JP2006021558A - Monitoring system - Google Patents

Monitoring system Download PDF

Info

Publication number
JP2006021558A
JP2006021558A JP2004199107A JP2004199107A JP2006021558A JP 2006021558 A JP2006021558 A JP 2006021558A JP 2004199107 A JP2004199107 A JP 2004199107A JP 2004199107 A JP2004199107 A JP 2004199107A JP 2006021558 A JP2006021558 A JP 2006021558A
Authority
JP
Japan
Prior art keywords
reflection
microwave
detection medium
reflected
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004199107A
Other languages
Japanese (ja)
Other versions
JP4883890B2 (en
Inventor
Hayae Kayano
早衛 萱野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wadeco Co Ltd
Original Assignee
Wadeco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wadeco Co Ltd filed Critical Wadeco Co Ltd
Priority to JP2004199107A priority Critical patent/JP4883890B2/en
Publication of JP2006021558A publication Critical patent/JP2006021558A/en
Application granted granted Critical
Publication of JP4883890B2 publication Critical patent/JP4883890B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a monitoring system capable of informing properly a monitor or a driver etc. of existence of pedestrians and/or vehicles in the monitoring region or at a crossing upon sensing the pedestrians and vehicles certainly and accurately. <P>SOLUTION: A signal transmitting means to make signal transmission of a sensing medium and a receiving medium to receive the sensing medium are installed on one side of the monitoring region while a reflecting means to reflect the sensing medium is installed on the other side, and the sensing medium is transmitted at all times from the transmitting means to the reflecting means and received by the receiving means, followed by calculation of the reflecting position every time signal is received, and the reference reception signal based on the sensing medium reflected by the reflecting means is emitted either with the reception intensity held unchangedly or upon amplification, and the reception signal based on the sensing medium reflected by other than the reflecting means is emitted either with the reception intensity held unchangedly or upon attenuation, and when reference reception signals go out or are attenuated, sensing is made for existence of the object to be sensed in the monitoring region. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、監視領域あるいは踏切において人や車両を検知する監視システムに関する。   The present invention relates to a monitoring system for detecting a person or a vehicle in a monitoring area or a level crossing.

監視領域に人や車両が侵入もしくは存在することを検知するために、監視領域でレーザ光や超音波、あるいはマイクロ波等の検出媒体の送受信を行い、検出媒体が人や車両で遮断されたときに、監視領域内に人や車両が存在していると判断することが行なわれている。   When a detection medium such as a laser beam, an ultrasonic wave, or a microwave is transmitted / received in the monitoring area to detect that a person or a vehicle has entered or exists in the monitoring area, and the detection medium is blocked by the person or the vehicle In addition, it is determined that a person or vehicle is present in the monitoring area.

例えば、鉄道の踏切には、車両通行路で車両が立ち往生したような場合に、これを検知して接近する鉄道車両の運転士に報知する踏切監視システムが設置されている。従来、この種の踏切監視システムでは、監視領域をテレビカメラやCCDカメラ等で監視する方式が広く普及している(例えば、特許文献1参照)。しかし、この方式では、テレビカメラやCCDカメラ等のレンズ部を定期的に拭いたりしなければならず保守作業が必要で、更には雨や雪、霧等で視界が悪いときは人や車両を検出できないこともある。   For example, a railroad crossing monitoring system is installed at a railroad crossing to detect this and notify a driver of an approaching railroad vehicle when a vehicle is stuck on a vehicle passage. Conventionally, in this type of level crossing monitoring system, a method of monitoring a monitoring area with a television camera, a CCD camera, or the like has been widely used (for example, see Patent Document 1). However, with this method, the lens section of the TV camera, CCD camera, etc. must be periodically wiped, maintenance work is required, and when the visibility is poor due to rain, snow, fog, etc. Sometimes it cannot be detected.

また、監視領域にレーザ光や超音波(ミリ波等)を照射し、その反射(ドップラー波)を検知する方式も知られている(例えば、特許文献2参照)。しかし、この方式においても、雨や雪、霧雪等によりレーザ光や超音波が乱反射されて感度が低下する。   There is also known a method of irradiating a monitoring region with laser light or ultrasonic waves (millimeter wave or the like) and detecting the reflection (Doppler wave) (for example, see Patent Document 2). However, even in this method, the sensitivity is lowered due to irregular reflection of laser light and ultrasonic waves due to rain, snow, misty snow, and the like.

更に、検出媒体としてマイクロ波を使用することも考えられている(例えば,特許文献3参照)。しかし、マイクロ波はある広がりをもって送信器から発信されるため、特に送信器と受信器とを対向配置してマイクロ波の送受信を行い、マイクロ波が人や車両により遮断されたときに人や車両を検知する遮断方式では、送信器と受信器との距離が長くなると、周囲の構造物、更には踏切を通過中の列車で反射された不要反射波が受信器に入射し、送信器から受信器に直接入射する遮断検出用の直進波と干渉を起こして直接波の受信信号を低下させ、直進波が人や車両により遮断されていないにもかかわらず、誤って遮断信号を出力する可能性もある。
特開2002−145072号公報 特開2003−11824号公報 特開2003−107150号公報
Furthermore, the use of microwaves as a detection medium is also considered (see, for example, Patent Document 3). However, since microwaves are transmitted from transmitters with a certain spread, microwaves are transmitted and received with the transmitters and receivers facing each other, and when microwaves are blocked by people or vehicles, When the distance between the transmitter and the receiver is increased, unnecessary reflected waves reflected by the surrounding structure and the train passing through the railroad crossing are incident on the receiver and received from the transmitter. May cause interference with a straight wave for detection of interception that directly enters the device, lowering the direct wave reception signal, and even if the straight wave is not intercepted by a person or vehicle, it may output a shutoff signal by mistake There is also.
JP 2002-145072 A JP 2003-11824 A JP 2003-107150 A

本発明はこのような状況に鑑みてなされたものであり、監視領域や踏切において人や車両を確実かつ正確に検知し、監視者や運転手に的確に報知する監視システムを提供することを目的とする。   The present invention has been made in view of such a situation, and an object of the present invention is to provide a monitoring system that reliably and accurately detects a person or a vehicle in a monitoring area or a level crossing and accurately notifies a monitoring person or a driver. And

上記の目的を達成するために、本発明は下記を提供する。
(1)監視領域を挟んで一方の側に検出媒体の送信を行う送信手段及び該検出媒体の受信を行う受信手段を配置し、他方の側に検出媒体を反射する反射手段を配置して送信手段から反射手段に向けて検出媒体を常時送信し、受信手段で受信するとともに、
受信信号毎にその反射位置を算出し、かつ、反射手段で反射された検出媒体に基づく基準受信信号については、その受信強度のまま、もしくは増幅して出力し、反射手段以外で反射された検出媒体に基づく受信信号については、その受信強度のまま、もしくは減衰させて出力し、
基準受信信号が途絶えるか、減衰したときに、監視領域に被検出物体が存在することを検知することを特徴とする監視システム。
(2)送信手段と反射手段との間の任意の位置に仮想的に存在する物体による反射を示すダミー信号を、基準受信信号が途絶えるか、減衰したときに出力することを特徴とする上記(1)記載の監視システム。
(3)ダミー信号を、基準受信信号と同様に増幅、あるいは反射手段以外で反射された検出媒体に基づく受信信号と同様に減衰させて出力することを特徴とする上記(2)記載の監視システム。
(4)検出媒体が、電界分布が時計回りまたは反時計回りの何れか一方向に回転する回転波、もしくは電界分布がマイクロ波の進行方向軸線を含む水平または垂直平面に対して90°未満の角度をもって傾斜する傾斜直線波であり、かつ、反射手段が該反射手段に入射したマイクロ波を偶数回反射させて受信手段に送ることを特徴とする上記(1)〜(3)の何れか1項に記載の監視システム。
(5)踏切内の車両通行路を挟んで一方の側に検出媒体の送信を行う送信手段及び該検出媒体の受信を行う受信手段を配置し、他方の側に検出媒体を反射する反射手段を配置して送信手段から反射手段に向けて検出媒体を常時送信し、受信手段で受信するとともに、
受信信号毎にその反射位置を算出し、かつ、反射手段で反射された検出媒体に基づく基準受信信号については、その受信強度のまま、もしくは増幅して出力し、反射手段以外で反射された検出媒体に基づく受信信号については、その受信強度のまま、もしくは減衰させて出力し、
遮断桿が降りた後でも基準受信信号が途絶えるか、減衰しているときに、踏切内の車両通行路に人や車両が居ると判断し、踏切に接近する鉄道車両に警報を発することを特徴とする踏切監視システム。
(6)送信手段と反射手段との間の任意の位置に仮想的に存在する物体による反射を示すダミー信号を、基準受信信号が途絶えるか、減衰したときに出力することを特徴とする上記(5)記載の踏切監視システム。
(7)ダミー信号を、基準受信信号と同様に増幅、あるいは反射手段以外で反射された検出媒体に基づく受信信号と同様に減衰させて出力することを特徴とする上記(6)記載の踏切監視システム。
(8)検出媒体が、電界分布が時計回りまたは反時計回りの何れか一方向に回転する回転波、もしくは電界分布がマイクロ波の進行方向軸線を含む水平または垂直平面に対して90°未満の角度をもって傾斜する傾斜直線波であり、かつ、反射手段が該反射手段に入射したマイクロ波を偶数回反射させて受信手段に送ることを特徴とする上記(5)〜(7)の何れか1項に記載の踏切監視システム。
In order to achieve the above object, the present invention provides the following.
(1) A transmission means for transmitting the detection medium and a reception means for receiving the detection medium are arranged on one side across the monitoring area, and a reflection means for reflecting the detection medium is arranged on the other side for transmission. The detection medium is constantly transmitted from the means toward the reflecting means, and received by the receiving means.
For each received signal, the reflection position is calculated, and for the reference received signal based on the detection medium reflected by the reflecting means, the received intensity is output as it is or amplified, and the detection reflected by other than the reflecting means is detected. The received signal based on the medium is output with the received intensity or attenuated,
A monitoring system for detecting the presence of an object to be detected in a monitoring area when a reference reception signal is interrupted or attenuated.
(2) A dummy signal indicating reflection by an object virtually existing at an arbitrary position between the transmission unit and the reflection unit is output when the reference reception signal is interrupted or attenuated ( 1) The monitoring system described.
(3) The monitoring system according to (2), wherein the dummy signal is amplified in the same manner as the reference received signal or attenuated in the same manner as the received signal based on the detection medium reflected by a means other than the reflecting means and output. .
(4) The detection medium is a rotating wave whose electric field distribution rotates in one of the clockwise or counterclockwise directions, or the electric field distribution is less than 90 ° with respect to a horizontal or vertical plane including the microwave traveling direction axis. Any one of the above (1) to (3), which is an inclined linear wave inclined at an angle, and the reflection means reflects the microwave incident on the reflection means an even number of times and sends it to the reception means. The monitoring system according to item.
(5) A transmission means for transmitting the detection medium and a reception means for receiving the detection medium are arranged on one side across the vehicle passage in the railroad crossing, and a reflection means for reflecting the detection medium is arranged on the other side. The transmission medium is always transmitted from the transmission means to the reflection means, and received by the reception means.
For each received signal, the reflection position is calculated, and for the reference received signal based on the detection medium reflected by the reflecting means, the received intensity is output as it is or amplified, and the detection reflected by other than the reflecting means is detected. The received signal based on the medium is output with the received intensity or attenuated,
When the reference reception signal is interrupted or attenuates even after the barrier fence is lowered, it is judged that there are people or vehicles on the vehicle passage in the railroad crossing, and a warning is issued to the railway vehicle approaching the railroad crossing Railroad crossing monitoring system.
(6) A dummy signal indicating reflection by an object virtually existing at an arbitrary position between the transmission unit and the reflection unit is output when the reference reception signal is interrupted or attenuated ( 5) The level crossing monitoring system described.
(7) The level crossing monitoring according to (6), wherein the dummy signal is amplified in the same manner as the reference reception signal or attenuated in the same manner as the reception signal based on the detection medium reflected by a means other than the reflection means. system.
(8) The detection medium is a rotating wave whose electric field distribution rotates in one of the clockwise or counterclockwise directions, or the electric field distribution is less than 90 ° with respect to a horizontal or vertical plane including the microwave traveling direction axis. Any one of the above (5) to (7), which is an inclined linear wave inclined at an angle, and the reflecting means reflects the microwave incident on the reflecting means an even number of times and sends it to the receiving means. The level crossing monitoring system described in the section.

本発明によれば、人や車両が検出媒体の送信手段と反射手段との間に存在する、もしくは通過中であることを確実かつ正確に検知することができ、監視の信頼度が高まり、踏切においては安全な運行を行うことができるようになる。更に、検出媒体としてマイクロ波を用いることにより、雨や雪、霧等の天候による影響を極力排除でき、より確実且つ正確に人や車両を検知できるようになる。特に、マイクロ波の中でも回転波や傾斜直線波を用いることにより、反射手段以外で反射された不要反射波を効果的に排除でき、検出の信頼度がより一層高まる。   According to the present invention, it is possible to reliably and accurately detect that a person or a vehicle is present or passing between the transmission means and the reflection means of the detection medium, and the reliability of monitoring is increased. Will be able to operate safely. Furthermore, by using microwaves as a detection medium, the influence of weather such as rain, snow, and fog can be eliminated as much as possible, and people and vehicles can be detected more reliably and accurately. In particular, by using a rotating wave or an inclined linear wave among microwaves, unnecessary reflected waves reflected by other than the reflecting means can be effectively eliminated, and the reliability of detection is further increased.

以下、本発明に関して図面を参照して詳細に説明する。本発明において、検出媒体には制限がなく、レーザ光や超音波等も利用可能であるが、雨や雪、霧雪等によりレーザ光や超音波が乱反射されて感度が低下するおそれがあることから、マイクロ波が好適である。中でも、電界分布が時計回りまたは反時計回りの何れか一方向に回転する回転波、もしくは電界分布がマイクロ波の進行方向軸線を含む水平または垂直平面に対して90°未満の角度をもって傾斜する傾斜直線波が好適である。これら回転波及び傾斜直線波は、後述するように、反射の都度回転方向または傾斜方向を変える性質があり、反射手段により反射されたものと、他の物体で反射されたものとを正確に識別できることから特に好ましい。従って、ここでは、マイクロ波の回転波及び傾斜直線波を用いた場合の実施形態を説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings. In the present invention, the detection medium is not limited, and laser light, ultrasonic waves, and the like can be used. However, there is a possibility that the sensitivity may be reduced due to irregular reflection of laser light or ultrasonic waves due to rain, snow, drizzle, etc. Therefore, microwave is preferable. Among them, a rotating wave whose electric field distribution rotates in one of the clockwise direction or the counterclockwise direction, or an inclination in which the electric field distribution is inclined at an angle of less than 90 ° with respect to a horizontal or vertical plane including the traveling direction axis of the microwave. A straight wave is preferred. As will be described later, these rotating waves and inclined linear waves have the property of changing the rotation direction or the inclination direction at each reflection, and accurately distinguish between those reflected by the reflecting means and those reflected by other objects. This is particularly preferable because it can be performed. Therefore, here, an embodiment in the case of using a microwave rotation wave and an inclined linear wave will be described.

図1は本発明の監視システムの一例を示す模式図であるが、監視領域Rを挟んで一方の側にマイクロ波送波器l及びマイクロ波受波器2が並べて配置され、他方の側に反射体3が対向配置されている。尚、マイクロ波送波器1とマイクロ波受波器2とは、ユニット化され、共通のアンテナによりマイクロ波の送信及び受信を行なう構成とすることができる。また、人や車両等(以下、「被検出物体A」という)は、監視領域Rを図中矢印方向に移動するものとする。   FIG. 1 is a schematic diagram showing an example of a monitoring system according to the present invention, in which a microwave transmitter l and a microwave receiver 2 are arranged side by side on the other side with a monitoring region R in between. The reflector 3 is disposed oppositely. The microwave transmitter 1 and the microwave receiver 2 are unitized and can be configured to transmit and receive microwaves using a common antenna. In addition, a person, a vehicle, or the like (hereinafter referred to as “detected object A”) moves in the monitoring region R in the direction of the arrow in the figure.

マイクロ波送波器1は、電界分布が発振ダイオード4の電圧印加方向に一致する直線波W1aを発射するが、この時、図1(a)の下図(上図のXX矢視図)に示すように、電界分布がマイクロ波Mの進行方向軸線を含む平面Pに対して90°未満の角度をもって交差した状態で反射体3に向けて発射される。この交差角度は、平面Pと完全に平行(0°)もしくは直交(90°)する以外は何れの角度も可能であるが、45°が最も好ましい。このように平面Pと交差して発射される直線波W1aは、反射体3で反射される際に、その電界分布の向きをマイクロ波進行方向軸線に関して、前記交差角度が45°の場合、90°回転する性質がある。従って、図1(a)の状態では、マイクロ波送波器1から発射された直線波W1aは、反射体3の一方の反射面で反射されることで、その電界分布の向きが90°回転した直線波W2aとなり、次いで、他方の反射面で反射されることで、再度90°回転されて発振当初の直線波W1aの電界分布と一致する電界分布の直線波W1aとなってマイクロ波受波器2に入射される。   The microwave transmitter 1 emits a straight wave W1a whose electric field distribution matches the voltage application direction of the oscillation diode 4. At this time, the microwave transmitter 1 is shown in the lower diagram of FIG. Thus, the electric field distribution is emitted toward the reflector 3 in a state where the electric field distribution intersects the plane P including the traveling direction axis of the microwave M at an angle of less than 90 °. The intersection angle can be any angle except that it is completely parallel (0 °) or orthogonal (90 °) to the plane P, but 45 ° is most preferable. When the linear wave W1a emitted so as to intersect with the plane P is reflected by the reflector 3, the direction of the electric field distribution is 90 ° when the intersecting angle is 45 ° with respect to the microwave traveling direction axis. ° Has the property of rotating. Therefore, in the state of FIG. 1A, the linear wave W1a emitted from the microwave transmitter 1 is reflected by one reflecting surface of the reflector 3, so that the direction of the electric field distribution is rotated by 90 °. And then reflected by the other reflecting surface so that it is rotated again by 90 ° to become a linear wave W1a having an electric field distribution that matches the electric field distribution of the original linear wave W1a. Is incident on the vessel 2.

一方、マイクロ波受波器2は、受信ダイオード5の検波方向をマイクロ波送波器1の発振ダイオード4の電圧印加方向と一致させており、入射波の中でマイクロ波送波器1から発射される直進波W1aと平行な電界分布を有するものだけを検波するように構成されている。   On the other hand, the microwave receiver 2 makes the detection direction of the receiving diode 5 coincide with the voltage application direction of the oscillation diode 4 of the microwave transmitter 1, and emits from the microwave transmitter 1 in the incident wave. Only those having an electric field distribution parallel to the straight traveling wave W1a are detected.

反射体3は、マイクロ波送波器1及びマイクロ波受波器2のマイクロ波Mの進行方向軸線に対して45°の傾きを持って配置される一対のミラーからなり、従ってマイクロ波送波器1から発射されたマイクロ波Mは、反射体3により、2回反射されてマイクロ波受波器2に入射する。また、この反射体3は、マイクロ波Mを2回反射させてマイクロ波受波器2に入射されるように、角度調整可能に配置される。その他、反射体3としては、何れも図示は省略するが、マイクロ波Mを2回反射できるような湾曲面や、コーナーキューブ等を使用することができる。   The reflector 3 is composed of a pair of mirrors arranged with an inclination of 45 ° with respect to the traveling direction axis of the microwave M of the microwave transmitter 1 and the microwave receiver 2. The microwave M emitted from the vessel 1 is reflected twice by the reflector 3 and enters the microwave receiver 2. Further, the reflector 3 is arranged so that the angle can be adjusted so that the microwave M is reflected twice and is incident on the microwave receiver 2. In addition, as the reflector 3, although not shown, a curved surface capable of reflecting the microwave M twice, a corner cube, or the like can be used.

このような構成において、被検出物体Aは図中矢印方向に移動するが、図1(a)に示す被検出物体Aの非通過時には、マイクロ波送波器1から発射された直線波W1aは直進して反射体3の一方の面で反射され、更に他方の反射面で反射された後、マイクロ波受波器2に入射する。即ち、マイクロ波送波器1から発射された直線波W1aは、反射体3により2回反射されてマイクロ波受波器2で受信される。その際、マイクロ波送波器1から発射された直線波W1aは、一回目の反射でその電界分布の向きを90°回転され(W2a)、2回目の反射で更に90°回転されて、結局、マイクロ波送波器1から発射された直線波W1aと同一方向を向く電界分布の直線波となってマイクロ波受波器2に入射する。マイクロ波受波器2は、受信ダイオード5の検波方向がマイクロ波送波器1から発射された直線波W1aと一致するように構成されているため、入射した直線波W1aによる受信信号が演算部(図示せず)に出力される。   In such a configuration, the detected object A moves in the direction of the arrow in the figure, but when the detected object A shown in FIG. 1A does not pass, the linear wave W1a emitted from the microwave transmitter 1 is The light travels straight and is reflected by one surface of the reflector 3 and further reflected by the other reflecting surface, and then enters the microwave receiver 2. That is, the linear wave W1a emitted from the microwave transmitter 1 is reflected twice by the reflector 3 and received by the microwave receiver 2. At that time, the linear wave W1a emitted from the microwave transmitter 1 is rotated by 90 ° in the direction of the electric field distribution by the first reflection (W2a), and further rotated by 90 ° by the second reflection. The electric wave distribution becomes a linear wave directed in the same direction as the linear wave W1a emitted from the microwave transmitter 1 and enters the microwave receiver 2. Since the microwave receiver 2 is configured such that the detection direction of the reception diode 5 coincides with the linear wave W1a emitted from the microwave transmitter 1, the received signal from the incident linear wave W1a is calculated by the calculation unit. (Not shown).

この状態から、図1(b)に示すように被検出物体Aがマイクロ波送波器1と反射体3との間を通過すると、マイクロ波送波器1から発射された直線波W1aは、被検出物体Aにより反射されてマイクロ波受波器2に入射する。この時、直線波W1aの反射は1回であるから、マイクロ波受波器2には電界分布の向きがマイクロ波送波器1から発射された直線波W1aとは90°回転した直線波W3aが入射する。従って、マイクロ波受波器2ではこの直線波W3aを検波せず、演算部には受信信号が出力されない。   From this state, when the detected object A passes between the microwave transmitter 1 and the reflector 3 as shown in FIG. 1B, the linear wave W1a emitted from the microwave transmitter 1 is The light is reflected by the detected object A and enters the microwave receiver 2. At this time, since the linear wave W1a is reflected once, the microwave receiver 2 has a linear wave W3a whose electric field distribution is rotated by 90 ° from the linear wave W1a emitted from the microwave transmitter 1. Is incident. Therefore, the microwave receiver 2 does not detect this linear wave W3a, and no reception signal is output to the arithmetic unit.

また、図2は、上記において、マイクロ波送波器1から発射されるマイクロ波を回転波に代えた構成を示している。図示されるように、マイクロ波送波器1は発振ダイオード4から発振される直線波W1を回転波W2に偏波するための偏波変換器23を備える。偏波変換器23は公知の装置を使用でき、例えば、誘電材料からなる90°位相差板を導波管内に装着して構成される。この90°位相差板は、円偏波をより効果的に行うために、その板厚や導波管の軸線方向の長さが調整される。また、同様の目的で、導波管の軸線に向かって狭窄した平面形状や、導波管の軸線に沿って一部凹部が欠設した平面形状に形成される。また、90°位相差板の代わりに導波管の内壁に所定長の金属製の羽根部材を付設したり、あるいは導波管の内壁に金属塊を付設してその断面形状を円周の一部分が欠落した円形とすることによっても偏波変換器23を構成できる。更に、ターンスタイル分岐回路を導波管に接続して偏波変換器23とすることもできる。そして、この偏波変換器23は、発振ダイオード4の電圧印加方向に対して所定角度(E1:例えば45°)をもって交差するように導波管内に装着される。   FIG. 2 shows a configuration in which the microwave emitted from the microwave transmitter 1 is replaced with a rotating wave. As shown in the drawing, the microwave transmitter 1 includes a polarization converter 23 for polarizing a linear wave W1 oscillated from the oscillation diode 4 into a rotating wave W2. For the polarization converter 23, a known device can be used, for example, a 90 ° phase difference plate made of a dielectric material is mounted in the waveguide. The 90 ° phase difference plate is adjusted in thickness and length in the axial direction of the waveguide in order to perform circular polarization more effectively. For the same purpose, it is formed in a planar shape narrowed toward the axis of the waveguide, or in a planar shape in which a concave portion is partially omitted along the axis of the waveguide. Also, instead of the 90 ° phase difference plate, a metal blade member of a predetermined length is attached to the inner wall of the waveguide, or a metal lump is attached to the inner wall of the waveguide, and the cross-sectional shape thereof is a part of the circumference. The polarization converter 23 can also be configured by using a circular shape lacking. Further, a polarization converter 23 can be formed by connecting a turn-style branch circuit to the waveguide. The polarization converter 23 is mounted in the waveguide so as to intersect the voltage application direction of the oscillation diode 4 at a predetermined angle (E1: 45 °, for example).

一方、マイクロ波受波器2は、その検波方向が発振ダイオード4の電圧印加方向に一致する受信ダイオード5を有するとともに、入射する回転波W2を直線波W1に戻すための偏波変換器32を備える。この偏波変換器32は、マイクロ波送波器1に装着される偏波変換器23と同一のものを使用でき、また偏波変換器23と同一の傾斜角度(E1)をもって導波管内に装着される。   On the other hand, the microwave receiver 2 has a receiving diode 5 whose detection direction coincides with the voltage application direction of the oscillation diode 4, and a polarization converter 32 for returning the incident rotating wave W2 to the linear wave W1. Prepare. The polarization converter 32 can be the same as the polarization converter 23 mounted on the microwave transmitter 1 and has the same inclination angle (E1) as that of the polarization converter 23 in the waveguide. Installed.

上記の構成において、図2(a)に示す被検出物体Aの非通過時には、発振ダイオード4から発振された直線波W1は、偏波変換器23により、一方向に回転する電界分布を有する回転波W2に偏波されてマイクロ波送波器1から発射され、この回転波W2は、反射体3による一回目の反射によりその回転方向が反転され(W3)、2回目の反射により再び反転されて、結局、マイクロ波送波器1から発射された回転波W2と同一方向に回転する回転波W2としてマイクロ波受波器2に入射する。そして、入射した回転波W2は、マイクロ波受波器2内で偏波変換器32を通過する際に直線波W1に偏波され、受信ダイオード5に到達する。この直線波W1の電界分布は受信ダイオード5の検波方向と一致するため、マイクロ波受波器2からは、その受信信号が演算部に出力される。   In the above configuration, when the detected object A shown in FIG. 2A does not pass, the linear wave W1 oscillated from the oscillation diode 4 is rotated by the polarization converter 23 having an electric field distribution that rotates in one direction. Polarized into a wave W2 and emitted from the microwave transmitter 1, the rotational direction of the rotating wave W2 is reversed by the first reflection by the reflector 3 (W3) and reversed again by the second reflection. Eventually, it enters the microwave receiver 2 as a rotating wave W2 that rotates in the same direction as the rotating wave W2 emitted from the microwave transmitter 1. The incident rotating wave W2 is polarized into the linear wave W1 when passing through the polarization converter 32 in the microwave receiver 2, and reaches the receiving diode 5. Since the electric field distribution of the linear wave W1 coincides with the detection direction of the receiving diode 5, the reception signal is output from the microwave receiver 2 to the arithmetic unit.

この状態から、図2(b)に示すように、被検出物体Aが通過すると、マイクロ波送波器1から発射された回転波W2は、被検出物体Aにより一回反射され、その回転方向が反転された後、マイクロ波受波器2に入射する。この入射した回転波W3は、偏波変換器32で直線波W1に偏波されるが、その電界分布が受信ダイオード5の検波方向と直交するため、受信信号は演算部に出力されない。   From this state, as shown in FIG. 2 (b), when the detected object A passes, the rotating wave W2 emitted from the microwave transmitter 1 is reflected once by the detected object A, and its rotational direction. Is inverted and then enters the microwave receiver 2. The incident rotating wave W3 is polarized into a linear wave W1 by the polarization converter 32. However, since the electric field distribution is orthogonal to the detection direction of the receiving diode 5, the received signal is not output to the arithmetic unit.

上記の検出方法において、マイクロ波の送信から受信までの時間を基にしてマイクロ波の反射位置を算出することができ、図1(a)あるいは図2(a)のように被検出物体Aがマイクロ波受波器1と反射体3との間に存在しない場合には、図3のように反射体3の位置を示す信号(以下、「基準受信信号」という)が、同一位置に強く現われる。   In the above detection method, the reflection position of the microwave can be calculated based on the time from the transmission to the reception of the microwave, and the object A to be detected is shown in FIG. 1 (a) or 2 (a). When there is no gap between the microwave receiver 1 and the reflector 3, a signal indicating the position of the reflector 3 (hereinafter referred to as “reference received signal”) appears strongly at the same position as shown in FIG. .

また、マイクロ波はある広がりをもって発信されるため、実際には道路Rの路面や周囲の物体によりマイクロ波が反射され、偶数回反射されると、その反射波がマイクロ波検波器2に入射することがある。このような不要反射波は、図3に破線で示すように、その反射位置に応じて出現する。そして、反射位置がマイクロ波受波器2に近いと受信強度の大きい不要反射波(I)が現われることがあり、誤作動を起こすおそれがある。   In addition, since the microwave is transmitted with a certain spread, actually, the microwave is reflected by the road surface of the road R and surrounding objects, and when the microwave is reflected an even number of times, the reflected wave enters the microwave detector 2. Sometimes. Such unnecessary reflected waves appear in accordance with their reflection positions as indicated by broken lines in FIG. If the reflection position is close to the microwave receiver 2, an unnecessary reflected wave (I) having a high reception intensity may appear, which may cause a malfunction.

そこで、反射体3で反射された基準受信信号ついては、その受信強度のまま、好ましくは増幅して出力するとともに、その他の物体により偶数回反射され、マイクロ波受波器2で受信した不要反射波については、その受信強度のまま、または減衰させて出力する。このような信号処理により、被検出物体Aがマイクロ波送波器1と反射体3との間に存在しない場合は、反射体3による基準受信信号が明確に現われ、不要反射波による受信信号は実質的に無くなる。尚、このような信号処理は、当業者であれば、公知の増幅手段により容易に実現可能である。   Therefore, the reference received signal reflected by the reflector 3 is preferably amplified and output with its received intensity, and is reflected by an even number of times by other objects and received by the microwave receiver 2. Is output with the received intensity unchanged or attenuated. By such signal processing, when the detected object A does not exist between the microwave transmitter 1 and the reflector 3, the reference received signal by the reflector 3 appears clearly, and the received signal by the unnecessary reflected wave is Virtually lost. Such signal processing can be easily realized by those skilled in the art using known amplification means.

そして、反射体3による基準受信信号を常時出力しておき、この基準受信信号が途絶えるか、減衰したときに、図1(b)または図2(b)に示すように、被検出物体Aがマイクロ波送波器1と反射体3との間を通過中であると判定する。この判定は、上記のように不要反射波による影響が排除されているため、確実かつ正確に行うことができる。   Then, the reference reception signal from the reflector 3 is always output, and when the reference reception signal is interrupted or attenuated, as shown in FIG. 1B or FIG. It determines with passing between the microwave transmitter 1 and the reflector 3. FIG. This determination can be performed reliably and accurately because the influence of unnecessary reflected waves is eliminated as described above.

また、更なる誤作動防止を目的として、ダミー信号を出力する構成とすることもできる。図4に示すように、マイクロ波受波器2と反射体3との間の任意の位置に仮想的に存在する物体により反射されたと見做すダミー信号の位置を、反射体3による基準受信信号が途絶えるか、減衰したときに出力する。ダミー信号は、基準受信信号が途絶えるか、減衰したときに確実に一定の位置に出現するため、ダミー信号の出現位置を監視することにより、被検出物体Aをより確実に検知することができるようになる。尚、このダミー信号は、不要反射波と同様に減衰させてもよく、基準受信信号と同様に増幅してもよい。   In addition, a dummy signal can be output for the purpose of preventing further malfunction. As shown in FIG. 4, the position of the dummy signal that is assumed to have been reflected by an object virtually existing at an arbitrary position between the microwave receiver 2 and the reflector 3 is received by the reflector 3 as a reference. Output when the signal is interrupted or attenuated. Since the dummy signal appears at a certain position when the reference reception signal is interrupted or attenuated, the detected object A can be detected more reliably by monitoring the appearance position of the dummy signal. become. This dummy signal may be attenuated in the same manner as the unnecessary reflected wave, or may be amplified in the same manner as the reference reception signal.

ダミー信号を発生するには、例えば図5に示すように、マイクロ波送受信器に接続される導波管に所定長の同軸ケーブルを接続したり、アンテナの先端部に反射物体を付設すればよい。マイクロ波送受信器のマイクロ波送波器から発信されたマイクロ波は、同軸ケーブルを伝搬して先端部にて反射されてマイクロ波送受信器に戻り、あるいはアンテナ先端部の反射物体で反射されてマイクロ波送受信器に戻り、マイクロ波受波器で受信される。そのため、同軸ケーブルの長さや反射物体の付設位置により、ダミー信号の出現位置を調整することができる。   In order to generate a dummy signal, for example, as shown in FIG. 5, a coaxial cable of a predetermined length may be connected to a waveguide connected to a microwave transmitter / receiver, or a reflective object may be attached to the tip of an antenna. . The microwave transmitted from the microwave transmitter / receiver of the microwave transmitter / receiver propagates through the coaxial cable and is reflected at the tip and returned to the microwave transmitter / receiver, or reflected by the reflecting object at the tip of the antenna and micro-transmitted. It returns to the wave transceiver and is received by the microwave receiver. Therefore, the appearance position of the dummy signal can be adjusted by the length of the coaxial cable and the attachment position of the reflecting object.

上記の監視システムは、そのまま踏切に適用することができる。即ち、上記の監視領域Rを踏切内の車両通行路に見立て、この車両通行路を挟んで一方の側にマイクロ波送波器1及びマイクロ波受波器2を配置し、他方の側に反射体3を配置してマイクロ波の傾斜波または回転波を送受信する。そして、同様にして、基準受信信号を常に出力し、基準受信信号が途絶えたときに、必要によりダミー信号を出力して人や車両が踏切内の車両通行路を通過中であると判断するとともに、遮断桿が降りた後でも基準受信信号が遮断されて車両通行路に人や車両が居ると判断されたときに、接近する列車に警報を発する。   The above monitoring system can be applied to a level crossing as it is. That is, the above-mentioned monitoring region R is regarded as a vehicle passage in a railroad crossing, the microwave transmitter 1 and the microwave receiver 2 are arranged on one side across the vehicle passage, and reflected on the other side. The body 3 is arranged to transmit / receive a microwave tilt wave or rotation wave. Similarly, the reference reception signal is always output, and when the reference reception signal is interrupted, a dummy signal is output as necessary to determine that a person or vehicle is passing the vehicle passage in the railroad crossing. When the reference reception signal is interrupted and it is determined that there are people or vehicles on the vehicle traffic path even after the barrier fence is lowered, an alarm is issued to the approaching train.

このように、踏切監視システムにおいても、不要反射波の影響が排除されるため、踏切内の車両通行路を通行する人や車両を確実、かつ、正確に検知でき、安全な列車運行が可能になる。   In this way, the level crossing monitoring system also eliminates the effects of unwanted reflected waves, so it is possible to reliably and accurately detect people and vehicles passing through the vehicle passages within the level crossing, enabling safe train operation. Become.

本発明の踏切監視システムを構築する装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the apparatus which constructs the level crossing monitoring system of this invention. 本発明の踏切監視システムを構築する装置の他の例を示概略構成図である。It is a schematic block diagram which shows the other example of the apparatus which constructs the level crossing monitoring system of this invention. 受信信号の例を示す図である。It is a figure which shows the example of a received signal. ダミー信号を説明するための図である。It is a figure for demonstrating a dummy signal. ダミー信号を発生するための装置を示す概略構成図である。It is a schematic block diagram which shows the apparatus for generating a dummy signal.

符号の説明Explanation of symbols

1 マイクロ波送波器
2 マイクロ波受波器
3 反射体
A 被検出物体
1 Microwave Transmitter 2 Microwave Receiver 3 Reflector A Detected Object

Claims (8)

監視領域を挟んで一方の側に検出媒体の送信を行う送信手段及び該検出媒体の受信を行う受信手段を配置し、他方の側に検出媒体を反射する反射手段を配置して送信手段から反射手段に向けて検出媒体を常時送信し、受信手段で受信するとともに、
受信信号毎にその反射位置を算出し、かつ、反射手段で反射された検出媒体に基づく基準受信信号については、その受信強度のまま、もしくは増幅して出力し、反射手段以外で反射された検出媒体に基づく受信信号については、その受信強度のまま、もしくは減衰させて出力し、
基準受信信号が途絶えるか、減衰したときに、監視領域に被検出物体が存在することを検知することを特徴とする監視システム。
A transmission means for transmitting the detection medium and a reception means for receiving the detection medium are arranged on one side across the monitoring area, and a reflection means for reflecting the detection medium is arranged on the other side to reflect from the transmission means. The detection medium is constantly transmitted toward the means and received by the receiving means.
For each received signal, the reflection position is calculated, and for the reference received signal based on the detection medium reflected by the reflecting means, the received intensity is output as it is or amplified, and the detection reflected by other than the reflecting means is detected. The received signal based on the medium is output with the received intensity as it is or attenuated,
A monitoring system that detects the presence of an object to be detected in a monitoring area when a reference reception signal is interrupted or attenuated.
送信手段と反射手段との間の任意の位置に仮想的に存在する物体による反射を示すダミー信号を、基準受信信号が途絶えるか、減衰したときに出力することを特徴とする請求項1記載の監視システム。   The dummy signal indicating reflection by an object virtually existing at an arbitrary position between the transmission means and the reflection means is output when the reference reception signal is interrupted or attenuated. Monitoring system. ダミー信号を、基準受信信号と同様に増幅、あるいは反射手段以外で反射された検出媒体に基づく受信信号と同様に減衰させて出力することを特徴とする請求項2記載の監視システム。   3. The monitoring system according to claim 2, wherein the dummy signal is amplified in the same manner as the reference received signal or attenuated in the same manner as the received signal based on the detection medium reflected by a means other than the reflecting means. 検出媒体が、電界分布が時計回りまたは反時計回りの何れか一方向に回転する回転波、もしくは電界分布がマイクロ波の進行方向軸線を含む水平または垂直平面に対して90°未満の角度をもって傾斜する傾斜直線波であり、かつ、反射手段が該反射手段に入射したマイクロ波を偶数回反射させて受信手段に送ることを特徴とする請求項1〜3の何れか1項に記載の監視システム。   The detection medium is a rotating wave whose electric field distribution rotates in one of the clockwise or counterclockwise directions, or the electric field distribution is inclined at an angle of less than 90 ° with respect to a horizontal or vertical plane including the microwave traveling direction axis. The monitoring system according to any one of claims 1 to 3, wherein the microwave is an inclined linear wave, and the reflection means reflects the microwave incident on the reflection means an even number of times and sends the microwave to the reception means. . 踏切内の車両通行路を挟んで一方の側に検出媒体の送信を行う送信手段及び該検出媒体の受信を行う受信手段を配置し、他方の側に検出媒体を反射する反射手段を配置して送信手段から反射手段に向けて検出媒体を常時送信し、受信手段で受信するとともに、
受信信号毎にその反射位置を算出し、かつ、反射手段で反射された検出媒体に基づく基準受信信号については、その受信強度のまま、もしくは増幅して出力し、反射手段以外で反射された検出媒体に基づく受信信号については、その受信強度のまま、もしくは減衰させて出力し、
遮断桿が降りた後でも基準受信信号が途絶えるか、減衰しているときに、踏切内の車両通行路に人や車両が居ると判断し、踏切に接近する鉄道車両に警報を発することを特徴とする踏切監視システム。
A transmission means for transmitting the detection medium and a reception means for receiving the detection medium are arranged on one side across the vehicle passage in the railroad crossing, and a reflection means for reflecting the detection medium is arranged on the other side. The detection medium is constantly transmitted from the transmission unit to the reflection unit, and is received by the reception unit.
For each received signal, the reflection position is calculated, and for the reference received signal based on the detection medium reflected by the reflecting means, the received intensity is output as it is or amplified, and the detection reflected by other than the reflecting means is detected. The received signal based on the medium is output with the received intensity as it is or attenuated,
When the reference reception signal is interrupted or attenuated even after the barrier fence has come off, it is judged that there are people or vehicles on the vehicle passage in the railroad crossing, and a warning is issued to the railcar approaching the railroad crossing Railroad crossing monitoring system.
送信手段と反射手段との間の任意の位置に仮想的に存在する物体による反射を示すダミー信号を、基準受信信号が途絶えるか、減衰したときに出力することを特徴とする請求項5記載の踏切監視システム。   6. The dummy signal indicating reflection by an object virtually existing at an arbitrary position between the transmission unit and the reflection unit is output when the reference reception signal is interrupted or attenuated. Railroad crossing monitoring system. ダミー信号を、基準受信信号と同様に増幅、あるいは反射手段以外で反射された検出媒体に基づく受信信号と同様に減衰させて出力することを特徴とする請求項6記載の踏切監視システム。   7. The level crossing monitoring system according to claim 6, wherein the dummy signal is amplified in the same manner as the reference reception signal or attenuated and output in the same manner as the reception signal based on the detection medium reflected by a means other than the reflection means. 検出媒体が、電界分布が時計回りまたは反時計回りの何れか一方向に回転する回転波、もしくは電界分布がマイクロ波の進行方向軸線を含む水平または垂直平面に対して90°未満の角度をもって傾斜する傾斜直線波であり、かつ、反射手段が該反射手段に入射したマイクロ波を偶数回反射させて受信手段に送ることを特徴とする請求項5〜7の何れか1項に記載の踏切監視システム。   The detection medium is a rotating wave whose electric field distribution rotates in one of the clockwise or counterclockwise directions, or the electric field distribution is inclined at an angle of less than 90 ° with respect to a horizontal or vertical plane including the microwave traveling direction axis. The railroad crossing monitoring according to any one of claims 5 to 7, wherein the reflection means transmits the microwave incident on the reflection means to the reception means after being reflected an even number of times. system.
JP2004199107A 2004-07-06 2004-07-06 Monitoring system Expired - Fee Related JP4883890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004199107A JP4883890B2 (en) 2004-07-06 2004-07-06 Monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004199107A JP4883890B2 (en) 2004-07-06 2004-07-06 Monitoring system

Publications (2)

Publication Number Publication Date
JP2006021558A true JP2006021558A (en) 2006-01-26
JP4883890B2 JP4883890B2 (en) 2012-02-22

Family

ID=35795152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004199107A Expired - Fee Related JP4883890B2 (en) 2004-07-06 2004-07-06 Monitoring system

Country Status (1)

Country Link
JP (1) JP4883890B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008112629A (en) * 2006-10-30 2008-05-15 Omron Corp Regressive reflection type photoelectric sensor, sensor body and regressive reflection part of regressive reflection type photoelectric sensor
JP2010095194A (en) * 2008-10-17 2010-04-30 Nippon Signal Co Ltd:The Railroad crossing obstacle detecting device
JP2015041332A (en) * 2013-08-23 2015-03-02 株式会社東海理化電機製作所 Intruder detection system
JP2015125023A (en) * 2013-12-25 2015-07-06 富士電機株式会社 Vehicle detection device
WO2019012745A1 (en) * 2017-07-14 2019-01-17 株式会社日立製作所 Moving body detection system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56167272A (en) * 1980-05-29 1981-12-22 Furukawa Battery Co Ltd:The Fiber-clad base plate and its manufacture
JPH02119785A (en) * 1988-10-28 1990-05-07 Toray Ind Inc Production of 2-oxo-4-phenylbutyric acid
JPH08248145A (en) * 1995-03-07 1996-09-27 Wire Device:Kk Reflection-type object detection method by microwaves
JPH11264877A (en) * 1997-12-22 1999-09-28 Wire Device:Kk Object detection method by microwave
JP2000088952A (en) * 1998-09-10 2000-03-31 Omron Corp Object detection device and method
JP2000171556A (en) * 1998-12-07 2000-06-23 Nissan Motor Co Ltd Radar apparatus for vehicle
JP2000326850A (en) * 1999-05-21 2000-11-28 Fujitsu Ltd Railway crossing control system and railway crossing controlling method
JP2004122952A (en) * 2002-10-02 2004-04-22 Nippon Signal Co Ltd:The Crossing obstacle detection device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56167272A (en) * 1980-05-29 1981-12-22 Furukawa Battery Co Ltd:The Fiber-clad base plate and its manufacture
JPH02119785A (en) * 1988-10-28 1990-05-07 Toray Ind Inc Production of 2-oxo-4-phenylbutyric acid
JPH08248145A (en) * 1995-03-07 1996-09-27 Wire Device:Kk Reflection-type object detection method by microwaves
JPH11264877A (en) * 1997-12-22 1999-09-28 Wire Device:Kk Object detection method by microwave
JP2000088952A (en) * 1998-09-10 2000-03-31 Omron Corp Object detection device and method
JP2000171556A (en) * 1998-12-07 2000-06-23 Nissan Motor Co Ltd Radar apparatus for vehicle
JP2000326850A (en) * 1999-05-21 2000-11-28 Fujitsu Ltd Railway crossing control system and railway crossing controlling method
JP2004122952A (en) * 2002-10-02 2004-04-22 Nippon Signal Co Ltd:The Crossing obstacle detection device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008112629A (en) * 2006-10-30 2008-05-15 Omron Corp Regressive reflection type photoelectric sensor, sensor body and regressive reflection part of regressive reflection type photoelectric sensor
US7751042B2 (en) 2006-10-30 2010-07-06 Omron Corporation Recursive-reflective photoelectric sensor
JP2010095194A (en) * 2008-10-17 2010-04-30 Nippon Signal Co Ltd:The Railroad crossing obstacle detecting device
JP2015041332A (en) * 2013-08-23 2015-03-02 株式会社東海理化電機製作所 Intruder detection system
JP2015125023A (en) * 2013-12-25 2015-07-06 富士電機株式会社 Vehicle detection device
WO2019012745A1 (en) * 2017-07-14 2019-01-17 株式会社日立製作所 Moving body detection system

Also Published As

Publication number Publication date
JP4883890B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
US9477007B2 (en) Laser scanner
JP4817282B2 (en) Sensor for sending and receiving electromagnetic signals
JPH06234397A (en) Method and optical system for avoiding collision of cooperative traveling objects
KR102407344B1 (en) Scanning lidar device having extended horizential view
JP2003011824A (en) Crossing obstructing detector
WO1999026214A1 (en) Device and method for detection of aircraft wire hazard
JP4883890B2 (en) Monitoring system
JP3518431B2 (en) Object detection device and system
JP3500360B2 (en) Radar mounting direction adjusting device and radar mounting direction adjusting method
JP4580217B2 (en) Radar system, object detection method, radar device, radio wave reflector
JP2010095192A (en) Railroad crossing obstacle detecting device
US6909369B2 (en) Device for monitoring an area
WO2019155621A1 (en) Obstacle detection system
JP5396052B2 (en) Radar transceiver
JPH10147197A (en) Obstruction detecting device
JP2001325690A (en) Obstacle detector
JPH1172562A (en) Alarming device for distance between vehicles
JP2001289948A (en) Airport surface monitor
JP5057831B2 (en) Obstacle detection device
JP3971227B2 (en) Obstacle detection device
JP2660738B2 (en) Obstacle detection device
JPS62118612A (en) Polarized wave conversion reflecting plate
JP2004098984A (en) Railroad crossing obstacle detecting device and railroad crossing obstacle detecting method
JP4249078B2 (en) Intrusion / obstacle detection device and non-powered response device
JPH11353596A (en) Curve mirror with radio wave reflection panel

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070507

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4883890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees