JP2006020134A - Surface acoustic wave element - Google Patents

Surface acoustic wave element Download PDF

Info

Publication number
JP2006020134A
JP2006020134A JP2004196705A JP2004196705A JP2006020134A JP 2006020134 A JP2006020134 A JP 2006020134A JP 2004196705 A JP2004196705 A JP 2004196705A JP 2004196705 A JP2004196705 A JP 2004196705A JP 2006020134 A JP2006020134 A JP 2006020134A
Authority
JP
Japan
Prior art keywords
layer
thickness
acoustic wave
surface acoustic
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004196705A
Other languages
Japanese (ja)
Inventor
Koichi Yoshioka
功一 吉岡
Taizo Kobayashi
泰三 小林
Teiji Takagawa
悌二 高川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004196705A priority Critical patent/JP2006020134A/en
Publication of JP2006020134A publication Critical patent/JP2006020134A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve electric power resistance in a surface acoustic wave element in which an electrode 2 to be an interdigital transducer is formed on a piezoelectric substrate 1. <P>SOLUTION: In this surface acoustic wave element, the electrode 2 on the piezoelectric substrate 1 is configured by sequentially laminating a lower part Ti layer 3, an intermediate metal layer 4 made of Mo, W or alloy composed of these metal, an upper part Ti layer 5 and an upper part conductive layer 6 made of Al or an Al alloy. In such a case, the thickness A of the lower part Ti layer is ≥10 and ≤30 nm, the thickness B of the intermediate metal layer 4 is ≥35 and ≤65 nm, and the thickness C of the upper part Ti layer 5 is ≥10 and ≤30 nm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、圧電基板上にインターディジタルトランスデューサとなる電極が形成されている弾性表面波素子に関するものである。   The present invention relates to a surface acoustic wave element in which an electrode serving as an interdigital transducer is formed on a piezoelectric substrate.

従来、携帯電話機等の通信機器においては、共振器フィルター、デュプレクサー等の回路素子として、弾性表面波素子が用いられている。例えば、図16に示す弾性表面波素子においては、圧電基板(51)の表面に、アルミニウム製の一対の簾状電極(52a)(52a)からなるインターディジタルトランスデューサ(52)が2箇所に併設されると共に、これらのインターディジタルトランスデューサ(52)(52)の両側には、格子状の電極からなる反射器(53)(53)が配備されている。インターディジタルトランスデューサ(52)(52)にはそれぞれ一対の入力パッド(54)(54)と一対の出力パッド(55)(55)が接続されている。   Conventionally, in communication devices such as mobile phones, surface acoustic wave elements are used as circuit elements such as resonator filters and duplexers. For example, in the surface acoustic wave element shown in FIG. 16, two interdigital transducers (52) each made of a pair of aluminum-made electrodes (52a) (52a) are provided on the surface of the piezoelectric substrate (51). At the same time, reflectors (53) and (53) made of grid-like electrodes are disposed on both sides of the interdigital transducers (52) and (52). A pair of input pads (54) and (54) and a pair of output pads (55) and (55) are connected to the interdigital transducers (52) and (52), respectively.

近年、通信機器の高周波化に伴い、弾性表面波素子の動作周波数も高周波化すると共に、高出力化が要求されている。動作周波数の高周波化のためには各電極(52a)の線幅を小さく形成する必要があり、例えば動作周波数がギガヘルツ帯の場合、電極(52a)の線幅は1μm未満となる。この様に小さな線幅の電極が形成されている弾性表面波素子に電圧を印加すると、圧電基板(51)の表面に生じる弾性表面波によって、電極(52a)に繰り返し応力が作用し、この応力が電極(52a)の材料に固有の臨界応力を越えると、ストレスマイグレーションが発生する。又、電極(52a)を流れる電子流の高密度化に伴って、エレクトロマイグレーションが発生する。その結果、電極(52a)には空隙(ボイド)や突起(ヒロック)が形成されて、耐電力性の劣化により電極(52a)が破壊し、電気的短絡や挿入損失の増大を招くことになる。   In recent years, with the increase in frequency of communication devices, the operating frequency of surface acoustic wave elements has been increased, and higher output has been required. In order to increase the operating frequency, it is necessary to reduce the line width of each electrode (52a). For example, when the operating frequency is a gigahertz band, the line width of the electrode (52a) is less than 1 μm. When a voltage is applied to the surface acoustic wave element having such a small line width electrode, a stress is repeatedly applied to the electrode (52a) by the surface acoustic wave generated on the surface of the piezoelectric substrate (51). If the stress exceeds the critical stress inherent to the material of the electrode (52a), stress migration occurs. In addition, electromigration occurs as the electron flow through the electrode (52a) increases in density. As a result, voids (voids) and protrusions (hillocks) are formed in the electrode (52a), and the electrode (52a) is destroyed due to deterioration of power durability, leading to an electrical short circuit and an increase in insertion loss. .

そこで、図3に示す如く圧電基板(1)上にAl−Cu合金からなる電極(7)を形成した従来の一般的な弾性表面波素子に対し、図4の如く圧電基板(1)上の電極(8)が、下部Ti層(9)と、Al−Cu合金からなる中間金属層(10)と、上部Ti層(11)と、Al−Cu合金からなる上部導電層(12)とを積層して構成される弾性表面素子が提案されている(特許文献1参照)。   Therefore, in contrast to a conventional general surface acoustic wave element in which an electrode (7) made of an Al—Cu alloy is formed on a piezoelectric substrate (1) as shown in FIG. 3, the piezoelectric substrate (1) as shown in FIG. The electrode (8) includes a lower Ti layer (9), an intermediate metal layer (10) made of an Al—Cu alloy, an upper Ti layer (11), and an upper conductive layer (12) made of an Al—Cu alloy. An elastic surface element formed by stacking has been proposed (see Patent Document 1).

更に、図5に示す如く、圧電基板(1)上の電極(13)が、Ti−Mo合金からなる下地金属層(14)と、Al−Cu合金からなる上部導電層(15)とを積層して構成され、或いは図6の如く、圧電基板(1)上の電極(16)が、Moからなる下地金属層(17)と、Al−Cu合金からなる上部導電層(18)とを積層して構成される弾性表面波素子が提案されている(特許文献2参照)。
特願2004−41175号 特開2001−94382号公報 特開平9−135143号公報 特開2002−368568号公報 特開2002−353767号公報 特開2002−135070号公報
Further, as shown in FIG. 5, the electrode (13) on the piezoelectric substrate (1) is formed by laminating a base metal layer (14) made of a Ti—Mo alloy and an upper conductive layer (15) made of an Al—Cu alloy. As shown in FIG. 6, the electrode (16) on the piezoelectric substrate (1) is composed of a base metal layer (17) made of Mo and an upper conductive layer (18) made of an Al-Cu alloy. A surface acoustic wave element configured as described above has been proposed (see Patent Document 2).
Japanese Patent Application No. 2004-41175 JP 2001-94382 A JP-A-9-135143 JP 2002-368568 A JP 2002-353767 A JP 2002-135070 A

図3に示すAlCu単層の電極(7)を具えた弾性表面波素子では、例えば電極(7)の厚さを430nmとし、インターディジタルトランスデューサ(52)(52)及び反射器(53)(53)を最適設計することによって、図8に実線(a)で示すフィルター特性が得られる。   In the surface acoustic wave device including the AlCu single layer electrode (7) shown in FIG. 3, for example, the thickness of the electrode (7) is 430 nm, and the interdigital transducers (52) (52) and the reflectors (53) (53) ) Is optimally designed, the filter characteristic indicated by the solid line (a) in FIG. 8 is obtained.

図4に示す積層構造の電極(8)を具えた弾性表面波素子は、下部Ti層(9)と上部Ti層(11)の間にAlCuの中間金属層(10)を介在させて、これら3層からなる下地の厚膜化を図ると共に、例えば図示の如く下部Ti層(9)を80nm、中間金属層(10)を20nm、上部Ti層(11)を20nmと、それぞれ膜厚の最適化を図ることによって、フィルター特性を向上させたものであるが、図8に破線(b)で示す様に、周波数が835MHz以下の帯域では前記単層電極構造の場合(実線(a))よりも挿入損失が減少するものの、周波数が835MHz以上の帯域では挿入損失が増大しており、依然として充分なフィルター特性が実現されているとは言えない。   The surface acoustic wave device including the electrode (8) having the laminated structure shown in FIG. 4 includes an intermediate metal layer (10) of AlCu interposed between the lower Ti layer (9) and the upper Ti layer (11). In addition to increasing the thickness of the base consisting of three layers, for example, as shown in the figure, the lower Ti layer (9) is 80 nm, the intermediate metal layer (10) is 20 nm, and the upper Ti layer (11) is 20 nm. However, as shown by the broken line (b) in FIG. 8, in the band of 835 MHz or less in the band of the single-layer electrode structure (solid line (a)), the filter characteristics are improved. However, although the insertion loss decreases, the insertion loss increases in the frequency band of 835 MHz or higher, and it cannot be said that sufficient filter characteristics are still realized.

又、図5に示す如く電極(13)がTiMoの下地金属層(14)を具えている弾性表面波素子においては、下地金属層(14)の厚さが80nmで耐電力性が最大となるが、図9に破線(d)で示す様に、単層電極構造の場合(実線(a))よりも挿入損失が増大しており、この結果、発熱量が増大して耐電力性の低下を招く問題がある。   Further, in the surface acoustic wave device in which the electrode (13) includes a TiMo base metal layer (14) as shown in FIG. 5, the power durability is maximized when the thickness of the base metal layer (14) is 80 nm. However, as shown by the broken line (d) in FIG. 9, the insertion loss is larger than that in the case of the single-layer electrode structure (solid line (a)). As a result, the heat generation amount increases and the power durability decreases. There is a problem that invites.

又、図6に示す如く電極(16)がMoの下地金属層(17)を具えている弾性表面波素子においては、下地金属層(17)の厚さが95nmで耐電力性が最大となるが、図10に破線(e)で示す様に、単層電極構造の場合(実線(a))よりも著しく挿入損失が増大しており、この結果、発熱量が増大して耐電力性の低下を招く問題がある。又、下地金属層(17)のMoの上部導電層(18)への拡散が顕著となる問題がある。   As shown in FIG. 6, in the surface acoustic wave device in which the electrode (16) includes the Mo base metal layer (17), the power durability is maximized when the thickness of the base metal layer (17) is 95 nm. However, as shown by the broken line (e) in FIG. 10, the insertion loss is remarkably increased as compared with the case of the single-layer electrode structure (solid line (a)). There is a problem that causes a drop. There is also a problem that the diffusion of Mo into the upper conductive layer (18) of the base metal layer (17) becomes significant.

上述の如く、従来の何れの弾性表面波素子においても、通過帯域内の挿入損失が大きく、高い耐電力性を得ることは出来なかった。
そこで本発明の目的は、通過帯域内の挿入損失を充分に低減させて従来よりも高い耐電力性を得ることが出来る弾性表面波素子を提供することである。
As described above, any of the conventional surface acoustic wave devices has a large insertion loss in the pass band, and cannot achieve high power durability.
SUMMARY OF THE INVENTION An object of the present invention is to provide a surface acoustic wave device that can sufficiently reduce the insertion loss in the passband and obtain higher power durability than the conventional one.

本発明に係る弾性表面波素子は、圧電基板上にインターディジタルトランスデューサとなる電極を形成したものであって、前記電極は、圧電基板の表面に、Tiからなる第1層、Mo若しくはW又はこれらの金属の合金からなる第2層、Tiからなる第3層、及びAl若しくはAl合金からなる第4層を順次積層して構成され、第1層の厚さAは、10nm以上、30nm以下であり、第2層の厚さBは、35nm以上、65nm以下であり、第3層の厚さCは、10nm以上、30nm以下であることを特徴とする。   The surface acoustic wave device according to the present invention is obtained by forming an electrode to be an interdigital transducer on a piezoelectric substrate, and the electrode has a first layer made of Ti, Mo or W, or these on the surface of the piezoelectric substrate. A second layer made of an alloy of the above metal, a third layer made of Ti, and a fourth layer made of Al or an Al alloy are sequentially laminated, and the thickness A of the first layer is 10 nm or more and 30 nm or less. And the thickness B of the second layer is 35 nm or more and 65 nm or less, and the thickness C of the third layer is 10 nm or more and 30 nm or less.

本発明は、図4に示す電極構造、即ちストレスマイグレーション抑制に効果のあるTi層中に中間金属層を介在させた積層構造における中間金属層の組成として、従来のAl若しくはAl合金に替えて、Mo若しくはW又はこれらの金属の合金を採用したものとなる。
本発明者らは、この様な電極積層構造によって、通過帯域内挿入損失を減少させて更に高い耐電力性を得ることが出来ることを実験的に見出し、本発明の完成に至ったものである。
In the present invention, the composition of the intermediate metal layer in the electrode structure shown in FIG. 4, that is, the laminated structure in which the intermediate metal layer is interposed in the Ti layer effective in suppressing the stress migration, instead of the conventional Al or Al alloy, Mo or W or an alloy of these metals is adopted.
The present inventors have experimentally found that such an electrode laminated structure can reduce insertion loss in the passband and obtain higher power durability, and have completed the present invention. .

本発明に係る弾性表面波素子においては、第1層の厚さAを10nm以上、30nm以下とし、第2層の厚さBを35nm以上、65nm以下とし、且つ第3層の厚さCを10nm以上、30nm以下とすることによって、挿入損失の低減を図ることが出来、これによって発熱量を抑えて高い耐電力性を得ることが出来る。   In the surface acoustic wave device according to the present invention, the thickness A of the first layer is set to 10 nm or more and 30 nm or less, the thickness B of the second layer is set to 35 nm or more and 65 nm or less, and the thickness C of the third layer is set. By setting the thickness to 10 nm or more and 30 nm or less, it is possible to reduce the insertion loss, thereby suppressing the amount of heat generated and obtaining high power durability.

具体的には、前記第2層はMoからなり、該第2層の厚さBは、40nm以上、60nm以下である。該具体的構成によれば更に挿入損失の低減を図ることが出来る。   Specifically, the second layer is made of Mo, and the thickness B of the second layer is 40 nm or more and 60 nm or less. According to the specific configuration, the insertion loss can be further reduced.

本発明に係る弾性表面波素子によれば、帯域内挿入損失を従来よりも低減させて高い耐電力性を得ることが出来る。   According to the surface acoustic wave device according to the present invention, the in-band insertion loss can be reduced as compared with the prior art, and high power durability can be obtained.

以下、本発明の実施の形態につき、図面に沿って具体的に説明する。
本発明に係る弾性表面波素子は、図1に示す如く、圧電基板(1)上にインターディジタルトランスデューサとなる電極(2)を形成して構成され、該電極(2)は、圧電基板(1)側から順に、下部Ti層(3)、Mo若しくはW又はこれらの金属の合金からなる中間金属層(4)、上部Ti層(5)、及びAl合金からなる上部導電層(6)を積層したものである。
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
As shown in FIG. 1, the surface acoustic wave device according to the present invention is configured by forming an electrode (2) to be an interdigital transducer on a piezoelectric substrate (1). The lower Ti layer (3), the intermediate metal layer (4) made of Mo or W or an alloy of these metals, the upper Ti layer (5), and the upper conductive layer (6) made of an Al alloy are laminated in this order from the side. It is a thing.

電極(2)を構成する中間金属層(4)をMoによって形成すると共に、下部Ti層(3)、中間金属層(4)及び上部Ti層(5)の厚さを種々に変化させた多数の弾性表面波素子を試作して、これらの弾性表面波素子の耐電力性の低下による寿命の推定と、フィルター通過帯域内の挿入損失の測定を行ない、その結果に基づいて下部Ti層(3)、中間金属層(4)及び上部Ti層(5)の厚さの最適化を行なった。   The intermediate metal layer (4) constituting the electrode (2) is formed of Mo, and the thicknesses of the lower Ti layer (3), the intermediate metal layer (4), and the upper Ti layer (5) are variously changed. The surface acoustic wave elements of the surface acoustic wave elements were manufactured as prototypes, the lifetimes of these surface acoustic wave elements were estimated due to the reduced power durability, and the insertion loss in the filter passband was measured. Based on the results, the lower Ti layer (3 ), The thickness of the intermediate metal layer (4) and the upper Ti layer (5) were optimized.

尚、弾性表面波素子の製造においては、DCスパッタ装置による成膜条件として、Al−Cu(0.5重量%)合金からなる上部導電層(6)と両Ti層(3)(5)については、1kWのパワー、0.32PaのArガス雰囲気を設定し、Moからなる中間金属層(4)については、1kWのパワー、0.7PaのArガス雰囲気を設定した。又、圧電基板(1)としては、36度Yカットのタンタル酸リチウム基板(厚さ350nm)を採用し、RIEを用いて電極の加工を行なった。そして、800MHz帯のラダー型フィルターを構成して、フィルター通過帯域内の挿入損失の測定を行なった。   In the production of the surface acoustic wave element, the upper conductive layer (6) made of an Al—Cu (0.5 wt%) alloy and both Ti layers (3) and (5) are used as the film forming conditions by the DC sputtering apparatus. Set a power of 1 kW and an Ar gas atmosphere of 0.32 Pa. For the intermediate metal layer (4) made of Mo, a power of 1 kW and an Ar gas atmosphere of 0.7 Pa were set. Further, as the piezoelectric substrate (1), a 36 ° Y-cut lithium tantalate substrate (thickness 350 nm) was adopted, and the electrode was processed using RIE. Then, an 800 MHz band ladder type filter was constructed, and the insertion loss in the filter pass band was measured.

図11〜図15はそれぞれ、上部Ti層(5)の厚さCが5nm、10nm、20nm、30nm、40nmの5種類の弾性表面波素子について、横軸に中間金属層(4)の厚さBをとり、縦軸に通過帯域内平均挿入損失をとって、下部Ti層(3)の厚さAを5nm、10nm、20nm、30nm、40nmに変化させたときの通過帯域内平均挿入損失の変化を表わしたものである。尚、通過帯域内平均挿入損失は、824MHz〜849MHzの通過帯域内での挿入損失の平均値を意味している。   11 to 15 show the thickness of the intermediate metal layer (4) on the horizontal axis for five types of surface acoustic wave devices in which the thickness C of the upper Ti layer (5) is 5 nm, 10 nm, 20 nm, 30 nm, and 40 nm, respectively. B is taken, and the average insertion loss in the passband when the thickness A of the lower Ti layer (3) is changed to 5 nm, 10 nm, 20 nm, 30 nm, and 40 nm, taking the average insertion loss in the passband on the vertical axis. It represents a change. The average insertion loss in the pass band means the average value of the insertion loss in the pass band of 824 MHz to 849 MHz.

図11に示す如く、上部Ti層(5)の厚さCが5nmの場合は、下部Ti層(3)の厚さAや中間金属層(4)の厚さBに拘わらず、通過帯域内平均挿入損失は1.55dB前後の高い値を示した。
これに対し、図12の如く上部Ti層(5)の厚さCが10nmの場合は、下部Ti層(3)の厚さAが5nmと40nmのとき、中間金属層(4)の厚さBに拘わらず、通過帯域内平均挿入損失は1.55dB前後の高い値を示したが、下部Ti層(3)の厚さAが10nm〜30nmの範囲であって、且つ中間金属層(4)の厚さBが35nm〜65nmの範囲で、通過帯域内平均挿入損失が1.4dB以下に急激に低下し、中間金属層(4)の厚さBが40nm〜60nmの範囲では通過帯域内平均挿入損失が1.3dBを下回っている。
As shown in FIG. 11, when the thickness C of the upper Ti layer (5) is 5 nm, it is within the passband regardless of the thickness A of the lower Ti layer (3) and the thickness B of the intermediate metal layer (4). The average insertion loss showed a high value around 1.55 dB.
On the other hand, when the thickness C of the upper Ti layer (5) is 10 nm as shown in FIG. 12, when the thickness A of the lower Ti layer (3) is 5 nm and 40 nm, the thickness of the intermediate metal layer (4). Regardless of B, the average insertion loss in the passband showed a high value of around 1.55 dB, but the thickness A of the lower Ti layer (3) was in the range of 10 nm to 30 nm, and the intermediate metal layer (4 ) In the range of 35 nm to 65 nm, the average insertion loss in the pass band rapidly decreases to 1.4 dB or less, and in the range of the thickness B of the intermediate metal layer (4) in the range of 40 nm to 60 nm, The average insertion loss is below 1.3 dB.

又、図13の如く上部Ti層(5)の厚さCが20nmの場合においても、下部Ti層(3)の厚さAが5nmと40nmのとき、中間金属層(4)の厚さBに拘わらず、通過帯域内平均挿入損失は1.55dB前後の高い値を示したが、下部Ti層(3)の厚さAが10nm〜30nmの範囲であって、且つ中間金属層(4)の厚さBが35nm〜65nmの範囲で、通過帯域内平均挿入損失が1.4dB以下に急激に低下し、中間金属層(4)の厚さBが40nm〜60nmの範囲では通過帯域内平均挿入損失が1.3dBを下回っている。   Further, even when the thickness C of the upper Ti layer (5) is 20 nm as shown in FIG. 13, when the thickness A of the lower Ti layer (3) is 5 nm and 40 nm, the thickness B of the intermediate metal layer (4). Regardless, the average insertion loss in the passband showed a high value of around 1.55 dB, but the thickness A of the lower Ti layer (3) was in the range of 10 nm to 30 nm, and the intermediate metal layer (4) When the thickness B of the intermediate metal layer (4) is in the range of 40 nm to 60 nm, the average insertion loss in the pass band rapidly decreases to 1.4 dB or less. The insertion loss is below 1.3 dB.

更に、図14の如く上部Ti層(5)の厚さCが30nmの場合においても、下部Ti層(3)の厚さAが5nmと40nmのとき、中間金属層(4)の厚さBに拘わらず、通過帯域内平均挿入損失は1.55dB前後の高い値を示したが、下部Ti層(3)の厚さAが10nm〜30nmの範囲であって、且つ中間金属層(4)の厚さBが35nm〜65nmの範囲で、通過帯域内平均挿入損失が1.4dB以下に急激に低下し、中間金属層(4)の厚さBが40nm〜60nmの範囲では通過帯域内平均挿入損失が1.3dBを下回っている。   Further, even when the thickness C of the upper Ti layer (5) is 30 nm as shown in FIG. 14, when the thickness A of the lower Ti layer (3) is 5 nm and 40 nm, the thickness B of the intermediate metal layer (4). Regardless, the average insertion loss in the passband showed a high value of around 1.55 dB, but the thickness A of the lower Ti layer (3) was in the range of 10 nm to 30 nm, and the intermediate metal layer (4) When the thickness B of the intermediate metal layer (4) is in the range of 40 nm to 60 nm, the average insertion loss in the pass band rapidly decreases to 1.4 dB or less. The insertion loss is below 1.3 dB.

しかし、図15の如く、上部Ti層(5)の厚さCが40nmの場合は、下部Ti層(3)の厚さAや中間金属層(4)の厚さBに拘わらず、通過帯域内平均挿入損失は1.55dBを超える高い値を示した。   However, as shown in FIG. 15, when the thickness C of the upper Ti layer (5) is 40 nm, regardless of the thickness A of the lower Ti layer (3) and the thickness B of the intermediate metal layer (4), the passband The inner average insertion loss showed a high value exceeding 1.55 dB.

上述の結果から、電極(2)を構成する下部Ti層(3)の厚さAは、10nm以上、30nm以下が好ましく、中間金属層(4)の厚さBは、35nm以上、65nm以下が好ましく、上部Ti層(5)の厚さCは、10nm以上、30nm以下が好ましいと言うことが出来る。更に、中間金属層(4)の厚さBは、40nm以上、60nm以下がより好ましいと言うことが出来る。   From the above results, the thickness A of the lower Ti layer (3) constituting the electrode (2) is preferably 10 nm or more and 30 nm or less, and the thickness B of the intermediate metal layer (4) is 35 nm or more and 65 nm or less. Preferably, it can be said that the thickness C of the upper Ti layer (5) is preferably 10 nm or more and 30 nm or less. Furthermore, it can be said that the thickness B of the intermediate metal layer (4) is more preferably 40 nm or more and 60 nm or less.

図2に示す弾性表面波素子は、圧電基板(1)上の電極(2)が、厚さ20nmの下部Ti層(3)と、厚さ40nmのMoの中間金属層(4)と、厚さ15nmの上部Ti層(5)と、厚さ295nmのAl−Cu合金の上部導電層(6)とから構成され、各層(3)(4)(5)がそれぞれ上述の好ましい厚さを有している。   In the surface acoustic wave device shown in FIG. 2, the electrode (2) on the piezoelectric substrate (1) has a lower Ti layer (3) having a thickness of 20 nm, an intermediate metal layer (4) of Mo having a thickness of 40 nm, and a thickness. The upper Ti layer (5) having a thickness of 15 nm and the upper conductive layer (6) made of an Al—Cu alloy having a thickness of 295 nm, each of the layers (3), (4) and (5) having the above-mentioned preferable thicknesses. is doing.

該弾性表面波素子のフィルター特性を測定したところ、図7に破線(c)で示す結果が得られた。図示の如く、周波数が815MHz〜855MHzの広い帯域で前記単層電極構造の場合(実線(a))よりも挿入損失が減少しており、充分なフィルター特性が実現されていることが分かる。   When the filter characteristics of the surface acoustic wave device were measured, the result shown by the broken line (c) in FIG. 7 was obtained. As shown in the figure, the insertion loss is reduced in the wide band of 815 MHz to 855 MHz than in the case of the single-layer electrode structure (solid line (a)), and it can be seen that sufficient filter characteristics are realized.

下記表1は、図7〜図10に示すフィルター特性(a)(b)(c)(d)(e)を有する5種類の弾性表面波素子(図3、図4、図2、図5、図6)についてそれぞれ、通過帯域内挿入損失の最小値(Top IL;トップロス)、通過帯域内平均挿入損失、及び推定寿命を示している。
尚、通過帯域内挿入損失の最小値(Top IL)は、824MHz〜849MHzの通過帯域内での挿入損失の最小値を意味し、推定寿命は、849MHzにおける挿入損失の低下量が0.5dBを超えた時点を寿命として、加速試験によって得られたアレニウスプロットの外挿計算により、1.2W、摂氏50度での寿命に換算した値を意味している。
Table 1 below shows five types of surface acoustic wave devices (FIGS. 3, 4, 2, and 5) having the filter characteristics (a), (b), (c), (d), and (e) shown in FIGS. 6), the minimum value (Top IL; top loss) of the insertion loss in the passband, the average insertion loss in the passband, and the estimated lifetime are shown.
The minimum value (Top IL) of the insertion loss in the pass band means the minimum value of the insertion loss in the pass band of 824 MHz to 849 MHz, and the estimated lifetime is a reduction amount of the insertion loss at 849 MHz of 0.5 dB. It means a value converted to a lifetime at 1.2 W and 50 degrees Celsius by extrapolation calculation of the Arrhenius plot obtained by the acceleration test, with the time exceeding the lifetime.

Figure 2006020134
表1から明らかな様に、図2に示す本発明の弾性表面波素子(特性(c))において最も通過帯域内挿入損失の最小値(Top IL)及び通過帯域内平均挿入損失が低くなっており、然も最も長い推定寿命が得られている。
Figure 2006020134
As apparent from Table 1, in the surface acoustic wave device of the present invention shown in FIG. 2 (characteristic (c)), the minimum value (Top IL) of the insertion loss in the passband and the average insertion loss in the passband are the lowest. However, the longest estimated life is obtained.

図2に示す弾性表面波素子においては、中間金属層(4)の材質としてMoが採用されているが、中間金属層(4)の材質としてWを採用することも可能である。
下記表2の如く、Wは、Moと同様に、比重がAlやTiよりも大きく、抵抗率が低く、且つヤング率も大きいので、Moと同様の機能を発揮し得る。
In the surface acoustic wave element shown in FIG. 2, Mo is adopted as the material of the intermediate metal layer (4), but W can also be adopted as the material of the intermediate metal layer (4).
As shown in Table 2 below, W, like Mo, has a specific gravity greater than that of Al or Ti, has a low resistivity, and has a high Young's modulus, and therefore can exhibit the same function as Mo.

Figure 2006020134
そこで、電極(2)を構成する中間金属層(4)の材質としてWを採用した弾性表面波素子を試作して、通過帯域内挿入損失の最小値(Top IL)、通過帯域内平均挿入損失、及び推定寿命を測定した。その結果を下記表3に示す。
尚、弾性表面波素子の製造においては、DCスパッタ装置による成膜条件として、Wからなる中間金属層(4)については、1kWのパワー、1.2PaのArガス雰囲気を設定したことを除き、他は同じ条件を設定した。
Figure 2006020134
Therefore, a surface acoustic wave device employing W as the material of the intermediate metal layer (4) constituting the electrode (2) was prototyped, and the minimum value of the insertion loss in the passband (Top IL), the average insertion loss in the passband. , And estimated lifetime. The results are shown in Table 3 below.
In the production of the surface acoustic wave element, as the film forming conditions by the DC sputtering apparatus, for the intermediate metal layer (4) made of W, 1 kW power and 1.2 Pa Ar gas atmosphere were set. Others set the same conditions.

Figure 2006020134
表3から明らかな様に、下部Ti層(3)、中間金属層(4)及び上部Ti層(5)の厚さA、B、Cが異なる2種類の弾性表面波素子において、通過帯域内挿入損失の最小値(Top IL)、通過帯域内平均挿入損失、及び推定寿命の何れの点でも、中間金属層(4)がMoの場合と同等の高い性能が得られている。
従って、電極(2)を構成する中間金属層(4)をWから形成した弾性表面波素子においても、下部Ti層(3)の厚さAを10nm以上、30nm以下とし、中間金属層(4)の厚さBを35nm以上、65nm以下とし、上部Ti層(5)の厚さCを10nm以上、30nm以下とすることによって、従来よりも高い耐電力性を得ることが出来る。
Figure 2006020134
As can be seen from Table 3, in the surface acoustic wave devices having different thicknesses A, B and C of the lower Ti layer (3), the intermediate metal layer (4) and the upper Ti layer (5) In terms of any of the minimum value of insertion loss (Top IL), the average insertion loss in the passband, and the estimated lifetime, high performance equivalent to that in the case where the intermediate metal layer (4) is Mo is obtained.
Therefore, even in the surface acoustic wave device in which the intermediate metal layer (4) constituting the electrode (2) is formed of W, the thickness A of the lower Ti layer (3) is set to 10 nm or more and 30 nm or less, and the intermediate metal layer (4 ) Thickness B is 35 nm or more and 65 nm or less, and the thickness C of the upper Ti layer (5) is 10 nm or more and 30 nm or less.

尚、本発明の各部構成は上記実施の形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。例えば、電極(2)を構成する上部導電層(6)の材質としては、AlにCuを添加した2元系のAl合金に限らず、AlにCuの他、VやMg等を添加した3元系の合金を採用することも可能である。   In addition, each part structure of this invention is not restricted to the said embodiment, A various deformation | transformation is possible within the technical scope as described in a claim. For example, the material of the upper conductive layer (6) constituting the electrode (2) is not limited to a binary Al alloy in which Cu is added to Al, but in addition to Cu, V, Mg or the like is added to Al. It is also possible to employ an original alloy.

本発明に係る弾性表面波素子の電極積層構造を示す断面図である。It is sectional drawing which shows the electrode laminated structure of the surface acoustic wave element which concerns on this invention. 該電極積層構造の具体例を示す断面図である。It is sectional drawing which shows the specific example of this electrode laminated structure. 従来の弾性表面波素子の電極積層構造を示す断面図である。It is sectional drawing which shows the electrode laminated structure of the conventional surface acoustic wave element. 従来の他の電極積層構造を示す断面図である。It is sectional drawing which shows the other conventional electrode laminated structure. 従来の他の電極積層構造を示す断面図である。It is sectional drawing which shows the other conventional electrode laminated structure. 従来の更に他の電極積層構造を示す断面図である。It is sectional drawing which shows other conventional electrode laminated structures. 本発明の弾性表面波素子におけるフィルター特性を従来のフィルター特性と比較したグラフである。It is the graph which compared the filter characteristic in the surface acoustic wave element of the present invention with the conventional filter characteristic. 従来の弾性表面波素子のフィルター特性を示すグラフである。It is a graph which shows the filter characteristic of the conventional surface acoustic wave element. 従来の他の弾性表面波素子のフィルター特性を示すグラフである。It is a graph which shows the filter characteristic of the other conventional surface acoustic wave element. 従来の更に他の弾性表面波素子のフィルター特性を示すグラフである。It is a graph which shows the filter characteristic of other conventional surface acoustic wave elements. 電極を構成する各層の厚さの違いによる挿入損失の変化を示すグラフである。It is a graph which shows the change of the insertion loss by the difference in the thickness of each layer which comprises an electrode. 同上の他のグラフである。It is another graph same as the above. 同上の他のグラフである。It is another graph same as the above. 同上の他のグラフである。It is another graph same as the above. 同上の更に他のグラフである。It is another graph same as the above. 従来の弾性表面波素子の電極パターンを示す平面図である。It is a top view which shows the electrode pattern of the conventional surface acoustic wave element.

符号の説明Explanation of symbols

(1) 圧電基板
(2) 電極
(3) 下部Ti層
(4) 中間金属層
(5) 上部Ti層
(6) 上部導電層
(1) Piezoelectric substrate
(2) Electrode
(3) Lower Ti layer
(4) Intermediate metal layer
(5) Upper Ti layer
(6) Upper conductive layer

Claims (2)

圧電基板上にインターディジタルトランスデューサとなる電極が形成されている弾性表面波素子において、前記電極は、圧電基板の表面に、Tiからなる第1層、Mo若しくはW又はこれらの金属の合金からなる第2層、Tiからなる第3層、及びAl若しくはAl合金からなる第4層を順次積層して構成され、第1層の厚さAは、10nm以上、30nm以下であり、第2層の厚さBは、35nm以上、65nm以下であり、第3層の厚さCは、10nm以上、30nm以下であることを特徴とする弾性表面波素子。   In the surface acoustic wave element in which an electrode serving as an interdigital transducer is formed on a piezoelectric substrate, the electrode has a first layer made of Ti, Mo or W, or an alloy of these metals formed on the surface of the piezoelectric substrate. Two layers, a third layer made of Ti, and a fourth layer made of Al or an Al alloy are sequentially laminated, and the thickness A of the first layer is 10 nm or more and 30 nm or less, and the thickness of the second layer A surface acoustic wave device, wherein the thickness B is 35 nm or more and 65 nm or less, and the thickness C of the third layer is 10 nm or more and 30 nm or less. 前記第2層はMoからなり、該第2層の厚さBは、40nm以上、60nm以下である請求項1に記載の弾性表面波素子。   2. The surface acoustic wave device according to claim 1, wherein the second layer is made of Mo, and the thickness B of the second layer is not less than 40 nm and not more than 60 nm.
JP2004196705A 2004-07-02 2004-07-02 Surface acoustic wave element Pending JP2006020134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004196705A JP2006020134A (en) 2004-07-02 2004-07-02 Surface acoustic wave element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004196705A JP2006020134A (en) 2004-07-02 2004-07-02 Surface acoustic wave element

Publications (1)

Publication Number Publication Date
JP2006020134A true JP2006020134A (en) 2006-01-19

Family

ID=35793944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004196705A Pending JP2006020134A (en) 2004-07-02 2004-07-02 Surface acoustic wave element

Country Status (1)

Country Link
JP (1) JP2006020134A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010061511A1 (en) 2009-12-25 2011-06-30 Murata Manufacturing Co. Ltd., Kyoto Acoustic wave device
WO2011158445A1 (en) * 2010-06-17 2011-12-22 パナソニック株式会社 Acoustic wave element
EP3032340A1 (en) 2014-12-12 2016-06-15 Canon Kabushiki Kaisha Image forming apparatus
CN107615656A (en) * 2015-07-02 2018-01-19 株式会社村田制作所 Acoustic wave device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010061511A1 (en) 2009-12-25 2011-06-30 Murata Manufacturing Co. Ltd., Kyoto Acoustic wave device
WO2011158445A1 (en) * 2010-06-17 2011-12-22 パナソニック株式会社 Acoustic wave element
CN102948073A (en) * 2010-06-17 2013-02-27 松下电器产业株式会社 Acoustic wave element
CN105119585A (en) * 2010-06-17 2015-12-02 天工松下滤波方案日本有限公司 Elastic wave element
CN105119585B (en) * 2010-06-17 2018-01-05 天工滤波方案日本有限公司 Elastic wave device
EP3032340A1 (en) 2014-12-12 2016-06-15 Canon Kabushiki Kaisha Image forming apparatus
CN107615656A (en) * 2015-07-02 2018-01-19 株式会社村田制作所 Acoustic wave device

Similar Documents

Publication Publication Date Title
US7423365B2 (en) Surface acoustic wave device
JP5679014B2 (en) Surface acoustic wave device
JP4314118B2 (en) Electrode structure with improved output tolerance and manufacturing method
JP3521864B2 (en) Surface acoustic wave device
JP2005073175A (en) Piezoelectric thin film resonator, and its manufacturing method
US7218039B2 (en) Surface acoustic wave device
JP2008109402A (en) Thin-film piezoelectric resonator and manufacturing method therefor
KR100559091B1 (en) Surface acoustic wave device having high withstanding-power and manufacturing method thereof
JP4895323B2 (en) Thin film piezoelectric resonator
JP5273247B2 (en) Ladder type filter
JP2007235711A (en) Surface acoustic wave apparatus
JP2006020134A (en) Surface acoustic wave element
JP2017157944A (en) Surface acoustic wave device and duplexer having transmission/reception filter using the same
US20110156531A1 (en) Acoustic wave device
JP2009194895A (en) Surface acoustic wave device
JP3659455B2 (en) Surface acoustic wave device
US20040256949A1 (en) Surface acoustic wave device
JP4222975B2 (en) Thin film conductor and surface acoustic wave device using the same
JP2005269606A (en) Surface acoustic wave element, and surface acoustic wave filter providing same
JP2006115548A (en) Surface acoustic wave device
JP3631228B2 (en) Surface acoustic wave device
JP2008205720A (en) Resonator filter and duplexer
JP2018207290A (en) Elastic wave resonator and elastic wave filter
JP5204258B2 (en) Method for manufacturing piezoelectric thin film resonator
JP2005286870A (en) Surface acoustic wave element