JP2006022219A - Method for producing diene-based rubber polymer - Google Patents

Method for producing diene-based rubber polymer Download PDF

Info

Publication number
JP2006022219A
JP2006022219A JP2004201837A JP2004201837A JP2006022219A JP 2006022219 A JP2006022219 A JP 2006022219A JP 2004201837 A JP2004201837 A JP 2004201837A JP 2004201837 A JP2004201837 A JP 2004201837A JP 2006022219 A JP2006022219 A JP 2006022219A
Authority
JP
Japan
Prior art keywords
monomer
polymerization
mass
reactor
diene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004201837A
Other languages
Japanese (ja)
Inventor
Masaki Omote
昌樹 面手
Sadaji Kawabe
貞治 川部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2004201837A priority Critical patent/JP2006022219A/en
Publication of JP2006022219A publication Critical patent/JP2006022219A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a diene-based rubber polymer, which improves productivity of a diene-based rubber polymer while keeping safety during polymerization of a diene-based monomer. <P>SOLUTION: The method for producing a diene-based rubber polymer by emulsion polymerization of a monomer containing a diene-based monomer comprises an initial polymerization process for collectively feeding ≥5 mass% and <10 mass % of the total monomer (100 mass%) to a reactor and polymerizing the monomer until the conversion ratio of the monomer to the polymer reaches 70-85 mass% and, successively the initial polymerization process, a drop polymerization process for dropping the residual monomer on the reactor and polymerizing the monomer. During the drop polymerization process, the monomer is dropped on the reactor so that the drop rate always makes the conversion rate of the monomer to the polymer 70-85 mass%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ジエン系ゴム重合体の製造方法に関する。   The present invention relates to a method for producing a diene rubber polymer.

ジエン系ゴム重合体は、ABS(アクリロニトリル−ブタジエン−スチレン)樹脂、MBS(メチルメタクリレート−ブタジエン−スチレン)樹脂等における弾性体として使用され、通常は乳化重合により製造されている。これらの樹脂の性能のうち特に耐衝撃性等は、ジエン系ゴム重合体の粒子径に依存することが広く知られている。ジエン系ゴム重合体の粒子径が大きいほど耐衝撃性は良好となるが、ジエン系ゴム重合体の粒子径の大きさ(粒子数)とジエン系単量体の重合速度とには相関があり、粒子径を大きくする(粒子数を少なくする)とジエン系単量体の重合速度が低下し、ジエン系ゴム重合体の生産性が低下する傾向にある。   The diene rubber polymer is used as an elastic body in ABS (acrylonitrile-butadiene-styrene) resin, MBS (methyl methacrylate-butadiene-styrene) resin and the like, and is usually produced by emulsion polymerization. Of the performance of these resins, it is widely known that particularly impact resistance and the like depend on the particle size of the diene rubber polymer. The larger the particle size of the diene rubber polymer, the better the impact resistance, but there is a correlation between the particle size of the diene rubber polymer (number of particles) and the polymerization rate of the diene monomer. When the particle size is increased (the number of particles is decreased), the polymerization rate of the diene monomer is lowered, and the productivity of the diene rubber polymer tends to be lowered.

ジエン系単量体の重合速度を上げる方法としては、重合温度を上げることが有効な手段であることは広く知られている。しかしながら、重合初期段階から重合温度を上げた場合、重合速度増大に起因して単位時間あたりの重合発熱が著しく大きくなり、反応制御が困難になることから安全上問題が生じる。さらに、生産規模(反応器容量)が大きくなるにつれて、重合反応熱の除去が困難になり、暴走反応を起こす原因となる。特に、単量体の主成分がブタジエンの場合では、単量体が大きな蒸気圧を有することから反応器内の温度を上昇させると、反応器内圧力が著しく上昇し、反応器耐圧を超えるおそれがある。そこで、このような事態を避けるために反応器耐圧を上げることが考えられるが、反応器の製造コストの上昇につながり、設備投資額削減の観点から大きな問題となる。
このような背景に基づき、暴走反応を起こさないような比較的低温でジエン系単量体の重合を開始するのが一般的である。
As a method for increasing the polymerization rate of the diene monomer, it is widely known that increasing the polymerization temperature is an effective means. However, when the polymerization temperature is increased from the initial stage of polymerization, the heat of polymerization per unit time is remarkably increased due to an increase in the polymerization rate, and the reaction control becomes difficult. Furthermore, as the production scale (reactor capacity) increases, it becomes difficult to remove the heat of polymerization reaction, which causes a runaway reaction. In particular, when the main component of the monomer is butadiene, if the temperature in the reactor is increased because the monomer has a large vapor pressure, the pressure in the reactor may increase significantly, possibly exceeding the reactor pressure resistance. There is. In order to avoid such a situation, it is conceivable to increase the pressure resistance of the reactor, but this leads to an increase in the production cost of the reactor, which is a big problem from the viewpoint of reducing the capital investment.
Based on this background, it is common to initiate the polymerization of the diene monomer at a relatively low temperature that does not cause a runaway reaction.

また、ジエン系ゴム重合体は、近年その有用性がますます高まってきており、より一層の生産性の向上が望まれている。しかしながら、反応器の単位体積当たりのジャケット冷却能力は、反応器の容量の増加に伴って低下するため、小スケールの場合には容易に生産可能な重合速度領域であっても、大容量になると重合発熱を除熱できなくなり、暴走反応を引き起こす原因となる。したがって、生産性の向上を目的として反応器の大容量化を実施すれば、その反応器の除熱能力に相当する速度まで重合速度を低下させることが必要となり、目的とする生産性の向上に相反する対策を取らなければならなかった。また、重合速度を低下させずに、しかも安全に生産を実施するためには、ベントコンデンサ等の補助的な冷却設備を設置して除熱能力を高める方法が考えられるが、かかる方法によって十分な生産性の向上を図ることは困難である。   In addition, the usefulness of diene rubber polymers has been increasing in recent years, and further improvement in productivity is desired. However, since the jacket cooling capacity per unit volume of the reactor decreases with an increase in the capacity of the reactor, even when the polymerization rate region can be easily produced in the case of a small scale, the capacity becomes large. The polymerization exotherm cannot be removed and causes a runaway reaction. Therefore, if the capacity of a reactor is increased for the purpose of improving productivity, it is necessary to reduce the polymerization rate to a speed corresponding to the heat removal capacity of the reactor, and to improve the target productivity. I had to take conflicting measures. Moreover, in order to implement production safely without reducing the polymerization rate, a method of increasing the heat removal capability by installing an auxiliary cooling facility such as a vent condenser is conceivable. It is difficult to improve productivity.

そこで、ジエン系ゴム重合体の生産性を向上させる試みが行われている。例えば、圧力器にあらかじめ仕込んでおいた水、乳化剤、ジエン単量体を含んでなる液体バッチ組成物に、ジエン単量体と開始剤を含んでなる液体供給組成物を連続的に供給するセミバッチ法に関する提案がなされている(例えば特許文献1参照)。
しかしながら、特許文献1の方法では、重合時間の短縮を目的に重合時の温度を上昇させると、高圧ガスであるジエン系単量体を使用しているので、反応器内圧力が上昇して危険であるため、一定レベル以上の重合時間の短縮は不可能である。また、ジエン系ゴム重合体の粒子径が大きい場合には、重合時間短縮の困難さは、特に顕著に現れる。
特開平9−176213号公報
Thus, attempts have been made to improve the productivity of diene rubber polymers. For example, a semi-batch that continuously supplies a liquid feed composition comprising a diene monomer and an initiator to a liquid batch composition comprising water, an emulsifier, and a diene monomer previously charged in a pressure device. The proposal regarding the law is made | formed (for example, refer patent document 1).
However, in the method of Patent Document 1, if the temperature during polymerization is increased for the purpose of shortening the polymerization time, a diene monomer that is a high-pressure gas is used. Therefore, it is impossible to shorten the polymerization time above a certain level. Further, when the particle size of the diene rubber polymer is large, the difficulty of shortening the polymerization time is particularly noticeable.
JP-A-9-176213

よって、本発明の目的は、ジエン系単量体の重合時の安全性を保ちつつ、かつジエン系ゴム重合体の生産性を向上させることができるジエン系ゴム重合体の製造方法を提供することにある。   Therefore, an object of the present invention is to provide a method for producing a diene rubber polymer that can improve the productivity of the diene rubber polymer while maintaining safety during polymerization of the diene monomer. It is in.

本発明者らは、前記課題を解決するべく検討を行った結果、本発明のジエン系ゴム重合体の製造方法を発明するに到った。
すなわち、本発明のジエン系ゴム重合体の製造方法は、ジエン系単量体を含む単量体の乳化重合によりジエン系ゴム重合体を製造する方法であり、全単量体(100質量%)のうちの5質量%以上10質量%未満を一括で反応器に投入し、単量体の重合体への転化率が70〜85質量%になるまで単量体を重合させる初期重合工程と、初期重合工程に引き続き、残りの単量体を反応器内に滴下して重合させる滴下重合工程とを有し、適下重合工程の間、反応器内の単量体の重合体への転化率が常に70〜85質量%となるような滴下速度で単量体を滴下することを特徴とする。
また、滴下重合工程において、全単量体100質量部に対して60質量部以下の水を単量体とともに滴下することが望ましい。
As a result of studies to solve the above-mentioned problems, the present inventors have invented the method for producing a diene rubber polymer of the present invention.
That is, the method for producing a diene rubber polymer of the present invention is a method for producing a diene rubber polymer by emulsion polymerization of a monomer containing a diene monomer, and the total monomer (100% by mass) An initial polymerization step in which 5% by mass or more and less than 10% by mass of the monomer is charged into the reactor at once, and the monomer is polymerized until the conversion rate of the monomer to the polymer becomes 70 to 85% by mass; Subsequent to the initial polymerization step, there is a dropping polymerization step in which the remaining monomer is dropped into the reactor to polymerize, and during the appropriate polymerization step, the conversion rate of the monomer in the reactor to the polymer Is characterized in that the monomer is added dropwise at a dropping rate such that is always 70 to 85% by mass.
In addition, in the dropping polymerization step, it is desirable to drop 60 parts by mass or less of water together with the monomer with respect to 100 parts by mass of all monomers.

本発明のジエン系ゴム重合体の製造方法によれば、ジエン系単量体の重合時の安全性を保ちつつ、かつジエン系ゴム重合体の生産性を向上させることができる。   According to the method for producing a diene rubber polymer of the present invention, it is possible to improve the productivity of the diene rubber polymer while maintaining safety during polymerization of the diene monomer.

以下、本発明を詳細に説明する。
本発明において、耐圧とは、反応器製造業者が示した反応器耐圧のことであり、常用圧力とは、日常の操作において上がり得る最大圧力であり、重合初期とは、重合開始時点から単量体の残部の滴下開始時点までであり、重合開始温度とは、重合開始時の圧力が反応器常用圧力以下になる温度である。
Hereinafter, the present invention will be described in detail.
In the present invention, the pressure resistance is the reactor pressure resistance indicated by the reactor manufacturer, the normal pressure is the maximum pressure that can be increased in daily operations, and the initial stage of polymerization is a single amount from the start of polymerization. Up to the start of dropping of the rest of the body, the polymerization start temperature is a temperature at which the pressure at the start of polymerization becomes equal to or lower than the reactor normal pressure.

本発明のジエン系ゴム重合体の製造方法は、重合開始剤および乳化剤を加えた水中に、ジエン系単量体を含む単量体を分散させて重合させる方法、いわゆる乳化重合によりジエン系ゴム重合体を製造する方法であり、単量体の一部を一括で反応器に投入し、単量体を重合させる初期重合工程と、初期重合工程に引き続き、残りの単量体を反応器内に滴下して重合させる滴下重合工程とを有する製造方法である。   The method for producing the diene rubber polymer of the present invention is a method in which a monomer containing a diene monomer is dispersed in water to which a polymerization initiator and an emulsifier are added. This is a method for producing a coalescence, in which a part of the monomers is charged into the reactor in a lump and the monomer is polymerized, and after the initial polymerization step, the remaining monomers are put into the reactor. A dropping polymerization step of dropping and polymerizing.

本発明におけるジエン系単量体としては、1,2−ブタジエン、1,3−ブタジエン、イソプレン等が挙げられる。
ジエン系単量体以外の成分としては、スチレン、α−メチルスチレンなどの芳香族ビニル化合物;メチルアクリレート、n−ブチルアクリレートなどのアクリル酸エステル;メチルメタクリレート、エチルメタクリレートなどのメタクリル酸エステル;アクリロニトリル、メタアクリロニトリルなどが挙げられる。
また、ジビニルベンゼン、1,3−ブチレンジメタクリレート、アリルメタクリレートなどの架橋剤;メルカプタン類、テレペン類といった連鎖移動剤を単量体と併せて使用することは可能である。
Examples of the diene monomer in the present invention include 1,2-butadiene, 1,3-butadiene, isoprene and the like.
Components other than diene monomers include aromatic vinyl compounds such as styrene and α-methylstyrene; acrylic acid esters such as methyl acrylate and n-butyl acrylate; methacrylic acid esters such as methyl methacrylate and ethyl methacrylate; acrylonitrile, And methacrylonitrile.
Moreover, it is possible to use crosslinking agents such as divinylbenzene, 1,3-butylene dimethacrylate, and allyl methacrylate; chain transfer agents such as mercaptans and terpenes in combination with monomers.

乳化剤としては、特に限定しないが、不均化ロジン酸、オレイン酸、ステアリン酸などの高級脂肪酸のアルカリ金属塩;ドデシルベンゼンスルホン酸ナトリウム、アルキルジフェニルエーテルジスルホン酸ナトリウムなどのスルホン酸系塩化合物;ラウリル硫酸ナトリウムなどの硫酸系塩化合物などが挙げられる。これらは、単独で、または2種以上を組み合わせて使用できる。
また、重合安定性を向上させる目的で、乳化分散剤を使用することができる。乳化分散剤としては、β−ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩などが挙げられる。
The emulsifier is not particularly limited, but alkali metal salts of higher fatty acids such as disproportionated rosin acid, oleic acid and stearic acid; sulfonic acid salt compounds such as sodium dodecylbenzenesulfonate and sodium alkyldiphenyl ether disulfonate; lauryl sulfate Examples thereof include sulfuric acid salt compounds such as sodium. These can be used alone or in combination of two or more.
In addition, an emulsifying dispersant can be used for the purpose of improving the polymerization stability. Examples of the emulsifying dispersant include sodium salt of β-naphthalenesulfonic acid formalin condensate.

重合開始剤としては、特に限定しないが、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウムなどの水溶性過硫酸;ジイソピロピルベンゼンヒドロパーオキサイド、p−メンタンハイドロパーオキサイド、キュメインハイドロパーオキサイド、t−ブチルハイドロパーオキサイド、メチルシクロヘキシルハイドロパーオキサイドなどの有機過酸過物を一成分としたレドックス系開始剤を使用できる。   Although it does not specifically limit as a polymerization initiator, Water-soluble persulfuric acid, such as potassium persulfate, sodium persulfate, and ammonium persulfate; diisopropyl benzene benzene hydroperoxide, p-menthane hydroperoxide, cumain hydroperoxide, Redox initiators containing an organic peracid peroxide such as t-butyl hydroperoxide and methylcyclohexyl hydroperoxide as one component can be used.

反応器内の温度の上限は、特に限定はしないが、ジエン系ゴム重合体の安定性の観点から120℃以下が好ましい。
乳化重合中の除熱の方法は、特に限定しないが、反応器周囲にジャケットを設け、そのジャケット内に温度調節可能な冷却水を循環させる方法が好ましい。
The upper limit of the temperature in the reactor is not particularly limited, but is preferably 120 ° C. or less from the viewpoint of the stability of the diene rubber polymer.
A method for removing heat during emulsion polymerization is not particularly limited, but a method in which a jacket is provided around the reactor and a temperature-adjustable cooling water is circulated in the jacket is preferable.

(初期重合工程)
本発明において、初期重合工程における単量体の仕込み量は、全単量体(100質量%)のうち、5質量%以上かつ10質量%未満である。単量体の仕込み量が全単量体の5質量%未満では、バッチ間で、形成されるジエン系ゴム重合体の粒子数にばらつきが生じやすく、ジエン系ゴム重合体の再現性が低下する。単量体の仕込み量が全単量体の10質量%を超えると、初期重合工程における未反応単量体の量が多くなり、反応器内の温度制御ができなくなった場合の最高到達圧力が大きくなるおそれがある。
(Initial polymerization process)
In this invention, the preparation amount of the monomer in an initial stage polymerization process is 5 mass% or more and less than 10 mass% among all the monomers (100 mass%). When the charged amount of the monomer is less than 5% by mass of the total monomer, the number of diene rubber polymers formed tends to vary from batch to batch, and the reproducibility of the diene rubber polymer is lowered. . When the monomer charge exceeds 10% by mass of the total monomer, the amount of unreacted monomer in the initial polymerization step increases, and the maximum pressure reached when temperature control in the reactor cannot be controlled. May grow.

ジエン系単量体が主成分の場合、耐圧反応器を用いて高圧下でジエン系単量体を液化させて重合する必要があるため、反応器耐圧との関係で重合温度が制限される。そのため、通常、反応器内圧力が反応器の常用圧力以下になるように重合温度を設定し重合を開始する必要がある。また、安全上、重合初期の単量体の仕込み量は、重合初期の段階で暴走反応が起こっても反応器の耐圧を超えない量にすることが重要である。暴走反応は、重合発熱を除熱することができなくなった際に、重合の発熱量が反応器内の温度を上昇させることによって起こる。したがって、暴走反応が始まった際の未反応単量体が少なければ少ないほど、重合による発熱量は小さくなるため、反応器内の温度は比較的高くならず、反応も比較的早く停止する。また、このような系においては、未反応単量体が減少してくると反応器内圧力は低下し始めるのが通常である。   When the diene monomer is the main component, it is necessary to polymerize the diene monomer by liquefying under high pressure using a pressure resistant reactor, so that the polymerization temperature is limited in relation to the reactor pressure resistance. Therefore, it is usually necessary to start the polymerization by setting the polymerization temperature so that the pressure in the reactor becomes equal to or lower than the normal pressure of the reactor. For safety reasons, it is important that the monomer charge in the initial stage of polymerization is an amount that does not exceed the pressure resistance of the reactor even if a runaway reaction occurs in the initial stage of polymerization. The runaway reaction occurs when the heat generated by the polymerization increases the temperature in the reactor when the heat generated by the polymerization cannot be removed. Therefore, the smaller the amount of unreacted monomer at the start of the runaway reaction, the smaller the amount of heat generated by the polymerization. Therefore, the temperature in the reactor is not relatively high, and the reaction is stopped relatively quickly. In such a system, when the unreacted monomer decreases, the pressure in the reactor usually starts to decrease.

そこで、本発明においては,暴走反応の起こる要因を考慮して、反応器内圧力が降下している状態で重合を進行させることで、これまで提案されてきたセミバッチ式重合法より重合温度を上昇させることができることを見出した。高圧ガスであるブタジエン単量体等の重合反応中の反応器内では、気液平衡が成り立った状態で重合が進行していく。しかし、重合反応が進行し、単量体の量が減ってくると、気液平衡のバランスが崩れて、反応器内の圧力が降下してくる。この圧力の降下は、一般に全単量体量の50〜60質量%が重合体に転化した時点から起こり始める。圧力の降下が起こり始めると重合温度を上昇させても単量体が再び追加されない限りは圧力が急激に上昇しない。
すなわち、初期重合工程において仕込まれた単量体が反応する際、未反応単量体の量を極めて減少させることで、暴走反応を起こり難くし、また、それにより反応器内圧力の低下を短時間で起こさせることができるため、重合初期から重合温度を上昇させられるという方法である。
Therefore, in the present invention, the polymerization temperature is increased from the previously proposed semi-batch polymerization method by allowing the polymerization to proceed in a state where the pressure in the reactor is lowered in consideration of the cause of the runaway reaction. I found out that I can make it. In the reactor during the polymerization reaction of a butadiene monomer that is a high-pressure gas, the polymerization proceeds in a state where gas-liquid equilibrium is established. However, when the polymerization reaction proceeds and the amount of monomer decreases, the balance of gas-liquid equilibrium is lost, and the pressure in the reactor drops. This pressure drop generally begins when 50-60% by weight of the total monomer has been converted to a polymer. When the pressure starts to drop, increasing the polymerization temperature will not increase the pressure rapidly unless the monomer is added again.
In other words, when the monomer charged in the initial polymerization process reacts, the amount of unreacted monomer is greatly reduced, thereby making it difficult for the runaway reaction to occur, thereby reducing the decrease in the pressure in the reactor. Since it can be caused in time, the polymerization temperature can be raised from the initial stage of polymerization.

(滴下重合工程)
本発明において、滴下重合工程の間に滴下する単量体の量は、初期重合工程にて仕込まれなかった単量体の残部、すなわち単量体全単量体(100質量%)のうち90質量%以上、かつ95質量部未満である。
(Drip polymerization process)
In the present invention, the amount of the monomer dropped during the dropping polymerization step is 90% of the remainder of the monomer not charged in the initial polymerization step, that is, out of the total monomer (100% by mass). It is at least mass% and less than 95 parts by mass.

本発明において、単量体の残部の滴下開始は、初期重合工程にて仕込まれた単量体の重合体への転化率が、70質量%〜85質量%になった時点である。転化率が70質量%未満の状態で単量体の残部の滴下を開始すると、暴走反応が起こった際の圧力上昇値が反応器の耐圧を超える可能性がある。転化率が85質量%を超えた状態で単量体の残部の滴下を開始すると、反応器内の重合体の安定性が低下し、カレットが発生する可能性がある。   In the present invention, the dropping of the remainder of the monomer is started when the conversion rate of the monomer charged in the initial polymerization step to 70% by mass to 70% by mass. If dropping of the remainder of the monomer is started in a state where the conversion is less than 70% by mass, the pressure increase value when the runaway reaction occurs may exceed the pressure resistance of the reactor. If the dropping of the remainder of the monomer is started in a state where the conversion rate exceeds 85% by mass, the stability of the polymer in the reactor is lowered, and cullet may be generated.

本発明においては、適下重合工程の間、反応器内の単量体(初期重合工程にて仕込まれ単量体、および滴下重合工程にて滴下された単量体の合計)の重合体への転化率が常に70〜85質量%となるような滴下速度で単量体を滴下することが必要である。
反応器内の単量体の重合体への転化率が70質量%未満になると、圧力の降下がまだ十分に起こっていないため、圧力が上昇する可能性がある。反応器内の単量体の重合体への転化率が85質量%を超えると、反応器内の重合体の安定性が低下し、カレットが発生する可能性があるため好ましくない。
In the present invention, during the appropriate polymerization step, the monomer in the reactor (the sum of the monomer charged in the initial polymerization step and the monomer dropped in the dropping polymerization step) is polymerized. It is necessary to drop the monomer at a dropping rate such that the conversion rate of is always 70 to 85% by mass.
When the conversion rate of the monomer into the polymer in the reactor is less than 70% by mass, the pressure may increase because the pressure has not sufficiently decreased. When the conversion ratio of the monomer in the reactor to the polymer exceeds 85% by mass, the stability of the polymer in the reactor is lowered and cullet may be generated, which is not preferable.

反応器内の単量体の重合体への転化率がこの範囲内に入るように滴下速度をコントロールすれば、圧力の降下が起こるため、重合開始時点から反応器内の圧力を常用圧力以内に維持することが可能となる。滴下速度を決定する方法としては、重合中に転化率を測定しながら、滴下速度を決定してもよいく、また、ジエン系単量体の重合速度があらかじめ分かっていれば、滴下される単量体の量と重合速度との関係から最適な滴下速度を求めて決定することもできる。なお、本発明における単量体の滴下は、単量体の滴下速度、すなわち単位時間当たりの滴下量が単量体の転化率を70〜85質量%にするような量でありさえすれば、連続的に行っても、間欠的に行ってもよい。   If the dropping rate is controlled so that the conversion rate of the monomer in the reactor into the polymer falls within this range, the pressure will drop, so the pressure in the reactor will be within the normal pressure from the start of polymerization. Can be maintained. As a method for determining the dropping rate, the dropping rate may be determined while measuring the conversion rate during the polymerization, or if the polymerization rate of the diene monomer is known in advance, the dropping rate may be determined. It can also be determined by determining the optimum dropping rate from the relationship between the amount of the monomer and the polymerization rate. In addition, the dropping of the monomer in the present invention is as long as the dropping rate of the monomer, that is, the dropping amount per unit time is such that the conversion rate of the monomer is 70 to 85% by mass, It may be performed continuously or intermittently.

適下重合工程において、全単量体100質量部に対して60質量部以下の水を単量体とともに滴下することが、水の滴下の顕熱を利用して反応器内の除熱を行うことができる点で好ましい。単量体とともに滴下する水の量が全単量体100質量部に対して60質量部を超えると、初期に仕込む水の量が少なくなるため、反応器内組成物の攪拌が出来なくなり、粒子生成期間の重合挙動における再現性が低下する傾向にある。   In the proper polymerization step, dropping 60 parts by mass or less of water together with the monomer with respect to 100 parts by mass of the total monomer removes heat in the reactor using the sensible heat of the dropwise addition of water. It is preferable in that When the amount of water dripped together with the monomer exceeds 60 parts by mass with respect to 100 parts by mass of all monomers, the amount of water initially charged decreases, so that the composition in the reactor cannot be stirred, and the particles The reproducibility in the polymerization behavior during the production period tends to decrease.

このようにして得られるジエン系ゴム重合体の粒子径は、質量平均粒子径で好ましくは80〜400nmであり、より好ましくは100〜300nmであり、さらに好ましくは、120〜300nmである。ジエン系ゴム重合体の質量平均粒子径が80nmより小さい場合は、十分な耐衝撃性が得られない。ジエン系ゴム重合体の質量平均粒子径が400nmを超える場合は、透明性が低下する。   The particle size of the diene rubber polymer thus obtained is preferably 80 to 400 nm, more preferably 100 to 300 nm, and still more preferably 120 to 300 nm in terms of mass average particle size. When the mass average particle diameter of the diene rubber polymer is smaller than 80 nm, sufficient impact resistance cannot be obtained. When the mass average particle diameter of the diene rubber polymer exceeds 400 nm, the transparency is lowered.

質量平均粒子径が120nm以上のジエン系ゴム重合体を製造しようとする場合、ジエン系単量体の重合速度が遅くなる。よって、本発明のジエン系ゴム重合体の製造方法は、質量平均粒子径が120nm以上のジエン系ゴム重合体を製造する場合に、その効果を十分に発揮することができる。
本発明におけるジエン系ゴム重合体とは、少なくとも重合体(100質量%)中、ブタジエン、イソプレン等のジエン系単量体単位を60〜100質量部含む重合体を意味する。
When attempting to produce a diene rubber polymer having a mass average particle diameter of 120 nm or more, the polymerization rate of the diene monomer is slow. Therefore, the method for producing a diene rubber polymer of the present invention can sufficiently exert its effect when producing a diene rubber polymer having a mass average particle diameter of 120 nm or more.
The diene rubber polymer in the present invention means a polymer containing 60 to 100 parts by mass of diene monomer units such as butadiene and isoprene in at least a polymer (100% by mass).

以下に実施例に基づき本発明を説明する。実施例、比較例中の部は、特にことわりがない限り質量部を表す。また、圧力は、ゲージ圧で表した。   The present invention will be described below based on examples. The part in an Example and a comparative example represents a mass part unless there is particular notice. Moreover, the pressure was represented by a gauge pressure.

[質量平均粒子径]
ジエン系ゴム重合体の質量平均粒子径は、キャピラリー式粒度分布計より求めた。
[転化率の測定]
重合中の転化率は、オートクレーブの底の開閉弁より反応器の内容物を、重合禁止剤を少量入れたサンプル瓶に約20g採取し、そのうち10gをアルミ皿に入れ、質量を測り、それを180℃に設定したギアオーブンに30分間投入後、再度質量を測り、質量差から固形分(質量%)を測定した。そして、測定した固形分の値を下記(1)式に代入し、転化率を得た。ここで、(1)式中、単量体質量、水質量、不揮発分質量およびブタジエン質量は、反応器内に投入、滴下された単量体、水、不揮発分およびブタジエンの量であり、不揮発分とは、具体的にはピロリン酸ナトリウム、硫酸第一鉄、エチレンジアミン四酢酸二ナトリウムなどの重合に使用される触媒を指す。
[Mass average particle diameter]
The mass average particle size of the diene rubber polymer was determined from a capillary type particle size distribution meter.
[Measurement of conversion]
The conversion during polymerization was measured by collecting approximately 20g of the contents of the reactor from the open / close valve at the bottom of the autoclave into a sample bottle containing a small amount of polymerization inhibitor. After putting in the gear oven set to 180 degreeC for 30 minutes, mass was measured again, and solid content (mass%) was measured from the mass difference. And the value of the measured solid content was substituted into the following (1) formula, and the conversion rate was obtained. Here, in the formula (1), the monomer mass, the water mass, the nonvolatile content mass and the butadiene mass are the amounts of the monomer, water, nonvolatile content and butadiene charged and dropped into the reactor. Specifically, “min” refers to a catalyst used for polymerization of sodium pyrophosphate, ferrous sulfate, disodium ethylenediaminetetraacetate and the like.

Figure 2006022219
Figure 2006022219

[実施例1]
(初期重合工程)
ジャケット付き70Lオートクレーブ(反応器耐圧1.0MPa、常用圧力600kPa)に、表1に示す初期仕込み組成物を仕込んでジャケット循環水温度を80℃にして反応器内の昇温を開始し、50℃になった時点で表1に示す触媒を反応器内に投入して重合を開始し、1hr毎にオートクレーブより重合体をサンプリングし、転化率を測定した。また、重合開始から1.0hrで反応器内の温度が72℃になるようにジャケット循環水を調節して昇温した。
[Example 1]
(Initial polymerization process)
A jacketed 70 L autoclave (reactor pressure 1.0 MPa, normal pressure 600 kPa) was charged with the initial charge composition shown in Table 1, the jacket circulating water temperature was set to 80 ° C., and the temperature inside the reactor was increased to 50 ° C. At that time, the catalyst shown in Table 1 was put into the reactor to start polymerization, and the polymer was sampled from the autoclave every 1 hr, and the conversion rate was measured. Further, the temperature was raised by adjusting the jacket circulating water so that the temperature in the reactor became 72 ° C. at 1.0 hr from the start of polymerization.

(滴下重合工程)
重合開始1.0hr後より表1に示す滴下組成物を、反応器内の単量体の重合体への転化率が、75質量%になるように滴下した。このときの滴下速度は、表1に示す滴下速度であり、これを3.3hrかけて滴下した。その際、ジャケット循環水は、反応器内温度が72℃になるように調整した。
(Drip polymerization process)
From 1.0 hour after the start of polymerization, the dropping composition shown in Table 1 was added dropwise so that the conversion ratio of the monomer in the reactor to the polymer was 75% by mass. The dropping speed at this time is the dropping speed shown in Table 1, and this was dropped over 3.3 hours. At that time, the jacket circulating water was adjusted so that the temperature in the reactor was 72 ° C.

滴下終了後、1hr毎に表1に示す追加開始剤を追加し、滴下終了から6.7hr後に重合を完了させた。
反応器内の重合中最大圧力は、常用圧力内の574kPaであった。単量体の転化率は、96.8質量%であった。また、重合終了後のジエン系ゴム重合体の質量平均粒子径は、0.16μmであった。反応器内のカレット量は、使用単量体質量に対して0.1質量%であった。結果を表2に示す。
After the completion of the addition, an additional initiator shown in Table 1 was added every 1 hr, and the polymerization was completed 6.7 hr after the completion of the addition.
The maximum pressure during polymerization in the reactor was 574 kPa, which was within the normal pressure. The conversion ratio of the monomer was 96.8% by mass. Moreover, the mass average particle diameter of the diene rubber polymer after completion of the polymerization was 0.16 μm. The amount of cullet in the reactor was 0.1% by mass with respect to the monomer mass used. The results are shown in Table 2.

Figure 2006022219
Figure 2006022219

Figure 2006022219
Figure 2006022219

[比較例1]
滴下重合工程における、反応器内の単量体の重合体への転化率が60質量%になるように滴下速度を表3のように設定し、滴下時間を2.5hrに変更した以外は、実施例1と同様の方法で行った。結果、反応器内の圧力は、重合開始から2.0hrの時点で常用圧力を超え、重合開始から3.0hrの時点で696.7kPaまで上昇した。トータルの重合時間は、6.9hrで、単量体の転化率は96.9質量%であった。また、重合終了後のジエン系ゴム重合体の質量平均粒子径は、0.16μmであった。反応器内のカレット量は、使用単量体質量に対して0.1質量%であった。結果を表4に示す。
[Comparative Example 1]
In the dropping polymerization step, except that the dropping rate was set as shown in Table 3 so that the conversion rate of the monomer in the reactor to the polymer was 60% by mass, and the dropping time was changed to 2.5 hr, The same method as in Example 1 was used. As a result, the pressure in the reactor exceeded the normal pressure at 2.0 hr from the start of polymerization and increased to 696.7 kPa at 3.0 hr from the start of polymerization. The total polymerization time was 6.9 hr, and the monomer conversion was 96.9% by mass. Moreover, the mass average particle diameter of the diene rubber polymer after completion of the polymerization was 0.16 μm. The amount of cullet in the reactor was 0.1% by mass with respect to the monomer mass used. The results are shown in Table 4.

Figure 2006022219
Figure 2006022219

Figure 2006022219
Figure 2006022219

[比較例2]
(初期重合工程)
ジャケット付き70Lオートクレーブ(反応器耐圧1.0MPa、常用圧力600kPa)に、表5に示す初期仕込み組成物を仕込んでジャケット循環水温度を80℃にして反応器内の昇温を開始し、50℃になった時点で表5に示す触媒を反応器内に投入して重合を開始し、反応器内の温度が72℃になるまで昇温した。
[Comparative Example 2]
(Initial polymerization process)
The jacketed 70L autoclave (reactor pressure 1.0 MPa, normal pressure 600 kPa) was charged with the initial charge composition shown in Table 5, the jacket circulating water temperature was set to 80 ° C., and the temperature inside the reactor was increased to 50 ° C. At that time, the catalyst shown in Table 5 was introduced into the reactor to start polymerization, and the temperature was raised until the temperature in the reactor reached 72 ° C.

(滴下重合工程)
重合開始1.3hr後より表5に示す滴下組成物を、反応器内の単量体の重合体への転化率が、70質量%になるように滴下した。このときの滴下速度は、表5に示す滴下速度であり、これを2.7hrかけて滴下した。その際、ジャケット循環水は、反応器内温度が72℃になるように調整した。
(Drip polymerization process)
From 1.3 hours after the start of the polymerization, the dropping composition shown in Table 5 was added dropwise so that the conversion ratio of the monomer in the reactor to the polymer was 70% by mass. The dropping speed at this time is the dropping speed shown in Table 5, and this was dropped over 2.7 hr. At that time, the jacket circulating water was adjusted so that the temperature in the reactor was 72 ° C.

滴下終了後、1hr毎に表1に示す追加開始剤を追加し、滴下終了から6.9hr後に重合を完了させた。
単量体の転化率は、96.7質量%であった。反応器内の重合中最大圧力は、常用圧力を超える639.7kPaまで上昇した。また、重合終了後のジエン系ゴム重合体の質量平均粒子径は、0.16μmであった。反応器内のカレット量は、使用単量体質量に対して0.1質量%であった。結果を表6に示す。
After the completion of dropping, the additional initiator shown in Table 1 was added every 1 hr, and the polymerization was completed 6.9 hr after the end of dropping.
The conversion ratio of the monomer was 96.7% by mass. The maximum pressure during the polymerization in the reactor rose to 639.7 kPa, which exceeds the normal pressure. Moreover, the mass average particle diameter of the diene rubber polymer after completion of the polymerization was 0.16 μm. The amount of cullet in the reactor was 0.1% by mass with respect to the monomer mass used. The results are shown in Table 6.

Figure 2006022219
Figure 2006022219

Figure 2006022219
Figure 2006022219

[比較例3]
滴下重合工程における、反応器内の単量体の重合体への転化率が90質量%になるように滴下速度を表7のように設定し、滴下時間を3.8hrに変更した以外は、実施例1と同様の方法で行った。結果、反応器内の圧力は、最大で512.3kPaであった。トータルの重合時間は、6.9hrで、単量体の転化率は96.8質量%であった。また、重合終了後のジエン系ゴム重合体の質量平均粒子径は、0.16μmであった。反応器内のカレット量は、使用単量体質量に対して1.2質量%であった。結果を表8に示す。
[Comparative Example 3]
In the dropping polymerization step, except that the dropping rate was set as shown in Table 7 so that the conversion ratio of the monomer in the reactor to the polymer was 90% by mass, and the dropping time was changed to 3.8 hr, The same method as in Example 1 was used. As a result, the maximum pressure in the reactor was 512.3 kPa. The total polymerization time was 6.9 hr, and the monomer conversion rate was 96.8% by mass. Moreover, the mass average particle diameter of the diene rubber polymer after completion of the polymerization was 0.16 μm. The amount of cullet in the reactor was 1.2% by mass relative to the mass of the monomer used. The results are shown in Table 8.

Figure 2006022219
Figure 2006022219

Figure 2006022219
Figure 2006022219

[比較例4]
(初期重合工程)
70Lオートクレーブ(反応器耐圧1.0MPa、常用圧力600kPa)に、表9に示す初期仕込み組成物を仕込んで昇温を開始し、50℃になった時点で表9に示す触媒を反応器内に投入して重合を開始し、反応器内の温度が62℃になるまで昇温した。
[Comparative Example 4]
(Initial polymerization process)
The initial charge composition shown in Table 9 was charged into a 70 L autoclave (reactor pressure resistance 1.0 MPa, normal pressure 600 kPa), and the temperature was increased. When the temperature reached 50 ° C., the catalyst shown in Table 9 was placed in the reactor. The polymerization was started to start polymerization, and the temperature in the reactor was increased to 62 ° C.

(滴下重合工程)
重合開始1.2hr後より表9に示す滴下組成物を、反応器内の単量体の重合体への転化率が、60質量%になるように滴下した。このときの滴下速度は、表9に示す滴下速度であり、これを4.0hrかけて滴下した。その際、ジャケット循環水は、反応器内温度が62℃になるように調整した。
(Drip polymerization process)
From 1.2 hours after the start of the polymerization, the dropping composition shown in Table 9 was added dropwise so that the conversion ratio of the monomer in the reactor to the polymer was 60% by mass. The dropping speed at this time is the dropping speed shown in Table 9, and this was dropped over 4.0 hr. At that time, the jacket circulating water was adjusted so that the temperature in the reactor was 62 ° C.

滴下終了後、1hr毎に表1に示す追加開始剤を追加し、滴下終了から9.0hr後に重合を完了させた。
単量体の転化率は、96.1質量%であった。反応器内の重合中最大圧力は、585.7kPaであった。また、重合終了後のジエン系ゴム重合体の質量平均粒子径は、0.16μmであった。反応器内のカレット量は、使用単量体質量に対しての0.1質量%であった。結果を表10に示す。
After the completion of dropping, an additional initiator shown in Table 1 was added every 1 hr, and the polymerization was completed 9.0 hr after the end of dropping.
The monomer conversion was 96.1% by mass. The maximum pressure during polymerization in the reactor was 585.7 kPa. Moreover, the mass average particle diameter of the diene rubber polymer after completion of the polymerization was 0.16 μm. The amount of cullet in the reactor was 0.1% by mass relative to the mass of the monomer used. The results are shown in Table 10.

Figure 2006022219
Figure 2006022219

Figure 2006022219
Figure 2006022219

実施例1では、初期重合工程における単量体の量を全単量体(100質量%)のうちの8.0質量%とし、滴下重合工程における反応器内の単量体の重合体への転化率を75〜80質量%にすることにより、反応器の常用圧力以下の圧力で重合を終了することができた。   In Example 1, the amount of the monomer in the initial polymerization step is 8.0% by mass of the total monomer (100% by mass), and the monomer in the reactor in the dropping polymerization step is added to the polymer. By setting the conversion rate to 75 to 80% by mass, the polymerization could be completed at a pressure lower than the normal pressure of the reactor.

比較例1では、滴下重合工程における反応器内の単量体の重合体への転化率が60〜65質量%になるようにコントロールしたので、反応器内の圧力は、常用圧力より大きくなってしまった。したがって、比較例1の条件で重合を実施する場合には、反応器内温度を下げて重合を行う必要があった。反応器内温度を下げることにより、重合速度が遅くなり、重合時間が実施例1に比べると遅くなる。   In Comparative Example 1, since the conversion ratio of the monomer in the reactor to the polymer in the dropping polymerization step was controlled to be 60 to 65% by mass, the pressure in the reactor became larger than the normal pressure. Oops. Therefore, when carrying out the polymerization under the conditions of Comparative Example 1, it was necessary to lower the temperature in the reactor and carry out the polymerization. By reducing the temperature in the reactor, the polymerization rate becomes slow, and the polymerization time becomes slow compared to Example 1.

比較例2では、初期重合工程における単量体の量を全単量体(100質量%)のうちの20質量%としたため、重合中の反応器内の最高圧力は、639.7kPaまで上昇した。これは、実施例1に比べて、反応器内の未反応単量体が多いためであり、比較例1と同様に重合時の反応器内温度を下げて重合を行う必要があり、重合時間は実施例1に比べると長くなる。   In Comparative Example 2, since the amount of the monomer in the initial polymerization step was 20% by mass of the total monomer (100% by mass), the maximum pressure in the reactor during the polymerization increased to 639.7 kPa. . This is because the amount of unreacted monomer in the reactor is larger than that in Example 1, and it is necessary to lower the temperature in the reactor during polymerization as in Comparative Example 1 to perform polymerization. Is longer than that of the first embodiment.

比較例3では、初期重合工程における単量体の量を全単量体(100質量%)のうちの8.0質量%とし、滴下重合工程における反応器内の単量体の重合体への転化率が90〜95質量%になるようにコントロールして重合を行った。反応器内圧力が実施例1に比べて小さくなる結果が得られたが、重合終了後の反応器内のカレットが実施例1に比べて12倍に増加した。重合1回当たりのカレットの増加は、反応器内の洗浄に負荷をかけることになり、結果として生産性を低下させる可能性がある。   In Comparative Example 3, the amount of the monomer in the initial polymerization step is 8.0% by mass of the total monomer (100% by mass), and the monomer in the reactor in the dropping polymerization step is added to the polymer. Polymerization was carried out while controlling the conversion rate to be 90 to 95% by mass. Although the result that the pressure in the reactor was smaller than that in Example 1 was obtained, the cullet in the reactor after the completion of polymerization increased 12 times compared with Example 1. An increase in cullet per polymerization will place a burden on cleaning in the reactor and may result in reduced productivity.

比較例4では、反応器内圧力が常用圧力を超えないように重合温度を62℃まで下げて重合を実施した。実施例1と比べて、最終的に得られる重合体はほぼ同等なものが得られたが、重合時間が9hrとなり、生産性の面で不利である。   In Comparative Example 4, the polymerization was carried out with the polymerization temperature lowered to 62 ° C. so that the pressure in the reactor did not exceed the normal pressure. Compared with Example 1, the polymer finally obtained was almost equivalent, but the polymerization time was 9 hr, which is disadvantageous in terms of productivity.

本発明のジエン系ゴム重合体の製造方法によれば、ジエン系単量体または、ジエン系単量体を主成分とする単量体混合物の重合反応において、重合開始から重合終了までの反応器内の圧力を反応器の常用圧力以上に上昇させることなく一定に維持でき、重合時間を大幅に短縮することが可能になる。このようなジエン系ゴム重合体の製造方法は、工業的に有用である。
According to the method for producing a diene rubber polymer of the present invention, in a polymerization reaction of a diene monomer or a monomer mixture containing a diene monomer as a main component, a reactor from the start of polymerization to the end of polymerization. The internal pressure can be kept constant without raising the pressure beyond the normal pressure of the reactor, and the polymerization time can be greatly shortened. Such a method for producing a diene rubber polymer is industrially useful.

Claims (2)

ジエン系単量体を含む単量体の乳化重合によりジエン系ゴム重合体を製造する方法であり、
全単量体(100質量%)のうちの5質量%以上10質量%未満を一括で反応器に投入し、単量体の重合体への転化率が70〜85質量%になるまで単量体を重合させる初期重合工程と、
初期重合工程に引き続き、残りの単量体を反応器内に滴下して重合させる滴下重合工程とを有し、
適下重合工程の間、反応器内の単量体の重合体への転化率が常に70〜85質量%となるような滴下速度で単量体を滴下することを特徴とするジエン系ゴム重合体の製造方法。
A method for producing a diene rubber polymer by emulsion polymerization of a monomer containing a diene monomer,
5% by mass or more and less than 10% by mass of all the monomers (100% by mass) are charged into the reactor at a time, and the single monomer is used until the conversion rate of the monomer to the polymer becomes 70 to 85% by mass. An initial polymerization step for polymerizing the body,
Subsequent to the initial polymerization step, a dropping polymerization step in which the remaining monomer is dropped into the reactor and polymerized, and
The diene rubber weight is characterized in that the monomer is dropped at a dropping rate so that the conversion rate of the monomer into the polymer in the reactor is always 70 to 85% by mass during the appropriate polymerization step. Manufacturing method of coalescence.
滴下重合工程において、全単量体100質量部に対して60質量部以下の水を単量体とともに滴下することを特徴とする請求項1記載のジエン系ゴム重合体の製造方法。
2. The method for producing a diene rubber polymer according to claim 1, wherein in the dropping polymerization step, 60 parts by mass or less of water is dropped together with the monomer with respect to 100 parts by mass of all monomers.
JP2004201837A 2004-07-08 2004-07-08 Method for producing diene-based rubber polymer Withdrawn JP2006022219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004201837A JP2006022219A (en) 2004-07-08 2004-07-08 Method for producing diene-based rubber polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004201837A JP2006022219A (en) 2004-07-08 2004-07-08 Method for producing diene-based rubber polymer

Publications (1)

Publication Number Publication Date
JP2006022219A true JP2006022219A (en) 2006-01-26

Family

ID=35795733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004201837A Withdrawn JP2006022219A (en) 2004-07-08 2004-07-08 Method for producing diene-based rubber polymer

Country Status (1)

Country Link
JP (1) JP2006022219A (en)

Similar Documents

Publication Publication Date Title
JPH0723444B2 (en) Method for producing HCFC resistant thermoplastic resin composition
KR20070090149A (en) A preparation method of small particle sized polybutadiene latex used for the production of abs
JPH05279407A (en) Preparation of carboxylated latex by selective monomer addition and polymerization
JP2006022219A (en) Method for producing diene-based rubber polymer
JPS6261048B2 (en)
EP3778676B1 (en) Method for producing conjugated-diene-based copolymer latex
JP3302317B2 (en) Method for producing diene rubber polymer latex
JP4094228B2 (en) Method for producing synthetic latex
KR100998368B1 (en) Method for preparing acrylonitrile-butadiene-styrene based copolymer latex
EP1101775A1 (en) Process for producing rubber latex
KR101737183B1 (en) Method for preparing abs graft copolymer
JP4281587B2 (en) Production method of chloroprene rubber
JPH08245706A (en) Production of aqueous emulsion excellent in mechanical stability
JP3958971B2 (en) Polymerization method and diene polymer production method
JP2000026511A (en) Production of diene-based rubber polymer
CN101104666B (en) Improved polymerization process
JP2004204088A (en) Method for producing polychloroprene-based polymer
WO2001070836A1 (en) Process for producing graft copolymer latex
JP2005206753A (en) Method of manufacturing diene-based rubbery polymer latex
JPWO2019188074A1 (en) Method for producing conjugated diene copolymer latex
JP2006199919A (en) Method for producing polymer
JP2003335807A (en) Method for producing polymer latex
JP2008255152A (en) Method for producing polymer
KR960000854B1 (en) Process for producing latexes having a high solid content and the
EP1270600A1 (en) Process for producing rubber latex

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071002