JP2006019586A - Manufacturing method of nitride semiconductor light emitting device - Google Patents

Manufacturing method of nitride semiconductor light emitting device Download PDF

Info

Publication number
JP2006019586A
JP2006019586A JP2004197088A JP2004197088A JP2006019586A JP 2006019586 A JP2006019586 A JP 2006019586A JP 2004197088 A JP2004197088 A JP 2004197088A JP 2004197088 A JP2004197088 A JP 2004197088A JP 2006019586 A JP2006019586 A JP 2006019586A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
semiconductor light
light emitting
groove
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004197088A
Other languages
Japanese (ja)
Inventor
Hiroshi Kuchino
啓史 口野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Tottori Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Tottori Sanyo Electric Co Ltd, Sanyo Electric Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP2004197088A priority Critical patent/JP2006019586A/en
Publication of JP2006019586A publication Critical patent/JP2006019586A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Dicing (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To precisely divide a nitride semiconductor light emitting element at good yield , and to provide a nitride semiconductor light emitting element of high efficiency in taking out light. <P>SOLUTION: A group III nitride semiconductor light emitting element 10 has a p-type conductive type nitride semiconductor layer 21, and an n-type conductive type nitride semiconductor layer 20 laminated on a sapphire substrate 11. The manufacturing method includes a process in which laser beam is irradiated to the semiconductor layer 21 side of the nitride semiconductor light emitting element 10 to form a groove 23 of V-like cross section with a laser beam shielding cover put thereon, a process to remove a semiconductor layer around the groove 23 by dry etching with an etching cover 24 put thereon, and a process for dividing the nitride semiconductor light emitting element 10 with the groove 23 as a start point. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、基板上に少なくともp型及びn型伝導型窒化物半導体層が積層されたIII族窒化物半導体発光素子の製造方法に関するものである。   The present invention relates to a method for manufacturing a group III nitride semiconductor light emitting device in which at least p-type and n-type conductivity type nitride semiconductor layers are stacked on a substrate.

一般に窒化物半導体はサファイア基板の上に積層される。サファイア結晶は六方晶であるため劈開性を有しない。従って、ダイヤモンドを先端に備えたスクライブポイントを用いて切断することは困難であった。   In general, a nitride semiconductor is stacked on a sapphire substrate. Since the sapphire crystal is a hexagonal crystal, it does not have a cleavage property. Therefore, it was difficult to cut using a scribe point with a diamond at the tip.

そこで、特許文献1の製造方法では、ウエハーの窒化ガリウム系化合物半導体層側から第1の割溝を所望のチップ形状で線上に形成するとともに、この第1の割溝を、窒化ガリウム系化合物半導体層を貫通してサファイア基板の一部を切除する深さに形成する工程と、ウエハーのサファイア基板側から第1の線幅よりも細い線幅を有する第2の割溝を形成する工程と、第1の割溝、および第2の割溝に沿ってウエハーをチップ状に分離する工程とを具備している。
特許第2861991号公報
Therefore, in the manufacturing method disclosed in Patent Document 1, the first split groove is formed on the line in a desired chip shape from the gallium nitride compound semiconductor layer side of the wafer, and the first split groove is formed on the gallium nitride compound semiconductor. Forming a depth that cuts through a portion of the sapphire substrate through the layer, forming a second dividing groove having a line width narrower than the first line width from the sapphire substrate side of the wafer, And a step of separating the wafer into chips along the first dividing groove and the second dividing groove.
Japanese Patent No. 2861991

しかしながら、特許文献1等のように、ウエハーをスクライブポイントを用いて分割する手法は、スクライブポイントの摩耗が激しいのでその状態を正確に把握することが難しく、高精度に歩留り良くウエハーを分割するのは難しかった。また、分割時に基板に大きな力が加わるので、結晶の歪み等が懸念される。   However, the method of dividing a wafer using a scribe point as in Patent Document 1 makes it difficult to accurately grasp the state of the scribe point because of severe wear of the scribe point, and divides the wafer with high accuracy and high yield. Was difficult. Further, since a large force is applied to the substrate during the division, there is a concern about crystal distortion and the like.

本発明は、窒化物半導体発光素子を高精度に歩留り良く分割する製造方法を提供することを目的とする。また、光取り出し効率の良い窒化物半導体発光素子を提供することも目的とする。   An object of this invention is to provide the manufacturing method which divides | segments the nitride semiconductor light-emitting device with high precision and sufficient yield. Another object of the present invention is to provide a nitride semiconductor light emitting device with high light extraction efficiency.

上記目的を達成するために本発明は、基板上に少なくともp型及びn型伝導型窒化物半導体層が積層されたIII族窒化物半導体発光素子の製造方法において、前記窒化物半導体発光素子の半導体層側へレーザ光を照射し、V字型断面の溝を形成する工程と、ドライエッチングで前記溝周辺の半導体層を除去する工程と、前記溝を起点として前記窒化物半導体発光素子を分割する工程とを備えたことを特徴とする。   In order to achieve the above object, the present invention provides a method for manufacturing a group III nitride semiconductor light emitting device in which at least p-type and n-type conductivity type nitride semiconductor layers are stacked on a substrate. The step of irradiating the layer side with a laser beam to form a groove having a V-shaped cross section, the step of removing a semiconductor layer around the groove by dry etching, and the nitride semiconductor light emitting element from the groove as a starting point And a process.

なお、前記ドライエッチングには、塩素又は/及びフッ素を含むプラズマガスを用いることができる。   Note that a plasma gas containing chlorine and / or fluorine can be used for the dry etching.

また、前記V字型断面の溝の深さは、前記基板に到達することが望ましい。   The depth of the groove having the V-shaped cross section may reach the substrate.

また、前記V字型断面の溝の幅は、該溝の深さの2倍以上であることが望ましい。   The width of the groove having the V-shaped cross section is preferably at least twice the depth of the groove.

また、前記レーザ光の照射時は、前記溝を形成する部分以外の半導体層表面をレーザ光遮蔽カバーで覆うことを特徴とする。   In addition, when irradiating the laser beam, the surface of the semiconductor layer other than the portion where the groove is formed is covered with a laser beam shielding cover.

また、前記レーザ光遮蔽カバーは、Ni、Al、Ti、Pd、Au、Agの中から選択される1種以上の材料よりなる。   The laser light shielding cover is made of one or more materials selected from Ni, Al, Ti, Pd, Au, and Ag.

また、前記ドライエッチング時は、前記V字型断面の溝の幅より広い開口部を有するエッチングカバーで覆うことを特徴とする。   The dry etching may be performed by covering with an etching cover having an opening wider than the width of the groove having the V-shaped cross section.

また、前記エッチングカバーの開口部は、前記窒化物半導体発光素子側に向かって細くなるテーパ形状を有することが望ましい。   Moreover, it is desirable that the opening of the etching cover has a tapered shape that becomes narrower toward the nitride semiconductor light emitting element side.

また、前記ドライエッチングで除去する半導体層は、レーザ光によりダメージを受けた部分とすることができる。   The semiconductor layer removed by the dry etching can be a portion damaged by laser light.

本発明によれば、ドライエッチングで溝にテーパを形成することにより、分割後の活性層の端部がテーパ部分に位置するので、発光した光がテーパ部分で反射し、光取り出し効率の良い窒化物半導体発光素子を提供することができる。   According to the present invention, by forming the taper in the groove by dry etching, the edge of the divided active layer is positioned at the taper portion, so that the emitted light is reflected at the taper portion and nitriding is performed with high light extraction efficiency. A semiconductor light emitting device can be provided.

また、レーザ光で溝を形成し、ドライエッチングで溝を広げることにより、窒化物半導体発光素子を高精度に歩留り良く分割することができる。   Further, by forming the groove with laser light and widening the groove with dry etching, the nitride semiconductor light emitting device can be divided with high accuracy and high yield.

図1は、窒化物半導体発光素子の側断面模式図である。窒化物半導体発光素子10は、サファイア基板11上に、i−GaNバッファ層12、n−GaN層13、n−AlGaNクラッド層14、i−InGaN活性層15、p−AlGaNクラッド層16、p−GaN層17が順に積層され、n−AlGaNクラッド層14が積層されていないn−GaN層13上の部分にはn電極18が形成され、p−GaN層17上にはp電極19が形成されて構成される。   FIG. 1 is a schematic side sectional view of a nitride semiconductor light emitting device. The nitride semiconductor light emitting device 10 includes an i-GaN buffer layer 12, an n-GaN layer 13, an n-AlGaN cladding layer 14, an i-InGaN active layer 15, a p-AlGaN cladding layer 16, a p- A GaN layer 17 is sequentially stacked, an n-electrode 18 is formed on the n-GaN layer 13 where the n-AlGaN cladding layer 14 is not stacked, and a p-electrode 19 is formed on the p-GaN layer 17. Configured.

図2はレーザ光照射後の窒化物半導体発光素子の側断面模式図、図3はドライエッチング後の窒化物半導体発光素子の側断面模式図である。なお図2及び図3では、i−GaNバッファ層12、n−GaN層13、n−AlGaNクラッド層14をn型伝導型窒化物半導体層20と記し、p−AlGaNクラッド層16、p−GaN層17をp型伝導型窒化物半導体層21と記し、i−InGaN活性層15を省略している。   FIG. 2 is a schematic side sectional view of the nitride semiconductor light emitting device after laser light irradiation, and FIG. 3 is a schematic side sectional view of the nitride semiconductor light emitting device after dry etching. 2 and 3, the i-GaN buffer layer 12, the n-GaN layer 13, and the n-AlGaN cladding layer 14 are referred to as an n-type conductivity nitride semiconductor layer 20, and the p-AlGaN cladding layer 16 and the p-GaN. The layer 17 is referred to as a p-type conductivity type nitride semiconductor layer 21 and the i-InGaN active layer 15 is omitted.

以下、ウエハーの分割手法について説明する。まず、ウエハーの窒化物半導体層側にレーザ光遮蔽カバー22を被せる(図2参照)。このレーザ光遮蔽カバー22は、レーザ光を通す開口部22aを有し、Ni、Al、Ti、Pd、Au、Agの中から選択される1種以上の材料よりなる。そして特に、Niを用いることが好ましい。また、開口部22の位置で分割することになるので、開口部22aは分割後の1つの素子がp、n両電極を含むように配置する。   Hereinafter, a wafer dividing method will be described. First, the laser light shielding cover 22 is placed on the nitride semiconductor layer side of the wafer (see FIG. 2). The laser light shielding cover 22 has an opening 22a through which laser light passes, and is made of one or more materials selected from Ni, Al, Ti, Pd, Au, and Ag. In particular, it is preferable to use Ni. Moreover, since it divides | segments in the position of the opening part 22, the opening part 22a is arrange | positioned so that one element after a division | segmentation may include both p and n electrodes.

次に、レーザ光遮蔽カバー22の上部からレーザ光を照射し、ウエハーにV字型断面の溝23を形成する。この溝23の深さは、サファイア基板11に到達することが分割精度の点から好ましい。また、溝23の幅は、溝23の深さの2倍以上であると分割しやすい。   Next, laser light is irradiated from the upper part of the laser light shielding cover 22 to form a groove 23 having a V-shaped cross section on the wafer. The depth of the groove 23 preferably reaches the sapphire substrate 11 from the viewpoint of division accuracy. The width of the groove 23 is easily divided when it is twice or more the depth of the groove 23.

スクライブポイントを用いる場合に比べてレーザ光には以下のような利点がある。刃物のように摩耗がないため、定常的な溝を形成できる。溝の断面形状を所望の形状に制御できる。溝の深さを深くすることができる。このように、レーザ光は利点が多いが、形成された溝の両脇の約50μmは加工残さや熱反応層が生じるという不利な点もある。   The laser beam has the following advantages compared to the case where a scribe point is used. Since there is no wear like a blade, a steady groove can be formed. The cross-sectional shape of the groove can be controlled to a desired shape. The depth of the groove can be increased. As described above, the laser beam has many advantages, but there is a disadvantage that a processing residue and a thermal reaction layer are generated in about 50 μm on both sides of the formed groove.

なお、基板裏面から溝加工した場合、半導体層表面の分割部分(形成した溝の真反対側の半導体層)以外の部分にレーザの影響(加工)が及び、チップ化して発光させた際の光がその部分で乱反射し、外部に出る光を減少させる原因になる可能性がある。   In addition, when a groove is processed from the back surface of the substrate, the influence (processing) of the laser is applied to a portion other than the divided portion (semiconductor layer on the opposite side of the formed groove) on the surface of the semiconductor layer, and the light when the chip is made to emit light May be diffusely reflected in the area, which may reduce the light emitted from the outside.

溝23が形成されると、次にレーザ光遮蔽カバー22に替えてエッチングカバー24を被せる。このエッチングカバー24は、溝23の幅より広い開口部24aを有する。開口部24aは、窒化物半導体発光素子10側に向かって細くなるテーパ形状とすることが望ましい。   When the groove 23 is formed, the etching cover 24 is then placed instead of the laser light shielding cover 22. The etching cover 24 has an opening 24 a wider than the width of the groove 23. It is desirable that the opening 24a has a tapered shape that becomes narrower toward the nitride semiconductor light emitting element 10 side.

エッチングカバー24を被せた後、塩素又は/及びフッ素を含むプラズマガスを用いてドライエッチングを行い、開口部24aのテーパ形状に沿って溝23周辺の窒化物半導体層20、21を除去する。これにより、溝23はテーパを有したまま幅が広くなる。ここで溝23周辺とは、レーザ光によってダメージを受けた窒化物半導体層20、21の部分であり、つまり加工残さと熱反応層である。加工残さや熱反応層は色の違いにより目視で見分けることができる。なお、ダメージを受けた窒化物半導体層20、21を全て除去してもよいし、その一部を除去するだけでもよい。また、上記のエッチングカバー24はレーザ光遮光カバー22と兼用してもよい。   After covering the etching cover 24, dry etching is performed using a plasma gas containing chlorine or / and fluorine to remove the nitride semiconductor layers 20 and 21 around the groove 23 along the tapered shape of the opening 24a. As a result, the width of the groove 23 is increased while having a taper. Here, the periphery of the groove 23 is a portion of the nitride semiconductor layers 20 and 21 damaged by the laser beam, that is, a processing residue and a thermal reaction layer. The processing residue and the heat-reactive layer can be distinguished visually by the difference in color. Note that all of the damaged nitride semiconductor layers 20 and 21 may be removed, or only a part thereof may be removed. The etching cover 24 may also be used as the laser light shielding cover 22.

そしてドライエッチング後、溝23を起点としてウエハーを分割し、窒化物半導体発光素子10を得る。このようにして分割された窒化物半導体発光素子10は、図1に示すように、溝23の側壁部分が傾斜角θを有する。この傾斜角θが適切に形成されることにより、活性層を含む接合部をヒートシンクに近づけて組み立てるジャンクションダウン型の素子の場合、活性層の端部が傾斜角θを有することになるので光取り出し効率が向上する。図4に、光路を記した窒化物半導体発光素子10の側断面模式図を示す。図中、光路を矢印で示している。i−InGaN活性層15から発光した光が、溝23の側壁で全反射する確率が高くなるため、光取り出し効率が向上する。この観点から、傾斜角θは好ましくは30〜90°であり、更に好ましくは30〜60°である。   After dry etching, the wafer is divided starting from the groove 23 to obtain the nitride semiconductor light emitting device 10. In the nitride semiconductor light emitting device 10 divided in this way, the side wall portion of the groove 23 has an inclination angle θ as shown in FIG. By appropriately forming the tilt angle θ, in the case of a junction down type device in which the junction including the active layer is assembled close to the heat sink, the end of the active layer has the tilt angle θ, so that light extraction is possible. Efficiency is improved. FIG. 4 is a schematic side sectional view of the nitride semiconductor light emitting device 10 in which the optical path is shown. In the figure, the optical path is indicated by an arrow. The probability that the light emitted from the i-InGaN active layer 15 is totally reflected by the side wall of the groove 23 is increased, so that the light extraction efficiency is improved. From this viewpoint, the inclination angle θ is preferably 30 to 90 °, and more preferably 30 to 60 °.

i−InGaN活性層15の端部が、傾斜を有する場合と、垂直な場合とについてサファイア基板11表面での発光強度を測定した。図5に、サファイア基板11表面で測定した明るさに対する試料数(piece)のグラフを示す。明らかに、傾斜した端面の窒化物半導体発光素子(図5の■)の発光強度が、垂直な端面の窒化物半導体発光素子(図5の◆)の発光強度よりも強いことが分かる。   The emission intensity on the surface of the sapphire substrate 11 was measured when the end of the i-InGaN active layer 15 had an inclination and when it was vertical. FIG. 5 shows a graph of the number of samples (piece) against the brightness measured on the surface of the sapphire substrate 11. Clearly, it can be seen that the emission intensity of the nitride semiconductor light emitting device having the inclined end face (■ in FIG. 5) is stronger than the emission intensity of the nitride semiconductor light emitting element having the vertical end face (♦ in FIG. 5).

本発明の窒化物半導体発光素子は、青色LEDとして利用でき、LED照明、フルカラーディスプレイ、自動車用ヘッドランプ等に使用することができる。   The nitride semiconductor light-emitting device of the present invention can be used as a blue LED, and can be used for LED lighting, full-color displays, automobile headlamps, and the like.

窒化物半導体発光素子の側断面模式図である。1 is a schematic side sectional view of a nitride semiconductor light emitting device. レーザ光照射後の窒化物半導体発光素子の側断面模式図である。It is a side cross-sectional schematic diagram of the nitride semiconductor light emitting element after laser beam irradiation. ドライエッチング後の窒化物半導体発光素子の側断面模式図である。It is a side cross-sectional schematic diagram of the nitride semiconductor light-emitting device after dry etching. 光路を記した窒化物半導体発光素子の側断面模式図である。It is the side cross-sectional schematic diagram of the nitride semiconductor light-emitting device which described the optical path. サファイア基板表面で測定した明るさに対する試料数のグラフである。It is a graph of the number of samples with respect to the brightness measured on the sapphire substrate surface.

符号の説明Explanation of symbols

10 窒化物半導体発光素子
20 n型伝導型窒化物半導体層
21 p型伝導型窒化物半導体層
22 レーザ光遮蔽カバー
23 溝
24 エッチングカバー
DESCRIPTION OF SYMBOLS 10 Nitride semiconductor light emitting element 20 N-type conduction type nitride semiconductor layer 21 P-type conduction type nitride semiconductor layer 22 Laser light shielding cover 23 Groove 24 Etching cover

Claims (9)

基板上に少なくともp型及びn型伝導型窒化物半導体層が積層されたIII族窒化物半導体発光素子の製造方法において、
前記窒化物半導体発光素子の半導体層側へレーザ光を照射し、V字型断面の溝を形成する工程と、
ドライエッチングで前記溝周辺の半導体層を除去する工程と、
前記溝を起点として前記窒化物半導体発光素子を分割する工程とを備えたことを特徴とする窒化物半導体発光素子の製造方法。
In a method for manufacturing a group III nitride semiconductor light-emitting device in which at least p-type and n-type conductivity type nitride semiconductor layers are stacked on a substrate,
Irradiating a laser beam to the semiconductor layer side of the nitride semiconductor light emitting device to form a groove having a V-shaped cross section;
Removing the semiconductor layer around the groove by dry etching;
And a step of dividing the nitride semiconductor light emitting element with the groove as a starting point.
前記ドライエッチングには、塩素又は/及びフッ素を含むプラズマガスを用いることを特徴とする請求項1記載の窒化物半導体発光素子の製造方法。   2. The method of manufacturing a nitride semiconductor light emitting device according to claim 1, wherein a plasma gas containing chlorine and / or fluorine is used for the dry etching. 前記V字型断面の溝の深さは、前記基板に到達することを特徴とする請求項1又は2記載の窒化物半導体発光素子の製造方法。   3. The method for manufacturing a nitride semiconductor light emitting device according to claim 1, wherein a depth of the groove having the V-shaped cross section reaches the substrate. 前記V字型断面の溝の幅は、該溝の深さの2倍以上であることを特徴とする請求項1〜3の何れかに記載の窒化物半導体発光素子の製造方法。   4. The method for manufacturing a nitride semiconductor light emitting device according to claim 1, wherein a width of the groove having the V-shaped cross section is twice or more a depth of the groove. 前記レーザ光の照射時は、前記溝を形成する部分以外の半導体層表面をレーザ光遮蔽カバーで覆うことを特徴とする請求項1〜4の何れかに記載の窒化物半導体発光素子の製造方法。   5. The method for manufacturing a nitride semiconductor light emitting element according to claim 1, wherein a surface of the semiconductor layer other than a portion where the groove is formed is covered with a laser light shielding cover during the irradiation with the laser light. . 前記レーザ光遮蔽カバーは、Ni、Al、Ti、Pd、Au、Agの中から選択される1種以上の材料よりなることを特徴とする請求項5記載の窒化物半導体発光素子の製造方法。   6. The method for manufacturing a nitride semiconductor light-emitting element according to claim 5, wherein the laser light shielding cover is made of one or more materials selected from Ni, Al, Ti, Pd, Au, and Ag. 前記ドライエッチング時は、前記V字型断面の溝の幅より広い開口部を有するエッチングカバーで覆うことを特徴とする請求項1〜6の何れかに記載の窒化物半導体発光素子の製造方法。   The method for manufacturing a nitride semiconductor light emitting element according to claim 1, wherein the dry etching is covered with an etching cover having an opening wider than the width of the groove having the V-shaped cross section. 前記エッチングカバーの開口部は、前記窒化物半導体発光素子側に向かって細くなるテーパ形状を有することを特徴とする請求項7記載の窒化物半導体発光素子の製造方法。   8. The method of manufacturing a nitride semiconductor light emitting element according to claim 7, wherein the opening of the etching cover has a tapered shape that becomes narrower toward the nitride semiconductor light emitting element side. 前記ドライエッチングで除去する半導体層は、レーザ光によりダメージを受けた部分であることを特徴とする請求項1〜8の何れかに記載の窒化物半導体発光素子の製造方法。   9. The method for manufacturing a nitride semiconductor light-emitting element according to claim 1, wherein the semiconductor layer removed by the dry etching is a portion damaged by a laser beam.
JP2004197088A 2004-07-02 2004-07-02 Manufacturing method of nitride semiconductor light emitting device Withdrawn JP2006019586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004197088A JP2006019586A (en) 2004-07-02 2004-07-02 Manufacturing method of nitride semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004197088A JP2006019586A (en) 2004-07-02 2004-07-02 Manufacturing method of nitride semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JP2006019586A true JP2006019586A (en) 2006-01-19

Family

ID=35793543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004197088A Withdrawn JP2006019586A (en) 2004-07-02 2004-07-02 Manufacturing method of nitride semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2006019586A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299934A (en) * 2006-04-28 2007-11-15 Showa Denko Kk Nitride-based semiconductor light emitting element, its fabrication process, and lamp
JP2011077418A (en) * 2009-09-30 2011-04-14 Nec Corp Semiconductor element, semiconductor wafer, method of manufacturing semiconductor wafer, and method of manufacturing semiconductor element
JP2012023085A (en) * 2010-07-12 2012-02-02 Disco Abrasive Syst Ltd Method for processing optical device wafer
US8404566B2 (en) 2006-09-25 2013-03-26 Lg Innotek Co., Ltd. Light emitting diode and method for manufacturing the same
JP2017041607A (en) * 2015-08-21 2017-02-23 株式会社アルバック Processing method of resin substrate
CN107931793A (en) * 2017-11-01 2018-04-20 中国兵器科学研究院宁波分院 A kind of titanium alloy welding back of the body protective device and welding method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08306621A (en) * 1994-10-26 1996-11-22 Hitachi Ltd Method of exposure, aligner and manufacture of semiconductor integrated circuit device
JPH11214749A (en) * 1998-01-29 1999-08-06 Sanyo Electric Co Ltd Semiconductor light-emitting device
JP2003017790A (en) * 2001-07-03 2003-01-17 Matsushita Electric Ind Co Ltd Nitride-based semiconductor device and manufacturing method
JP2003338636A (en) * 2002-03-12 2003-11-28 Hamamatsu Photonics Kk Manufacturing method of light-emitting device, light emitting diode, and semiconductor laser element
JP2004055816A (en) * 2002-07-19 2004-02-19 Sanyo Electric Co Ltd Nitride compound semiconductor light emitting device and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08306621A (en) * 1994-10-26 1996-11-22 Hitachi Ltd Method of exposure, aligner and manufacture of semiconductor integrated circuit device
JPH11214749A (en) * 1998-01-29 1999-08-06 Sanyo Electric Co Ltd Semiconductor light-emitting device
JP2003017790A (en) * 2001-07-03 2003-01-17 Matsushita Electric Ind Co Ltd Nitride-based semiconductor device and manufacturing method
JP2003338636A (en) * 2002-03-12 2003-11-28 Hamamatsu Photonics Kk Manufacturing method of light-emitting device, light emitting diode, and semiconductor laser element
JP2004055816A (en) * 2002-07-19 2004-02-19 Sanyo Electric Co Ltd Nitride compound semiconductor light emitting device and its manufacturing method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299934A (en) * 2006-04-28 2007-11-15 Showa Denko Kk Nitride-based semiconductor light emitting element, its fabrication process, and lamp
US8912565B2 (en) 2006-09-25 2014-12-16 Lg Innotek, Co., Ltd. Light emitting diode and method for manufacturing the same
US8404566B2 (en) 2006-09-25 2013-03-26 Lg Innotek Co., Ltd. Light emitting diode and method for manufacturing the same
US8502256B2 (en) 2006-09-25 2013-08-06 Lg Innotek Co., Ltd. Light emitting diode and method for manufacture of the same
US8698183B2 (en) 2006-09-25 2014-04-15 Lg Innotek Co., Ltd. Light emitting diode and method for manufacturing the same
CN104617199A (en) * 2006-09-25 2015-05-13 Lg伊诺特有限公司 Light emitting diode and method for manufacturing the same
US9105761B2 (en) 2006-09-25 2015-08-11 Lg Innotek Co., Ltd. Light emitting diode and method for manufacturing the same
CN104617199B (en) * 2006-09-25 2018-05-08 Lg伊诺特有限公司 Light emitting diode and its manufacture method
JP2011077418A (en) * 2009-09-30 2011-04-14 Nec Corp Semiconductor element, semiconductor wafer, method of manufacturing semiconductor wafer, and method of manufacturing semiconductor element
JP2012023085A (en) * 2010-07-12 2012-02-02 Disco Abrasive Syst Ltd Method for processing optical device wafer
JP2017041607A (en) * 2015-08-21 2017-02-23 株式会社アルバック Processing method of resin substrate
CN107931793A (en) * 2017-11-01 2018-04-20 中国兵器科学研究院宁波分院 A kind of titanium alloy welding back of the body protective device and welding method
CN107931793B (en) * 2017-11-01 2021-09-14 中国兵器科学研究院宁波分院 Titanium alloy welding back protection device and welding method

Similar Documents

Publication Publication Date Title
US7008861B2 (en) Semiconductor substrate assemblies and methods for preparing and dicing the same
JP6260601B2 (en) Manufacturing method of semiconductor device
KR100610632B1 (en) Manufacturing method of led having vertical structure
JP2006086516A (en) Method for manufacturing semiconductor light emitting device
JP4346598B2 (en) Compound semiconductor device and manufacturing method thereof
JP2007087973A (en) Manufacture of nitride semiconductor device, method for manufacturing nitride semiconductor device, and nitride semiconductor light-emitting device obtained by the same
US10340413B2 (en) Semiconductor light emitting element
US20130234149A1 (en) Sidewall texturing of light emitting diode structures
JP2018142702A (en) Manufacturing method of semiconductor element
JP4937599B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
JP2010056485A (en) Light emitting element, light emitting device, and method of processing sapphire substrate
TWI606608B (en) Light-emitting device
JP2008300645A (en) Manufacturing method of nitride based semiconductor led chip
JP2006019586A (en) Manufacturing method of nitride semiconductor light emitting device
TW201234463A (en) Semiconductor device and cutting method thereof
JP2004228290A (en) Semiconductor light emitting element and its fabricating process
KR101205527B1 (en) Light emitting diode and method for fabricating the same
JP5599675B2 (en) LED device chip manufacturing method
JP2005064426A (en) Method for manufacturing nitride-based semiconductor device
TWI438924B (en) Method for manufacturing light emitting chip
JP2009032795A (en) Method of manufacturing nitride semiconductor light emitting element
TW201318215A (en) Light emitting diode and fabricating method thereof
US11289620B2 (en) Method of producing optoelectronic semiconductor chips and optoelectronic semiconductor chip
JP2009033205A (en) Method for fabricating nitride semiconductor light-emitting device
JP7169513B2 (en) Method for manufacturing light-emitting element

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100729