JP2006019912A - Method for manufacturing surface acoustic wave element and photomask therefor - Google Patents

Method for manufacturing surface acoustic wave element and photomask therefor Download PDF

Info

Publication number
JP2006019912A
JP2006019912A JP2004194056A JP2004194056A JP2006019912A JP 2006019912 A JP2006019912 A JP 2006019912A JP 2004194056 A JP2004194056 A JP 2004194056A JP 2004194056 A JP2004194056 A JP 2004194056A JP 2006019912 A JP2006019912 A JP 2006019912A
Authority
JP
Japan
Prior art keywords
photomask
acoustic wave
piezoelectric substrate
surface acoustic
wave element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004194056A
Other languages
Japanese (ja)
Inventor
Tatsuo Kobayashi
辰雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2004194056A priority Critical patent/JP2006019912A/en
Publication of JP2006019912A publication Critical patent/JP2006019912A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To accurately transfer a (electrode) patterning printed on a photomask to a piezoelectric substrate wafer when an electrode pattern of a surface acoustic wave element is formed. <P>SOLUTION: The photomask used to form an electrode on the surface acoustic wave element arranged on the wafer constituting a surface acoustic wave device is provided with a gap where a main surface of the piezoelectric substrate and the photomask come into contact with each other to improve evacuation of the gap between the piezoelectric substrate and the photomask. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は例えば弾性表面波装置を構成する弾性表面波素子の電極形成に関するものである。   The present invention relates to the formation of an electrode of a surface acoustic wave element constituting, for example, a surface acoustic wave device.

昨今の移動体通信機や携帯電話は形態的にも機能的にも高度な構造と仕様の要求が進み、これに使用される弾性表面波装置に関しては、弾性表面波装置自体の小型化及び、低背化といった形態への対応と、小型でありながら従来と変わらないフィルタ仕様対応が望まれている。更に最近では、通話回線数を多数にし高密度の通信回線の要求もあることから、通話信号を伝送する送受信周波数を精度良く分割する機能部品のフィルタ機能にも高度な仕様の要求が迫られている。   Recent mobile communication devices and mobile phones are increasingly required to have advanced structures and specifications in terms of form and function. Regarding the surface acoustic wave device used for this, the surface acoustic wave device itself is downsized and Correspondence to forms such as low profile and filter specifications that are small but not different from conventional ones are desired. More recently, there is a demand for high-density communication lines with a large number of communication lines, and there is an urgent need for advanced specifications for the filter function of functional parts that accurately divide transmission and reception frequencies for transmitting call signals. Yes.

上述の送受信信号のフィルタリングに関して、移動体通信等の分野では弾性表面波を利用した帯域フィルタとしての弾性表面波装置が用いられるようになっている。このような分野の弾性表面波装置は、非常に高性能な帯域特性が求められ、特に、帯域外において大きく減衰するような減衰特性が求められ、更には製品単価を安価にするために安定して量産できる環境も必要とされている。   Regarding the above-described filtering of transmitted / received signals, a surface acoustic wave device as a bandpass filter using surface acoustic waves is used in the field of mobile communication and the like. Surface acoustic wave devices in such fields are required to have extremely high-performance band characteristics, in particular, to have attenuation characteristics that greatly attenuate outside the band, and are stable in order to reduce the unit price of the product. There is also a need for an environment that enables mass production.

弾性表面波装置に組み込まれる主要部品である弾性表面波素子は、圧電基板の表面をバルク波を伝搬させフィルタリング特性を実現することから、圧電基板上に形成する電極材料は一般的にアルミなどの軽金属が用いられ、電極の形成方法のひとつとしては、圧電基板の表面にレジストを設け、次にこの圧電基板の表面上にフォトマスクを設けて表面のレジストを露光処理し、エッチング処理を行ういわゆる、フォトリソーグラフィー法を用いて圧電基板の主面、表面に電極を形成している。
特開2003−110389号公報
The surface acoustic wave element, which is the main component incorporated in the surface acoustic wave device, propagates the bulk wave on the surface of the piezoelectric substrate and realizes filtering characteristics. Therefore, the electrode material formed on the piezoelectric substrate is generally made of aluminum or the like. A light metal is used, and one of the electrode forming methods is to provide a resist on the surface of the piezoelectric substrate, then provide a photomask on the surface of the piezoelectric substrate, expose the surface resist, and perform an etching process. Electrodes are formed on the main surface and the surface of the piezoelectric substrate using a photolithographic method.
Japanese Patent Laid-Open No. 2003-110389

前述の電極形成工程の一部を挙げると、上記のようなフォトレジストとフォトマスクとによる製造工程では、フォトマスクと圧電基板とを密着し、その状態で露光(UV:紫外線を照射)する工程が取られている。一般的なフォトマスクと圧電基板とを密着状態にして電極パターンを露光する場合では、フォトマスクに印刷された弾性表面波素子の電極パターンを精度よく圧電基板(弾性表面波素子としての電極を得るもの)に転写するために、フォトマスクと弾性表面波素子を複数個配置するウエハーの密着を良くすることが望ましい。そのためにマスクとウ工ハーの密着面を真空状態にし、密着時の真空度を上げることにより密着度を高めた製造工程の導入も行っている。   A part of the electrode formation process described above is a process in which the photomask and the piezoelectric substrate are brought into close contact with each other and exposed (UV: irradiated with ultraviolet rays) in the manufacturing process using the photoresist and the photomask as described above. Has been taken. When exposing an electrode pattern with a general photomask and a piezoelectric substrate in close contact with each other, the electrode pattern of the surface acoustic wave element printed on the photomask is accurately obtained as a piezoelectric substrate (an electrode as a surface acoustic wave element is obtained). It is desirable to improve the close contact between a photomask and a wafer on which a plurality of surface acoustic wave elements are arranged. For this purpose, a manufacturing process has been introduced in which the contact surface between the mask and the woofer is in a vacuum state and the degree of contact is increased by increasing the degree of vacuum during contact.

しかしながら、フォトマスクと圧電基板とを密着させたとき、ウエハー自体の反りの問題や、フォトマスクと圧電基板との熱膨張係数の違いにより、フォトマスクと圧電基板との密着性(密着性の不十分さを要因とするうねり)の影響により密着性にバラツキが生じることから、UVを照射したときに密着性がひとつのウエハー上で不均一であった場合などでは干渉縞が生じるおそれがある。そのため、電極パターンの転写精度にバラツキが生じ、電気的特性、ウエハー面内周波数にバラツキが生じると言った課題が発生する。   However, when the photomask and the piezoelectric substrate are brought into close contact, the adhesion between the photomask and the piezoelectric substrate (non-adhesiveness) is caused by the problem of warpage of the wafer itself and the difference in thermal expansion coefficient between the photomask and the piezoelectric substrate. Since the adhesiveness varies due to the influence of sufficient undulation), interference fringes may occur when the adhesiveness is not uniform on one wafer when UV is irradiated. For this reason, variations occur in the transfer accuracy of the electrode pattern, and there arises a problem that the electrical characteristics and the in-wafer in-plane frequency vary.

そこで上述の課題を解決するために、弾性表面波装置を構成するウエハー上に配置された弾性表面波素子に電極を形成するために用いるフォトマスクにおいて、圧電基板の主面と該フォトマスクとを密着させた状態で該圧電基板の主面と該フォトマスクとに間隔を空けることで、該圧電基板と該フォトマスクとの間を真空引きすることを特徴とするフォトマスク。   Therefore, in order to solve the above-described problems, in a photomask used for forming electrodes on a surface acoustic wave element disposed on a wafer constituting a surface acoustic wave device, the main surface of the piezoelectric substrate and the photomask are A photomask characterized in that a vacuum is drawn between the piezoelectric substrate and the photomask by leaving a space between the main surface of the piezoelectric substrate and the photomask in a state of being in close contact with each other.

要するに、フォトマスクと圧電基板とを密着させたとき、ウエハー自体の反りの問題や、フォトマスクと圧電基板との熱膨張係数の違いにより、フォトマスクと圧電基板との密着性(密着性の不十分さを要因とするうねり)の影響により密着性にバラツキが生じることから、フォトマスクに接する面のフォトマスクパターンの間に複数の溝部を形成したり、あるいは、フォトマスクに接する面のフォトマスクパターンを形成するパターンニング厚みを1.5〜2.0倍に厚くすることで、フォトマスクに印刷された弾性表面波素子の電極パターンを精度よく圧電基板(弾性表面波素子としての電極を得るもの)に転写するための工程に用いられる、フォトマスクと弾性表面波素子の密着を良くための真空引き時の効果を高めることにより従来の課題を解決する。   In short, when the photomask and the piezoelectric substrate are brought into close contact with each other, the adhesion between the photomask and the piezoelectric substrate (adhesion failure) due to the problem of warpage of the wafer itself and the difference in thermal expansion coefficient between the photomask and the piezoelectric substrate. Adhesion varies due to the influence of sufficient waviness). Therefore, a plurality of grooves are formed between the photomask patterns on the surface in contact with the photomask, or the photomask on the surface in contact with the photomask. By increasing the patterning thickness to form the pattern by 1.5 to 2.0 times, the electrode pattern of the surface acoustic wave element printed on the photomask is accurately obtained from the piezoelectric substrate (the electrode as the surface acoustic wave element is obtained). Conventionally, by increasing the effect of evacuation to improve the adhesion between the photomask and the surface acoustic wave element used in the process for transferring To solve the problems.

以上のように本発明は、圧電基板とフォトマスク相互の密着性を上げることにより、レジスト膜を露光処理する際の密着性をも向上することにより、フォトマクスに印刷してある電極パターンをひとつの圧電基板ウエハー上に複数個配置する弾性表面波素子としての電極パターンに転写することで、ひとつのウエハー面内での電気的特性のバラツキが少なくなり、周波数の面内分布も安定させることができる。その結果、製造工程における歩留まりの改善と、単位時間あたりの生産数量を向上することで、製造単価を安価にし、品質維持を実現することができる。   As described above, the present invention increases the adhesion between the piezoelectric substrate and the photomask, thereby improving the adhesion when the resist film is subjected to the exposure process, so that one electrode pattern printed on the photomask can be obtained. By transferring to a plurality of electrode patterns as surface acoustic wave elements arranged on a piezoelectric substrate wafer, variation in electrical characteristics within one wafer surface can be reduced, and the in-plane frequency distribution can be stabilized. it can. As a result, by improving the yield in the manufacturing process and increasing the production quantity per unit time, the manufacturing unit price can be reduced and the quality can be maintained.

以下、添付図面に従ってこの発明の実施例を説明する。なお、各図において同一の符号は同様の対象を示すものとする。なお、実施例の説明の中では電極パターンは概念的な表現をしているが、実際の電極パターンは弾性表面波素子の櫛形励振電極や、反射器電極に代わるものである。また、エッチングにより電極形成を行う実施例として記述しているが、電極を形成するにあたりリフトオフ法を用いた場合であっても、同様の機能と効果を奏するものである。   Embodiments of the present invention will be described below with reference to the accompanying drawings. In each figure, the same numerals indicate the same objects. In the description of the embodiments, the electrode pattern is conceptually expressed, but the actual electrode pattern is a substitute for the comb-shaped excitation electrode or the reflector electrode of the surface acoustic wave element. Moreover, although described as an embodiment in which the electrode is formed by etching, the same function and effect are exhibited even when the lift-off method is used in forming the electrode.

本発明は、圧電基板の表面にレジスト膜8を設け、前記圧電基板の表面上にフォトマスク4を密接して前記レジスト膜8を露光処理し、その後圧電基板の表面上に電極膜を形成し、次にこの表面上のレジスト膜8を除去する弾性表面波素子2の電極パターン3工程で用いるフォトマスク4に特徴を有するものである。   In the present invention, a resist film 8 is provided on the surface of the piezoelectric substrate, a photomask 4 is in close contact with the surface of the piezoelectric substrate, the resist film 8 is exposed, and then an electrode film is formed on the surface of the piezoelectric substrate. Next, the photomask 4 used in the electrode pattern 3 process of the surface acoustic wave element 2 for removing the resist film 8 on the surface is characterized.

図1は厚さ300〜500μmの水晶、四ホウ酸リチウム、タンタル酸リチウム、ニオブ酸リチウム等の圧電基板1を示しており、この圧電基板1の表面側(主面側で、電極パターンを配置し弾性表面波を伝搬させる面)には膜厚0.05〜1.5μmのアルミ材料を施し、その上に厚さ0.1〜2.0μmの有機高分子からなるレジスト膜8が設けられている。この状態で、圧電基板1の表面上に石英ガラス(SiO2)等の光透過性を有する板にクロム等からなる遮光膜をパターニング11したフォトマスク4を圧電基板1に密接するように設置する。   FIG. 1 shows a piezoelectric substrate 1 made of quartz, lithium tetraborate, lithium tantalate, lithium niobate or the like having a thickness of 300 to 500 μm, and an electrode pattern is arranged on the surface side (main surface side) of the piezoelectric substrate 1. In addition, an aluminum material having a thickness of 0.05 to 1.5 μm is applied to the surface on which the surface acoustic wave is propagated, and a resist film 8 made of an organic polymer having a thickness of 0.1 to 2.0 μm is provided thereon. ing. In this state, a photomask 4 in which a light-shielding film made of chromium or the like is patterned 11 is placed on the piezoelectric substrate 1 in close contact with the piezoelectric substrate 1 on the surface of the piezoelectric substrate 1 such as quartz glass (SiO 2).

そして、このフォトマスク4の開口部7を介して光(UV:紫外線)を照射し、その後、現像処理を行う。その結果、図2に示すような圧電基板1の表面にはフォトマスク4の開口部7と同じ形状のレジストパターン凹部9が形成される。   Then, light (UV: ultraviolet) is irradiated through the opening 7 of the photomask 4 and thereafter development processing is performed. As a result, a resist pattern recess 9 having the same shape as the opening 7 of the photomask 4 is formed on the surface of the piezoelectric substrate 1 as shown in FIG.

ここで、本発明の特徴であるフォトマスク4について説明する。上述の工程で圧電基板のウエハー1上に配置する弾性表面波素子2の電極パターン3を形成するが、このとき、フォトマスク4とウエハー1とを密着した状態でUVを照射する必要がある。しかしながら、フォトマスク4はそれ自体の反りを考慮して厚みとしても2.3μmあり、圧電基板と熱膨張のささいな違いなどから、密着性を欠く場合もある。   Here, the photomask 4 which is a feature of the present invention will be described. The electrode pattern 3 of the surface acoustic wave element 2 arranged on the wafer 1 of the piezoelectric substrate is formed by the above-described process. At this time, it is necessary to irradiate UV with the photomask 4 and the wafer 1 in close contact with each other. However, the photomask 4 has a thickness of 2.3 μm in consideration of the warpage of the photomask 4 and may lack adhesion due to minor differences in thermal expansion from the piezoelectric substrate.

そこで図3に示すフォトマスク4の一部分を拡大した斜視図に示すように、フォトマスク4と圧電基板とを真空状態にすることで密着性を向上するフォトマスク4構造が考えられた。図3(a)に示すのは、弾性表面波素子2に形成すべく電極間のフォトマスク4側を削り取ってしまう状態を示した部分断面図である。そして、図3(b)は、クロム等からなる遮光膜をパターニング11する際のパターニング11の厚みを厚くした状態を示した断面図である。   Therefore, as shown in an enlarged perspective view of a part of the photomask 4 shown in FIG. 3, a photomask 4 structure that improves the adhesion by bringing the photomask 4 and the piezoelectric substrate into a vacuum state has been considered. FIG. 3A is a partial cross-sectional view showing a state in which the photomask 4 side between the electrodes is scraped to be formed in the surface acoustic wave element 2. FIG. 3B is a cross-sectional view showing a state where the thickness of the patterning 11 is increased when the light shielding film made of chromium or the like is patterned 11.

図3(a)と図3(b)で示すフォトマスク4を用いて、圧電基板を密着させて真空状態にしたときを想定した図を図4に示すが、フォトマスクと圧電基板との間に従来のマスクより隙間を確保できることから、真空状態にする工程での真空引き効果を向上することができることで、パターンニング精度を向上することができる。ここで、真空状態にする前のフォトマスクと圧電基板との隙間は1000Åである。本発明の大きな特徴は、圧電基板をパターンニングするときには必ずと言って反りをともなってしまう。従来の工程ではフォトマスクでは反りを強制的に修正するだけの真空圧が得られないことから、本発明ではフォトマスクと圧電基板との間に充分な隙間を確保することで、フォトマスクと圧電基板との間での真空圧を確保することができ、圧電基板に対するパターンニングを均一に処理することができる。   FIG. 4 is a view assuming that the photomask 4 shown in FIGS. 3A and 3B is used and the piezoelectric substrate is brought into close contact with each other to be in a vacuum state. In addition, since a gap can be secured compared with the conventional mask, the patterning accuracy can be improved by improving the evacuation effect in the vacuuming step. Here, the gap between the photomask and the piezoelectric substrate before the vacuum state is 1000 mm. A major feature of the present invention is that it is always warped when patterning a piezoelectric substrate. In the conventional process, a vacuum pressure sufficient to forcibly correct the warp cannot be obtained with a photomask. Therefore, in the present invention, a sufficient gap is secured between the photomask and the piezoelectric substrate, so that the photomask and the piezoelectric substrate are secured. A vacuum pressure between the substrate and the substrate can be ensured, and patterning for the piezoelectric substrate can be processed uniformly.

本発明の溝部5形成を施したフォトマスク4を用いることで、ウエハー1との密着性を向上することで、密接対象物間での反り、うねり、あるいは熱膨張係数の差異といった物理的な要因や影響を緩和する効果を得ることとなり、ウエハー1上に配置される弾性表面波素子2については、電極パターン3の転写精度が向上することから、同一ウエハー1面内での電気的特性のバラツキが少なくなり、周波数の面内分布も安定させることができる。周波数の面内分布は図5に示す。   By using the photomask 4 on which the groove 5 of the present invention is formed, the adhesiveness with the wafer 1 is improved, so that physical factors such as warpage, swell, or difference in thermal expansion coefficient between close objects. As for the surface acoustic wave element 2 arranged on the wafer 1, the transfer accuracy of the electrode pattern 3 is improved, so that variation in electrical characteristics within the same wafer 1 surface is obtained. And the in-plane frequency distribution can be stabilized. The in-plane frequency distribution is shown in FIG.

図5は横軸に規格化周波数のバラツキ量と縦軸に各周波数の分散量を示したグラフで、図5(a)は本発明のフォトマスク4を用いて得た周波数分布で、図5(b)は従来のフォトマスク4を用いて得た周波数分布である。図から分かるように、周波数のバラツキは本発明により中心へと分布推移が集まっていることから、ひとつのウエハー1に形成する弾性表面波素子2の位置的(場所的)な電極パターン3の転写バラツキを改善することがわかる。この工程での善し悪しは、実際の弾性表面波素子となった場合には、通過帯域のリップルや通過帯域幅のバラツキも向上できる。   FIG. 5 is a graph in which the horizontal axis indicates the variation amount of the normalized frequency and the vertical axis indicates the dispersion amount of each frequency. FIG. 5A is a frequency distribution obtained by using the photomask 4 of the present invention. (B) is a frequency distribution obtained using the conventional photomask 4. As can be seen from the figure, since the variation in frequency is distributed to the center according to the present invention, the positional (local) electrode pattern 3 of the surface acoustic wave element 2 formed on one wafer 1 is transferred. It can be seen that the variation is improved. The good or bad in this step is that when the actual surface acoustic wave device is formed, the ripple in the pass band and the variation in the pass band width can be improved.

電極パターンを形成する概念を説明する断面図である。It is sectional drawing explaining the concept which forms an electrode pattern. 電極パターンを形成した後の弾性表面波素子の概念を示す断面図である。It is sectional drawing which shows the concept of the surface acoustic wave element after forming an electrode pattern. 本発明の溝部を施したフォトマスクの一部分を拡大し、その概念を示した斜視図である。It is the perspective view which expanded a part of photomask which gave the groove part of this invention, and showed the concept. 本発明でフォトマスクと圧電基板を真空状態で密着した状態を示す断面図である。It is sectional drawing which shows the state which contact | adhered the photomask and the piezoelectric substrate in the vacuum state by this invention. ウエハー面内における、弾性表面波素子の電気的特性のバラツキの変化を示すグラフである。It is a graph which shows the change of the electrical property variation of a surface acoustic wave element in a wafer plane.

符号の説明Explanation of symbols

1 ウエハー
2 弾性表面波素子
3 電極パターン
4 フォトマスク
5 溝部
DESCRIPTION OF SYMBOLS 1 Wafer 2 Surface acoustic wave element 3 Electrode pattern 4 Photomask 5 Groove part

Claims (2)

弾性表面波装置を構成するウエハー上に配置された弾性表面波素子にフォトマスクを用いて電極形成する弾性表面波素子の製造方法において、
圧電基板の主面と該フォトマスクとを密着させた状態で該圧電基板の主面と該フォトマスクとに間隔を空け、該圧電基板と該フォトマスクとの間の空気を真空引きすることを特徴とする弾性表面波素子の製造方法。
In a method for manufacturing a surface acoustic wave element, an electrode is formed using a photomask on a surface acoustic wave element disposed on a wafer constituting the surface acoustic wave device.
A space is provided between the main surface of the piezoelectric substrate and the photomask in a state where the main surface of the piezoelectric substrate and the photomask are in close contact with each other, and the air between the piezoelectric substrate and the photomask is evacuated. A method for manufacturing a surface acoustic wave device.
弾性表面波装置を構成するウエハー上に配置された弾性表面波素子に電極を形成するために用いるフォトマスクにおいて、
圧電基板の主面と該フォトマスクとを密着させた状態で該圧電基板の主面と該フォトマスクとに間隔を空け、圧電基板の主面と該フォトマスクとの密接状態を確保するために、該フォトマスク上に配置するフォトマスクパターンの間に複数の溝部を形成したことを特徴とするフォトマスク。
In a photomask used for forming an electrode on a surface acoustic wave element disposed on a wafer constituting a surface acoustic wave device,
In order to ensure a close contact between the main surface of the piezoelectric substrate and the photomask with a gap between the main surface of the piezoelectric substrate and the photomask in a state where the main surface of the piezoelectric substrate and the photomask are in close contact with each other A photomask comprising a plurality of grooves formed between photomask patterns arranged on the photomask.
JP2004194056A 2004-06-30 2004-06-30 Method for manufacturing surface acoustic wave element and photomask therefor Pending JP2006019912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004194056A JP2006019912A (en) 2004-06-30 2004-06-30 Method for manufacturing surface acoustic wave element and photomask therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004194056A JP2006019912A (en) 2004-06-30 2004-06-30 Method for manufacturing surface acoustic wave element and photomask therefor

Publications (1)

Publication Number Publication Date
JP2006019912A true JP2006019912A (en) 2006-01-19

Family

ID=35793768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004194056A Pending JP2006019912A (en) 2004-06-30 2004-06-30 Method for manufacturing surface acoustic wave element and photomask therefor

Country Status (1)

Country Link
JP (1) JP2006019912A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11407159B2 (en) * 2015-04-21 2022-08-09 Somar Corporation Method for injection-molding thermosetting resin composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6181011A (en) * 1984-09-28 1986-04-24 Toshiba Corp Production of surface acoustic wave element
JP2000347386A (en) * 1999-06-04 2000-12-15 Sony Corp Method for correcting defect of mask for exposure, mask for exposure, exposure method, semiconductor device and its production
JP2003110389A (en) * 2001-09-28 2003-04-11 Kinseki Ltd Photomask

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6181011A (en) * 1984-09-28 1986-04-24 Toshiba Corp Production of surface acoustic wave element
JP2000347386A (en) * 1999-06-04 2000-12-15 Sony Corp Method for correcting defect of mask for exposure, mask for exposure, exposure method, semiconductor device and its production
JP2003110389A (en) * 2001-09-28 2003-04-11 Kinseki Ltd Photomask

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11407159B2 (en) * 2015-04-21 2022-08-09 Somar Corporation Method for injection-molding thermosetting resin composition

Similar Documents

Publication Publication Date Title
JP2007336417A (en) Surface acoustic wave element and manufacturing method thereof
JP2723476B2 (en) Method for manufacturing phase inversion mask
JP2006019912A (en) Method for manufacturing surface acoustic wave element and photomask therefor
JP2006339729A (en) Manufacturing method of piezoelectric resonator chip, piezoelectric resonator chip, piezoelectric device, and electronic apparatus
JP2003110389A (en) Photomask
KR100653974B1 (en) Mask pattern for preventing electrostatic
JP2008187322A (en) Manufacturing method of mesa type piezoelectric vibrating element
JP2016174328A (en) Wafer manufacturing method and wafer
KR100289780B1 (en) Surface acoustic wave filter
JP2002333702A (en) Method for plasma etching and method for manufacturing photomask
JP3393970B2 (en) Manufacturing method of exposure mask
JP3451431B2 (en) X-ray exposure mask and method of manufacturing the same
JP2008252826A (en) Method of manufacturing piezoelectric vibrating reed
JP3404293B2 (en) Method for manufacturing piezoelectric element
KR100909623B1 (en) Photomask Etching Method of Photomask
JPH0864931A (en) Microelectrode forming method of electronic component
KR100548514B1 (en) Method for manufacturing mask
JP2005191703A (en) Manufacturing method of surface acoustic wave element
JPH0468607A (en) Manufacture of surface acoustic wave device
KR101101582B1 (en) Method for fabricating photo mask using halftone pad and photo mask fabricated using thereof
JP2003218658A (en) Method for manufacturing surface acoustic wave element and semiconductor device
JP2000201041A (en) Manufacture of surface acoustic wave element
JPH08298429A (en) Single crystal substrate for surface acoustic wave device and its manufacture and surface acoustic wave device
JP2005303781A (en) Method of manufacturing thin film resonant element
KR20070059755A (en) Method of manufacturing a phase shift mask

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100525