JP2006018111A - Optical recording method using organic photorefractive material - Google Patents

Optical recording method using organic photorefractive material Download PDF

Info

Publication number
JP2006018111A
JP2006018111A JP2004197216A JP2004197216A JP2006018111A JP 2006018111 A JP2006018111 A JP 2006018111A JP 2004197216 A JP2004197216 A JP 2004197216A JP 2004197216 A JP2004197216 A JP 2004197216A JP 2006018111 A JP2006018111 A JP 2006018111A
Authority
JP
Japan
Prior art keywords
optical recording
photorefractive
photorefractive material
organic photorefractive
writing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004197216A
Other languages
Japanese (ja)
Inventor
Takatoshi Sasaki
貴俊 佐々木
Shu Mochizuki
周 望月
Akinori Nishio
昭徳 西尾
Chiharu Odane
千春 小田根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2004197216A priority Critical patent/JP2006018111A/en
Publication of JP2006018111A publication Critical patent/JP2006018111A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce time (response time) from the start of light irradiation to an organic photorefractive material to the completion of optical recording. <P>SOLUTION: In the optical recording method, at the time when an organic photorefractive material is irradiated with a writing beam, and optical recording is performed, the holding angle of two irradiation write beams is controlled to >20 to 140°, and the storage elastic modulus of the material at the time of the irradiation is controlled to 5×10<SP>6</SP>to 1×10<SP>9</SP>Pa. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は有機フォトリフラクティブ材料を用いた屈折率格子(回折格子)による光記録方法に関する。本発明によれば光記録を行う(回折格子を形成させる)にあたり必要な光照射時間を短縮できる。   The present invention relates to an optical recording method using a refractive index grating (diffraction grating) using an organic photorefractive material. According to the present invention, the light irradiation time required for optical recording (diffraction grating formation) can be shortened.

フォトリフラクティブ材料は、干渉光照射により屈折率が変化する材料である。すなわち、フォトリフラクティブ材料に、干渉光を照射すると電子とホール(以下、キャリアという)が生成し、このキャリアが移動することにより空間電界が生ずる。そして、この空間電界に対応して材料中の屈折率が変化し屈折率変調が可能となる。このフォトリフラクティブ材料に干渉光を照射すると、干渉光の明部分でのみ光が吸収され暗部分では吸収がないため、屈折率が周期的に変化した回折格子が材料に形成される。   A photorefractive material is a material whose refractive index changes upon irradiation with interference light. That is, when the photorefractive material is irradiated with interference light, electrons and holes (hereinafter referred to as carriers) are generated, and a spatial electric field is generated by the movement of the carriers. Then, the refractive index in the material changes corresponding to this spatial electric field, and refractive index modulation becomes possible. When this photorefractive material is irradiated with interference light, light is absorbed only in the bright part of the interference light and not in the dark part, so that a diffraction grating whose refractive index changes periodically is formed in the material.

また、フォトリフラクティブ材料で誘起される屈折率変調の周期は、干渉光の明暗強度変調の周期との間にずれを生じる。したがって、コヒーレントな2つのビームを材料に照射すると、ビーム間にエネルギー移動が生じ、照射ビームとは異なる強度比の透過ビームが得られる。フォトリフラクティブ材料は、このような性質を有するため、ホログラム記録素子、光合分波器、ビーム増幅器、画像相関処理、連想記憶素子などへの応用が期待される。   Further, the period of refractive index modulation induced by the photorefractive material deviates from the period of light / dark intensity modulation of interference light. Therefore, when the material is irradiated with two coherent beams, energy transfer occurs between the beams, and a transmitted beam having an intensity ratio different from that of the irradiated beam is obtained. Since photorefractive materials have such properties, they are expected to be applied to hologram recording elements, optical multiplexers / demultiplexers, beam amplifiers, image correlation processing, associative memory elements, and the like.

従来公知のフォトリフラクティブ材料としては、ニオブ酸リチウムなどを用いた無機のフォトリフラクティブ材料があるが、試料の調製や成形加工が困難なことから利用は限定されている。これに対し、有機化合物を用いたフォトリフラクティブ材料は、成型加工性や機能修飾の容易なことから種々の用途への利用が期待される(W. E. Moerner and S.M.
Silence著、Chemistry Review, 94巻、127−155頁、1994)。
このような有機フォトリフラクティブ材料には、優れた特性を示すものもあるが、材料への光照射の開始から光記録の完了に至るまでの応答時間が長く、記録の効率化が望まれている。
Conventionally known photorefractive materials include inorganic photorefractive materials using lithium niobate and the like, but their use is limited because sample preparation and molding are difficult. On the other hand, photorefractive materials using organic compounds are expected to be used in various applications due to easy processability and functional modification (WE Moerner and SM
Silence, Chemistry Review, 94, 127-155, 1994).
Some of these organic photorefractive materials exhibit excellent characteristics, but the response time from the start of light irradiation to the material until the completion of optical recording is long, and it is desired to improve the recording efficiency. .

かかる回折格子の書きこみ時間を短縮させる方法として、特開2003-322886号には回折格子形成に用いる2本の書きこみビームの挟み角度を大きくして、干渉縞の間隔を小さくする方法が記載されている。しかしながら、ここに記載の方法では、応答時間は短縮されるものの、フォトリフラクティブ特性も低下するという欠点がある。   As a method for shortening the writing time of the diffraction grating, Japanese Patent Application Laid-Open No. 2003-322886 describes a method of reducing the interval between the interference fringes by increasing the angle between the two writing beams used for forming the diffraction grating. Has been. However, the method described here has a drawback in that although the response time is shortened, the photorefractive characteristics are also lowered.

W. E. Moerner and S. M. Silence著、Chemistry Review, 94巻,127-155頁,1994W. E. Moerner and S. M. Silence, Chemistry Review, 94, 127-155, 1994 特開2003−322886号公報JP 2003-322886 A

本発明者らは、これまで種々の有機フォトリフラクティブ材料について研究を行い、優れた加工性、光特性を示すフォトリフラクティブ材料を提案した。しかしながら、有機フォトリフラクティブ材料の応答時間の短縮は充分ではなく、一層の記録の効率化が望まれる。本発明の目的は、フォトリフラクティブ特性を大幅に低下させることなく、書きこみ時間を短縮することにある。   The present inventors have studied various organic photorefractive materials so far and have proposed photorefractive materials exhibiting excellent processability and optical properties. However, the response time of the organic photorefractive material is not sufficiently shortened, and further recording efficiency is desired. An object of the present invention is to shorten the writing time without significantly reducing the photorefractive characteristics.

本発明は、書きこみビームを有機フォトリフラクティブ材料に照射して光記録を行うにあたり、2本(一般に等価な干渉光)の照射書きこみビームの挟み角を20°超、140°以下とし、照射時の材料の貯蔵弾性率を5×10〜1×10Paとすることを特徴とする光記録方法を提供するものである。本発明の光記録方法に用いられる有機フォトリフラクティブ材料は、電子供与基を有する電界応答光学機能化合物、これと電荷移動錯体を形成する電子吸引性基を有する増感剤、さらにこれら化合物を均一に分散混合するための可塑剤及び高分子化合物からなるのが好ましい。 In the present invention, when performing optical recording by irradiating an organic photorefractive material with a writing beam, the sandwich angle of two (typically equivalent interference light) irradiation writing beams is set to more than 20 ° and not more than 140 °. The optical recording method is characterized in that the storage elastic modulus of the material at the time is 5 × 10 6 to 1 × 10 9 Pa. The organic photorefractive material used in the optical recording method of the present invention includes an electric field responsive optical functional compound having an electron donating group, a sensitizer having an electron withdrawing group that forms a charge transfer complex with the compound, and further uniformizing these compounds. It preferably comprises a plasticizer for dispersing and mixing and a polymer compound.

発明の詳細な記述Detailed description of the invention

(発明の概要)
本発明では有機フォトリフラクティブ材料への2本の等価な書きこみビームの挟み角を20°超、140°以下とし、そのときの材料の貯蔵弾性率を5×10〜1×10Paとする。この書きこみ条件では回折格子を短時間で形成でき、また材料の弾性率が高いため格子緩和が抑制されフォトリフラクティブ特性の低下を抑制できる。
書きこみビームの挟み角は20°超、140°以下が好ましく、110°〜130°であるのがより好ましい。挟み角が20°以下であると格子形成に要する時間が長くなりすぎ、140°を超えると格子緩和のため格子が形成されにくくなる。
材料の貯蔵弾性率は5×10〜1×10Paが好ましく、より好ましくは1×10〜1×10Paである。貯蔵弾性率が5×10Paより小さいと材料粘度が低すぎて回折格子が形成(または維持)できなくなり、1×10Paを超えると材料粘度が高すぎて分子が配向せず回折格子が形成できなくなる。
なお、回折格子の格子間隔は干渉光照射によって形成される干渉縞の間隔により決まる。フォトリフラクティブ回折格子は光照射によって生成したキャリアが、干渉光照射によって形成される干渉縞の明部から暗部へ移動することによって形成されると考えられており、干渉縞の間隔が大きいと回折格子を形成するまでに時間がかかることになる。2本の書きこみ光の挟み角を大きくし干渉縞の間隔を小さくすれば、フォトリフラクティブ回折格子形成までの時間を短縮できると考えられる。ただ、干渉縞の間隔を短くしすぎると、干渉光明部の体積が減少するため干渉縞明部で発生するキャリアの量が減少し回折格子が形成されにくくなり、また形成された回折格子も周囲の熱により容易に緩和し、フォトリフラクティブ特性が失われると思われる。
(Summary of Invention)
In the present invention, the sandwich angle between two equivalent writing beams in the organic photorefractive material is set to more than 20 ° and not more than 140 °, and the storage elastic modulus of the material at that time is 5 × 10 6 to 1 × 10 9 Pa. To do. Under this writing condition, the diffraction grating can be formed in a short time, and since the elastic modulus of the material is high, the relaxation of the grating is suppressed and the photorefractive characteristic can be prevented from deteriorating.
The sandwich angle of the writing beam is preferably more than 20 ° and not more than 140 °, and more preferably 110 ° to 130 °. If the sandwich angle is 20 ° or less, the time required for forming the lattice becomes too long, and if it exceeds 140 °, the lattice is difficult to be formed due to lattice relaxation.
The storage elastic modulus of the material is preferably 5 × 10 6 to 1 × 10 9 Pa, more preferably 1 × 10 7 to 1 × 10 8 Pa. If the storage elastic modulus is less than 5 × 10 6 Pa, the material viscosity is too low to form (or maintain) the diffraction grating, and if it exceeds 1 × 10 9 Pa, the material viscosity is too high and the molecules are not oriented and the diffraction grating. Cannot be formed.
Note that the grating interval of the diffraction grating is determined by the interval of interference fringes formed by interference light irradiation. Photorefractive diffraction gratings are thought to be formed by the movement of carriers generated by light irradiation from the bright part to the dark part of the interference fringes formed by interference light irradiation. It will take time to form. It is considered that the time until the formation of the photorefractive diffraction grating can be shortened by increasing the sandwiching angle between the two writing lights and reducing the interval between the interference fringes. However, if the distance between the interference fringes is too short, the volume of the interference light bright part decreases, so the amount of carriers generated in the light interference fringe part decreases, making it difficult to form a diffraction grating. It is thought that the photorefractive property is lost due to the ease of relaxation by the heat of

つぎに、本発明の光記録方法について更に詳しく説明する。本発明の記録方法が適用できるフォトリフラクティブ材料としては、種々の有機フォトリフラクティブ材料が挙げられるが、代表的な記録材料として(A)電界応答光学機能化合物、(B)増感剤、(C)高分子化合物、及び(D)可塑剤を含むフォトリフラクティブ材料が挙げられる。この材料について概要を説明する。   Next, the optical recording method of the present invention will be described in more detail. Photorefractive materials to which the recording method of the present invention can be applied include various organic photorefractive materials. Typical recording materials include (A) an electric field response optical functional compound, (B) a sensitizer, and (C). And a photorefractive material including a polymer compound and (D) a plasticizer. An outline of this material will be described.

(A)電界応答光学機能化合物
電界応答光学機能化合物は増感剤と共に電荷移動錯体を形成する。このような化合物としては、例えばN−(4−ニトロフェニル)−L−プロリノール(NPP)(式1)、[[4−(ヘキサヒドロ−1H−アゼピン−1−イル)フェニル]メチレン]プロパンジニトリル(7DCST)(式2)、4−(N−エチル-(5-ヒドロキシヘプチル)アミノジシアノスチレン(HHAS)(式3)などが挙げられる。有機フォトリフラクティブ材料中、電界応答光学機能化合物の配合量は他の成分との相溶性を考慮し、通常、0.01〜50重量%が好ましい。

Figure 2006018111
(A) Electric field responsive optical functional compound The electric field responsive optical functional compound forms a charge transfer complex together with the sensitizer. Examples of such compounds include N- (4-nitrophenyl) -L-prolinol (NPP) (formula 1), [[4- (hexahydro-1H-azepin-1-yl) phenyl] methylene] propanediene. Nitrile (7DCST) (formula 2), 4- (N-ethyl- (5-hydroxyheptyl) aminodicyanostyrene (HHAS) (formula 3), etc. Formulation of an electric field response optical functional compound in an organic photorefractive material The amount is usually preferably 0.01 to 50% by weight in consideration of compatibility with other components.
Figure 2006018111

(B)増感剤
増感剤は前記電界応答光学機能化合物と電荷移動錯体を形成しやすいものを用いる。例えば、2,4,7−トリニトロ−9−フルオレノン(TNF)(式4)などが用いられる。増感剤の配合量は有機フォトリフラクティブ材料中0.01〜25重量%である。

Figure 2006018111
(B) Sensitizer A sensitizer that easily forms a charge transfer complex with the electric field response optical functional compound is used. For example, 2,4,7-trinitro-9-fluorenone (TNF) (formula 4) is used. The blending amount of the sensitizer is 0.01 to 25% by weight in the organic photorefractive material.
Figure 2006018111

(C)高分子化合物
ここで用いられる高分子化合物としては、他の機能性材料との相溶性が高く、弾性率および透明性の高い樹脂が好ましい。たとえばポリビニルカルバゾールやポリアセナフチレンなど芳香環を有するビニル化合物、そのほか透明性や耐熱性が高い(フッ素化)ポリイミド類(式10で示される構造を有するもの)、ポリエーテルケトン類、ポリエーテルスルホン類などが挙げられる。これら高分子化合物は全組成に対して10〜50重量%配合するのが望ましい。

Figure 2006018111
(式中、nは10〜1500の整数を意味する。) (C) Polymer compound The polymer compound used here is preferably a resin having high compatibility with other functional materials and high elasticity and transparency. For example, vinyl compounds having an aromatic ring such as polyvinyl carbazole and polyacenaphthylene, and other (fluorinated) polyimides (having a structure represented by Formula 10) having high transparency and heat resistance, polyether ketones, polyether sulfone And the like. These polymer compounds are desirably blended in an amount of 10 to 50% by weight based on the total composition.
Figure 2006018111
(In the formula, n means an integer of 10 to 1500.)

(D)可塑剤
本発明の記録方法に用いるフォトリフラクティブ材料には相溶性改善のため可塑剤を配合するのが好ましい。このような可塑剤としては、例えば、2−(1,2−シクロヘキサンジカルボキシイミド)エチルプロピオネート(AX22)(式5)、2−(1,2−シクロヘキサンジカルボキシイミド)エチルブチレート(AX23)(式6)、2−(1、2−シクロヘキサンジカルボキシイミド)エチルベンゾエート(AXPH)(式7)、2−(1、2−シクロヘキサンジカルボキシイミド)エチルアクリレート(AX14)(式8)、2−(フタルイミド)エチルプロピオネート(AX24)(式9)などが挙げられる。可塑剤の配合量は、全組成に対して50重量%以下が好ましい。
(D) Plasticizer It is preferable to add a plasticizer to the photorefractive material used in the recording method of the present invention to improve compatibility. Examples of such a plasticizer include 2- (1,2-cyclohexanedicarboximido) ethyl propionate (AX22) (formula 5), 2- (1,2-cyclohexanedicarboximido) ethyl butyrate ( AX23) (Formula 6), 2- (1,2-cyclohexanedicarboximido) ethyl benzoate (AXPH) (Formula 7), 2- (1,2-cyclohexanedicarboximide) ethyl acrylate (AX14) (Formula 8) , 2- (phthalimido) ethyl propionate (AX24) (formula 9) and the like. The blending amount of the plasticizer is preferably 50% by weight or less with respect to the total composition.

Figure 2006018111
Figure 2006018111

(書きこみ方法の詳細:光学系)
2本の書きこみビームの挟み角が20°から50°までは図1に示す光学系で特性を評価し、それ以上の角度では、試料表面で書きこみビームの反射の影響が強くなり試料に十分な光が照射できなくなるので、図2に示すように試料面に対し互いに逆方向から書きこみビームを入射する光学系で特性を評価した。
また実際に記録を行う際には、干渉光照射時にフォトリフラクティブ材料の貯蔵弾性率が5×10〜1×10Paとなるようにする。必要により、干渉光照射時に試料ステージにヒーターを設けるなどして弾性率をこの範囲に調整してもよい。
(Details of writing method: optical system)
When the angle between the two writing beams is 20 ° to 50 °, the characteristics are evaluated by the optical system shown in FIG. 1, and when the angle is higher than that, the influence of the writing beam reflection on the surface of the sample becomes strong. Since sufficient light could not be irradiated, the characteristics were evaluated with an optical system in which a writing beam was incident on the sample surface from opposite directions as shown in FIG.
When recording is actually performed, the storage elastic modulus of the photorefractive material is set to 5 × 10 6 to 1 × 10 9 Pa when the interference light is irradiated. If necessary, the elastic modulus may be adjusted to this range by providing a heater on the sample stage at the time of interference light irradiation.

(フォトリフラクティブ材料の作製)
後記の表1に示す成分を混合し、これらをテトラヒドロフランに加えて溶解した。ついで、得られた溶液をポリテトラフルオロエチレン膜で濾過し、ゴミなどの不純物を除去した後、テトラヒドロフランを完全に除去して、フォトリフラクティブ材料を得た。
(Production of photorefractive material)
Components shown in Table 1 described later were mixed, and these were added to tetrahydrofuran and dissolved. Subsequently, the obtained solution was filtered with a polytetrafluoroethylene membrane to remove impurities such as dust, and then tetrahydrofuran was completely removed to obtain a photorefractive material.

(特性評価方法について)
フォトリフラクティブ特性評価用試料は、上記のように作製した固形物をスペーサー(ガラスビーズ)と共に加熱時に2枚のガラス電極に挟みこみ厚さ100μmのフィルムとして作製した。
フォトリフラクティブ特性の評価として2ビームカップリング測定を行った。フォトリフラクティブ材料に干渉光を照射し、回折格子が形成されると入射するビームの一方からもう一方へと非対称なエネルギー移動が観測される。これが2ビームカップリングと呼ばれる現象であり、このエネルギー移動の大きさがエネルギー利得係数(=ゲイン定数)として求められる。ゲイン定数とは2つの入射ビームが回折格子を通過する際に生じるエネルギー移動を示すための特性値である。
(About characteristic evaluation method)
The sample for photorefractive property evaluation was prepared as a film having a thickness of 100 μm by sandwiching the solid material prepared as described above together with spacers (glass beads) between two glass electrodes during heating.
Two-beam coupling measurement was performed as an evaluation of photorefractive characteristics. When the photorefractive material is irradiated with interference light and a diffraction grating is formed, asymmetric energy transfer is observed from one of the incident beams to the other. This is a phenomenon called two-beam coupling, and the magnitude of this energy transfer is obtained as an energy gain coefficient (= gain constant). The gain constant is a characteristic value for indicating energy transfer that occurs when two incident beams pass through the diffraction grating.

具体的なゲイン定数測定は以下のように行った。光源のレーザー(He-Neレーザー(633nm;10mW)からの書きこみビームを2つのS偏光ビームに分割し、これを書き込み光として評価用試料に照射した。試料を透過する2つのビームの強度変化を追跡し、下記の(数式1)を使ってゲイン定数(cm−1)を求めた。
ゲイン定数(cm−1)=100(cos(α)1n(γ1)−cos(β)1n(γ2)) (数式1)
なおここで、測定条件から、式中α、βはそれぞれの試料法線と入射ビームとの角度である。また式中γは、2つの透過ビームそれぞれの強度変化を示すものであり、それぞれのビームに対して、測定初期の強度をIt=0、任意時間後の強度をIとすると、γ=I/It=0と定義されるものである。
また、応答時間とは、エネルギー移動が完了(飽和)するまでの時間のことである。
The specific gain constant measurement was performed as follows. The writing beam from the laser of the light source (He-Ne laser (633 nm; 10 mW) was split into two S-polarized beams, and this was irradiated to the sample for evaluation as writing light. Changes in intensity of the two beams transmitted through the sample The gain constant (cm −1 ) was obtained using the following (Formula 1).
Gain constant (cm −1 ) = 100 (cos (α) 1n (γ 1 ) −cos (β) 1n (γ 2 )) (Formula 1)
Here, from the measurement conditions, α and β in the equation are angles between the respective sample normals and the incident beam. In the equation, γ indicates a change in intensity of each of the two transmitted beams. When the initial intensity of measurement is I t = 0 and the intensity after an arbitrary time is I, γ = I / It is defined as t = 0 .
The response time is the time until energy transfer is completed (saturated).

(貯蔵弾性率の測定)
貯蔵弾性率の測定は、有機フォトリフラクティブ材料を円板状サンプル(直径7mm、厚さ2.0mm)に成形して、動的粘弾性評価装置(レオメトリック・サイエンティフィック・エフ・イー社製,粘弾性測定システム拡張型(アレス))を用いて測定周波数6.28Hz,で行った。
(Measurement of storage modulus)
The storage elastic modulus is measured by forming an organic photorefractive material into a disk-like sample (diameter 7 mm, thickness 2.0 mm), and using a dynamic viscoelasticity evaluation apparatus (Rheometric Scientific F.E. The measurement frequency was 6.28 Hz using a viscoelasticity measurement system expansion type (ARES).

(実施例1〜7、比較例1〜6)
下記の表1に示す有機フォトリフラクティブ材料を作製し、特性を評価した。
実施例1〜7は、貯蔵弾性率及び2本の照射書きこみビームの挟み角(書きこみ挟み角)が所定の範囲にあり、ゲイン定数が大きく、応答時間が短い。
比較例1及び4は、貯蔵弾性率は所定の範囲にあるが、書きこみ挟み角が所定の範囲より小さいので、応答時間が長い。
比較例2は、貯蔵弾性率は所定の範囲にあるが、書きこみ挟み角が所定の範囲より大きいので、ゲイン定数が小さい。
比較例3は、書きこみ挟み角は所定の範囲にあるが、貯蔵弾性率が所定の範囲より大きい。得られた材料はゲイン定数が小さく、応答時間も長い。
比較例5及び6は、実施例1〜7の材料に対して可塑剤をより多く混合したものであり、書きこみ挟み角は所定の範囲にあるが、貯蔵弾性率が所定の範囲より小さい。得られた材料はゲイン定数が0で、フォトリフラクティブ特性を全く示さない。
(Examples 1-7, Comparative Examples 1-6)
Organic photorefractive materials shown in Table 1 below were prepared and evaluated for characteristics.
In Examples 1 to 7, the storage elastic modulus and the sandwiching angle (writing sandwiching angle) of the two irradiation writing beams are within a predetermined range, the gain constant is large, and the response time is short.
In Comparative Examples 1 and 4, the storage elastic modulus is in a predetermined range, but the response time is long because the writing angle is smaller than the predetermined range.
In Comparative Example 2, the storage elastic modulus is in a predetermined range, but the gain constant is small because the writing angle is larger than the predetermined range.
In Comparative Example 3, the writing sandwich angle is in a predetermined range, but the storage elastic modulus is larger than the predetermined range. The obtained material has a small gain constant and a long response time.
In Comparative Examples 5 and 6, a greater amount of plasticizer was mixed with the materials of Examples 1 to 7, and the writing sandwich angle was in a predetermined range, but the storage elastic modulus was smaller than the predetermined range. The resulting material has a gain constant of 0 and does not exhibit any photorefractive characteristics.

Figure 2006018111
Figure 2006018111

[発明の効果]
本発明によれば、有機フォトリフラクティブ材料に光記録方法を行う(回折格子を形成させる)にあたり良好なフォトリフラクティブ特性を維持しつつ光照射時間を短縮することができる。
[The invention's effect]
According to the present invention, when performing an optical recording method (forming a diffraction grating) on an organic photorefractive material, the light irradiation time can be shortened while maintaining good photorefractive characteristics.

本発明の光記録に用いる光学系を示す概略図である。It is the schematic which shows the optical system used for the optical recording of this invention. 本発明の光記録に用いる光学系を示す概略図である。It is the schematic which shows the optical system used for the optical recording of this invention.

Claims (2)

書きこみビームを有機フォトリフラクティブ材料に照射して光記録を行うにあたり、2本の照射書きこみビームの挟み角を20°超、140°以下とし、照射時の材料の貯蔵弾性率を5×10〜1×10Paとすることを特徴とする光記録方法。 When optical recording is performed by irradiating an organic photorefractive material with a writing beam, the sandwich angle between the two irradiation writing beams is set to more than 20 ° and not more than 140 °, and the storage elastic modulus of the material at the time of irradiation is set to 5 × 10. 6 to 1 × 10 9 Pa. An optical recording method. 有機フォトリフラクティブ材料が、電子供与基を有する電界応答光学機能化合物、これと電荷移動錯体を形成する電子吸引性基を有する増感剤、さらにこれら化合物を均一に分散混合する可塑剤及び高分子化合物からなる有機フォトリフラクティブ材料である請求項1の光記録方法。
An organic photorefractive material is an electric field responsive optical functional compound having an electron donating group, a sensitizer having an electron withdrawing group that forms a charge transfer complex therewith, and a plasticizer and a polymer compound that uniformly disperse and mix these compounds 2. The optical recording method according to claim 1, which is an organic photorefractive material comprising:
JP2004197216A 2004-07-02 2004-07-02 Optical recording method using organic photorefractive material Pending JP2006018111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004197216A JP2006018111A (en) 2004-07-02 2004-07-02 Optical recording method using organic photorefractive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004197216A JP2006018111A (en) 2004-07-02 2004-07-02 Optical recording method using organic photorefractive material

Publications (1)

Publication Number Publication Date
JP2006018111A true JP2006018111A (en) 2006-01-19

Family

ID=35792438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004197216A Pending JP2006018111A (en) 2004-07-02 2004-07-02 Optical recording method using organic photorefractive material

Country Status (1)

Country Link
JP (1) JP2006018111A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014026248A (en) * 2012-07-30 2014-02-06 Institute Of Physical & Chemical Research Method of heating orientational enhancement organic photorefractive material, and optical device
CN104375227A (en) * 2014-12-05 2015-02-25 苏州大学 Large-area holographic grating manufacture method through multiple-exposure mosaic

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014026248A (en) * 2012-07-30 2014-02-06 Institute Of Physical & Chemical Research Method of heating orientational enhancement organic photorefractive material, and optical device
CN104375227A (en) * 2014-12-05 2015-02-25 苏州大学 Large-area holographic grating manufacture method through multiple-exposure mosaic

Similar Documents

Publication Publication Date Title
McConney et al. Topography from topology: photoinduced surface features generated in liquid crystal polymer networks
Lan et al. Humidity‐Induced Simultaneous Visible and Fluorescence Photonic Patterns Enabled by Integration of Covalent Bonds and Ionic Crosslinks
Gleeson et al. Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model
Liu et al. High intensity response of photopolymer materials for holographic grating formation
KR100514567B1 (en) Photoaddressable side group polymers of high sensitivity
Schlafmann et al. Retention and deformation of the blue phases in liquid crystalline elastomers
CN1226258A (en) Quick photo-addressable substrates and photo-addressable side-group polymers having highly inducible double refraction
CN1440551A (en) Phase contrast variation of photo-induced refractive material
JP2006201388A (en) Optical diffraction liquid crystal element
JP2006018111A (en) Optical recording method using organic photorefractive material
EP1433024A1 (en) Efficient non-linear optical polymers exhibiting high polarisation stability
Murase et al. Large photoinduced refractive index changes of transparent polymer films containing photoeliminable diazo and azido groups
WO2010047903A1 (en) Optical devices for modulating light of photorefractive compositions with thermal control
US8187770B2 (en) High performance, crosslinked polymeric material for holographic data storage
JP2005181709A (en) Optical recording method using organic photorefractive material
Yin et al. Synthesis and Optical Properties of Poly [2‐{N‐Methyl‐N‐(4‐(4‐ethynylphenylazo) phenyl) amino} ethyl butyrate]
Chen et al. Two-wavelength holographic recording in thick phenanthrenequinone-doped poly (methyl methacrylate) photopolymer
EP1432745A1 (en) Reinscribable optical recording material exhibiting good solubility
Rajesh et al. Stretching the sensitivity and stability of an acrylamide based photopolymer material with mixture of dyes
JP3451319B2 (en) Photosensitive composition, photosensitive thin film, and pattern forming method
JP3973964B2 (en) Photorefractive material, method for producing the same, and hologram using the same
EP0856527A1 (en) Polymers with photosensitive side chains having higher inducible birefringene
Sabel‐Grau et al. Formation of diffraction gratings in optically patternable hydrogel films
Irfan et al. Study of effect of magnetic nanoparticles properties on hologram recording capability in photopolymer nanocomposite for development of holographic sensor/actuator
JP2007045949A (en) Azobenzene monomer, polymer thereof, and holographic recording medium using the same