JP2005181709A - Optical recording method using organic photorefractive material - Google Patents

Optical recording method using organic photorefractive material Download PDF

Info

Publication number
JP2005181709A
JP2005181709A JP2003422765A JP2003422765A JP2005181709A JP 2005181709 A JP2005181709 A JP 2005181709A JP 2003422765 A JP2003422765 A JP 2003422765A JP 2003422765 A JP2003422765 A JP 2003422765A JP 2005181709 A JP2005181709 A JP 2005181709A
Authority
JP
Japan
Prior art keywords
optical recording
photorefractive material
recording method
time
photorefractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003422765A
Other languages
Japanese (ja)
Inventor
Takatoshi Sasaki
貴俊 佐々木
Shu Mochizuki
周 望月
Akinori Nishio
昭徳 西尾
Chiharu Odane
千春 小田根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2003422765A priority Critical patent/JP2005181709A/en
Publication of JP2005181709A publication Critical patent/JP2005181709A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To shorten a time period from starting light irradiation on a material to completing optical recording (response time) in an organic photorefractive material. <P>SOLUTION: In conducting optical recording by making write light irradiate the organic photorefractive material and varying a refractive index of the material, the optical recording method is characterized by setting a storage modulus of the material to 1×10<SP>5</SP>to 1×10<SP>7</SP>Pa on the time of write light irradiation. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はフォトリフラクティブ材料を用いた光記録方法に関する。本発明によれば書込み光照射時の応答時間を短縮することができる。   The present invention relates to an optical recording method using a photorefractive material. According to the present invention, it is possible to shorten the response time when writing light is irradiated.

フォトリフラクティブ材料は、光照射により屈折率が変化する材料である。すなわち、フォトリフラクティブ材料に、光を照射すると電子とホール(以下、キャリアという)が生成し、このキャリアが移動することにより空間電界が生ずる。そして、この空間電界に対応して材料中の屈折率が変化し屈折率変調が可能となる。このフォトリフラクティブ材料に干渉光を照射すると、干渉光の明部分でのみ光が吸収され暗部分では吸収がないため、屈折率が周期的に変化した回折格子が材料に形成される。   A photorefractive material is a material whose refractive index changes upon light irradiation. That is, when a photorefractive material is irradiated with light, electrons and holes (hereinafter referred to as carriers) are generated, and a spatial electric field is generated by the movement of the carriers. Then, the refractive index in the material changes corresponding to this spatial electric field, and refractive index modulation becomes possible. When this photorefractive material is irradiated with interference light, light is absorbed only in the bright part of the interference light and not in the dark part, so that a diffraction grating whose refractive index changes periodically is formed in the material.

また、フォトリフラクティブ材料で誘起される屈折率変調の周期は、干渉光の明暗強度変調の周期との間にずれを生じる。したがって、コヒーレントな2つのビームを材料に照射すると、ビーム間にエネルギー移動が生じ、照射ビームとは異なる強度比の透過ビームが得られる。フォトリフラクティブ材料は、このような性質を有するため、ホログラム記録素子、光合分波器、ビーム増幅器、画像相関処理、連想記憶素子などへの応用が期待される。   Further, the period of refractive index modulation induced by the photorefractive material deviates from the period of light / dark intensity modulation of interference light. Therefore, when the material is irradiated with two coherent beams, energy transfer occurs between the beams, and a transmitted beam having an intensity ratio different from that of the irradiated beam is obtained. Since photorefractive materials have such properties, they are expected to be applied to hologram recording elements, optical multiplexers / demultiplexers, beam amplifiers, image correlation processing, associative memory elements, and the like.

従来公知のフォトリフラクティブ材料としては、ニオブ酸リチウムなどを用いた無機のフォトリフラクティブ材料があるが、試料の調製や成形加工が困難なことから利用は限定されている。これに対し、有機化合物を用いたフォトリフラクティブ材料は、成型加工性や機能修飾の容易なことから種々の用途への利用が期待される(W. E. Moerner and S.M.
Silence著、Chemistry Review, 94巻、127−155頁、1994)。
Conventionally known photorefractive materials include inorganic photorefractive materials using lithium niobate and the like, but their use is limited because sample preparation and molding are difficult. On the other hand, photorefractive materials using organic compounds are expected to be used in various applications due to their easy processability and functional modification (WE Moerner and SM
Silence, Chemistry Review, 94, 127-155, 1994).

W. E. Moerner and S. M. Silence著、Chemistry Review, 94巻,127−155頁,1994W. E. Moerner and S. M. Silence, Chemistry Review, 94, 127-155, 1994

本発明者らは、これまで種々の有機フォトリフラクティブ材料について研究を行い、優れた加工性、光特性を示すフォトリフラクティブ材料を得た。しかしながら、有機フォトリフラクティブ材料の応答時間、すなわち材料への光照射の開始から光記録の完了に至るまでの時間の短縮は充分ではなく、記録の効率化が望まれている。   The present inventors have studied various organic photorefractive materials so far and have obtained photorefractive materials exhibiting excellent processability and optical properties. However, shortening of the response time of the organic photorefractive material, that is, the time from the start of light irradiation to the material to the completion of optical recording is not sufficient, and an improvement in recording efficiency is desired.

本発明は、書込み光を有機フォトリフラクティブ材料に照射し該材料の屈折率を変化させて光記録を行うにあたり、書込み光照射時における前記材料の貯蔵弾性率を1×10〜1×10Paとすることを特徴とする光記録方法を提供するものである。また、本発明の光記録方法は、書込み光照射時の有機フォトリフラクティブ材料の温度が10〜50℃であるのがよい。本発明方法によれば書き込み光照射時の応答時間を短縮することができる。 In the present invention, when performing optical recording by irradiating an organic photorefractive material with writing light and changing the refractive index of the material, the storage elastic modulus of the material at the time of writing light irradiation is set to 1 × 10 5 to 1 × 10 7. The present invention provides an optical recording method characterized by using Pa. In the optical recording method of the present invention, the temperature of the organic photorefractive material at the time of writing light irradiation is preferably 10 to 50 ° C. According to the method of the present invention, the response time when writing light is irradiated can be shortened.

発明の詳細な記述Detailed description of the invention

つぎに、本発明の光記録方法について更に詳しく説明する。本発明の記録方法が適用できるフォトリフラクティブ材料としては、種々の有機フォトリフラクティブ材料が挙げられるが、代表的な記録材料として(A)電界応答光学機能化合物、(B)増感剤、(C)有機高分子化合物、及び(D)可塑剤を含むものが挙げられる。このフォトリフラクティブ材料について概要説明する。   Next, the optical recording method of the present invention will be described in more detail. Examples of the photorefractive material to which the recording method of the present invention can be applied include various organic photorefractive materials. Typical recording materials include (A) an electric field responsive optical functional compound, (B) a sensitizer, and (C). The thing containing an organic polymer compound and (D) plasticizer is mentioned. An outline of the photorefractive material will be described.

(A)電界応答光学機能化合物
電界応答光学機能化合物は増感剤と共に電荷移動錯体を形成する。このような化合物としては、例えばN−(4−ニトロフェニル)−L−プロリノール(NPP)(式1)、[[4−(ヘキサヒドロ−1H−アゼピン−1−イル)フェニル]メチレン]プロパンジニトリル(7DCST)(式2)、4−(N−エチル-(5-ヒドロキシヘプチル)アミノジシアノスチレン(HHAS)(式3)などが挙げられる。有機フォトリフラクティブ材料中、電界応答光学機能化合物の配合量は他の成分との相溶性を考慮し、通常、0.01〜50重量%が好ましい。

Figure 2005181709
(A) Electric field responsive optical functional compound The electric field responsive optical functional compound forms a charge transfer complex together with the sensitizer. Examples of such compounds include N- (4-nitrophenyl) -L-prolinol (NPP) (formula 1), [[4- (hexahydro-1H-azepin-1-yl) phenyl] methylene] propanediene. Nitrile (7DCST) (formula 2), 4- (N-ethyl- (5-hydroxyheptyl) aminodicyanostyrene (HHAS) (formula 3), etc. Formulation of an electric field response optical functional compound in an organic photorefractive material The amount is usually preferably 0.01 to 50% by weight in consideration of compatibility with other components.
Figure 2005181709

(B)増感剤
増感剤は前記電界応答光学機能化合物と電荷移動錯体を形成しやすいものを用いる。例えば、2,4,7−トリニトロ−9−フルオレノン(TNF)(式4)などが用いられる。増感剤の配合量は有機フォトリフラクティブ材料中0.01〜25重量%である。

Figure 2005181709
(B) Sensitizer A sensitizer that easily forms a charge transfer complex with the electric field response optical functional compound is used. For example, 2,4,7-trinitro-9-fluorenone (TNF) (formula 4) is used. The blending amount of the sensitizer is 0.01 to 25% by weight in the organic photorefractive material.
Figure 2005181709

(C)有機高分子化合物
典型的なフォトリフラクティブ材料には、前記成分を均一に混合、分散させる有機高分子化合物が用いられる。かかる有機高分子化合物としては、例えばポリメチルメタクリレート(PMMA)、ポリt−ブチルメタクリレート(PtBuMA)、ポリプロピルメタクリレート(PPMA)などのアクリル酸エステル類、ポリ(ビニルブチラール)(PVB)、ポリ(酢酸ビニル)(PVAc)、ポリカーボネート(PC)などが挙げられ、特に透明性かつ耐熱性を必要とする場合には、ポリイミド類、ポリエーテルケトン類及びポリエーテルスルホン類などが用いられる。これら有機高分子化合物は全組成に対して10〜50重量%が好ましい。
(C) Organic polymer compound As a typical photorefractive material, an organic polymer compound in which the above components are uniformly mixed and dispersed is used. Examples of the organic polymer compound include acrylic acid esters such as polymethyl methacrylate (PMMA), poly t-butyl methacrylate (PtBuMA), and polypropyl methacrylate (PPMA), poly (vinyl butyral) (PVB), and poly (acetic acid). Vinyl) (PVAc), polycarbonate (PC) and the like, and particularly when transparency and heat resistance are required, polyimides, polyether ketones and polyether sulfones are used. These organic polymer compounds are preferably 10 to 50% by weight based on the total composition.

(D)可塑剤
本発明の記録方法に用いるフォトリフラクティブ材料には相溶性改善のため可塑剤を配合するのが好ましい。このような可塑剤としては、例えば、2−(1,2−シクロヘキサンジカルボキシイミド)エチルプロピオネート(AX22)(式5)、2−(1,2−シクロヘキサンジカルボキシイミド)エチルブチレート(AX23)(式6)、2−(1、2−シクロヘキサンジカルボキシイミド)エチルベンゾエート(AXPH)(式7)、2−(1、2−シクロヘキサンジカルボキシイミド)エチルアクリレート(AX14)(式8)、2−(フタルイミド)エチルプロピオネート(AX24)(式9)などが挙げられる。可塑剤の配合量は、全組成に対して50重量%以下が好ましい。
(D) Plasticizer It is preferable to add a plasticizer to the photorefractive material used in the recording method of the present invention to improve compatibility. Examples of such a plasticizer include 2- (1,2-cyclohexanedicarboximido) ethyl propionate (AX22) (formula 5), 2- (1,2-cyclohexanedicarboximido) ethyl butyrate ( AX23) (Formula 6), 2- (1,2-cyclohexanedicarboximido) ethyl benzoate (AXPH) (Formula 7), 2- (1,2-cyclohexanedicarboximide) ethyl acrylate (AX14) (Formula 8) , 2- (phthalimido) ethyl propionate (AX24) (formula 9) and the like. The blending amount of the plasticizer is preferably 50% by weight or less with respect to the total composition.

Figure 2005181709
Figure 2005181709

(記録方法)
記録にあたっては、書込み光照射時のフォトリフラクティブ材料の貯蔵弾性率を1×10〜1×10Paに調整する。貯蔵弾性率の調整は適宜の方法により行ってよく、例えば、光照射時のフォトリフラクティブ材料のステージにヒーターを設けて材料を10〜50℃に加熱して調整してもよい。書込み光源は、例えば、ヘリウムネオンレーザーなどを用いてよい。
(Recording method)
In recording, the storage elastic modulus of the photorefractive material at the time of writing light irradiation is adjusted to 1 × 10 5 to 1 × 10 7 Pa. The storage elastic modulus may be adjusted by an appropriate method. For example, the storage elastic modulus may be adjusted by heating the material to 10 to 50 ° C. by providing a heater on the photorefractive material stage during light irradiation. For example, a helium neon laser may be used as the writing light source.

つぎに本発明を実施例、比較例により更に詳細に説明する。以下において、部とあるのは重量部を意味する。
(フォトリフラクティブ材料の作製)
本発明記録方法の実施に用いるフォトリフラクティブ材料はつぎのように調製した。すなわち、下記の各成分を混合し、これをテトラヒドロフランに加えて溶解した。ついで、得られた溶液をポリテトラフルオロエチレン膜で濾過しゴミなどの不純物を除去した後、テトラヒドロフランを完全に除去してフォトリフラクティブ材料を得た。
成 分 配合量
電界応答光学機能化合物:
N−(4−ニトロフェニル)−L−プロリノール(NPP) (式1) 20部
増感剤:2,4,7−トリニトロ−9−フルオレノン(TNF) (式4) 5部
可塑剤:2−(1,2−シクロヘキサンジカルボキシイミド)
エチルプロピオネート(AX22) (式5) 20部
高分子樹脂:ポリメチルメタクリレート 35部
Next, the present invention will be described in more detail with reference to examples and comparative examples. In the following, “parts” means parts by weight.
(Production of photorefractive material)
The photorefractive material used for carrying out the recording method of the present invention was prepared as follows. That is, the following components were mixed and dissolved in tetrahydrofuran. Subsequently, the obtained solution was filtered through a polytetrafluoroethylene membrane to remove impurities such as dust, and then tetrahydrofuran was completely removed to obtain a photorefractive material.
Component content <br/> Electric field response optical functional compound:
N- (4-nitrophenyl) -L-prolinol (NPP) (Formula 1) 20 parts Sensitizer: 2,4,7-Trinitro-9-fluorenone (TNF) (Formula 4) 5 parts Plasticizer: 2 -(1,2-cyclohexanedicarboximide)
Ethyl propionate (AX22) (Formula 5) 20 parts Polymer resin: 35 parts of polymethyl methacrylate

(貯蔵弾性率の測定)
貯蔵弾性率の測定は、有機フォトリフラクティブ材料を円板状サンプル(直径7mm、厚さ1mm)に成形して、動的粘弾性評価装置(レオメトリック・サイエンティフィック・エフ・イー社製,粘弾性測定システム拡張型(アレス))を用いて測定周波数6.28Hzで行った。
また、有機フォトリフラクティブ材料の貯蔵弾性率の調整は、書込み光の照射にあたりヒーターを備えたステージの上に材料を設置し材料温度を調整して行った。
(Measurement of storage modulus)
The storage elastic modulus is measured by forming an organic photorefractive material into a disk-like sample (diameter 7 mm, thickness 1 mm), and using a dynamic viscoelasticity evaluation apparatus (manufactured by Rheometric Scientific F.E. The measurement was performed at a measurement frequency of 6.28 Hz using an elasticity measurement system expansion type (ARES).
In addition, the storage elastic modulus of the organic photorefractive material was adjusted by setting the material on a stage equipped with a heater and adjusting the material temperature when irradiating the writing light.

(評価)
回折効率
回折効率とは、フォトリフラクティブ効果によって形成される回折格子に対し光束を入射した場合に、透過する光と回折する光の強度の割合を示すものである。回折効率は縮退4光波混合法により、10mWヘリウム−ネオンレーザーを光源とし、p偏光書き込み、s偏光読み出しによって行った。このとき書き込み光はサンプル平面の法線に対して±10°で入射させた。任意時間の測定の後、回折光強度が最大となる点を求め、このときの透過光強度との比から回折効率(%)を下式により求めた。
回折効率={回折光強度/(回折光強度+透過光強度)}×100
(Evaluation)
Diffraction efficiency Diffraction efficiency indicates the ratio of the intensity of transmitted light and diffracted light when a light beam is incident on a diffraction grating formed by the photorefractive effect. The diffraction efficiency was determined by degenerate four-wave mixing, using a 10 mW helium-neon laser as a light source, p-polarization writing, and s-polarization reading. At this time, the writing light was incident at ± 10 ° with respect to the normal line of the sample plane. After measurement for an arbitrary time, the point at which the diffracted light intensity was maximum was determined, and the diffraction efficiency (%) was determined from the ratio with the transmitted light intensity at this time by the following equation.
Diffraction efficiency = {diffracted light intensity / (diffracted light intensity + transmitted light intensity)} × 100

応答時間
応答時間は、書込み光の照射開始後、回折効率が飽和して光記録が完了するに至るまでの時間を測定した。
Response time The response time was measured from the start of writing light irradiation until the diffraction efficiency was saturated and the optical recording was completed.

[実施例1〜4及び比較例1〜2]
前記のとおり調製したフォトリフラクティブ材料を、スペーサー(ガラスビーズ)と共に2枚のガラス板の間に挟み込み、フィルム状の特性評価用試料(膜厚100μm)を得た。ついで、この試料をヒーター付きのステージに載せ、書込み光(光源:ヘリウムネオンレーザー)を照射し回折格子を形成させた。照射時の試料温度を表1のごとく設定して、試料の貯蔵弾性率を変え、書き込み光の照射を行った。このとき得られた回折効率、応答時間を表1に記載した。
[Examples 1-4 and Comparative Examples 1-2]
The photorefractive material prepared as described above was sandwiched between two glass plates together with spacers (glass beads) to obtain a film-like characteristic evaluation sample (film thickness 100 μm). Next, this sample was placed on a stage with a heater and irradiated with writing light (light source: helium neon laser) to form a diffraction grating. The sample temperature at the time of irradiation was set as shown in Table 1, the storage elastic modulus of the sample was changed, and irradiation of writing light was performed. The diffraction efficiency and response time obtained at this time are shown in Table 1.

Figure 2005181709
表1に示すように、書込み光照射時のフォトリフラクティブ材料の貯蔵弾性率が1×10〜1×10Paの範囲にある実施例1〜4では、貯蔵弾性率がこれを超える比較例1に比べて応答時間が大きく短縮される。また、貯蔵弾性率が所定の範囲より低い比較例2では書込み光照射を1時間行っても回折格子は形成されなかった。
Figure 2005181709
As shown in Table 1, in Examples 1 to 4 in which the storage elastic modulus of the photorefractive material at the time of writing light irradiation is in the range of 1 × 10 5 to 1 × 10 7 Pa, the storage elastic modulus exceeds this value. Compared with 1, the response time is greatly shortened. Further, in Comparative Example 2 where the storage elastic modulus was lower than the predetermined range, no diffraction grating was formed even when writing light irradiation was performed for 1 hour.

[産業上の用途]
本発明の光記録方法では、有機フォトリフラクティブ材料への光照射開始から光記録完了に至るまでの時間(応答時間)が短縮され、ホログラム記録素子、光合分波器、ビーム増幅器、画像相関処理、連想記憶素子などへの応用が期待される。
[Industrial use]
In the optical recording method of the present invention, the time from the start of light irradiation to the organic photorefractive material until the completion of optical recording (response time) is shortened, the hologram recording element, optical multiplexer / demultiplexer, beam amplifier, image correlation processing, Application to associative memory elements is expected.

Claims (2)

書込み光を有機フォトリフラクティブ材料に照射し該材料の屈折率を変化させて光記録を行うにあたり、書込み光照射時における前記材料の貯蔵弾性率を1×10〜1×10Paとすることを特徴とする光記録方法。 In performing optical recording by irradiating an organic photorefractive material with writing light and changing the refractive index of the material, the storage elastic modulus of the material at the time of writing light irradiation is set to 1 × 10 5 to 1 × 10 7 Pa. An optical recording method characterized by the above. 書込み光照射時の有機フォトリフラクティブ材料の温度が10〜50℃である請求項1の光記録方法。 The optical recording method according to claim 1, wherein the temperature of the organic photorefractive material at the time of writing light irradiation is 10 to 50 ° C.
JP2003422765A 2003-12-19 2003-12-19 Optical recording method using organic photorefractive material Pending JP2005181709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003422765A JP2005181709A (en) 2003-12-19 2003-12-19 Optical recording method using organic photorefractive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003422765A JP2005181709A (en) 2003-12-19 2003-12-19 Optical recording method using organic photorefractive material

Publications (1)

Publication Number Publication Date
JP2005181709A true JP2005181709A (en) 2005-07-07

Family

ID=34783538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003422765A Pending JP2005181709A (en) 2003-12-19 2003-12-19 Optical recording method using organic photorefractive material

Country Status (1)

Country Link
JP (1) JP2005181709A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013510336A (en) * 2009-11-03 2013-03-21 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Method for producing holographic film
JP2013510334A (en) * 2009-11-03 2013-03-21 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Method for producing holographic film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013510336A (en) * 2009-11-03 2013-03-21 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Method for producing holographic film
JP2013510334A (en) * 2009-11-03 2013-03-21 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Method for producing holographic film
KR101746883B1 (en) 2009-11-03 2017-06-27 코베스트로 도이칠란드 아게 Method for producing a holographic film

Similar Documents

Publication Publication Date Title
JP4272260B2 (en) Photoaddressable substrates and photoaddressable side group polymers exhibiting highly induced birefringence
KR100514567B1 (en) Photoaddressable side group polymers of high sensitivity
JP5421773B2 (en) Nonlinear optical device sensitive to green laser
KR20220106978A (en) Aromatic Substituted Ethane-Core Monomers and Polymers Thereof for Volume Bragg Lattice
Sarker et al. Synthesis of polymeric photoinitiators containing pendent chromophore− borate ion pairs: photochemistry and photopolymerization activities
JP2005181709A (en) Optical recording method using organic photorefractive material
WO2008144822A1 (en) Holographic recording medium
US11634528B2 (en) Latent imaging for volume Bragg gratings
WO2010047903A1 (en) Optical devices for modulating light of photorefractive compositions with thermal control
WO2003029895A1 (en) Efficient non-linear optical polymers exhibiting high polarisation stability
Murase et al. Large photoinduced refractive index changes of transparent polymer films containing photoeliminable diazo and azido groups
CA2461570C (en) Rewriteable optical recording material having good solubility
JP2006018111A (en) Optical recording method using organic photorefractive material
JP2007131707A (en) Azo functional group-containing copolymer
Kim et al. Preparation and Holographic Recording of Diarylethene‐Doped Photochromie Films
EP0856527A1 (en) Polymers with photosensitive side chains having higher inducible birefringene
KR101869388B1 (en) Photoisomerizable diphenyldiacetylene-azobenzen mesogens and polymers there of
JP2006018113A (en) Organic photorefractive material and optical recording material using same
JP2007002137A (en) Azobenzene monomer, its polymer and refractive index modulating material using the polymer
JP2007045949A (en) Azobenzene monomer, polymer thereof, and holographic recording medium using the same
JP2007041324A (en) Organic photorefractive material
JP2006171320A (en) Organic photorefractive material
Hsiao et al. An irgacure 784 doped photopolymers for display holograms recording at 532 nm
JP2003322886A (en) Photorefractive material and method for manufacturing the same, and hologram using the same
JP2005258377A (en) Organic photorefractive material