB>2</SB>/Li<SB>2</SB>O of 3-7), the inorganic compound filler is mica having ≤40 μm weight average flake diameter, and the water repellent is a water-soluble alkali-alkyl siliconate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、加熱硬化型水性アルカリ珪酸塩塗料の下塗り剤となるバリアコート組成物に関する。   The present invention relates to a barrier coat composition that serves as a primer for a thermosetting aqueous alkaline silicate paint.

加熱硬化型水性アルカリ(ナトリウム、カリウム)珪酸塩塗料(以下、適宜アルカリ珪酸塩塗料と記す)には、それをアルミニウム合金、亜鉛メッキ鋼板、亜鉛合金やマグネ合金などの塩基腐食金属材料製の基材に直接、塗装/加熱硬化すると、該塗料が金属材料と反応して水素ガスが発生し、塗膜がフクレるという致命的な欠点がある。この問題を解決する手立てとしては、アルカリ珪酸塩塗料と塩基腐食金属材料との直接的な接触を防ぐという手法があり、例えばアルミニウム合金では、該合金への塗装に先立って、その表面に陽極酸化皮膜いわゆるアルマイトを形成している(例えば特許文献1、2参照)。これによれば、塗料と基材の直接的な接触を制御できるので、塗膜のフクレを効果的に防ぐことができる。   For heat-curable aqueous alkali (sodium, potassium) silicate paints (hereinafter referred to as “alkali silicate paints” as appropriate), they are made of base corrosion metal materials such as aluminum alloys, galvanized steel sheets, zinc alloys and magne alloys. When the material is directly painted / heat-cured, the paint reacts with the metal material to generate hydrogen gas, which causes a fatal defect that the coating film swells. As a means to solve this problem, there is a method of preventing direct contact between the alkali silicate paint and the base corrosion metal material. For example, in the case of an aluminum alloy, the surface of the alloy is anodized prior to coating. A so-called alumite film is formed (see, for example, Patent Documents 1 and 2). According to this, since direct contact between the coating material and the substrate can be controlled, it is possible to effectively prevent the coating film from swelling.

特開平11−019587号公報JP-A-11-019587 特開2003−055794号公報JP 2003-055594 A

問題は、アルマイト処理用の設備は極めて大規模且つ高額であるため、塗装工場において当該設備を導入することは費用的に大きな負担であり、塗装コストの増加が避けられないことにある。アルマイト処理を外注した場合には、自工場で処理する場合に比べてコスト高となるほか、管理負担が多大に掛かる。加えて、アルミニウム合金以外の他の金属、すなわち、亜鉛メッキ鋼板、亜鉛合金やマグネ合金などにおいては、アルミニウム合金におけるアルマイト処理のごとく、金属材料とアルカリ珪酸塩塗料との接触を制御する方法さえ見出せておらず、アルカリ系塗料をこれら金属材料に適用することは不可能な状況となっていた。   The problem is that the equipment for anodizing is extremely large and expensive, so it is a heavy burden in terms of cost to introduce the equipment in a painting factory, and an increase in painting cost is inevitable. When alumite processing is outsourced, the cost is higher than when processing at the own factory, and the management burden is greatly increased. In addition, other metals other than aluminum alloys, such as galvanized steel sheets, zinc alloys, and magne alloys, can even find a way to control the contact between metal materials and alkali silicate paints, just like anodizing in aluminum alloys. Therefore, it has been impossible to apply an alkaline paint to these metal materials.

アルカリ珪酸塩塗料が、水系で環境にやさしく、資源のあり方に配慮した塗料であり、しかも高耐候性、耐汚染性、防カビなどの優れた特性を備えているにもかかわらず、大きな進展が見られないのは、上述のように適用可能な基材の種別に限定があることと、一般の塗装工場では処理できない工程が入るために、処理費が塗装コストに跳ね返ることに他ならないと考える。   Alkali silicate paints are water-based, environmentally friendly, and are considered to be resource-friendly, and have made significant progress despite having excellent properties such as high weather resistance, stain resistance, and mold prevention. What can not be seen is that there is a limit to the types of base materials that can be applied as described above, and that there is a process that cannot be processed in a general coating factory, and that processing costs will rebound to coating costs. .

本発明の目的は、上記課題を解決するためになされたものであり、基材(特に塩基腐食金属材料)に対する加熱硬化型水性アルカリ珪酸塩塗料の下塗り剤として好適なバリアコート組成物を提供することにある。   An object of the present invention is to solve the above-mentioned problems, and provides a barrier coat composition suitable as a primer for a heat-curable aqueous alkaline silicate paint on a substrate (particularly a base corrosion metal material). There is.

本発明にかかるバリアコート組成物に求められる条件としては、(1)加熱に際して塩基腐食金属材料と反応しないこと。(2)塩基腐食金属材料との密着性がよいこと。(3)バリアコート皮膜と加熱硬化型水性アルカリ珪酸塩塗膜との密着性がよいこと。(4)仕上がった加熱硬化型水性アルカリ珪酸塩塗膜が本来の性能を保持していること。などを挙げることができる。本発明者等は鋭意研究の結果、珪酸リチウム水溶液に無機化合物充填剤と撥水剤を含有させたものが、上記条件を良好に満たすことを見出して本発明を完成するに至った。   The conditions required for the barrier coat composition according to the present invention are (1) that it does not react with the base corrosion metal material during heating. (2) Good adhesion to the base corrosion metal material. (3) Adhesion between the barrier coat film and the thermosetting aqueous alkali silicate coating film is good. (4) The finished thermosetting aqueous alkaline silicate coating film maintains its original performance. And so on. As a result of intensive studies, the present inventors have found that a lithium silicate aqueous solution containing an inorganic compound filler and a water repellent satisfies the above conditions well, and has completed the present invention.

すなわち本発明は、加熱硬化型水性アルカリ珪酸塩塗料の下塗り剤となるバリアコート組成物であって、珪酸リチウム水溶液と、無機化合物充填剤と、撥水剤とを必須成分とすることを特徴とする(請求項1)。加熱硬化型水性アルカリ珪酸塩塗料の具体例としては、例えば特開平10−330646号公報に開示されている水性無機塗料を挙げることができる。本発明に係るバリアコート組成物は、特に塩基腐食金属製の基材上に対して、加熱硬化型水性アルカリ珪酸塩塗膜を形成する際の下塗り剤として用いられて好適である。ここで言う塩基腐食金属材料とは、例えばアルミニウム合金、亜鉛メッキ鋼板、亜鉛合金、マグネ合金などを言う。   That is, the present invention is a barrier coat composition that serves as a primer for a thermosetting aqueous alkaline silicate paint, characterized by comprising an aqueous lithium silicate solution, an inorganic compound filler, and a water repellent as essential components. (Claim 1). Specific examples of the heat-curable aqueous alkali silicate paint include water-based inorganic paints disclosed in, for example, JP-A-10-330646. The barrier coat composition according to the present invention is preferably used as a primer for forming a thermosetting aqueous alkali silicate coating film on a base material made of a base corrosion metal. The base corrosion metal material mentioned here means, for example, an aluminum alloy, a galvanized steel sheet, a zinc alloy, a magne alloy, or the like.

具体的には、珪酸リチウムは、一般式Li2 О・nSiО2 (式中nはSiО2 /Li2 О重量モル比 n=3〜7)で表される珪酸リチウム水溶液であり、無機化合物充填剤は重量平均フレーク径が40μm以下のマイカであり、撥水剤は水溶性のアルカリ・アルキルシリコネートである(請求項2)。SiО2 /Li2 О重量モル比nが3未満のもの(試験例では3.2未満)は、液が不安定で結晶が析出するため使用できず、nが7を超えるものは、基材との密着性に問題が生じる。具体的には、SiО2 /Li2 О重量モル比nが7を超えると、沸騰水試験においてフクレを生じたり、耐湿試験で皮膜剥離などが見られた。 Specifically, lithium silicate is a lithium silicate aqueous solution represented by the general formula Li 2 O · nSiO 2 (where n is SiO 2 / Li 2 O weight molar ratio n = 3 to 7), and is filled with an inorganic compound. The agent is mica having a weight average flake diameter of 40 μm or less, and the water repellent is a water-soluble alkali alkylsiliconate (Claim 2). A SiO 2 / Li 2 O weight molar ratio n of less than 3 (less than 3.2 in the test example) cannot be used because the liquid is unstable and crystals precipitate. There arises a problem with the adhesion. Specifically, when the SiO 2 / Li 2 O weight molar ratio n exceeded 7, swelling occurred in the boiling water test, and peeling of the film occurred in the moisture resistance test.

無機化合物充填剤を添加することにより、当該バリアコート組成物の塗装作業性の向上を図ることができる。何よりも、かかる無機化合物充填剤には、バリアコート組成物の塗装/加熱硬化時において、当該組成物中の水をスムーズに膜外へ飛散させる効果が求められ、本発明においてはマイカが最適である。   By adding an inorganic compound filler, the coating workability of the barrier coat composition can be improved. Above all, such an inorganic compound filler is required to have an effect of smoothly scattering water in the composition at the time of coating / heat-curing of the barrier coat composition, and mica is optimal in the present invention. is there.

すなわち、本発明者等の知見によれば、バリアコート組成物の塗装/加熱硬化後において皮膜中に水分が1%以上残存していると、加熱硬化型水性アルカリ珪酸塩塗料を加熱硬化させるステージで、この水分が水蒸気となり、アルカリ珪酸塩系塗膜を突き破って膜外へ出て、このときにアルカリ珪酸塩塗膜に微細な孔を作り、その表面をざらつかせる結果となる。その点マイカを含ませて、バリアコート組成物中の水をスムーズに膜外へ飛散させることができるようにしてあると、上記問題をよく解消できる。   That is, according to the knowledge of the present inventors, if moisture remains in the film after coating / heat-curing of the barrier coat composition, the stage for heat-curing the heat-curable aqueous alkali silicate paint Then, this moisture becomes water vapor, breaks through the alkali silicate coating film and goes out of the film, and at this time, fine pores are formed in the alkali silicate coating film, resulting in a rough surface. In that respect, the above problem can be solved well if mica is included so that the water in the barrier coat composition can be smoothly scattered outside the film.

かかるマイカの種別は特に問うものではないが、その重量平均フレーク径が40μm以下の範囲にあることが好ましい。40μmを超えるものは、塗装作業性に難を生じるほか、バリアコート皮膜の表面がザラツキ気味になり、好ましくない。   The type of such mica is not particularly limited, but the weight average flake diameter is preferably in the range of 40 μm or less. When the thickness exceeds 40 μm, the coating workability is difficult, and the surface of the barrier coat film becomes rough.

無機化合物充填剤の添加量は、珪酸リチウム固形分100重量部に対して、25〜150重量部の範囲にあることが好ましい。25重量部未満では、バリアコート組成物の塗装作業性の悪化を招くのみならず、当該組成物中の水分をスムーズに膜外へ飛散させる効果が不安定となる。150重量部を超えると、当該組成物は粉体リッチとなり、バリアコート皮膜は、過大な多孔質皮膜となる。このため、当該皮膜上に加熱硬化型水性アルカリ珪酸塩塗料を塗布すると、孔中に塗料が入って該孔中の空気と入れ替わるときにフクレを呈したり、塗料の加熱硬化中にフクレを発生したりする。150重量部を超えると、基材との密着性にも悪影響を与える結果となり、沸騰水試験や耐湿試験でフクレや剥離などを呈する。   The addition amount of the inorganic compound filler is preferably in the range of 25 to 150 parts by weight with respect to 100 parts by weight of the lithium silicate solid content. If it is less than 25 parts by weight, not only the coating workability of the barrier coat composition is deteriorated, but also the effect of smoothly scattering the moisture in the composition out of the film becomes unstable. If it exceeds 150 parts by weight, the composition becomes powder-rich, and the barrier coat film becomes an excessively porous film. For this reason, when a heat-curable aqueous alkali silicate paint is applied on the film, a blister is formed when the paint enters the hole and replaces the air in the hole, or a blister is generated during the heat-curing of the paint. Or If it exceeds 150 parts by weight, the adhesion to the substrate will be adversely affected, and blistering or peeling will be exhibited in a boiling water test or a moisture resistance test.

バリアコート皮膜中の水分をスムーズに膜外へ飛散させることができるという作用効果は、換言すれば、無機化合物充填剤を添加することによってバリアコート皮膜が微細な多孔質皮膜となり、当該孔を通して水分を飛散させることができるようになっていることを意味する。しかるに、バリアコート皮膜上にアルカリ珪酸塩塗膜を形成したのちに、塗装基材を水に浸漬すると、とくにアルカリ珪酸塩塗膜のない塗装基材の端面などから、上記の孔を介して水分が皮膜内へ浸透するおそれがある。これを防ぐために、本発明では撥水剤を必須成分として、バリアコート皮膜内への水分の浸透を防いでいる。   In other words, the effect of being able to smoothly disperse the moisture in the barrier coat film to the outside of the film is that the barrier coat film becomes a fine porous film by adding an inorganic compound filler, and the moisture is passed through the pores. Means that it can be scattered. However, when an alkali silicate coating film is formed on the barrier coat film and then the coated base material is immersed in water, water is introduced from the end face of the coated base material without the alkali silicate coating film through the above holes. May penetrate into the coating. In order to prevent this, in the present invention, water repellent is an essential component to prevent moisture from penetrating into the barrier coat film.

本発明に用いられる撥水剤には、水への分散能、あるいは溶解能を有することと、加熱工程に耐え得ることができることが要件とされる。種々の化合物を検討した結果、水溶性のアルカリ・アルキルシリコネートが最適である。   The water repellent used in the present invention is required to have a dispersibility or solubility in water and be able to withstand a heating step. As a result of studying various compounds, water-soluble alkali alkyl siliconate is optimal.

撥水剤の添加量は、珪酸リチウム固形分100重量部に対して、有効成分固形物で3〜20重量部の範囲であることが好ましい。3重量部未満では、塗装基材の端面からの水の浸透を阻止することができず、20重量部を超えると、水の浸透は阻止できるものの、バリアコート皮膜の表面の撥水性が強くなりすぎて、その表面に塗布される加熱硬化型水性アルカリ珪酸塩塗料をはじいて良好な仕上がりを得ることができない。高価な撥水剤を多量に含ませることは不経済でもある。以上より、撥水剤の好ましい添加量は、珪酸リチウム固形分100重量部に対して、有効成分固形物で3〜20重量部の範囲である。   The addition amount of the water repellent is preferably in the range of 3 to 20 parts by weight as an active ingredient solid based on 100 parts by weight of lithium silicate solids. If the amount is less than 3 parts by weight, the penetration of water from the end face of the coated substrate cannot be prevented. If the amount exceeds 20 parts by weight, the penetration of water can be prevented, but the water repellency of the surface of the barrier coat film becomes strong. Thus, it is impossible to obtain a good finish by repelling the heat-curable aqueous alkali silicate coating applied to the surface. Including a large amount of expensive water repellent is also uneconomical. As mentioned above, the preferable addition amount of a water repellent is the range of 3-20 weight part with an active ingredient solid with respect to 100 weight part of lithium silicate solid content.

バリアコート組成物には、その上に塗装されるアルカリ珪酸塩塗料の色安定性を図るために無機着色剤を含ませることができる。すなわち、バリアコート組成物の存在により、加熱硬化型水性アルカリ珪酸塩塗料の色合いが損なわれることを防ぐために、バリアコート組成物には無機着色剤を混合して、当該バリアコート皮膜が加熱硬化型水性アルカリ珪酸塩塗料の色に近似するものとなるようにすることが好ましい。   The barrier coat composition may contain an inorganic colorant in order to achieve color stability of the alkali silicate paint applied thereon. That is, in order to prevent the color of the heat-curable aqueous alkali silicate paint from being impaired due to the presence of the barrier coat composition, an inorganic colorant is mixed in the barrier coat composition so that the barrier coat film is heat-curable. It is preferable to approximate the color of the aqueous alkali silicate paint.

無機着色剤の添加量は、珪酸リチウム固形分100重量部に対して、5〜40重量部の範囲にあることが好ましい。5重量部未満では着色力が弱く、40重量部を超えると、不経済であるばかりか当該バリアコート組成物が粉体過多となり、基材に対する密着性を阻害する。要するに、加熱硬化型水性アルカリ珪酸塩塗料の色に近似させるに足る量を、バリアコート組成物に混合すればよい。   The addition amount of the inorganic colorant is preferably in the range of 5 to 40 parts by weight with respect to 100 parts by weight of the lithium silicate solid content. If it is less than 5 parts by weight, the coloring power is weak, and if it exceeds 40 parts by weight, it is not only uneconomical, but also the barrier coat composition becomes excessive in powder and inhibits adhesion to the substrate. In short, an amount sufficient to approximate the color of the heat-curable aqueous alkali silicate paint may be mixed with the barrier coat composition.

また、塗装性を改善するために、当該バリアコート組成物に水を添加できることは言うまでもない。   In addition, it goes without saying that water can be added to the barrier coat composition in order to improve the paintability.

本発明に係るバリアコート組成物は、良く脱脂して水濡れの良好になった塩基腐食金属製の鋼板に塗装し、常温からおよそ10分程度かけて140度以上の硬化温度にまで昇温したのち、当該硬化温度で10分以上キープし水分を膜外へ飛散せしめたのち、塗装鋼板を室温まで冷却してバリアコート皮膜を形成する。次いで、このバリアコート皮膜上に、加熱硬化型水性アルカリ珪酸塩塗料を、その仕様に基づいて塗装・加熱硬化させて、アルカリ珪酸塩塗膜を形成する。   The barrier coat composition according to the present invention was applied to a steel plate made of a base-corrosion metal that had been well defatted and had good wettability, and the temperature was raised from room temperature to a curing temperature of 140 ° C. or more over about 10 minutes. After that, after keeping at the curing temperature for 10 minutes or more to disperse moisture to the outside of the film, the coated steel sheet is cooled to room temperature to form a barrier coat film. Next, a heat-curable aqueous alkali silicate paint is applied and heat-cured on the barrier coat film based on the specifications to form an alkali silicate film.

バリアコート皮膜の膜厚は、5〜50μmの範囲とすることが好ましい。5μm未満では基材(塩基腐食金属性の鋼板)をバリアーするに足らず、50μmを超えると、加熱時に皮膜から水が容易に抜け難く、フクレや爪飛びのような現象が発生し、有効な皮膜が得られない。さらに、安定性(塗装のしやすさ)や経済性を考慮すると、10〜40μmの範囲にすることが好ましい。   The thickness of the barrier coat film is preferably in the range of 5 to 50 μm. If the thickness is less than 5 μm, it is not enough to provide a barrier to the base material (base-corrosion metallic steel plate), and if it exceeds 50 μm, it is difficult for water to easily escape from the coating during heating, causing phenomena such as blistering and nail skipping. Cannot be obtained. Furthermore, when stability (easiness of coating) and economy are taken into consideration, the range of 10 to 40 μm is preferable.

バリアコート組成物は、特に加熱硬化型水性アルカリ珪酸塩塗料を塩基腐食金属材料に塗布する際に用いられて好適であるが、鋼材、ステンレス材、チタン材などの塩基腐食性のない基材の下塗り剤としても使用できることは言うまでもない。   The barrier coat composition is particularly suitable for use in applying a heat-curable aqueous alkali silicate paint to a base-corrosive metal material. Needless to say, it can also be used as a primer.

以下の実験1〜8により、本発明に係るバリアコート組成物の特性及び、各種数値の臨界的意義を明らかにする。   The following experiments 1 to 8 clarify the characteristics of the barrier coat composition according to the present invention and the critical significance of various numerical values.

(実験1:バリアコート組成物(珪酸リチウム)の塩基腐食金属材料に対するバリアー性)
モル比3.4の珪酸リチウム(珪酸リチウム35、日本化学工業(株)製)水溶液の固形分100重量部に対して、無機化合物充填剤としてのマイカ(クラライトマイカ400W、(株)クラレ製)を100重量部、および水を全組成物中450重量部になるように混合した組成物をポリ容器の中に入れ、さらに、分散媒体として2mmφチタンビーズを加えて、ペイントシェーカーで1時間混合分散して、本発明に係るバリアコート組成物(但し撥水剤無し)を得た。
(Experiment 1: Barrier property of the base coat metal material of the barrier coat composition (lithium silicate))
Mica (clarite mica 400W, manufactured by Kuraray Co., Ltd.) as an inorganic compound filler with respect to 100 parts by weight of the solid content of an aqueous solution of lithium silicate having a molar ratio of 3.4 (lithium silicate 35, manufactured by Nippon Chemical Industry Co., Ltd.) ) And 100 parts by weight of water and 450 parts by weight of water in the total composition are put in a plastic container, and 2 mmφ titanium beads are added as a dispersion medium and mixed for 1 hour in a paint shaker. Dispersed to obtain a barrier coat composition according to the present invention (but no water repellent).

次に、市販のアルミニウム合金板(A1100、100×100×2mm、(サンドペーパーで、アルミ合金板表面にある酸化皮膜を研磨して除去し、市販のアルカリ脱脂剤で脱脂、水洗いしたもの))、市販の溶融亜鉛めっき鋼板(100×100×2mm(サンドペーパーで研磨し洗浄したもの))、および市販のマグネシウム合金板(AZ61、100×100×2mm(酸洗し洗浄したもの))に、先のバリアコート組成物を硬化皮膜厚さでおよそ20μmの厚み寸法となるようにスプレー塗装した。これらを電気炉で常温から200℃まで約10分間かけて昇温し、さらに200℃で10分間保持したのち、電気炉から取り出して常温まで冷却した。   Next, a commercially available aluminum alloy plate (A1100, 100 × 100 × 2 mm, (sand paper removed by polishing the oxide film on the surface of the aluminum alloy plate, degreased with a commercially available alkaline degreasing agent, and washed with water)) , Commercially available hot-dip galvanized steel sheets (100 × 100 × 2 mm (thickened and washed with sandpaper)) and commercially available magnesium alloy plates (AZ61, 100 × 100 × 2 mm (thickened and washed)) The previous barrier coat composition was spray-coated so that the thickness of the cured film was about 20 μm. These were heated in an electric furnace from room temperature to 200 ° C. over about 10 minutes, further held at 200 ° C. for 10 minutes, then removed from the electric furnace and cooled to room temperature.

市販のモル比3の珪酸カリウム水溶液(A珪酸カリ、日本化学工業(株)製)、およびモル比3の珪酸ナトリウム水溶液(J珪酸ソーダ3号、日本化学工業(株)製)のそれぞれ100gに対して、白色酸化チタン(TITANIX JR−600E、テイカ(株)製)10g、無機化合物充填剤としてのマイカ(クラライトマイカ300W、(株)クラレ製)10g、塗装適正を得るための水20g、分散媒体として2mmφチタンビーズを加えて、先と同様にペイントシェーカーで1時間混合分散して、カリウム系とナトリウム系の2種の加熱硬化型水性アルカリ珪酸塩塗料を得た。   100 g each of a commercially available potassium silicate aqueous solution having a molar ratio of 3 (A potassium silicate, manufactured by Nippon Chemical Industry Co., Ltd.) and an aqueous sodium silicate solution having a molar ratio of 3 (J sodium silicate No. 3, manufactured by Nippon Chemical Industry Co., Ltd.) On the other hand, white titanium oxide (TITANIX JR-600E, manufactured by Teika Co., Ltd.) 10 g, mica as an inorganic compound filler (clarite mica 300W, manufactured by Kuraray Co., Ltd.) 10 g, water 20 g for obtaining coating suitability, 2 mmφ titanium beads were added as a dispersion medium and mixed and dispersed in a paint shaker for 1 hour in the same manner as above to obtain two types of heat-curable aqueous alkali silicate paints of potassium and sodium.

先に作製したバリアコート組成物の塗装板に、両塗料を硬化皮膜厚さで、およそ20μmとなるようにスプレー塗装した。比較のためバリアコート組成物を塗装しない板に同様に塗装して、全ての試験板を電気炉で常温から200℃までおよび10分間かけて昇温し、さらに200℃で20分間保持したのち、電気炉から取り出し、塗膜のフクレの有無を目視で観察した。その結果を表1に示す。   Both paints were spray-coated on the coated plate of the barrier coat composition prepared previously so that the thickness of the cured film was approximately 20 μm. For comparison, the same coating was applied to a board not coated with the barrier coat composition, and all test plates were heated in an electric furnace from room temperature to 200 ° C. over 10 minutes, and further held at 200 ° C. for 20 minutes. The film was removed from the electric furnace, and the presence or absence of swelling of the coating film was visually observed. The results are shown in Table 1.

Figure 2006022251
Figure 2006022251

表1より、珪酸リチウムは、アルカリ度の大きい、換言すればモル比の小さい溶液でも塩基腐食金属と反応しないことがわかる。また、バリアコートの有無からも明らかなように、バリアコートの無いものは、加熱硬化型珪酸アルカリ塗料の加熱時において、塩基腐食金属と激しく反応し、水素ガスを発生して塗膜のフクレや剥離が見られた。一方、バリアコートの有るものはフクレは見られず、したがって本発明の有効成分である珪酸リチウムが、加熱硬化型水性アルカリ珪酸塩塗料の下塗り剤として極めて有効であることが確認できた。   Table 1 shows that lithium silicate does not react with the base corrosion metal even in a solution having a high alkalinity, in other words, a low molar ratio. Further, as is apparent from the presence or absence of a barrier coat, those without a barrier coat react violently with the base corrosion metal during heating of the thermosetting alkali silicate paint, generating hydrogen gas, Peeling was observed. On the other hand, there was no swelling when the barrier coat was present. Therefore, it was confirmed that lithium silicate, which is an active ingredient of the present invention, was extremely effective as a primer for the heat-curable aqueous alkaline silicate paint.

(実験2:バリアコート組成物中の撥水剤の役割)
モル比3.4の珪酸リチウム(珪酸リチウム35:同上)水溶液と、モル比7.8の珪酸リチウム(商品名:珪酸リチウム75、日本化学工業(株)製)水溶液を7:3の割合で混合した水溶液の固形分100重量部に対して、無機化合物充填剤としてのマイカ(クラライトマイカ300W (株)クラレ製)を80重量部、白色酸化チタン(R−550、石原産業(株)製)20重量部、撥水剤としてのアルカリ・アルキルシリコネート(ドライシールC、東レ・ダウコーニング・シリコーン(株)製)を、表2に示すように固形分(有効成分)で0〜20重量部まで変化させ、その夫々を混合分散させて、8種のバリアコート組成物を調整した。
(Experiment 2: Role of water repellent in barrier coat composition)
A lithium silicate (lithium silicate 35: same as above) aqueous solution with a molar ratio of 3.4 and an aqueous solution of lithium silicate (trade name: lithium silicate 75, manufactured by Nippon Chemical Industry Co., Ltd.) with a molar ratio of 7.8 in a ratio of 7: 3. 80 parts by weight of mica as an inorganic compound filler (clarite mica 300W, manufactured by Kuraray Co., Ltd.), white titanium oxide (R-550, manufactured by Ishihara Sangyo Co., Ltd.) with respect to 100 parts by weight of the solid content of the mixed aqueous solution. ) 20 parts by weight, alkali / alkylsiliconate (dry seal C, manufactured by Toray Dow Corning Silicone Co., Ltd.) as a water repellent, 0 to 20 weights in solid content (active ingredient) as shown in Table 2 8 types of barrier coat compositions were prepared by mixing and dispersing each of them.

次に、実験1と同様に処理したアルミニウム合金板(A1100、100×100×2mm)に、上記8種のバリアコート組成物のそれぞれを、実験1と同条件で塗装・硬化し、室温まで冷却して、8個の塗装鋼板を得た。加熱硬化型水性アルカリ珪酸塩塗料としては、特願平9−157339号公報に開示されている水性純無機塗料を用いた。具体的には、可溶性珪酸カリウム(A珪酸カリ(同上))250gと、水性シリカゾル(スノーテックス20、日産化学工業(株)製)260gと、アニオン系有機化合物(TSW−870、GE東芝シリコーン(株)製)3gを混合して、90〜100℃で30分加熱・攪拌し、水を加えて全量が630gにしてモル比5.4、24%水溶液を得て、この水溶液320gに、無機顔料(白色ルチル型酸化チタン)R−550(同上)15g、無機充填剤(クラライトマイカ400W、(株)クラレ製)20g、および水10gを加えて、実験1と同様に塗料化した。次に、先に作製した8個の塗装鋼板のそれぞれに、この塗料を硬化膜厚がおよそ25μmとなるように塗布して、8個の試験体を得た。   Next, each of the above eight barrier coat compositions was coated and cured under the same conditions as in Experiment 1 on an aluminum alloy plate (A1100, 100 × 100 × 2 mm) treated in the same manner as in Experiment 1, and cooled to room temperature. Thus, eight coated steel plates were obtained. As the heat-curable aqueous alkali silicate paint, an aqueous pure inorganic paint disclosed in Japanese Patent Application No. 9-157339 was used. Specifically, 250 g of soluble potassium silicate (A potassium silicate (same as above)), 260 g of aqueous silica sol (Snowtex 20, manufactured by Nissan Chemical Industries, Ltd.), an anionic organic compound (TSW-870, GE Toshiba Silicone ( Co., Ltd.) 3 g was mixed and heated and stirred at 90-100 ° C. for 30 minutes, and water was added to make the total amount 630 g to obtain a molar ratio 5.4, 24% aqueous solution. 15 g of pigment (white rutile type titanium oxide) R-550 (same as above), 20 g of inorganic filler (clarite mica 400W, manufactured by Kuraray Co., Ltd.), and 10 g of water were added to form a paint in the same manner as in Experiment 1. Next, this paint was applied to each of the eight coated steel sheets prepared previously so that the cured film thickness was approximately 25 μm, and eight test bodies were obtained.

Figure 2006022251
Figure 2006022251

それぞれの試験体を水中に10時間浸漬したとき、および沸騰水中に2時間浸漬したときの水の塗膜への浸透の有無を目視にて観察した。その結果を表2に示す。なお、表中の○は塗膜への浸透が観察されなかったもの、△は僅かに浸透が観察されたもの、×は顕著に浸透が観察されたものを示している。   When each test specimen was immersed in water for 10 hours and immersed in boiling water for 2 hours, the presence or absence of penetration of water into the coating film was visually observed. The results are shown in Table 2. In the table, “◯” indicates that no penetration into the coating film was observed, “Δ” indicates that slight penetration was observed, and “×” indicates that significant penetration was observed.

表2より、撥水剤の添加は、水の塗膜への浸透防止に一役を果たしていることがわかる。その添加量は、珪酸リチウム固形分換算100重量部に対する撥水剤固形分(有効成分)で3重量部以上であれば好ましく、経済性を考慮するならば3〜10重量部が最も好ましい範囲である。   From Table 2, it can be seen that the addition of the water repellent plays a role in preventing water from penetrating into the coating film. The amount added is preferably 3 parts by weight or more in terms of water repellent solid content (active ingredient) relative to 100 parts by weight in terms of lithium silicate solid content, and 3-10 parts by weight is the most preferable range in consideration of economy. is there.

(実験3:珪酸リチウムのモル比と塩基腐食金属材料に対するバリアー性)
モル比3.4の珪酸リチウム水溶液(同上)水溶液と、モル比7.8の珪酸リチウム水溶液(同上)を混合し、あるいは単独で用いて、表3に示すようなモル比を有する7種の水溶液を得た。各水溶液の固形分100重量部に対して、無機化合物充填剤としてのクラライトマイカ300W(同上)を80重量部、白色酸化チタン、R−550(同上)を20重量部、撥水剤としてのアルカリ・アルキルシリコネート、ドライシール(同上)を固形分(有効成分)で6重量部混合し、実験1と同様に、各々のモル比のバリアコート組成物を作成した。
(Experiment 3: Lithium silicate molar ratio and barrier properties against base corrosion metal materials)
A mixture of a lithium silicate aqueous solution (same as above) having a molar ratio of 3.4 and a lithium silicate aqueous solution (same as above) having a molar ratio of 7.8, or 7 kinds having a molar ratio as shown in Table 3 were used alone. An aqueous solution was obtained. 80 parts by weight of Clarite Mica 300W (same as above) as an inorganic compound filler, 20 parts by weight of white titanium oxide and R-550 (same as above), and 100 parts by weight of a solid content of each aqueous solution, Alkali / alkyl siliconate and dry seal (same as above) were mixed in an amount of 6 parts by weight in solid content (active ingredient) to prepare barrier coat compositions having respective molar ratios as in Experiment 1.

次に、実験1と同様に処理したアルミニウム合金板(A1100、100×100×2mm)に、上記各バリアコート組成物を実験1と同様の方法で塗装し、7個の塗装鋼板を得た。さらに、これら塗装鋼板のバリアコート皮膜上に、加熱硬化型水性アルカリ珪酸塩塗料としての実験2で用いた塗料を塗装し、7個の試験体を得た。   Next, each barrier coat composition was applied to an aluminum alloy plate (A1100, 100 × 100 × 2 mm) treated in the same manner as in Experiment 1 in the same manner as in Experiment 1, to obtain seven coated steel plates. Furthermore, the paint used in Experiment 2 as a thermosetting aqueous alkali silicate paint was applied onto the barrier coat film of these coated steel sheets to obtain seven specimens.

夫々の試験体に対して、実験2と同様の水中浸漬試験および沸騰水浸漬試験を行い、評価を行った。加えて、沸騰水中での塗膜のフクレの有無を目視で観察した。その結果を表3に示す。なお、水および沸騰水浸透に係る評価は、実験2と同様である。沸騰水中での塗膜のフクレの有無は、○はフクレなし、△は僅少フクレが観察されたもの、×は顕著にフクレ、剥離が観察されたものを示している。   Each test specimen was subjected to the same underwater immersion test and boiling water immersion test as in Experiment 2 for evaluation. In addition, the presence or absence of swelling of the coating film in boiling water was visually observed. The results are shown in Table 3. The evaluation relating to the permeation of water and boiling water is the same as in Experiment 2. Regarding the presence or absence of swelling of the coating film in boiling water, ◯ indicates no swelling, Δ indicates that slight swelling is observed, and × indicates that significant swelling and peeling are observed.

Figure 2006022251
Figure 2006022251

表3より、有効な珪酸リチウムのモル比は、およそ3〜7の範囲にあることがわかる。なお、モル比が3未満では、液が不安定で使用することができなかった。   It can be seen from Table 3 that the effective lithium silicate molar ratio is in the range of approximately 3-7. When the molar ratio was less than 3, the liquid was unstable and could not be used.

(実験4:バリアコート組成物中の無機充填剤(マイカ)の添加量と、バリアー性との関係)
モル比4.5の珪酸リチウム水溶液(珪酸リチウム45、日本化学工業(株)製)と、モル比7.8の珪酸リチウム水溶液(同上)を7:3の割合で混合した水溶液の固形分100重量部に対して、無機化合物充填剤としてのクラライトマイカ300W(同上)を表4に示すような0〜160重量部の範囲で7段階の割合で混合させて、7種のバリアコート組成物を作成した。各バリアコート組成物における他の成分は、珪酸リチウム100重量部に対して、白色酸化チタン(R−550(同上))20重量部、撥水剤としてのアルカリ・アルキルシリコネート(ドライシールC(同上))固形分(有効成分)で7重量部の一定とした。次に、市販の亜鉛メッキ鋼板(100×100×0.5mm、市販のアルカリ脱脂剤で脱脂、水洗いしたもの)に、上記の各バリアコート組成物を、実験1と同条件で硬化し、室温まで冷却した。さらに、これらの各バリアコート皮膜の上に、加熱硬化型水性アルカリ珪酸塩塗料として、実験2で用いた塗料を同条件で処理し、試験体を作成した。
(Experiment 4: Relationship between Addition of Inorganic Filler (Mica) in Barrier Coat Composition and Barrier Property)
Solid content of an aqueous solution obtained by mixing a lithium silicate aqueous solution with a molar ratio of 4.5 (lithium silicate 45, manufactured by Nippon Chemical Industry Co., Ltd.) and a lithium silicate aqueous solution with the molar ratio of 7.8 (same as above) at a ratio of 7: 3. 7 types of barrier coat compositions prepared by mixing Clarite mica 300W (same as above) as an inorganic compound filler in a range of 0 to 160 parts by weight in the range of 0 to 160 parts by weight with respect to parts by weight. It was created. The other components in each barrier coat composition were 20 parts by weight of white titanium oxide (R-550 (same as above)) with respect to 100 parts by weight of lithium silicate, and an alkali alkylsiliconate (dry seal C ( Same as above)) The solid content (active ingredient) was fixed at 7 parts by weight. Next, each of the above barrier coat compositions was cured on a commercially available galvanized steel sheet (100 × 100 × 0.5 mm, degreased with a commercially available alkaline degreasing agent and washed with water) under the same conditions as in Experiment 1, Until cooled. Furthermore, on each of these barrier coat films, the paint used in Experiment 2 was treated under the same conditions as a heat-curable aqueous alkali silicate paint to prepare a test specimen.

Figure 2006022251
Figure 2006022251

夫々の試験体に対して実験3の沸騰水試験と同様の試験を行い、塗膜のフクレの有無を目視で観察した。沸騰水試験における塗膜フクレの有無の評価は、○:フクレなし、△:僅少フクレが観察される、×:顕著にフクレが観察される、とした。   Each test specimen was subjected to the same test as the boiling water test of Experiment 3, and the presence or absence of swelling of the coating film was visually observed. The evaluation of the presence or absence of coating film swelling in the boiling water test was: ○: no swelling, Δ: slight swelling was observed, ×: significant swelling was observed.

表4より、バリアコート組成物中の無機化合物充填剤(マイカ)の適正な範囲は、25〜150重量部であることがわかる。25重量部未満では、バリアコート組成物中の水分が抜け難くガス化したまま気泡が存在して沸騰水試験での塗膜フクレとなって現れ、また150重量部を超えると、皮膜中の粉体過多となり、基材との密着が悪くなり、フクレたり、剥離を引き起こす。   From Table 4, it can be seen that an appropriate range of the inorganic compound filler (mica) in the barrier coat composition is 25 to 150 parts by weight. If it is less than 25 parts by weight, the moisture in the barrier coat composition is difficult to escape and bubbles are present in the gasified state and appear as a film swelling in the boiling water test. Excessive body, poor adhesion to the substrate, causing blistering and peeling.

(実験5:無機化合物充填剤(マイカ)の重量平均フレーク径(μ)と、塗装性および皮膜表面状態との関係)
モル比4.5の珪酸リチウム水溶液、珪酸リチウム45(同上)の固形分100重量部に対して、表5に示すような異なるフレーク径を有する5種の無機化合物充填剤(マイカ)を70重量部混合させて、5種のバリアコート組成物を作成した。各バリアコート組成物における他の成分は、珪酸リチウム100重量部に対して、白色酸化チタン(R−550(同上))20重量部、撥水剤としてのアルカリ・アルキルシリコネート(ドライシールC(同上))固形分(有効成分)で7重量部とした。次に、実験1と同様に処理したアルミニウム板(A1100、300×300×2mm)に、上記の各バリアコート組成物を、実験1と同条件で硬化したときのスプレー塗装性とバリアコート皮膜の表面平滑性(仕上がり)を目視で観察した。その結果を表5に示す。
(Experiment 5: Relationship between Weight Average Flake Diameter (μ) of Inorganic Compound Filler (Mica), Paintability and Film Surface Condition)
70 weights of 5 kinds of inorganic compound fillers (mica) having different flake diameters as shown in Table 5 with respect to 100 parts by weight of solid content of lithium silicate aqueous solution having a molar ratio of 4.5 and lithium silicate 45 (same as above). 5 types of barrier coat compositions were prepared by mixing them partially. The other components in each barrier coat composition were 20 parts by weight of white titanium oxide (R-550 (same as above)) with respect to 100 parts by weight of lithium silicate, and an alkali alkylsiliconate (dry seal C ( Same as above)) The solid content (active ingredient) was 7 parts by weight. Next, spray coating properties when the above barrier coating compositions were cured under the same conditions as in Experiment 1 on the aluminum plate (A1100, 300 × 300 × 2 mm) treated in the same manner as in Experiment 1, and the barrier coat film. The surface smoothness (finish) was visually observed. The results are shown in Table 5.

Figure 2006022251
Figure 2006022251

表5に示すように、無機化合物充填剤(マイカ)のフレーク径(μm)が、40μmを超えると、塗装性、出来上がった皮膜表面状態ともに不良となることがわかった。このことは、当該バリアコート皮膜上に乗せる加熱硬化型水性アルカリ珪酸塩塗料塗膜も平滑性に欠けた仕上がりの悪いものとなることを意味し、従って加熱硬化型水性アルカリ珪酸塩塗料の下塗り剤としては不適である。   As shown in Table 5, when the flake diameter (μm) of the inorganic compound filler (mica) exceeded 40 μm, it was found that both the paintability and the finished film surface state were poor. This means that the heat-curable aqueous alkali silicate paint film placed on the barrier coat film also has a poor finish with poor smoothness. As inappropriate.

(実験6:バリアコート皮膜厚さとバリアー性)
実験4と同様の組成物で、無機化合物充填剤、クラライトマイカ300W(同上)を90重量部にし、実験1と同様に処理したアルミニウム合金板(A1100、100×100×2mm)に硬化膜厚で、表6に示すような硬化膜厚で3〜53μmまで変化させて、スプレー塗装し、実験1と同条件で塗装・硬化した。さらに、これらのバリアコート皮膜上に、実験2で用いた加熱硬化型水性アルカリ珪酸塩塗料を塗布形成して、試験体を作成した。
(Experiment 6: Barrier coat film thickness and barrier properties)
A cured film thickness on an aluminum alloy plate (A1100, 100 × 100 × 2 mm) treated in the same manner as in Experiment 1 with the same composition as in Experiment 4, with 90 parts by weight of inorganic compound filler, Clarite mica 300W (same as above). Then, the cured film thickness as shown in Table 6 was changed from 3 to 53 μm, spray-coated, and coated and cured under the same conditions as in Experiment 1. Further, a test specimen was prepared by applying and forming the thermosetting aqueous alkali silicate paint used in Experiment 2 on these barrier coat films.

Figure 2006022251
Figure 2006022251

夫々の試験体において、加熱硬化水性アルカリ珪酸塩塗料が硬化したときの塗膜状態を観察し、さらに実験3の沸騰水試験と同様の試験を行い、塗膜のフクレの有無を目視で観察した。沸騰水試験での塗膜フクレの有無の評価は、○:フクレなし、△:僅少フクレが観察された、×:顕著にフクレ、剥離が観察されたものを示している。   In each specimen, the state of the coating film when the heat-cured aqueous alkali silicate coating was cured was observed, and the same test as the boiling water test in Experiment 3 was performed, and the presence or absence of swelling of the coating film was visually observed. . The evaluation of the presence or absence of coating film swelling in the boiling water test indicates that ◯: no swelling, Δ: slight swelling was observed, ×: significant swelling and peeling were observed.

表6より、バリアコート皮膜の膜厚は、5〜50μmの範囲が好適であることがわかる。さらに、塗装安定性、経済性を鑑みると、10〜40μmの範囲が好適である。実装では10μm以下では均一に基材に塗布することが難しく、5μm以下のコート部分ができやすい。また、40μmを超えると経済的であるとは言えない。   From Table 6, it can be seen that the thickness of the barrier coat film is preferably in the range of 5 to 50 μm. Furthermore, in view of coating stability and economy, a range of 10 to 40 μm is preferable. In mounting, it is difficult to uniformly apply to a substrate at 10 μm or less, and a coating portion of 5 μm or less is likely to be formed. Moreover, if it exceeds 40 micrometers, it cannot be said that it is economical.

(実験7:バリアコート組成物の最低硬化温度条件)
実験6のバリアコート組成物を用いて、硬化膜厚で10〜30μmと、31〜40μmの2種の皮膜厚さとなるように塗装を行った。これらを表7に示した温度で加熱して、塗装板を得た。そのその上に加熱硬化型水性アルカリ珪酸塩塗料を実験6と同様に、同条件で試験体を作成した。なお、本実験では、表7に示す温度で10分間加熱した。
(Experiment 7: Minimum curing temperature condition of the barrier coat composition)
Using the barrier coat composition of Experiment 6, coating was performed so as to have two types of film thicknesses of 10 to 30 μm and 31 to 40 μm in cured film thickness. These were heated at the temperature shown in Table 7 to obtain a coated plate. On top of that, a thermosetting aqueous alkali silicate paint was prepared in the same manner as in Experiment 6 under the same conditions. In this experiment, heating was performed at a temperature shown in Table 7 for 10 minutes.

Figure 2006022251
Figure 2006022251

表7より、バリアコート組成物の最低硬化温度は140℃であることがわかる。140℃以下の温度では、水分がバリアコート皮膜中に残存して、この皮膜上に塗布される加熱硬化型水性アルカリ珪酸塩塗料の硬化時に、当該水分がガス化してフクレをつくる。かかる傾向は、とくに膜厚が厚くなると顕著に現れる。   From Table 7, it can be seen that the minimum curing temperature of the barrier coat composition is 140 ° C. At a temperature of 140 ° C. or lower, moisture remains in the barrier coat film, and when the heat-curable aqueous alkaline silicate paint applied on the film is cured, the moisture gasifies and forms bulges. Such a tendency appears particularly when the film thickness is increased.

(実験8:バリアコート組成物の性能)
表8に示すような塩基腐食金属に、実験6と同様のバリアコート組成物で硬化膜厚がおよそ20μmとなるようにスプレー塗装し、実験1と同条件で硬化し、各試験体を得た。
(Experiment 8: Performance of barrier coat composition)
The base corrosion metal as shown in Table 8 was spray-coated with the same barrier coat composition as in Experiment 6 so that the cured film thickness was about 20 μm, and cured under the same conditions as in Experiment 1 to obtain each specimen. .

Figure 2006022251
Figure 2006022251

次に、各試験体を試験に供した。すなわち、耐沸騰水試験では、沸騰水に10時間浸漬させた。耐アルカリ試験では、5%水酸化ナトリウム水溶液を各試験体表面に滴下し30分放置した。耐酸試験では、5%硫酸水溶液を各試験耐表面に滴下し30分間放置した。各試験の所定時間後の状態を表8に示す。   Next, each specimen was subjected to the test. That is, in the boiling water test, it was immersed in boiling water for 10 hours. In the alkali resistance test, a 5% aqueous sodium hydroxide solution was dropped on the surface of each test specimen and allowed to stand for 30 minutes. In the acid resistance test, a 5% sulfuric acid aqueous solution was dropped on each test surface and left for 30 minutes. Table 8 shows the state after a predetermined time of each test.

表8より、いずれの鋼板においても、バリアコート皮膜の有るものは試験体に変化はなく、耐沸騰水性および耐化学性に優れることがわかる。これに対して、バリアコート皮膜の無いものは、試験体に変化が見られ、耐沸騰水性や耐化学性に劣ることがわかる。加えて、アルミニウム・アルマイトとの比較からも明らかなように、このバリアコート皮膜が、素地を保護するに足る性能を示していることがわかる。   From Table 8, it can be seen that any of the steel sheets having the barrier coat film has no change in the specimen and is excellent in boiling water resistance and chemical resistance. On the other hand, the sample without the barrier coat film shows a change in the specimen, indicating that it is inferior in boiling water resistance and chemical resistance. In addition, as is clear from comparison with aluminum / alumite, it can be seen that this barrier coat film exhibits sufficient performance to protect the substrate.

実験例6と同じ調整方法でバリアコート組成物を調製し、これを実験1と同様に処理したアルミニウム合金板に、硬化膜厚で約20μmになるようにスプレー塗装した。この塗装板を電気炉にて室温から180℃まで、約10分間かけて昇温したのち、180℃で10分間保持し、その後に炉外に取り出して室温まで冷却して、バリアコート皮膜が形成された塗装鋼板を得た。   A barrier coat composition was prepared by the same adjustment method as in Experimental Example 6, and this was spray-coated on an aluminum alloy plate treated in the same manner as in Experiment 1 so that the cured film thickness was about 20 μm. The coated plate was heated from room temperature to 180 ° C. for about 10 minutes in an electric furnace, held at 180 ° C. for 10 minutes, and then taken out of the furnace and cooled to room temperature to form a barrier coat film. A coated steel sheet was obtained.

かかる塗装鋼板上に、実験2で使用した加熱硬化型水性アルカリ珪酸塩塗料を硬化膜厚で約20μmとなるようにスプレー塗装し、該塗装鋼板を電気炉にて室温から220℃まで約10分間かけて昇温したのち、220℃で20分間保持し、その後に炉外に取り出して、室温まで冷却した。以上のようにして得た試験体を、表9に示すような性能試験に供した。   On this coated steel plate, the heat-curable aqueous alkali silicate paint used in Experiment 2 was spray-coated to a cured film thickness of about 20 μm, and the coated steel plate was heated in an electric furnace from room temperature to 220 ° C. for about 10 minutes. Then, the temperature was kept at 220 ° C. for 20 minutes, and then taken out of the furnace and cooled to room temperature. The specimen obtained as described above was subjected to a performance test as shown in Table 9.

Figure 2006022251
Figure 2006022251

表9より明らかなように、本発明に係るバリアコート組成物は、その上に加熱硬化される水性アルカリ珪酸塩塗料に対して、完全なバリアコート性を発揮するばかりか、水性アルカリ珪酸塩塗料塗膜の本来の性能を損なわないことが確認できた。   As is apparent from Table 9, the barrier coat composition according to the present invention not only exhibits a complete barrier coat property with respect to the aqueous alkali silicate paint to be heat-cured thereon, but also an aqueous alkali silicate paint. It was confirmed that the original performance of the coating film was not impaired.

モル比4.5の珪酸リチウム水溶液(珪酸リチウム45(同上))と、モル比7.8の珪酸リチウム水溶液(珪酸リチウム75(同上))とを5:5の割合で混合し、得られた珪酸リチウム水溶液の固形分100重量部に対して、無機化合物充填剤として、マイカ(クラライトマイカ400W(同上))を85重量部、白色酸化チタン(R−550(同上))を20重量部、撥水剤として、アルキリ・アルキルシリコネート(ドライシールC)を固形分で5.5重量部とを混合し、実験例1と同様の調製方法で、バリアコート組成物を調整した。   A lithium silicate aqueous solution having a molar ratio of 4.5 (lithium silicate 45 (same as above)) and a lithium silicate aqueous solution having a molar ratio of 7.8 (lithium silicate 75 (same as above)) were mixed at a ratio of 5: 5. As an inorganic compound filler, 85 parts by weight of mica (clarite mica 400W (same as above)), 20 parts by weight of white titanium oxide (R-550 (same as above)) with respect to 100 parts by weight of the solid content of the lithium silicate aqueous solution, As a water repellent, an alkyl / alkyl siliconate (Dry Seal C) was mixed with 5.5 parts by weight of a solid content, and a barrier coat composition was prepared by the same preparation method as in Experimental Example 1.

次に、表10に示す各市販の塩基腐食金属材料を、市販アルカリ脱脂剤で洗浄、水洗いしてから、上記のバリアコート組成物を硬化膜厚で、および20μmとなるようにスプレー塗装した。この塗装鋼板を電気炉にて室温から180℃まで、約10分間かけて昇温したのち、180℃で10分間保持し、その後に炉外に取り出して室温まで冷却した。   Next, each commercially available base corrosion metal material shown in Table 10 was washed with a commercially available alkaline degreasing agent and washed with water, and then the above barrier coat composition was spray coated so as to have a cured film thickness of 20 μm. The coated steel sheet was heated in an electric furnace from room temperature to 180 ° C. over about 10 minutes, held at 180 ° C. for 10 minutes, and then taken out of the furnace and cooled to room temperature.

この塗装鋼板上に、実験2で使用した加熱硬化型水性アルカリ珪酸塩塗料を硬化膜厚で約20μmとなるようにスプレー塗装し、該塗装板を電気炉にて室温から220℃まで約10分間かけて昇温したのち、220℃で20分間保持し、その後に炉外に取り出して、室温まで冷却した。以上のようにして得た試験体を、上記表9と同様の性能試験に供した。その結果を表10に示す。   On this coated steel plate, the heat-curable aqueous alkali silicate paint used in Experiment 2 was spray-coated to a cured film thickness of about 20 μm, and the coated plate was heated in an electric furnace from room temperature to 220 ° C. for about 10 minutes. Then, the temperature was kept at 220 ° C. for 20 minutes, and then taken out of the furnace and cooled to room temperature. The specimen obtained as described above was subjected to the same performance test as in Table 9 above. The results are shown in Table 10.

Figure 2006022251
Figure 2006022251

表10より明らかなように、実施例1と同様、本発明のバリアコート組成物は、その上に加熱硬化される水性アルカリ珪酸塩塗料に対して、完全なバリアコート性を発揮するばかりか、水性アルカリ珪酸塩塗料塗膜の本来の性能を損ねないことが確認された。   As is clear from Table 10, as in Example 1, the barrier coat composition of the present invention not only exhibits a complete barrier coat property with respect to the aqueous alkali silicate paint to be heat-cured thereon, It was confirmed that the original performance of the aqueous alkali silicate coating film was not impaired.

モル比4.5の珪酸リチウム水溶液(珪酸リチウム45(同上))と、モル比7.8の珪酸リチウム水溶液(珪酸リチウム75(同上))とを6:4の割合で混合し、得られた珪酸リチウム水溶液の固形分100重量部に対して、無機化合物充填剤として、マイカ(クラライトマイカ600W(同上))を20重量部、白色酸化チタン(R−550(同上))を20重量部、撥水剤として、アルキリ・アルキルシリコネート(ドライシールC)を固形分で5.5重量部とを混合し、実験例1と同様の調製方法で、バリアコート組成物を調整した。   A lithium silicate aqueous solution having a molar ratio of 4.5 (lithium silicate 45 (same as above)) and a lithium silicate aqueous solution having a molar ratio of 7.8 (lithium silicate 75 (same as above)) were mixed at a ratio of 6: 4. 20 parts by weight of mica (clarite mica 600W (same as above)), 20 parts by weight of white titanium oxide (R-550 (same as above)) as an inorganic compound filler with respect to 100 parts by weight of the solid content of the lithium silicate aqueous solution, As a water repellent, an alkyl / alkyl siliconate (Dry Seal C) was mixed with 5.5 parts by weight of a solid content, and a barrier coat composition was prepared by the same preparation method as in Experimental Example 1.

次に、市販のマグネシウム合金板(AZ80、70×150×2mm)を市販のアルカリ脱脂剤で洗浄、水洗いしてから、上記のバリアコート組成物を硬化膜厚で、およそ10μmとなるようにスプレー塗装した。各塗装鋼板を電気炉にて室温から180℃まで、約10分間かけて昇温したのち、180℃で10分間保持し、その後に炉外に取り出して室温まで冷却した。   Next, after washing a commercially available magnesium alloy plate (AZ80, 70 × 150 × 2 mm) with a commercially available alkaline degreasing agent and washing with water, the above barrier coat composition is sprayed to a cured film thickness of about 10 μm. Painted. Each coated steel sheet was heated from room temperature to 180 ° C. in an electric furnace over about 10 minutes, held at 180 ° C. for 10 minutes, and then taken out of the furnace and cooled to room temperature.

実験2で使用した加熱硬化型水性アルカリ珪酸塩塗料において、白色酸化チタンをパール顔料(商標名:Iriondin 300,Gold Pearl,メルク・ジャパン(株)製)に変えて調製して得られた加熱硬化型水性アルカリ珪酸塩塗料を、上記の塗装鋼板上に、硬化膜厚で約20μmとなるようにスプレー塗装した。この塗装板を電気炉にて室温から200℃まで約10分間かけて昇温したのち、200℃で20分間保持し、その後に炉外に取り出して、室温まで冷却した。以上のようにして得た試験体を、上記表9と同様の性能試験に供した。その結果を表11に示す。   In the heat-curable aqueous alkali silicate paint used in Experiment 2, the heat-cured obtained by changing white titanium oxide to a pearl pigment (trade name: Iliondin 300, Gold Pearl, manufactured by Merck Japan Ltd.) The mold-type aqueous alkali silicate paint was spray-coated on the above-mentioned coated steel plate so that the cured film thickness was about 20 μm. This coated plate was heated from room temperature to 200 ° C. in an electric furnace over about 10 minutes, held at 200 ° C. for 20 minutes, and then taken out of the furnace and cooled to room temperature. The specimen obtained as described above was subjected to the same performance test as in Table 9 above. The results are shown in Table 11.

Figure 2006022251
Figure 2006022251

得られたアルカリ珪酸塩塗膜は、意図したとおりの素晴らしいゴールド色を呈するものであった。このことより、本発明に係るバリアコート組成物に適種の無機着色剤を適量含ませることにより、バリアコート皮膜上にアルカリ珪酸塩塗膜を色彩を損ねることなく形成できることが確認できた。また、表11より明らかなように、本発明のバリアコート組成物は、その上に塗布形成される加熱硬化型水性アルカリ珪酸塩塗料に対して、完全なバリアコート性を発揮するものであり、性能上も申し分のないものであった。   The obtained alkali silicate coating film had a wonderful gold color as intended. From this, it was confirmed that an alkali silicate coating film can be formed on the barrier coating film without impairing the color by including an appropriate amount of an appropriate inorganic coloring agent in the barrier coating composition according to the present invention. Further, as apparent from Table 11, the barrier coat composition of the present invention exhibits a complete barrier coat property with respect to the heat-curable aqueous alkali silicate coating applied and formed thereon, The performance was impeccable.

以上詳しく説明したように、本発明に係るバリアコート組成物は、加熱硬化型水性アルカリ珪酸塩塗料の下塗り剤に求められる全ての要件((1)加熱に際して塩基腐食金属材料と反応しないこと。(2)塩基腐食金属材料との密着性がよいこと。(3)バリアコート皮膜と加熱硬化型水性アルカリ珪酸塩塗料との密着性がよいこと。(4)仕上がった加熱硬化型水性アルカリ珪酸塩塗膜が本来の性能を保持していること。)を良好に満たしている。換言すれば、本発明に係るバリアコート組成物を下塗り剤として用いることにより、平滑で美観に優れた加熱硬化型水性アルカリ珪酸塩塗膜を、塩基腐食金属製の基材上にフクレや剥がれなどのなく安定的に形成することができる。   As explained in detail above, the barrier coat composition according to the present invention is not required to react with the base corrosive metal material during heating ((1) heating. 2) Good adhesion to the base corrosion metal material (3) Good adhesion between the barrier coat film and the thermosetting aqueous alkaline silicate coating (4) Finished thermosetting aqueous alkaline silicate coating The film maintains its original performance.) In other words, by using the barrier coat composition according to the present invention as an undercoat agent, a heat-curable aqueous alkali silicate coating film that is smooth and excellent in aesthetics is formed on a base material made of a base corrosion metal, such as swelling or peeling. And can be formed stably.

このバリアコート組成物は、アルマイト処理のような大掛かりな設備装置を必要とすることなく、公知のスプレー塗装によって塗装処理することができ、したがって、加熱硬化型水性アルカリ珪酸塩塗料の塗装コストの削減化に貢献できる。また、当該バリアコート組成物は、亜鉛処理鋼板やマグネシウム合金類などのごとく、アルマイト処理が不可能な塩基腐食性金属製の基材上にも塗布することが可能であり、従って、当該アルカリ珪酸塩塗料の適用範囲の拡大に大いに寄与できる。   This barrier coating composition can be applied by known spray coating without requiring a large-scale equipment such as alumite treatment, and therefore, the coating cost of the thermosetting aqueous alkaline silicate coating can be reduced. Can contribute to Further, the barrier coat composition can be applied to a base material made of a base corrosive metal that cannot be anodized, such as a galvanized steel sheet or a magnesium alloy. It can greatly contribute to the expansion of the range of application of salt paint.

Claims (4)

加熱硬化型水性アルカリ珪酸塩塗料の下塗り剤となるバリアコート組成物であって、
珪酸リチウム水溶液と、無機化合物充填剤と、撥水剤とを必須成分とすることを特徴とするバリアコート組成物。
A barrier coat composition that serves as a primer for a heat-curable aqueous alkaline silicate paint,
A barrier coat composition comprising an aqueous lithium silicate solution, an inorganic compound filler, and a water repellent as essential components.
前記珪酸リチウムは、一般式Li2 О・nSiО2 (式中nはSiО2 /Li2 О重量モル比 n=3〜7)で表される珪酸リチウム水溶液であり、
前記無機化合物充填剤は、重量平均フレーク径が40μm以下のマイカであり、
前記撥水剤が、水溶性のアルカリ・アルキルシリコネートである請求項1記載のバリアコート組成物。
The lithium silicate is a lithium silicate aqueous solution represented by a general formula Li 2 O · nSiO 2 (wherein n is SiO 2 / Li 2 O weight molar ratio n = 3 to 7),
The inorganic compound filler is mica having a weight average flake diameter of 40 μm or less,
The barrier coat composition according to claim 1, wherein the water repellent is a water-soluble alkali / alkyl siliconate.
珪酸リチウム固形分100重量部に対して、無機化合物充填剤を25〜150重量部、撥水剤固形分を3〜20重量部含む請求項1又は2記載のバリアコート組成物。   The barrier coat composition according to claim 1 or 2, comprising 25 to 150 parts by weight of the inorganic compound filler and 3 to 20 parts by weight of the water repellent solid content with respect to 100 parts by weight of the lithium silicate solid content. 珪酸リチウム固形分100重量部に対して、無機着色剤を5〜40重量部含む請求項1又は2又は3記載のバリアコート組成物。   The barrier coat composition according to claim 1, 2 or 3, comprising 5 to 40 parts by weight of an inorganic colorant with respect to 100 parts by weight of lithium silicate solids.
JP2004202884A 2004-07-09 2004-07-09 Barrier coat composition Pending JP2006022251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004202884A JP2006022251A (en) 2004-07-09 2004-07-09 Barrier coat composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004202884A JP2006022251A (en) 2004-07-09 2004-07-09 Barrier coat composition

Publications (1)

Publication Number Publication Date
JP2006022251A true JP2006022251A (en) 2006-01-26

Family

ID=35795763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004202884A Pending JP2006022251A (en) 2004-07-09 2004-07-09 Barrier coat composition

Country Status (1)

Country Link
JP (1) JP2006022251A (en)

Similar Documents

Publication Publication Date Title
CN100582302C (en) Composition for coating metals to protect against corrosion
ES2428913T3 (en) Procedure for adjusting the coefficient of friction of a metal workpiece
KR101014740B1 (en) Chromium-free metal surface treatment agent
KR101157816B1 (en) Chromium-free rust inhibitive treatment method for metal products having zinc surface and metal products treated thereby
JP6502905B2 (en) Corrosion prevention coating
JPH1129724A (en) Rust-preventive coating agent and rust-preventive treatment
JP2012505963A5 (en)
JPH10195345A (en) Rust-proofing coating agent containing triazinethiol, method for rust-proofing and rust-proofed metallic metal
US11859090B2 (en) Protective coatings for galvanized steel
JP4074320B2 (en) Non-chromium anticorrosion treatment method for metal member having zinc surface
JP6685268B2 (en) Sealing agent
JP2007176072A (en) Resin coated aluminum plate and manufacturing method of the same
JP4478057B2 (en) Surface-treated metal plate
KR100775109B1 (en) Coated metal plate with excellent corrosion resistance and reduced environmental impact
JP2015189995A (en) sealing treatment agent
JP2006022251A (en) Barrier coat composition
JP6495221B2 (en) Sealing agent
JP6155006B2 (en) Aqueous chromium-free treatment solution
US20220348775A1 (en) Inorganic coating composition containing functionalised graphene as a replacement for metallic pigments
JP2007161765A (en) Clear coated steel sheet and aqueous coating liquid to be used therefor
JP2006281710A (en) Coated steel plate excellent in film adhesion and its manufacturing method
JPS58185660A (en) Primary rust-resisting paint composition
JP2006160776A (en) Water-based zinc-rich coating
JP2784325B2 (en) Colored and lubricated galvanized steel sheet with high end face corrosion resistance and its manufacturing method
JP2013166979A (en) Chromium-free aqueous treatment liquid, treated coating, and metal product