JP2006021281A - Wire electric discharge machining method - Google Patents

Wire electric discharge machining method Download PDF

Info

Publication number
JP2006021281A
JP2006021281A JP2004201896A JP2004201896A JP2006021281A JP 2006021281 A JP2006021281 A JP 2006021281A JP 2004201896 A JP2004201896 A JP 2004201896A JP 2004201896 A JP2004201896 A JP 2004201896A JP 2006021281 A JP2006021281 A JP 2006021281A
Authority
JP
Japan
Prior art keywords
machining
workpiece
electric discharge
point
solidifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004201896A
Other languages
Japanese (ja)
Inventor
Kenzo Kaneda
堅三 金田
Kazuhiko Iiumi
和彦 飯海
Masayuki Ichikawa
政幸 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asmo Co Ltd
Denso Corp
Original Assignee
Asmo Co Ltd
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asmo Co Ltd, Denso Corp filed Critical Asmo Co Ltd
Priority to JP2004201896A priority Critical patent/JP2006021281A/en
Publication of JP2006021281A publication Critical patent/JP2006021281A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily separate a cutoff part after machining, prevent falling of the cutoff part of a workpiece, in wire electric discharge machining. <P>SOLUTION: A machining groove 5 is formed in a workpiece 1 of a conductive material by the electric discharge machining up to a machining stopping point 4b from a machining starting point 4a, and an unmachined part 6 is left. Paraffin of a melting coagulation fixative 10a is poured into the machining groove in a state of heating the workpiece 1 to a melting point or more of the fixative by a heater 9. After applying a conductive fixative 11 to the vicinity of the machining starting point or the machining stopping point, the workpiece is cooled to a room temperature (the melting point or less) or the like, and a machined part of the workpiece is fixed and held by solidifying the melted fixative. Then, the unmachined part is cut off by the electric discharge machining, and the electric discharge machining is also repeatedly performed by securing electric conductivity by the conductive fixative, and a machining object surface superior in surface roughness can be provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ワイヤ放電加工方法に関し、特に重量が大きいワークの加工や、面粗度が高く変形の少ない加工を行う場合に用いて有効である。   The present invention relates to a wire electric discharge machining method, and is particularly effective when machining a workpiece having a large weight or machining having a high surface roughness and little deformation.

従来、重量の大きいワークをワイヤ放電加工する場合、加工終了後に切り取られたワークが落下すると変形したり傷ついたりし、または加工機が壊れるなどの危険性があるため、切り取りワークの落下防止のため治具を用いたり、あるいは、加工溝を接着剤で固着化するものがあった(例えば、特許文献1参照)。
特開平5−4118号公報
Conventionally, when wire EDM is used for heavy workpieces, there is a risk of deformation or damage if the workpiece cut off after processing is finished, or the processing machine may be broken. Some have used a jig, or fixed a processed groove with an adhesive (for example, see Patent Document 1).
JP-A-5-4118

しかし、従来用いられている落下防止治具は、ワーク形状に応じて設計が必要となるなど面倒であり、また切り取りワークを分離するために加工溝から固化した接着剤を取り除くには接着剤の溶剤を用いて固化した接着剤を溶解して除去する必要があり作業時間が長くなるという問題があった。   However, conventionally used fall prevention jigs are cumbersome, such as requiring design according to the workpiece shape, and in order to remove the solidified adhesive from the processing groove in order to separate the cut workpiece, There is a problem that the working time becomes long because it is necessary to dissolve and remove the solidified adhesive using a solvent.

さらに、複数回放電加工を繰り返して面粗度を高める加工を行う場合は、加工の最後の部分は全部切り取らなければならず、これにより切り取りワークが落下して、その後の繰り返しの放電加工はできず、結局この最後の部分は面粗度が低く(粗く)なるという問題があった。   In addition, when performing electrical discharge machining multiple times to increase the surface roughness, the last part of the machining must be cut out completely, so that the cut workpiece falls and subsequent electrical discharge machining is possible. After all, this last part has a problem that the surface roughness is low (rough).

本発明は、上記点に鑑み、ワークの切り取り部位の落下防止、および加工後の切り取り部位の分離を簡便に行うことを目的とする。   In view of the above points, an object of the present invention is to easily prevent a workpiece from being cut off and to separate the cut portion after processing.

また、本発明は、ワークの切断面の全面にわたって複数回の放電加工を可能とすることを目的とする。   Another object of the present invention is to enable electric discharge machining a plurality of times over the entire cut surface of the workpiece.

上記目的を達成するため、請求項1に記載の発明では、導電性材料のワーク(1)に、ワークの上面(7a)から下面(7b)まで貫通する加工溝(5)を加工開始点(4a)から加工終了点(4a)までの所定の加工軌跡に沿って形成することにより、ワークを少なくとも2つの部位に分離するワイヤ放電加工方法において、ワークの加工開始点から、軌跡上の点であって未加工部(6)を残す加工停止点(4b)までを放電加工する一次加工工程と、一次加工工程ののち、ワークを融解凝固固定剤(10)の融点温度以上に加熱する工程と、加熱されたワークの加工開始点から加工停止点までの加工溝中に融解凝固固定剤(10a)を融解状態で流し込む工程と、融解凝固固定剤を冷却固化する固化工程と、固化工程ののち、加工停止点より加工終了点まで放電加工する工程と、放電加工されたワークを融点温度以上に加熱して、加工溝中に流し込まれた融解凝固固定剤を融解状態で加工溝より排出する工程と、を備えることを特徴とする。   In order to achieve the above object, according to the first aspect of the present invention, a machining groove (5) penetrating from the upper surface (7a) to the lower surface (7b) of the workpiece is formed in the workpiece (1) made of a conductive material. In the wire electric discharge machining method that separates the workpiece into at least two parts by forming along a predetermined machining locus from 4a) to the machining end point (4a), from the machining start point of the workpiece to a point on the locus. A primary machining step in which electric discharge machining is performed up to a machining stop point (4b) that leaves an unmachined part (6), and a step in which the workpiece is heated to a temperature equal to or higher than the melting point of the melt-solidification fixing agent (10) after the primary machining step After the process of pouring the molten and solidified fixing agent (10a) in the melted state into the machining groove from the machining start point to the machining stop point of the heated workpiece, the solidification process for cooling and solidifying the molten solidification fixing agent, and the solidification process , Processing stop point A step of performing electric discharge machining to the end of machining and a step of heating the electric discharge machined workpiece to a temperature equal to or higher than the melting point temperature and discharging the molten and solidifying fixing agent poured into the machining groove from the machining groove in a molten state. It is characterized by that.

この発明によれば、未加工部を残してワイヤ放電加工されたワークの加工溝に、融解状態の融解凝固固定剤を流し込み、その後ワークを冷却して融解凝固固定剤を固化するので、ワークにおいてすでに加工されている部分の変形が防止できる。そしてこの状態で未加工部をワイヤ放電してワークを複数の部位に分離しても、加工溝に流れ込み固化した融解凝固固定剤により各部位間は接着されているので、加工されたワークが変形、あるいは脱落することを防止できる。   According to the present invention, the melted and solidified fixing agent is poured into the machining groove of the wire electric discharge machined work leaving the unmachined part, and then the workpiece is cooled to solidify the molten and solidified fixing agent. The deformation of the already processed part can be prevented. In this state, even if the unprocessed part is wire-discharged and the workpiece is separated into a plurality of parts, the parts are bonded to each other by the molten and solidified fixing agent that flows into the processing groove and solidifies, so that the processed work is deformed. Or can be prevented from falling off.

さらに、固化した融解凝固固定剤を融点以上に加熱することにより、加工溝より容易に排出することができ、被加工部材を簡便に分離することができる。   Furthermore, by heating the solidified molten and solidified fixing agent to the melting point or higher, it can be easily discharged from the machining groove, and the workpiece can be easily separated.

さらに、請求項2に記載のように、融解凝固固定剤を融解状態で流し込む工程と固化工程との間に、加熱されたワークの加工停止点および加工終了点の少なくともいずれか一方の付近において導電性の融解凝固固定剤を塗布する工程を備えることができる。この導電性の融解凝固固定剤によりワークにおける導電性が確保でき、加工停止点および加工終了点付近の未加工部を繰り返し放電加工することができる。   Furthermore, as described in claim 2, between the step of pouring the molten and solidified fixing agent in a molten state and the solidification step, the conductive material is conductive in the vicinity of at least one of the processing stop point and the processing end point of the heated workpiece. A step of applying a soluble melting and solidifying fixative. With this conductive melt-solidifying and fixing agent, the conductivity of the workpiece can be ensured, and the unmachined portion near the machining stop point and the machining end point can be repeatedly subjected to electric discharge machining.

また、請求項3に記載のように、一次加工工程ののち、ワークの下面に加工軌跡を覆うように漏れ止めテープ(8)を貼付する工程を備えるとともに、固化工程ののち、漏れ止めテープをワークより除去する工程を備えることができる。これにより、加工溝中に流し込まれた融解状態の融解凝固固定剤がワークの下面より流れ落ちてしまうことを防止できるとともに、融解凝固固定剤が冷却により固化したのちはこの漏れ止めテープを取り外すことにより、その後の放電加工の継続に支障をきたすことがない。   In addition, as described in claim 3, after the primary processing step, the method includes a step of applying a leak-proof tape (8) so as to cover the processing locus on the lower surface of the work, and after the solidifying step, A step of removing from the workpiece can be provided. As a result, it is possible to prevent the melted and solidified fixing agent poured into the processing groove from flowing down from the lower surface of the workpiece, and after the molten and solidified fixing agent has solidified by cooling, the leakage-preventing tape is removed. Then, there will be no hindrance to the continuation of subsequent electric discharge machining.

さらに、ワークの加熱には、請求項4に記載のように、ワークにシートヒータ(9)を貼り付けることにより行うことができる。   Furthermore, the workpiece can be heated by attaching a sheet heater (9) to the workpiece as described in claim 4.

なお、融解凝固固定剤は、請求項5に記載のように、融点が常温と水の沸点との間の温度であるものを用いるようにすれば、融解凝固固定剤の融解のためのワークの加熱熱量を小さくすることができ、ワークの熱変形、熱変質を防止することができるとともに、ワークの固定のためにワークを室温程度の融点に冷却することを簡便に行うことができる。   As described in claim 5, if the melting and solidifying fixing agent is one having a melting point between room temperature and the boiling point of water, the workpiece for melting the melting and solidifying fixing agent is used. The amount of heating heat can be reduced, thermal deformation and thermal alteration of the work can be prevented, and cooling of the work to a melting point of about room temperature can be easily performed for fixing the work.

請求項6に記載の発明は、導電性材料のワーク(1)に、ワークの上面(7a)から下面(7b)まで貫通する加工溝(5)を加工開始点(4a)から加工終了点(4a)までの所定の軌跡に沿って形成することにより、ワークを少なくとも2つの部位に分離するワイヤ放電加工方法において、ワークの加工開始点から、軌跡上の点であって未加工部(6)を残す加工停止点(4b)までを繰り返し放電加工する一次加工工程と、一次加工工程ののち、ワークを導電性の融解凝固固定剤(11)の融点温度以上に加熱する工程と、加熱されたワークの加工停止点および加工終了点の少なくともいずれか一方の付近において導電性の融解凝固固定剤を塗布する工程と、導電性の融解凝固固定剤を冷却固化する固化工程と、加工停止点と加工終了点との間を繰り返し放電加工する工程と、を備えることを特徴とする。   According to the sixth aspect of the present invention, a machining groove (5) penetrating from the upper surface (7a) to the lower surface (7b) of the workpiece is formed on the workpiece (1) of the conductive material from the machining start point (4a) to the machining end point ( In the wire electric discharge machining method in which the workpiece is separated into at least two parts by forming along a predetermined locus up to 4a), a point on the locus from the machining start point of the workpiece and an unmachined portion (6) A primary machining step in which electric discharge machining is repeated until the machining stop point (4b) is left, and after the primary machining step, the workpiece is heated to a temperature equal to or higher than the melting point of the conductive melt-solidification fixing agent (11), and heated. A step of applying a conductive melt-solidifying fixative in the vicinity of at least one of a workpiece processing stop point and a processing end point, a solidifying step of cooling and solidifying the conductive melt-solidifying fixative, a processing stop point, and processing Finish Characterized in that it comprises the the steps of repeatedly discharge machining between.

これにより、未加工部を残して繰り返し行う一次放電加工により面粗度のよい被加工面を得ることができるとともに、この一次放電加工された加工溝に融解凝固固定剤を流し込んで固化させてワークを安定的に保持した状態で、未加工部に導電性の融解凝固固定剤を塗布する。これにより、未加工部を放電加工で複数の部位に分離したのちも未加工部における導電性が確保されているので、放電加工を繰り返し行うことができ、未加工部にも面粗度の良い被加工面を形成することができる。   As a result, a surface to be machined with good surface roughness can be obtained by primary electric discharge machining which is repeatedly performed while leaving an unmachined portion, and a melt-solidification fixing agent is poured into the processed groove subjected to the primary electric discharge machining to solidify the workpiece. In a state where is stably held, a conductive melting and solidifying fixing agent is applied to the unprocessed portion. As a result, since the electrical conductivity in the unmachined portion is ensured after the unmachined portion is separated into a plurality of parts by electric discharge machining, the electrical discharge machining can be repeated, and the surface roughness of the unmachined portion is also good. A surface to be processed can be formed.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.

(第1実施形態)
以下、本発明の第1実施形態について、ワイヤ放電加工の手順を示した図1ないし図7に基づいて説明する。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1 to 7 showing a procedure of wire electric discharge machining.

まず、図1に示すように、鋼材(S50C)からなる幅100mm、長さ100mm、高さ100mmのワーク1を、加工開始点4aから加工停止点4bへ、所定の加工軌跡に沿ってワイヤ放電加工を行う(一次加工工程)。このとき、ワーク1とワイヤ2とに端子3a、3bで接続された加工電源3により高周波電圧を印加するとともに、ワークが載置されたワークテーブル(図示せず)の加工軌跡に沿った移動によりワイヤ放電加工を進行させる。このワイヤ放電加工により、ワーク1より切り取りワーク1aを切り取るために、ワーク1の上面7aから底面である下面7bに貫通する幅0.2mmの加工溝5を形成する。   First, as shown in FIG. 1, a workpiece 1 made of steel (S50C) having a width of 100 mm, a length of 100 mm, and a height of 100 mm is subjected to wire discharge along a predetermined processing locus from a processing start point 4a to a processing stop point 4b. Processing is performed (primary processing step). At this time, a high frequency voltage is applied to the workpiece 1 and the wire 2 by the machining power source 3 connected by the terminals 3a and 3b, and the workpiece table (not shown) on which the workpiece is placed moves along the machining locus. Advance wire electrical discharge machining. In order to cut the workpiece 1a from the workpiece 1 by this wire electric discharge machining, a machining groove 5 having a width of 0.2 mm penetrating from the upper surface 7a of the workpiece 1 to the lower surface 7b which is the bottom surface is formed.

一次加工では、未加工部6を加工しないまま残して、加工停止点4bで一旦、放電加工を停止する。停止後に、一旦加工機よりワーク1周りの加工液(水)を取り除く。   In the primary machining, the non-machined portion 6 is left unmachined and the electric discharge machining is temporarily stopped at the machining stop point 4b. After stopping, the machining fluid (water) around the workpiece 1 is once removed from the processing machine.

次に、図2に示すように、ワーク1の下面7bに、耐熱性の漏れ止めテープ8で加工溝5を塞ぐようシールする。この漏れ止めテープ8は、予め把握されている加工軌跡に沿った形に成形することができる。   Next, as shown in FIG. 2, the lower surface 7 b of the work 1 is sealed with a heat-resistant leak-proof tape 8 so as to close the machining groove 5. The leak-proof tape 8 can be formed into a shape along a processing locus that is grasped in advance.

その後、図3に示すように、ワーク1の上面7aの加工溝5付近に非水溶性の融解凝固固定剤10であるパラフィンを置いた状態で、ワーク1の4つの側面にシリコンラバーヒータ9を装着し、これにより、ワーク1を室温から融解凝固固定剤10の融点51℃以上である70℃までに加熱する。融解凝固固定剤10は、ワーク1の温度上昇に応じて融解し、液体状態となって毛管現象により、幅0.2mmの加工溝5に流れ込む。この場合の上昇温度(70℃)は、融解凝固固定剤10が確実に加工溝5中に流れ込んでこれを充填できるように融点よりも比較的高く、かつ、加熱に要する時間を短くするために比較的低く設定される。   Thereafter, as shown in FIG. 3, silicon rubber heaters 9 are placed on the four side surfaces of the work 1 in a state where paraffin which is a water-insoluble melting and solidifying fixing agent 10 is placed in the vicinity of the processing groove 5 on the upper surface 7 a of the work 1. With this, the workpiece 1 is heated from room temperature to 70 ° C., which is 51 ° C. or higher, of the melting and solidifying fixing agent 10. The melt-solidifying / fixing agent 10 melts as the temperature of the workpiece 1 rises, becomes a liquid state, and flows into the processing groove 5 having a width of 0.2 mm by capillary action. In this case, the rising temperature (70 ° C.) is relatively higher than the melting point so that the melt-solidifying fixing agent 10 can surely flow into the processing groove 5 and fill it, and the heating time is shortened. Set relatively low.

なお、ワーク1の下面7bの加工溝5に施した漏れ止めテープ8により、加工溝5はシールされているので、加工溝5に流れ込んだ融解凝固固定剤10aはワーク1の加工溝5からワーク外へ垂れ落ちることはない。   In addition, since the processing groove 5 is sealed by the leak-proof tape 8 applied to the processing groove 5 on the lower surface 7b of the work 1, the melt solidification fixing agent 10a that has flowed into the processing groove 5 is transferred from the processing groove 5 of the work 1 to the work. It will not sag outside.

なお、シリコンラバーヒータ9は、シリコンラバーシートにパターン化した面状発熱体を貼り付け、更にヒータの片面を磁化したものであり、金属面に容易に着脱することができる。   The silicon rubber heater 9 is obtained by attaching a patterned sheet heating element to a silicon rubber sheet and magnetizing one side of the heater, and can be easily attached to and detached from a metal surface.

次に、図4に示すように、固化工程として、シリコンラバーヒータ9をワーク1より取り外し、ワーク1を融解凝固固定剤10aとしてのパラフィンの融点51℃以下に冷却し、パラフィンを固化する。融解凝固固定剤10aが固化した後は、漏れ止めテープ8をワーク1より取り外す。このときのワーク1の冷却方法としては、自然冷却でもよいし、あるいは、水を浸したウェスなどをワーク1に貼り付けて冷却を促進するようにしてもよい。   Next, as shown in FIG. 4, as a solidification process, the silicon rubber heater 9 is removed from the work 1, and the work 1 is cooled to a melting point of 51 ° C. or less of paraffin as the melting and solidifying fixing agent 10a to solidify the paraffin. After the melting and solidifying fixing agent 10a is solidified, the leakage prevention tape 8 is removed from the work 1. As a cooling method of the workpiece 1 at this time, natural cooling may be used, or a waste cloth soaked with water may be attached to the workpiece 1 to promote cooling.

なお、本実施形態における融解凝固固定剤10は、非水溶性材料であるパラフィンを用いている。非水溶性材料を用いることにより、ワイヤ放電加工で一般的な水槽中での加工を安定的に行うことが可能になる。   In addition, the melt-solidification fixing agent 10 in this embodiment uses paraffin which is a water-insoluble material. By using a water-insoluble material, it is possible to stably perform processing in a general water tank in wire electric discharge machining.

その後、加工液ノズル12より加工機内部に室温(例えば20℃)に保たれた加工液(水)12aを満たすことによって、ワーク1も加工液の温度に冷却保持されるので、加工溝5に流し込まれた融解凝固固定剤10aとしてのパラフィンの接着強度は5kg/cm2が保証された。この接着強度は、立方体のワーク1の全重量(約8kg)を4面(約400cm2)で保持するに十分な大きさである。 Thereafter, the workpiece 1 is cooled and held at the temperature of the machining liquid by filling the machining liquid (water) 12a maintained at room temperature (for example, 20 ° C.) from the machining liquid nozzle 12 into the machining groove 5. The adhesive strength of the paraffin as the melted and solidified fixing agent 10a poured in was guaranteed 5 kg / cm 2 . This adhesive strength is large enough to hold the total weight (about 8 kg) of the cubic workpiece 1 on four sides (about 400 cm 2 ).

したがって、ワーク1および未加工部6とワーク1につながった切り取りワーク1aは、両者が加工溝5中の融解凝固固定剤10aにより接着固定され、変形や脱落することなく保持される。   Therefore, the workpiece 1 and the unmachined portion 6 and the cut workpiece 1a connected to the workpiece 1 are bonded and fixed by the melt-solidification fixing agent 10a in the machining groove 5 and are held without being deformed or dropped off.

次に、図5に示すように、二次加工として未加工部6を加工停止点4bから加工終了点としての加工開始点4aまで放電加工し、切り取りワーク1aがワーク1より完全に切り離される。なお、本第1実施形態では、切り取りワーク1aは、一筆書き形状に形成される加工溝5により、ワーク1より切り抜かれる形状の例を示しており、加工の終了点は加工開始点4aと一致する。ただし、加工軌跡は一筆書きに限らず、加工開始点4aと加工終了点とを一致させない加工軌跡でもよい。   Next, as shown in FIG. 5, the unmachined portion 6 is subjected to electric discharge machining from the machining stop point 4 b to the machining start point 4 a as the machining end point as secondary machining, and the cut workpiece 1 a is completely separated from the workpiece 1. In the first embodiment, the cut workpiece 1a is shown as an example of a shape cut out from the workpiece 1 by the machining groove 5 formed in a single stroke shape, and the machining end point coincides with the machining start point 4a. To do. However, the machining trajectory is not limited to a single stroke, and may be a machining trajectory in which the machining start point 4a and the machining end point are not matched.

このように、加工開始点4aから未加工部6の端部である加工停止点4bまでの加工溝5に融解凝固固定剤10aを充填し、且つこれを固化してワーク1と切り取りワーク1aとを接着しているので、未加工部6の放電加工中のワーク1および切り取りワーク1aの変形や切り取りワーク1aの脱落を防止することができる。   In this way, the melted and solidified fixing agent 10a is filled in the machining groove 5 from the machining start point 4a to the machining stop point 4b which is the end of the unmachined part 6, and this is solidified to form the workpiece 1 and the cut workpiece 1a. Therefore, deformation of the workpiece 1 and the cut workpiece 1a during the electric discharge machining of the unmachined portion 6 and dropping of the cut workpiece 1a can be prevented.

次に、図6に示すように、放電加工の終了したワーク1および切り取りワーク1aを融解凝固固定剤10の融点(51℃)以上の温度、例えば60℃程度まで加熱して融解凝固固定剤10aを融解させて加工溝5から排出させる。なお、このワーク1、1aの再加熱は、図示のごとく、シリコンラバーヒータ9をワーク1に貼り付けて行なってもよいし、あるいは、融解凝固固定剤10の融点以上の温度の熱湯中に浸漬してもよい。   Next, as shown in FIG. 6, the work 1 and the cut work 1 a that have been subjected to electric discharge machining are heated to a temperature equal to or higher than the melting point (51 ° C.) of the melt-solidifying fixative 10, for example, about 60 ° C. Is melted and discharged from the processing groove 5. In addition, the reheating of the workpieces 1 and 1a may be performed by attaching a silicon rubber heater 9 to the workpiece 1 as shown in the drawing, or it is immersed in hot water having a temperature equal to or higher than the melting point of the melting and solidifying fixing agent 10. May be.

こうして、加工溝5より融解凝固固定剤10aを排出させると、図7に示すように、ワーク1を切り取りワーク1aとは、容易に分離可能である。   Thus, when the melt-solidifying / fixing agent 10a is discharged from the machining groove 5, as shown in FIG. 7, the workpiece 1 is cut out and can be easily separated from the workpiece 1a.

(第2実施形態)
次に、本発明の第2実施形態について、図8ないし図15に基づいて説明する。本第2実施形態は、放電加工されたワーク1、1aの被加工面の面粗度を良くするために、同一の加工部を複数回放電加工するものである。なお、第1実施形態と同じ加工工程では、各構成に同一符号を付して説明を省略、または簡略化する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIGS. In the second embodiment, the same processed part is subjected to electric discharge machining a plurality of times in order to improve the surface roughness of the work surface of the electric discharge processed workpieces 1 and 1a. In the same processing steps as those in the first embodiment, the same reference numerals are given to the respective components, and description thereof will be omitted or simplified.

まず、図8に示すように、一次加工工程として、ステンレス(SUS304)の幅100mm、長さ200mm、板厚30mmのワーク1を、ワーク1が変形しないところまで切りこみを深くして、加工開始点4aから加工停止点4bまで予め設定された加工軌跡に沿って3回ワイヤ放電加工を行ない、幅0.3mmの加工溝5を形成する。   First, as shown in FIG. 8, as a primary processing step, a workpiece 1 having a width of 100 mm, a length of 200 mm, and a plate thickness of 30 mm made of stainless steel (SUS304) is deepened so that the workpiece 1 is not deformed. Wire electrical discharge machining is performed three times along a preset machining locus from 4a to the machining stop point 4b to form a machining groove 5 having a width of 0.3 mm.

このように、同じ加工軌跡にそって複数回繰り返して放電加工を行うことにより、被加工面の面粗度は向上する。このとき、未加工部6を残しているので、ワーク1と切り取りワーク1aとは未加工部6により導通が保たれており、放電加工を継続することができる。   Thus, the surface roughness of the surface to be processed is improved by performing electric discharge machining a plurality of times along the same machining locus. At this time, since the unmachined portion 6 remains, the continuity between the workpiece 1 and the cut workpiece 1a is maintained by the unmachined portion 6, and electric discharge machining can be continued.

次に、上記第1実施形態の図2、図3と同様、ワーク1の下面7bに、漏れ止めテープ8で加工溝5を塞ぐようシールし(図9)、その後、ワーク1の上面7aの加工溝5付近に非水溶性の融解凝固固定剤10であるパラフィンを置いた状態で、ワーク1の上面7aにシリコンラバーヒータ9を装着し、これにより、ワーク1を室温から融解凝固固定剤10の融点75℃以上である90℃までに加熱する(図10)。すなわち、本第2実施形態では融解凝固固定剤10のパラフィンの融点は75℃のものを用いている。このように、パラフィンは、融点範囲を細かく設定されたおり、放電加工において、目的に応じた融点のものを選択することが可能となっている。   Next, as in FIGS. 2 and 3 of the first embodiment, the lower surface 7b of the work 1 is sealed so as to close the machining groove 5 with the leak-proof tape 8 (FIG. 9), and then the upper surface 7a of the work 1 is sealed. A silicon rubber heater 9 is mounted on the upper surface 7a of the work 1 in a state where paraffin which is a water-insoluble melting and solidifying fixative 10 is placed in the vicinity of the processing groove 5, whereby the work 1 is melted and solidified fixing 10 from room temperature. Is heated to 90 ° C., which is 75 ° C. or higher (FIG. 10). That is, in the second embodiment, the melting and solidifying fixing agent 10 having a paraffin melting point of 75 ° C. is used. As described above, paraffin has a fine melting point range, and it is possible to select a paraffin having a melting point according to the purpose in electric discharge machining.

次に、本第2実施形態では、上記第1実施形態では行わなかった工程を行なう。すなわち、図11に示すように、ワーク1の上面7aの加工開始点4a付近に、導電性融解凝固固定剤11を載置する。この導電性融解凝固固定剤11は、上記融点75℃のパラフィン50重量%と平均粒径5μmのカーボン粒子50重量%とからなるものであり、絶縁物である融解凝固固定剤10とは異なり、パラフィン中に混入しているカーボン粒子により導電性を備えている。   Next, in the second embodiment, steps not performed in the first embodiment are performed. That is, as shown in FIG. 11, the conductive melting and solidifying fixing agent 11 is placed near the processing start point 4 a on the upper surface 7 a of the workpiece 1. The conductive melt-solidifying fixative 11 is composed of 50% by weight of paraffin having a melting point of 75 ° C. and 50% by weight of carbon particles having an average particle diameter of 5 μm. Unlike the melt-solidifying fixative 10 which is an insulator, Conductivity is provided by carbon particles mixed in paraffin.

加工開始点4a付近に置かれた導電性融解凝固固定剤11は、すでに加熱されているワーク1上で融解し、一部は未加工部6付近に留まり、一部は加工開始点4aおよび加工停止点4bより加工溝5に流れ込み融解凝固固定剤10aと混合する。このとき、ワーク1の下面7bに施した漏れ止めテープ8により、加工溝5に流れ込んだ融解凝固固定剤10aおよび導電性融解凝固固定剤11はワーク1の加工溝5からワーク外へ垂れ落ちることはない。   The conductive melt-solidifying / fixing agent 11 placed in the vicinity of the processing start point 4a is melted on the workpiece 1 that has already been heated, and part of it remains in the vicinity of the unprocessed portion 6, and part of the processing start point 4a and processing. It flows into the processing groove 5 from the stop point 4b and is mixed with the melt-solidification fixing agent 10a. At this time, due to the leak-proof tape 8 applied to the lower surface 7b of the work 1, the molten and solidified fixing agent 10a and the conductive molten and solidified fixing agent 11 that have flowed into the processed groove 5 hang down from the processed groove 5 of the work 1 to the outside of the work. There is no.

次に、上記第1実施形態の図4と同様、固化工程として、ワーク1を固定剤10aの融点75℃以下に冷却し、加工溝5中に流し込んだ融解凝固固定剤10aおよび導電性融解凝固固定剤11を固化させたのち、ワーク1の下面7bの漏れ止めテープ8を取り外し、加工機内部に室温(例えば20℃)に保たれた加工液(水)12aを満たすことによって、ワーク1も加工液の温度に冷却保持される(図12)。これにより、加工溝5中で固化した融解凝固固定剤10aとしてのパラフィンの接着強度は15kg/cm2が保証された。 Next, as in FIG. 4 of the first embodiment, as the solidification process, the work 1 is cooled to a melting point of 75 ° C. or less of the fixing agent 10a, and the molten and solidified fixing agent 10a poured into the machining groove 5 and the conductive melting and solidification. After the fixing agent 11 is solidified, the leakage prevention tape 8 on the lower surface 7b of the workpiece 1 is removed, and the machining fluid (water) 12a maintained at room temperature (for example, 20 ° C.) is filled inside the machining machine, whereby the workpiece 1 is also removed. It is cooled and held at the temperature of the working fluid (FIG. 12). As a result, the adhesive strength of paraffin as the melt-solidification fixing agent 10a solidified in the processing groove 5 was guaranteed to be 15 kg / cm 2 .

次に、図13に示すように、二次加工として未加工部6を加工停止点4bから加工終了点としての加工開始点4aまで、同じ加工軌跡上を複数回(たとえば3回)の放電加工を行って、被加工面の面粗度を良くする加工を行う。   Next, as shown in FIG. 13, electric discharge machining is performed a plurality of times (for example, three times) on the same machining locus from the machining stop point 4b to the machining start point 4a as the machining end point for the unmachined portion 6 as secondary machining. To improve the surface roughness of the surface to be processed.

なお、このとき、加工停止点4bから加工開始点4aまでの1回目の放電加工のときにワーク1と切り取りワーク1aとが完全に切り離されても、加工停止点4bおよび加工開始点4aと両者の間の未加工部6の面上に存在する導電性融解凝固固定剤11の働きにより、切り離されたワーク1と切り取りワーク1aとの間の導電性が確保されるので、繰り返し放電加工が可能となり、この未加工部6も面粗度を良くすることができる。   At this time, even if the workpiece 1 and the cut workpiece 1a are completely separated during the first electric discharge machining from the machining stop point 4b to the machining start point 4a, both the machining stop point 4b and the machining start point 4a are provided. The electrical conductivity between the cut workpiece 1 and the cut workpiece 1a is ensured by the action of the conductive melting and solidifying fixing agent 11 existing on the surface of the unprocessed portion 6 between the two, so that repeated electric discharge machining is possible. Thus, this unprocessed portion 6 can also improve the surface roughness.

放電加工が終了した後には、上記第1実施形態の図6、図7と同様に、ワーク1の上面7aすなわち、切り取りワーク1aの上面を融解凝固固定剤10および導電性融解凝固固定剤11の融点(75℃)以上の温度、例えば90℃程度まで、シリコンラバーヒータ9または熱湯への浸漬により加熱して融解凝固固定剤10aを融解させて加工溝5から排出させる(図14)。   After the electric discharge machining is completed, the upper surface 7a of the workpiece 1, that is, the upper surface of the cut workpiece 1a, is formed on the molten and solidified fixing agent 10 and the conductive molten and solidified fixing agent 11 in the same manner as in FIGS. The molten solidification fixing agent 10a is melted by being immersed in a silicon rubber heater 9 or hot water up to a temperature equal to or higher than the melting point (75 ° C.), for example, about 90 ° C., and discharged from the processing groove 5 (FIG. 14).

そして、加工溝5より融解凝固固定剤10aおよび導電性融解凝固固定剤11を排出させると、図15に示すように、ワーク1を切り取りワーク1aとは、容易に分離可能である。   When the molten and solidified fixing agent 10a and the conductive molten and solidified fixing agent 11 are discharged from the processing groove 5, as shown in FIG. 15, the workpiece 1 is cut out and can be easily separated from the workpiece 1a.

以上のように、本第2実施形態では、一次加工で未加工部6を残して複数回放電加工を行なった後、一次加工した加工溝5に融解凝固固定剤10aを流し込んで固化させてワーク1と加工された切り取りワーク1aとを接着するので、未加工部6を放電加工による二次加工を行なうときに、ワーク1、1aの変形や脱落が発生することなく、安定して二次加工を行うことができる。   As described above, in the second embodiment, after the electric discharge machining is performed a plurality of times while leaving the unmachined portion 6 in the primary machining, the molten and solidified fixing agent 10a is poured into the primary machining groove 5 to be solidified. 1 is bonded to the processed cut workpiece 1a, so that when the unmachined portion 6 is subjected to secondary machining by electric discharge machining, the workpieces 1 and 1a are not deformed or dropped, and the secondary machining can be performed stably. It can be performed.

さらに、本第2実施形態では、未加工部6付近に導電性融解凝固固定剤11を塗布するので、この導電性融解凝固固定剤11により、未加工部6におけるワーク1と切り取りワーク1aとの導電性を確保できる。したがって、この導電性融解凝固固定剤11の中で、未加工部6を繰り返し放電加工を行うことができ、面粗度のよい加工面を得ることができる。   Furthermore, in this 2nd Embodiment, since the electroconductive melt-solidification fixing agent 11 is apply | coated to the unprocessed part 6 vicinity, with this electroconductive melt-solidification fixing agent 11, the workpiece | work 1 in the unprocessed part 6 and the cut workpiece 1a are carried out. Conductivity can be ensured. Therefore, in this electroconductive melt-solidifying / fixing agent 11, the unmachined portion 6 can be repeatedly subjected to electric discharge machining, and a machined surface with good surface roughness can be obtained.

そして、これら融解凝固固定剤としてパラフィンを用いているので、室温で固化してワークと切り取りワークとを簡単に接着させることができ、かつ、比較的低い(100℃以下の)融点であるので、容易に固化した融解凝固固定剤を融解させて除去することができる。   And, since paraffin is used as these melting and solidifying fixing agent, it can be solidified at room temperature to easily bond the workpiece and the cut workpiece, and has a relatively low melting point (100 ° C. or lower), The easily solidified molten and solidified fixing agent can be melted and removed.

(第3実施形態)
次に、本発明の第3実施形態について、図16に基づいて説明する。本第3実施形態は、上記第1実施形態と同じ鋼材(S50C、サイズ100×100×100(mm))のワーク1を用い、上記第2実施形態と同様、複数回の放電加工を行って面粗度の良い被加工面を得る点で、それぞれ第1および第2実施形態と同じ工程を行うものである。本第3実施形態では、さらに、非水溶性の融解凝固固定剤10および導電性の融解凝固固定剤11をワーク1に塗布および加工溝5への流し込みを行うときに、ワーク1に脱落防止板13をも用いる点が特徴である。
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIG. The third embodiment uses a workpiece 1 made of the same steel material (S50C, size 100 × 100 × 100 (mm)) as in the first embodiment, and performs electric discharge machining a plurality of times as in the second embodiment. The same steps as those of the first and second embodiments are performed in that a processed surface with good surface roughness is obtained. In the third embodiment, when the water-insoluble melting and solidifying fixing agent 10 and the conductive melting and solidifying fixing agent 11 are further applied to the workpiece 1 and poured into the machining groove 5, the falling prevention plate is applied to the workpiece 1. 13 is also used.

以下の第3実施形態の説明においては、第1および第2実施形態と同じ工程については、説明を省略または簡略化し、異なる点を中心に説明する。   In the following description of the third embodiment, description of the same steps as those in the first and second embodiments will be omitted or simplified, and differences will be mainly described.

まず、一次加工工程として、図1において、ワーク1の加工開始点4aと加工停止点4bとの間を複数回放電加工を行って加工溝5を形成し、面粗度の良い加工溝5の非加工面を得る。次に、ワーク1の下面7bに加工軌跡に応じた形状の漏れ止めテープ8を貼付して加工溝5をシールする(図2)。次に、図3に示すように、ワーク1の側面にシリコンラバーヒータ9を貼り付けてワーク1を90°程度まで加熱して、第2実施形態で用いた非水溶性融解凝固固定剤(融点75°のパラフィン)10を加工溝5付近に載置して、ワーク1の熱によりこれを融解させて加工溝5に流し込む。   First, as a primary machining step, in FIG. 1, the machining groove 5 is formed by performing electric discharge machining a plurality of times between the machining start point 4 a and the machining stop point 4 b of the workpiece 1, and the machining groove 5 with good surface roughness is formed. Get a non-machined surface. Next, a leak-proof tape 8 having a shape corresponding to the machining locus is applied to the lower surface 7b of the work 1 to seal the machining groove 5 (FIG. 2). Next, as shown in FIG. 3, a silicon rubber heater 9 is attached to the side surface of the work 1 and the work 1 is heated to about 90 °, so that the water-insoluble melt-solidification fixing agent (melting point) used in the second embodiment is used. (75 ° paraffin) 10 is placed near the machining groove 5, melted by the heat of the work 1, and poured into the machining groove 5.

そして同時に、図16に示すように、ワーク1の上面7aに、ワーク1と切り取りワーク1aとを同時に覆うような脱落防止板13を載せる。このとき、加工溝5付近の溶融状態にある融解凝固固定剤10aが、毛管現象により脱落防止板13の下面とワーク1および切り取りワーク1aの上面との間に流れ込んで、両者の隙間が融解凝固固定剤10bにより埋められる。   At the same time, as shown in FIG. 16, a drop prevention plate 13 is placed on the upper surface 7a of the workpiece 1 so as to cover the workpiece 1 and the cut workpiece 1a simultaneously. At this time, the molten and solidified fixing agent 10a in the molten state in the vicinity of the machining groove 5 flows between the lower surface of the drop-off prevention plate 13 and the upper surface of the workpiece 1 and the cut workpiece 1a by capillary action, and the gap between the two melts and solidifies. Filled with fixative 10b.

また、図16において、第2実施形態(図11)と同様、加工開始点4a付近に、融点75℃のパラフィン50重量%と平均粒径5μmのカーボン粒子50重量%からなる導電性の融解凝固固定剤11を塗布し、未加工部6の導電性を確保する。   Further, in FIG. 16, as in the second embodiment (FIG. 11), conductive melt solidification comprising 50% by weight of paraffin having a melting point of 75 ° C. and 50% by weight of carbon particles having an average particle diameter of 5 μm is formed in the vicinity of the processing start point 4a. The fixing agent 11 is applied to ensure the conductivity of the unprocessed portion 6.

そののち、図4に示す固化工程により、ワーク1を自然冷却または水を浸したウェスを貼り付けることにより固定剤10の融点75℃以下にワーク1を冷却して、融解凝固固定剤10a、10b、11を固化させ、固化後にワーク1の下面7bの漏れ止めテープ8を取り除く。   After that, the workpiece 1 is cooled to a melting point of 75 ° C. or lower by fixing the workpiece 1 with natural cooling or water-soaked waste by the solidification step shown in FIG. 11 is solidified, and after the solidification, the leak-proof tape 8 on the lower surface 7b of the work 1 is removed.

融解凝固固定剤10a、10b、11が固化した後は、加工機内部に満たされた室温程度(20℃)に保たれた加工液12aにより、ワーク1および脱落防止板13も20℃に冷却されて、融解凝固固定剤10a、10bは、接着強度が15kg/cm2に保証される。切り取りワーク1aは、加工溝5の融解凝固固定剤10aと脱落防止板13下面の融解凝固固定剤10bとの接着強度により、ワーク1から脱落することがなく保持される。   After the melting and solidifying fixing agents 10a, 10b, and 11 are solidified, the workpiece 1 and the drop-off prevention plate 13 are also cooled to 20 ° C. by the processing liquid 12a that is maintained at about room temperature (20 ° C.) filled in the processing machine. Thus, the adhesive strength of the melting and solidifying fixing agents 10a and 10b is guaranteed to be 15 kg / cm 2. The cut workpiece 1a is held without dropping from the workpiece 1 due to the adhesive strength between the melt-solidification fixing agent 10a in the machining groove 5 and the fusion-solidification fixing agent 10b on the lower surface of the drop-off preventing plate 13.

この後は、図5において、第2実施形態と同様、加工開始点4a付近に塗布した導電性の融解凝固固定剤11の導電性の働きにより、加工停止点4bと加工開始点4aとの間の未加工部6を複数回放電加工することができ、この部分においても、面粗度の良い被加工面を得ることができる。この未加工部6の放電加工においては、加工溝5に流れ込んで固化した融解凝固固定剤10aと脱落防止板13および固化した融解凝固固定剤10bとにより、完全に切り取りワーク1aが切り取られても、ワーク1から脱落したり、変形したりすることが防止される。   Thereafter, in FIG. 5, as in the second embodiment, the conductive action of the conductive melting and solidifying fixing agent 11 applied in the vicinity of the processing start point 4a is caused between the processing stop point 4b and the processing start point 4a. The unprocessed portion 6 can be subjected to electric discharge machining a plurality of times, and a processed surface with good surface roughness can be obtained also in this portion. In the electric discharge machining of the unmachined portion 6, even if the workpiece 1 a is completely cut out by the melted and solidified fixing agent 10 a that has flowed into the machining groove 5 and solidified, the drop prevention plate 13, and the solidified melted and solidified fixing agent 10 b. This prevents the workpiece 1 from falling off or deforming.

放電加工が完了した後は、図6において、ワーク1を、シリコンラバーヒータ9により、あるいは90℃以上の熱湯に浸漬することにより、融解凝固固定剤10の融点75℃以上に再加熱して、加工溝5および脱落防止板13の下面から融解凝固固定剤10a、10bを除去する。これにより、図7に示すように、ワーク1より切り取りワーク1aおよび脱落防止板13を簡単に分離することができる。   After the electric discharge machining is completed, in FIG. 6, the workpiece 1 is reheated to a melting point of 75 ° C. or higher by melting the solidification fixing agent 10 by immersing the workpiece 1 in hot water of 90 ° C. or higher by the silicon rubber heater 9, The melted and solidified fixing agents 10a and 10b are removed from the processing groove 5 and the lower surface of the drop-off preventing plate 13. Thereby, as shown in FIG. 7, the cut workpiece 1 a and the drop-off preventing plate 13 can be easily separated from the workpiece 1.

本発明の第1実施形態のワイヤ放電加工の最初の工程を示す図である。It is a figure which shows the first process of the wire electric discharge machining of 1st Embodiment of this invention. 第1実施形態のワイヤ放電加工の2番目の工程を示す図である。It is a figure which shows the 2nd process of the wire electric discharge machining of 1st Embodiment. 第1実施形態のワイヤ放電加工の3番目の工程を示す図である。It is a figure which shows the 3rd process of the wire electric discharge machining of 1st Embodiment. 第1実施形態のワイヤ放電加工の4番目の工程を示す図である。It is a figure which shows the 4th process of the wire electric discharge machining of 1st Embodiment. 第1実施形態のワイヤ放電加工の5番目の工程を示す図である。It is a figure which shows the 5th process of the wire electric discharge machining of 1st Embodiment. 第1実施形態のワイヤ放電加工の6番目の工程を示す図である。It is a figure which shows the 6th process of the wire electric discharge machining of 1st Embodiment. 第1実施形態のワイヤ放電加工の7番目の工程を示す図である。It is a figure which shows the 7th process of the wire electric discharge machining of 1st Embodiment. 本発明の第2実施形態のワイヤ放電加工の最初の工程を示す図である。It is a figure which shows the first process of the wire electric discharge machining of 2nd Embodiment of this invention. 第2実施形態のワイヤ放電加工の2番目の工程を示す図である。It is a figure which shows the 2nd process of the wire electric discharge machining of 2nd Embodiment. 第2実施形態のワイヤ放電加工の3番目の工程を示す図である。It is a figure which shows the 3rd process of the wire electric discharge machining of 2nd Embodiment. 第2実施形態のワイヤ放電加工の4番目の工程を示す図である。It is a figure which shows the 4th process of the wire electric discharge machining of 2nd Embodiment. 第2実施形態のワイヤ放電加工の5番目の工程を示す図である。It is a figure which shows the 5th process of the wire electric discharge machining of 2nd Embodiment. 第2実施形態のワイヤ放電加工の6番目の工程を示す図である。It is a figure which shows the 6th process of the wire electric discharge machining of 2nd Embodiment. 第2実施形態のワイヤ放電加工の7番目の工程を示す図である。It is a figure which shows the 7th process of the wire electric discharge machining of 2nd Embodiment. 第2実施形態のワイヤ放電加工の8番目の工程を示す図である。It is a figure which shows the 8th process of the wire electric discharge machining of 2nd Embodiment. 第3実施形態のワイヤ放電加工の一工程を示す図である。It is a figure which shows 1 process of the wire electric discharge machining of 3rd Embodiment.

符号の説明Explanation of symbols

1…ワーク、1a…切り取りワーク、3…加工電源、4a…加工開始点、
4b…加工停止点、5…加工溝、6…未加工部、8…耐熱性漏れ止めテープ、
9…シリコンラバーヒータ、10、10a、10b…非水溶性融解凝固固定剤、
11…導電性融解凝固固定剤、13…脱落防止板。
DESCRIPTION OF SYMBOLS 1 ... Work, 1a ... Cutting work, 3 ... Processing power supply, 4a ... Processing start point,
4b ... processing stop point, 5 ... machined groove, 6 ... unprocessed part, 8 ... heat-resistant leak-proof tape,
9 ... Silicon rubber heater, 10, 10a, 10b ... Non-water-soluble melting and solidifying fixative,
11: Conductive melting and solidifying fixing agent, 13: Drop-off prevention plate.

Claims (6)

導電性材料のワーク(1)に、前記ワークの上面(7a)から下面(7b)まで貫通する加工溝(5)を加工開始点(4a)から加工終了点(4a)までの所定の加工軌跡に沿って形成することにより、前記ワークを少なくとも2つの部位に分離するワイヤ放電加工方法において、
前記ワークの加工開始点から、前記軌跡上の点であって未加工部(6)を残す加工停止点(4b)までを放電加工する一次加工工程と、
前記一次加工工程ののち、前記ワークを融解凝固固定剤(10)の融点温度以上に加熱する工程と、
前記加熱されたワークの前記加工開始点から加工停止点までの前記加工溝中に前記融解凝固固定剤(10a)を融解状態で流し込む工程と、
前記融解凝固固定剤を冷却固化する固化工程と、
前記固化工程ののち、前記加工停止点より前記加工終了点まで放電加工する工程と、
前記放電加工されたワークを前記融点温度以上に加熱して、前記加工溝中に流し込まれた前記融解凝固固定剤を融解状態で前記加工溝より排出する工程と、
を備えることを特徴とするワイヤ放電加工方法。
A predetermined machining locus from the machining start point (4a) to the machining end point (4a) through the machining groove (5) penetrating the workpiece (1) from the upper surface (7a) to the lower surface (7b) of the workpiece. In the wire electric discharge machining method for separating the workpiece into at least two parts by forming along
A primary machining step of performing electrical discharge machining from a machining start point of the workpiece to a machining stop point (4b) that is a point on the trajectory and leaves an unmachined portion (6);
After the primary processing step, the step of heating the workpiece to a temperature equal to or higher than the melting point temperature of the melting and solidifying fixing agent (10);
Pouring the molten and solidifying fixing agent (10a) in a molten state into the processing groove from the processing start point to the processing stop point of the heated workpiece;
A solidification step of cooling and solidifying the melt-solidifying fixative;
After the solidification step, electric discharge machining from the machining stop point to the machining end point;
Heating the electric discharge machined work above the melting point temperature, and discharging the molten and solidified fixing agent poured into the machining groove from the machining groove in a molten state;
A wire electric discharge machining method comprising:
前記融解凝固固定剤を融解状態で流し込む工程と前記固化工程との間に、前記加熱されたワークの前記加工停止点および加工終了点の少なくともいずれか一方の付近において導電性の融解凝固固定剤を塗布する工程を備えることを特徴とする請求項1に記載のワイヤ放電加工方法。 Between the step of pouring the molten and solidified fixing agent in a molten state and the solidifying step, a conductive molten and solidified fixing agent is provided in the vicinity of at least one of the processing stop point and the processing end point of the heated workpiece. The wire electric discharge machining method according to claim 1, further comprising a coating step. 前記一次加工工程ののち、前記ワークの下面に前記加工軌跡を覆うように漏れ止めテープ(8)を貼付する工程を備えるとともに、
前記固化工程ののち、前記漏れ止めテープを前記ワークより除去する工程を備えることを特徴とする請求項1または2に記載のワイヤ放電加工方法。
After the primary processing step, including a step of applying a leak-proof tape (8) so as to cover the processing locus on the lower surface of the workpiece,
The wire electric discharge machining method according to claim 1, further comprising a step of removing the leak-proof tape from the workpiece after the solidifying step.
前記ワークを加熱する工程では、前記ワークにシートヒータ(9)を貼り付けることにより行うことを特徴とする請求項1ないし3のいずれか1つに記載のワイヤ放電加工方法。 The wire electric discharge machining method according to any one of claims 1 to 3, wherein the step of heating the workpiece is performed by attaching a sheet heater (9) to the workpiece. 前記融解凝固固定剤は、融点が常温と水の沸点との間の温度であることを特徴とする請求項1ないし4のいずれか1つに記載のワイヤ放電加工方法。 The wire electric discharge machining method according to any one of claims 1 to 4, wherein the melting and solidifying fixing agent has a melting point between room temperature and a boiling point of water. 導電性材料のワーク(1)に、前記ワークの上面(7a)から下面(7b)まで貫通する加工溝(5)を加工開始点(4a)から加工終了点(4a)までの所定の軌跡に沿って形成することにより、前記ワークを少なくとも2つの部位に分離するワイヤ放電加工方法において、
前記ワークの加工開始点から、前記軌跡上の点であって未加工部(6)を残す加工停止点(4b)までを繰り返し放電加工する一次加工工程と、
前記一次加工工程ののち、前記ワークを導電性の融解凝固固定剤(11)の融点温度以上に加熱する工程と、
前記加熱されたワークの前記加工停止点および加工終了点の少なくともいずれか一方の付近において前記導電性の融解凝固固定剤を塗布する工程と、
前記導電性の融解凝固固定剤を冷却固化する固化工程と、
前記加工停止点と加工終了点との間を繰り返し放電加工する工程と、
を備えることを特徴とするワイヤ放電加工方法。
A machining groove (5) penetrating from the upper surface (7a) to the lower surface (7b) of the workpiece on the workpiece (1) made of a conductive material has a predetermined locus from the machining start point (4a) to the machining end point (4a). In the wire electric discharge machining method for separating the workpiece into at least two parts by forming along
A primary machining step in which electric discharge machining is repeatedly performed from a machining start point of the workpiece to a machining stop point (4b) that is a point on the locus and leaves an unmachined portion (6);
After the primary processing step, heating the workpiece to a temperature equal to or higher than the melting temperature of the conductive melting and solidifying fixative (11);
Applying the conductive melting and solidifying fixative in the vicinity of at least one of the processing stop point and processing end point of the heated workpiece;
A solidification step of cooling and solidifying the conductive melting and solidifying fixative;
A step of repeatedly electric discharge machining between the machining stop point and the machining end point;
A wire electric discharge machining method comprising:
JP2004201896A 2004-07-08 2004-07-08 Wire electric discharge machining method Pending JP2006021281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004201896A JP2006021281A (en) 2004-07-08 2004-07-08 Wire electric discharge machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004201896A JP2006021281A (en) 2004-07-08 2004-07-08 Wire electric discharge machining method

Publications (1)

Publication Number Publication Date
JP2006021281A true JP2006021281A (en) 2006-01-26

Family

ID=35794926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004201896A Pending JP2006021281A (en) 2004-07-08 2004-07-08 Wire electric discharge machining method

Country Status (1)

Country Link
JP (1) JP2006021281A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9878385B2 (en) 2013-12-19 2018-01-30 Mitsubishi Electric Corporation Wire electric discharge machining apparatus, wire electric discharge machining method, and control device
US9895759B2 (en) 2013-12-19 2018-02-20 Mitsubishi Electric Corporation Wire electric discharge machining apparatus, wire electric discharge machining method, and control device
CN115139126A (en) * 2022-08-12 2022-10-04 姚青叶 Positioning device for machining engine body of internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9878385B2 (en) 2013-12-19 2018-01-30 Mitsubishi Electric Corporation Wire electric discharge machining apparatus, wire electric discharge machining method, and control device
US9895759B2 (en) 2013-12-19 2018-02-20 Mitsubishi Electric Corporation Wire electric discharge machining apparatus, wire electric discharge machining method, and control device
DE112013007629B4 (en) 2013-12-19 2018-08-02 Mitsubishi Electric Corporation Wire EDM, wire EDM and controller
CN115139126A (en) * 2022-08-12 2022-10-04 姚青叶 Positioning device for machining engine body of internal combustion engine

Similar Documents

Publication Publication Date Title
CN105665908B (en) Using the point of resistance welding steel and aluminium workpiece of electrode package
JP3330609B2 (en) Brazing method
EP2986406A1 (en) Build plate and apparatus for additive manufacturing
KR100753703B1 (en) Fusion/coagulation work fixing agent and machining method using the same
CN104325205B (en) A kind of reflow soldering method of surface mount elements
CN101468419B (en) Induction and electrical arc composite heat source stud welding method
CN105108257B (en) A kind of transition liquid-phase assisted Solid-state connection method
CN110666329B (en) Method for improving corrosion resistance of welded joint of aluminum plate and steel plate
EP2887505B1 (en) Armature winding of electrical rotating apparatus, electrical rotating apparatus using the same, and method of manufacturing the same
CN105047573A (en) Soldering tin anti-corrosion treatment method in semiconductor packaging and wire bonding process
EP1927420A2 (en) Microwave brazing process
CN104551523A (en) Iron casting piece repairing method
JP2006021281A (en) Wire electric discharge machining method
US2365539A (en) Electrolytic etching polished surfaces
CN109834354B (en) Flux-cored brazing method for carbon steel solid magnetic pole and red copper damping ring of synchronous motor and tooling support thereof
CN104028888B (en) A kind of preparation method of resistance contact head
JP6891770B2 (en) How to connect the cable to the pipeline and the case for connecting the cable to the pipeline
JPS6390358A (en) Brazing method for aluminum casting
US1867345A (en) Method of repairing tools by welding
JP6318612B2 (en) Casting method
JP2014000577A (en) Solder iron tip recycling method and recyclable solder iron tip
JP6287438B2 (en) Method for manufacturing metal member
JP3630517B2 (en) Method for manufacturing stator coil of rotating electric machine
JPH0454811A (en) Stripping method for insulating film
JPS60106697A (en) End tab welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061114

A977 Report on retrieval

Effective date: 20080716

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Written amendment

Effective date: 20080910

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20090616

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20091020

Free format text: JAPANESE INTERMEDIATE CODE: A02