JP2006021937A - High purity metal oxide precursor and method for producing high purity metal oxide - Google Patents

High purity metal oxide precursor and method for producing high purity metal oxide Download PDF

Info

Publication number
JP2006021937A
JP2006021937A JP2004199696A JP2004199696A JP2006021937A JP 2006021937 A JP2006021937 A JP 2006021937A JP 2004199696 A JP2004199696 A JP 2004199696A JP 2004199696 A JP2004199696 A JP 2004199696A JP 2006021937 A JP2006021937 A JP 2006021937A
Authority
JP
Japan
Prior art keywords
metal oxide
oxide precursor
purity metal
producing
high purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004199696A
Other languages
Japanese (ja)
Inventor
Takashi Moriyama
隆 森山
Hiroshi Mori
寛 森
Hiroyuki Yano
広幸 矢野
Shinji Nakamura
伸二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2004199696A priority Critical patent/JP2006021937A/en
Publication of JP2006021937A publication Critical patent/JP2006021937A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high purity metal oxide precursor produced by preventing the incorporation of impurities, and to provide a method for producing a high purity metal oxide. <P>SOLUTION: When the high purity metal oxide precursor is produced by water-washing a metal oxide precursor obtained by hydrolyzing a metal oxide raw material and then drying the metal oxide precursor, the high purity metal oxide precursor is produced by using ultrapure water having a resistivity of ≥17.0 MΩcm in either or both of the hydrolysis process and the water-washing process, and further, the metal oxide is produced by firing the high purity metal oxide precursor. Thereby, the incorporation of impurities into the high purity metal oxide precursor is prevented, the generation of devitrification in a product produced from the metal oxide is suppressed, and the quality of the product is enhanced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、失透の原因となる不純物の混入を防止した高純度金属酸化物前駆体及び高純度金属酸化物の製造方法に関する。 The present invention relates to a high-purity metal oxide precursor and a method for producing a high-purity metal oxide in which impurities causing devitrification are prevented.

(1)光触媒、化粧品材料、紫外線吸収剤等として期待されているチタン酸化物、(2)絶縁材料、耐熱材料等として期待されているアルミニウム酸化物、(3)塗料、食品香料担体、クロマトグラフィー用担体等として期待されているシリコン酸化物、(4)燃料電池材料、磁性材料、各種ガスセンサー用の固体電解物質等として期待されているジルコニウム酸化物等の金属酸化物は、高機能化の観点から、純度及び品質に関して非常に厳しい管理が要求されている。 (1) Titanium oxide expected as a photocatalyst, cosmetic material, ultraviolet absorber, etc. (2) Aluminum oxide expected as an insulating material, heat-resistant material, etc. (3) Paint, food flavor carrier, chromatography (4) Metal oxides such as zirconium oxide, which are expected as (4) fuel cell materials, magnetic materials, solid electrolytes for various gas sensors, etc. From the viewpoint, very strict management is required regarding purity and quality.

高純度及び高品質の金属酸化物を製造する方法の1つとして、ゾルゲル法を適用する方法が広く実施されている。ゾルゲル法を適用する金属酸化物の製造方法においては、量産化が可能であるというメリットがある。このときイオン交換樹脂及び濾過精度の高いフィルタを経由した水を原料水として使用すると高純度な金属酸化物が製造できる(例えば、特許文献1参照)。 As one of methods for producing a high-purity and high-quality metal oxide, a method using a sol-gel method is widely practiced. The metal oxide manufacturing method to which the sol-gel method is applied has an advantage that mass production is possible. At this time, when water passing through an ion exchange resin and a filter with high filtration accuracy is used as raw water, a high-purity metal oxide can be produced (for example, see Patent Document 1).

特開平10−203821号公報Japanese Patent Laid-Open No. 10-203821

しかしながら、特許文献1の方法において、イオン交換樹脂及びフィルタを経由した水の中には、フィルタの濾過精度によっては除去できない物質があり、不純物が残留していた。不純物が原料水に含まれたままで反応を行うと製品中に不純物が混入して品質が低下し、また、原料水の品質によって、製品の品質のばらつきを引き起こしていた。
本発明はかかる事情に鑑みてなされたもので、不純物の混入を防止した高純度金属酸化物前駆体及び高純度金属酸化物の製造方法を提供することを目的とする。
However, in the method of Patent Document 1, there are substances that cannot be removed depending on the filtration accuracy of the filter in the water passing through the ion exchange resin and the filter, and impurities remain. When the reaction is carried out with impurities contained in the raw material water, impurities are mixed into the product and the quality is deteriorated, and the quality of the raw material water causes variations in product quality.
This invention is made | formed in view of this situation, and it aims at providing the manufacturing method of the high purity metal oxide precursor which prevented mixing of the impurity, and a high purity metal oxide.

前記目的に沿う請求項1記載の高純度金属酸化物前駆体の製造方法は、金属酸化物原料を加水分解して得られた金属酸化物前駆体を、水洗した後、乾燥する高純度金属酸化物前駆体の製造方法であって、
前記加水分解及び前記水洗のいずれか一方又は双方には、比抵抗が17MΩcm以上、好ましくは17.5MΩcm以上、更に好ましくは18.0MΩcm以上の超純水が用いられる。
The method for producing a high-purity metal oxide precursor according to claim 1, which meets the above object, comprises washing a metal oxide precursor obtained by hydrolyzing a metal oxide raw material with water and then drying the metal oxide precursor. A method for producing a precursor of a product,
For one or both of the hydrolysis and the water washing, ultrapure water having a specific resistance of 17 MΩcm or more, preferably 17.5 MΩcm or more, more preferably 18.0 MΩcm or more is used.

ここで、超純水とは、蒸留及びイオン交換処理(イオン除去処理)を行い、更に、イオン交換処理、逆浸透処理、及び、限外濾過処理等を行って、高度に精製した水であり、本発明においては比抵抗が17MΩcm以上のものをいい、通常、19MΩcm以下である。また、比抵抗が17MΩcm未満では、製造した金属酸化物前駆体に不純物が混入することがあり、19MΩcmを超える超純水は、製造コストがかかりすぎるため、製品価格の上昇を招き好ましくない。 Here, ultrapure water is highly purified water that has been subjected to distillation and ion exchange treatment (ion removal treatment), and further subjected to ion exchange treatment, reverse osmosis treatment, ultrafiltration treatment, and the like. In the present invention, the specific resistance is 17 MΩcm or more, and usually 19 MΩcm or less. On the other hand, if the specific resistance is less than 17 MΩcm, impurities may be mixed into the produced metal oxide precursor, and ultrapure water exceeding 19 MΩcm is not preferable because it is too expensive to produce and thus increases the product price.

請求項2記載の高純度金属酸化物前駆体の製造方法は、請求項1記載の高純度金属酸化物前駆体の製造方法において、前記超純水は逆浸透膜処理が行われている。
請求項2記載の高純度金属酸化物前駆体の製造方法において、逆浸透膜(reverse osmosis membrane、RO膜)としては、シリコン、アセチルセルロース、芳香族系ポリアミド、ニトロセルロール等の半透膜が用いられ、平膜型、管状型、スパイラル型、中空繊維型等の形状のものが使用できる。
The method for producing a high purity metal oxide precursor according to claim 2 is the method for producing a high purity metal oxide precursor according to claim 1, wherein the ultrapure water is subjected to a reverse osmosis membrane treatment.
3. The method for producing a high-purity metal oxide precursor according to claim 2, wherein the reverse osmosis membrane (RO membrane) is a semipermeable membrane such as silicon, acetyl cellulose, aromatic polyamide, or nitrocellulose. A flat membrane type, a tubular type, a spiral type, a hollow fiber type or the like can be used.

また、シリコン製のRO膜は、金属酸化物前駆体の原料となるケイ素を有し、製造する金属酸化物前駆体がケイ素化合物である場合には全く品質に影響がない。ここで、逆浸透膜処理は、溶媒(水)を通すが溶質(不純物)を通さない半透膜からなるRO膜を隔てて、溶液(不純物の入った水)と溶媒とを接触させ、溶液側に浸透圧以上の圧力をかけると、溶液側から溶媒側に溶媒が移動し、溶質の濃縮溶液と多量の溶媒とを得るものである。 In addition, the RO film made of silicon has silicon as a raw material for the metal oxide precursor, and when the metal oxide precursor to be manufactured is a silicon compound, the quality is not affected at all. Here, the reverse osmosis membrane treatment is performed by bringing a solution (impurity-containing water) and a solvent into contact with each other through a RO membrane made of a semipermeable membrane that passes a solvent (water) but does not pass a solute (impurity). When a pressure equal to or higher than the osmotic pressure is applied to the side, the solvent moves from the solution side to the solvent side to obtain a concentrated solution of solute and a large amount of solvent.

請求項3記載の高純度金属酸化物前駆体の製造方法は、請求項2記載の高純度金属酸化物前駆体の製造方法において、前記超純水は、前記逆浸透膜処理の後、更に、紫外線殺菌処理、イオン除去処理、及びフィルタ処理が行われている。
請求項3記載の高純度金属酸化物前駆体の製造方法において、紫外線殺菌処理は、紫外線ランプ等によって紫外線を照射して行うことができる。また、イオン除去処理は、陽イオン交換樹脂及び/又は陰イオン交換樹脂を通過させて行い、原水中の陽イオン及び/又は陰イオンを除去することができる。
The method for producing a high-purity metal oxide precursor according to claim 3 is the method for producing a high-purity metal oxide precursor according to claim 2, wherein the ultrapure water is further treated after the reverse osmosis membrane treatment. Ultraviolet sterilization processing, ion removal processing, and filter processing are performed.
4. The method for producing a high purity metal oxide precursor according to claim 3, wherein the ultraviolet sterilization treatment can be performed by irradiating ultraviolet rays with an ultraviolet lamp or the like. In addition, the ion removal treatment can be performed by passing a cation exchange resin and / or an anion exchange resin to remove cations and / or anions in the raw water.

通常のフィルタ処理は、絶対濾過精度が、例えば10μm以下、2μm以下、1μm以下、0.45μm以下、0.3μm以下、0.1μm以下等のフィルタを通過させて行うことができる。ここで、絶対濾過精度とは、OSU F−2試験によって粒子径(xμm)毎の濾過前、濾過後の粒子数の比βxを次式によって求め、βxの値が1(粒子径xμmの粒子の除去率が100%)となる最大径をいう。フィルタの材質は金属不純物含有量の少ない有機高分子系(ポリプロピレン、ポリ四フッ化エチレン等)、あるいはセラミック多孔質体のものが好ましい。 The normal filter processing can be performed by passing through a filter having an absolute filtration accuracy of, for example, 10 μm or less, 2 μm or less, 1 μm or less, 0.45 μm or less, 0.3 μm or less, 0.1 μm or less. Here, the absolute filtration accuracy is obtained by calculating the ratio βx of the number of particles before filtration and after filtration for each particle diameter (x μm) by the following equation in the OSU F-2 test, and the value of βx is 1 (particles having a particle diameter x μm). The maximum diameter at which the removal rate is 100%). The material of the filter is preferably an organic polymer (polypropylene, polytetrafluoroethylene, etc.) having a low metal impurity content, or a ceramic porous material.

請求項4記載の高純度金属酸化物前駆体の製造方法は、請求項3記載の高純度金属酸化物前駆体の製造方法において、前記超純水は、前記紫外線殺菌処理が繰り返し行われる。
前記目的に沿う請求項5記載の高純度金属酸化物の製造方法は、請求項1〜4のいずれか1項に記載の高純度金属酸化物前駆体の製造方法によって製造した前記高純度金属酸化物前駆体を焼成して金属酸化物を製造する。
The method for producing a high purity metal oxide precursor according to claim 4 is the method for producing a high purity metal oxide precursor according to claim 3, wherein the ultrapure water is repeatedly subjected to the ultraviolet sterilization treatment.
The method for producing a high-purity metal oxide according to claim 5, which meets the object, is the high-purity metal oxide produced by the method for producing a high-purity metal oxide precursor according to any one of claims 1 to 4. The metal precursor is fired to produce a metal oxide.

請求項1〜4記載の高純度金属酸化物前駆体の製造方法及び請求項5記載の高純度金属酸化物の製造方法は、金属酸化物原料の加水分解、及び金属酸化物原料の加水分解で生成した金属酸化物前駆体の水洗のいずれか一方又は双方に比抵抗が17MΩcm以上の超純水が使用されるので、金属酸化物原料及び超純水中には不純物がほとんど存在せず、高純度金属酸化物前駆体を用いた製品の品質を向上させることができる。
特に、請求項2記載の高純度金属酸化物前駆体の製造方法は、逆浸透膜で処理されているので、簡単に超純水を得ることができる。
The method for producing a high-purity metal oxide precursor according to claims 1 to 4 and the method for producing a high-purity metal oxide according to claim 5 include hydrolysis of the metal oxide raw material and hydrolysis of the metal oxide raw material. Since ultrapure water having a specific resistance of 17 MΩcm or more is used for either or both of the washed metal oxide precursors, there are almost no impurities in the metal oxide raw material and ultrapure water. The quality of the product using the purity metal oxide precursor can be improved.
In particular, since the method for producing a high-purity metal oxide precursor according to claim 2 is treated with a reverse osmosis membrane, ultrapure water can be easily obtained.

請求項3記載の高純度金属酸化物前駆体の製造方法は、超純水に、逆浸透膜処理の後、更に、紫外線殺菌処理、イオン除去処理、及びフィルタ処理が行われているので、更に不純物を除去ができる。
請求項4記載の高純度金属酸化物前駆体の製造方法は、紫外線殺菌処理が繰り返し行われているので、系内で発生する生菌等の不純物も除去できる。
請求項5記載の高純度金属酸化物の製造方法は、高純度金属酸化物前駆体に不純物が混入されず、金属酸化物から製造される製品の品質がよくなる。
In the method for producing a high-purity metal oxide precursor according to claim 3, since ultra-pure water is further subjected to ultraviolet sterilization treatment, ion removal treatment, and filter treatment after reverse osmosis membrane treatment, Impurities can be removed.
In the method for producing a high-purity metal oxide precursor according to claim 4, since the ultraviolet sterilization treatment is repeatedly performed, impurities such as viable bacteria generated in the system can be removed.
In the method for producing a high purity metal oxide according to claim 5, impurities are not mixed in the high purity metal oxide precursor, and the quality of a product produced from the metal oxide is improved.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1は本発明の一実施の形態に係る高純度金属酸化物前駆体及び高純度金属酸化物の製造方法のフローチャート、図2は同製造方法で使用される超純水の製造方法のフローチャートである。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is a flowchart of a method for producing a high-purity metal oxide precursor and a high-purity metal oxide according to an embodiment of the present invention, and FIG. 2 is a method for producing ultrapure water used in the production method. It is a flowchart of.

図1及び図2を参照して、本発明の一実施の形態に係る高純度金属酸化物前駆体及び金属酸化物の製造方法について説明する。
金属酸化物原料Aと超純水Bとを混合し、金属酸化物前駆体Aを加水分解して塊状又は大粒状の金属酸化物前駆体Cを得る。次に、金属酸化物前駆体Cをコーミル型粉砕機、網式造粒機、ハンマーミル等で粉砕して粉粒状の金属酸化物前駆体Dを得る。金属酸化物前駆体Dを超純水Eによって水洗し、更に乾燥して金属酸化物前駆体Fを得る。更に、金属酸化物前駆体Fを焼成して、金属酸化物Gを製造する。
With reference to FIG.1 and FIG.2, the manufacturing method of the high purity metal oxide precursor and metal oxide which concern on one embodiment of this invention is demonstrated.
The metal oxide raw material A and the ultrapure water B are mixed, and the metal oxide precursor A is hydrolyzed to obtain a bulk or large granular metal oxide precursor C. Next, the metal oxide precursor C is pulverized by a comil type pulverizer, a net type granulator, a hammer mill or the like to obtain a powdered metal oxide precursor D. The metal oxide precursor D is washed with ultrapure water E and dried to obtain a metal oxide precursor F. Further, the metal oxide precursor F is fired to produce the metal oxide G.

次に、超純水B、Eの製造方法について説明する。図2に示すように、例えば、河川水を凝集沈殿、濾過等によって浮遊物質等を除去した原水Hを、シリコン製等の逆浸透膜(RO膜)で処理して、比抵抗が17.0MΩcm以上の粗超純水Iを製造する。次に、紫外線を照射する紫外線ランプによって紫外線殺菌処理を行って粗超純水I中の微生物を死滅させた粗超純水Jを製造する。また、粗超純水Jを更に紫外線殺菌処理してもよい。 Next, a method for producing ultrapure water B and E will be described. As shown in FIG. 2, for example, raw water H from which floating water is removed by coagulating sedimentation, filtering, etc. in river water is treated with a reverse osmosis membrane (RO membrane) made of silicon or the like, and the specific resistance is 17.0 MΩcm. The above crude ultrapure water I is produced. Next, an ultra-violet sterilization process is performed by an ultra-violet lamp that irradiates ultra-violet light to produce crude ultra-pure water J in which microorganisms in the ultra-pure water I are killed. Further, the crude ultrapure water J may be further subjected to ultraviolet sterilization treatment.

更に、粗超純水Jは、陽イオン交換樹脂と陰イオン交換樹脂とによって粗超純水J内の陽イオン及び陰イオンを除去するイオン除去処理を行って粗超純水Kを製造する。ここで、粗超純水Kは、絶対濾過精度の範囲が、例えば、0.45μm以下〜0.1μm以下のポリプロピレン製のフィルタでフィルタ処理し、超純水B及び超純水Eを製造する。なお、粗超純水Kから超純水B及び超純水Eを製造する際には、同一のフィルタを用いてもよいし、別々のフィルタを用いてもよい。 Further, the crude ultrapure water J produces a crude ultrapure water K by performing an ion removal treatment for removing cations and anions in the crude ultrapure water J with a cation exchange resin and an anion exchange resin. Here, the crude ultrapure water K is filtered with a polypropylene filter having a range of absolute filtration accuracy of, for example, 0.45 μm or less to 0.1 μm or less to produce ultrapure water B and ultrapure water E. . In addition, when manufacturing the ultrapure water B and the ultrapure water E from the crude ultrapure water K, the same filter may be used or a separate filter may be used.

(実施例1)
表1に示すように、カルシウム、鉄、ナトリウムの含有量が、それぞれ0.02ppm未満の原水を用いて前記実施の形態における方法で比抵抗が17〜18MΩcmである超純水を製造し、金属酸化物原料の加水分解により金属酸化物前駆体を製造した。なお、原水中のカルシウム、鉄、ナトリウムの含有量は、誘導結合プラズマ分析(inductively coupled plasma、ICP)によって測定した(以下の比較例においても測定方法は同様である)。更に、金属酸化物前駆体を焼成して金属酸化物を製造した。
Example 1
As shown in Table 1, ultrapure water having a specific resistance of 17 to 18 MΩcm was produced by the method in the above embodiment using raw water having calcium, iron and sodium contents of less than 0.02 ppm, respectively, A metal oxide precursor was produced by hydrolysis of the oxide raw material. The contents of calcium, iron and sodium in the raw water were measured by inductively coupled plasma (ICP) (the measurement method is the same in the following comparative examples). Furthermore, the metal oxide precursor was fired to produce a metal oxide.

表2に示すように、製造した金属酸化物は、カルシウム、鉄、ナトリウムの含有量が、それぞれ0.01ppm未満、0.02ppm、0.01ppm未満であり、より高純度の金属酸化物を製造できた。また、フィルタ処理で使用した絶対濾過精度の範囲が0.45μm以下〜0.1μm以下のフィルタは、本発明を実施した一ヶ月間では交換することがなかった。 As shown in Table 2, the produced metal oxides have calcium, iron, and sodium contents of less than 0.01 ppm, 0.02 ppm, and less than 0.01 ppm, respectively, and produce higher purity metal oxides. did it. Moreover, the filter of the absolute filtration precision used by the filter process of 0.45 micrometer or less-0.1 micrometer or less was not replaced in the one month which implemented this invention.

(比較例1)
表1に示すように、カルシウム、鉄、ナトリウムの含有量が、それぞれ0.02ppm未満の原水(実質的に実施例1と同じ)を用いてイオン除去処理及びフィルタ処理を行って比抵抗が14〜16MΩcmである純水を製造し、金属酸化物原料の加水分解により金属酸化物前駆体を製造し、更に、金属酸化物前駆体を焼成して金属酸化物を製造した。
表2に示すように、製造した金属酸化物は、カルシウム、鉄、ナトリウムの含有量が、それぞれ0.01ppm未満、0.05ppm、0.01ppm未満であった。また、フィルタは月平均2回の交換が必要であった。
(Comparative Example 1)
As shown in Table 1, a specific resistance of 14 is obtained by performing ion removal treatment and filter treatment using raw water (substantially the same as in Example 1) in which the contents of calcium, iron and sodium are each less than 0.02 ppm. Pure water of ˜16 MΩcm was produced, a metal oxide precursor was produced by hydrolysis of the metal oxide raw material, and the metal oxide precursor was fired to produce a metal oxide.
As shown in Table 2, the produced metal oxide had calcium, iron and sodium contents of less than 0.01 ppm, 0.05 ppm and less than 0.01 ppm, respectively. Moreover, the filter needed to be replaced twice a month on average.

(比較例2)
比較例1とは、表1に示す原水(カルシウム、鉄、ナトリウムの含有量が、それぞれ0.10ppm、0.06ppm、0.06ppm)を使用し、比抵抗が8〜12MΩcmである純粋を用いた点が異なっている。
表2に示すように、製造した金属酸化物は、カルシウム、鉄、ナトリウムの含有量が、それぞれ0.01ppm未満、0.03ppm、0.01ppm未満であった。また、フィルタは月平均3回の交換が必要であり、多い月では6回の交換が必要であった。
(Comparative Example 2)
Comparative Example 1 uses the raw water shown in Table 1 (calcium, iron, and sodium contents are 0.10 ppm, 0.06 ppm, and 0.06 ppm, respectively) and has a specific resistance of 8 to 12 MΩcm. It was different.
As shown in Table 2, the produced metal oxide had calcium, iron and sodium contents of less than 0.01 ppm, 0.03 ppm and less than 0.01 ppm, respectively. In addition, the filter needs to be replaced three times on average per month, and in many months it needs to be replaced six times.

Figure 2006021937
Figure 2006021937

Figure 2006021937
Figure 2006021937

本発明は、前記した実施の形態に限定されるものではなく、本発明の要旨を変更しない範囲での変更は可能であり、例えば、前記した実施の形態や変形例の一部又は全部を組み合わせて本発明の高純度金属酸化物前駆体及び高純度金属酸化物の製造方法を構成する場合も本発明の権利範囲に含まれる。 The present invention is not limited to the above-described embodiment, and can be changed without changing the gist of the present invention. For example, a part or all of the above-described embodiment and modification examples are combined. The present invention also includes a case where the high-purity metal oxide precursor and the method for producing a high-purity metal oxide of the present invention are configured.

例えば、前記実施の形態の高純度金属酸化物前駆体の製造方法において、原水を逆浸透膜処理の後、更に、紫外線殺菌処理、イオン除去処理、及びフィルタ処理を行って超純水を製造したが、比抵抗が17.0MΩcm以上であればよく、原水の状態によっては逆浸透膜処理のみを行って超純水を製造してもよい。また、逆浸透膜としてシリコン製の半透膜を使用したが、アセチルセルロース、芳香族系ポリアミド、ニトロセルロール等の半透膜を使用してもよく、平膜型、管状型、スパイラル型、中空繊維型等のいずれの形状のものも使用できる。 For example, in the method for producing a high-purity metal oxide precursor according to the above-described embodiment, after the raw water is subjected to a reverse osmosis membrane treatment, ultrapure water is produced by performing an ultraviolet sterilization treatment, an ion removal treatment, and a filter treatment. However, the specific resistance may be 17.0 MΩcm or more, and depending on the state of the raw water, only the reverse osmosis membrane treatment may be performed to produce ultrapure water. Moreover, although the semipermeable membrane made of silicon was used as the reverse osmosis membrane, semipermeable membranes such as acetylcellulose, aromatic polyamide, nitrocellulose, etc. may be used, flat membrane type, tubular type, spiral type, Any shape such as a hollow fiber type can be used.

本発明の一実施の形態に係る高純度金属酸化物前駆体及び高純度金属酸化物の製造方法のフローチャート、The flowchart of the manufacturing method of the high purity metal oxide precursor which concerns on one embodiment of this invention, and a high purity metal oxide, 同製造方法で使用される超純水の製造方法のフローチャートである。It is a flowchart of the manufacturing method of the ultrapure water used with the manufacturing method.

Claims (5)

金属酸化物原料を加水分解して得られた金属酸化物前駆体を、水洗した後、乾燥する高純度金属酸化物前駆体の製造方法であって、
前記加水分解及び前記水洗のいずれか一方又は双方には、比抵抗が17MΩcm以上の超純水が用いられることを特徴とする高純度金属酸化物前駆体の製造方法。
A metal oxide precursor obtained by hydrolyzing a metal oxide raw material is a method for producing a high-purity metal oxide precursor that is washed with water and then dried.
A method for producing a high purity metal oxide precursor, wherein ultrapure water having a specific resistance of 17 MΩcm or more is used for one or both of the hydrolysis and the water washing.
請求項1記載の高純度金属酸化物前駆体の製造方法において、前記超純水は逆浸透膜処理が行われていることを特徴とする高純度金属酸化物前駆体の製造方法。 2. The method for producing a high purity metal oxide precursor according to claim 1, wherein the ultrapure water is subjected to a reverse osmosis membrane treatment. 請求項2記載の高純度金属酸化物前駆体の製造方法において、前記超純水は、前記逆浸透膜処理の後、更に、紫外線殺菌処理、イオン除去処理、及びフィルタ処理が行われていることを特徴とする高純度金属酸化物前駆体の製造方法。 3. The method for producing a high purity metal oxide precursor according to claim 2, wherein the ultrapure water is further subjected to ultraviolet sterilization treatment, ion removal treatment, and filter treatment after the reverse osmosis membrane treatment. A method for producing a high-purity metal oxide precursor. 請求項3記載の高純度金属酸化物前駆体の製造方法において、前記超純水は、前記紫外線殺菌処理が繰り返し行われることを特徴とする高純度金属酸化物前駆体の製造方法。 4. The method for producing a high purity metal oxide precursor according to claim 3, wherein the ultrapure water is repeatedly subjected to the ultraviolet sterilization treatment. 請求項1〜4のいずれか1項に記載の高純度金属酸化物前駆体の製造方法によって製造した前記高純度金属酸化物前駆体を焼成して金属酸化物を製造することを特徴とする高純度金属酸化物の製造方法。 A metal oxide is produced by firing the high-purity metal oxide precursor produced by the method for producing a high-purity metal oxide precursor according to any one of claims 1 to 4. A method for producing a pure metal oxide.
JP2004199696A 2004-07-06 2004-07-06 High purity metal oxide precursor and method for producing high purity metal oxide Pending JP2006021937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004199696A JP2006021937A (en) 2004-07-06 2004-07-06 High purity metal oxide precursor and method for producing high purity metal oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004199696A JP2006021937A (en) 2004-07-06 2004-07-06 High purity metal oxide precursor and method for producing high purity metal oxide

Publications (1)

Publication Number Publication Date
JP2006021937A true JP2006021937A (en) 2006-01-26

Family

ID=35795485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004199696A Pending JP2006021937A (en) 2004-07-06 2004-07-06 High purity metal oxide precursor and method for producing high purity metal oxide

Country Status (1)

Country Link
JP (1) JP2006021937A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9284632B2 (en) 2010-03-16 2016-03-15 Nippon Steel & Sumitomo Metal Corporation Steel for nitrocarburizing, nitrocarburized steel part, and producing method of nitrocarburized steel part

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9284632B2 (en) 2010-03-16 2016-03-15 Nippon Steel & Sumitomo Metal Corporation Steel for nitrocarburizing, nitrocarburized steel part, and producing method of nitrocarburized steel part
US10196720B2 (en) 2010-03-16 2019-02-05 Nippon Steel & Sumitomo Metal Corporation Steel for nitrocarburizing, nitrocarburized steel part, and producing method of nitrocarburized steel part

Similar Documents

Publication Publication Date Title
Jiang et al. Conventional ultrafiltration as effective strategy for dye/salt fractionation in textile wastewater treatment
Garcia-Ivars et al. Rejection of trace pharmaceutically active compounds present in municipal wastewaters using ceramic fine ultrafiltration membranes: Effect of feed solution pH and fouling phenomena
Choi et al. Role of hydrophobic natural organic matter flocs on the fouling in coagulation-membrane processes
Obaid et al. Amorphous SiO2 NP-incorporated poly (vinylidene fluoride) electrospun nanofiber membrane for high flux forward osmosis desalination
CN105392552B (en) The treating method and apparatus of boron water
Juang et al. Membrane processes for water reuse from the effluent of industrial park wastewater treatment plant: a study on flux and fouling of membrane
KR101354268B1 (en) Preparation method of granular oxide absorbents and water treatment method using the same
Im et al. Performance of combined ozonation, coagulation and ceramic membrane process for water reclamation: effects and mechanism of ozonation on virus coagulation
Abdikheibari et al. Natural organic matter removal and fouling resistance properties of a boron nitride nanosheet-functionalized thin film nanocomposite membrane and its impact on permeate chlorine demand
Sakol et al. Application of coagulation and conventional filtration in raw water pretreatment before microfiltration membranes
SA110310429B1 (en) Method for treatment and purification of seawater to recover high purity sodium chloride for industrial usage
CN106145423B (en) Method and device for treating epichlorohydrin production wastewater based on membrane separation technology
Zahoor Removal of pesticides from water using granular activated carbon and ultrafiltration membrane—a pilot plant study
KR102539540B1 (en) Catridge filter of multilayer type and directly water purifier comprising the same
JP2003230823A (en) Ceramic filter and water purifying method
Qin et al. Reservoir water treatment using hybrid coagulation–ultrafiltration
JPH05192660A (en) Method for treating outflowing liquid
TW593161B (en) System for producing purified water
JPH10216721A (en) Ultrapure water producing device
JP2006021937A (en) High purity metal oxide precursor and method for producing high purity metal oxide
WO2018105569A1 (en) Water treatment method and water treatment device
Abeynayaka et al. Removal of DOM and THM formation potential of tropical surface water by ceramic microfiltration
WO2019188965A1 (en) Ultrapure water production system and ultrapure water production method
Okour et al. Recovery of sludge produced from Ti-salt flocculation as pretreatment to seawater reverse osmosis
JP2007117997A (en) Membrane filtration system and membrane filtration method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070129

A977 Report on retrieval

Effective date: 20090423

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091110