JP2006017617A - Standard plate support structure of three-dimensional profile measuring system - Google Patents

Standard plate support structure of three-dimensional profile measuring system Download PDF

Info

Publication number
JP2006017617A
JP2006017617A JP2004196809A JP2004196809A JP2006017617A JP 2006017617 A JP2006017617 A JP 2006017617A JP 2004196809 A JP2004196809 A JP 2004196809A JP 2004196809 A JP2004196809 A JP 2004196809A JP 2006017617 A JP2006017617 A JP 2006017617A
Authority
JP
Japan
Prior art keywords
reference plate
axis direction
support member
measured
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004196809A
Other languages
Japanese (ja)
Other versions
JP4593987B2 (en
Inventor
Makoto Okazaki
信 岡崎
Masahiro Urata
政博 浦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004196809A priority Critical patent/JP4593987B2/en
Publication of JP2006017617A publication Critical patent/JP2006017617A/en
Application granted granted Critical
Publication of JP4593987B2 publication Critical patent/JP4593987B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a standard plate support structure capable of improving the flatness precision in a three-dimensional profile measuring system for highly accurately obtaining position information of an object to be measured such as optical parts and metal mold and the like without forming grooves and dents on the standard plate and easily controlling parallelism after installing the standard plate. <P>SOLUTION: By putting an intermediate support member 2 contacting at a notch part of reversed cone shape on a sphere side and in a flat surface on the standard plate side is intervened between the standard plate 1 and the metal sphere 3, formation of grooves and dents on the standard plate 1 is avoided so as to improve the flatness precision. Also, by attaching an up and down controlling bolt 8 having a cone shape notch part 5 to the standard plate support member 6 detachable from a holding stage 4, simultaneous up and down control of the metal sphere 3 and the intermediate support member 2 are made possible for easily controlling parallelism of the standard plate after installation. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光学部品や金型等の被測定物の位置情報を超高精度に得る三次元形状測定装置における基準板支持構造に関するものである。   The present invention relates to a reference plate support structure in a three-dimensional shape measuring apparatus that obtains position information of an object to be measured such as an optical component or a mold with extremely high accuracy.

光学部品や金型などの非球面物体の表面形状を高精度に測定する方法として、3次元形状測定装置の利用が広く知られている。   As a method for measuring the surface shape of an aspherical object such as an optical component or a mold with high accuracy, the use of a three-dimensional shape measuring apparatus is widely known.

一般に接触式のプローブを有する三次元形状測定装置は、プローブを被測定物に接触させ、両者間にほぼ一定の力が作用するようにプローブ位置を制御した状態で、プローブを被測定物の表面に沿って移動させ、プローブと基準面の位置関係から被測定物の表面形状を測定するものである。このような測定装置のひとつとして、レーザ測長器と基準平面ミラーを利用した三次元形状測定装置が知られている(例えば、特許文献1参照。)。   In general, a three-dimensional shape measuring apparatus having a contact type probe has a probe placed on the surface of the object to be measured while the probe is in contact with the object to be measured and the probe position is controlled so that a substantially constant force acts between them. And the surface shape of the object to be measured is measured from the positional relationship between the probe and the reference surface. As one of such measuring devices, a three-dimensional shape measuring device using a laser length measuring device and a reference plane mirror is known (for example, see Patent Document 1).

従来の三次元形状測定装置について、図5〜図8を参照して説明する。図5は、従来の三次元形状測定装置の概略構成図である。図5において、石定盤12上に設置されたレンズ等の被測定物13の測定面13a に、移動体14の前面に取り付けられたZ軸移動体15に装着されたプローブ16の先端を追従させ、被測定物13の表面形状を測定するように構成されている。   A conventional three-dimensional shape measuring apparatus will be described with reference to FIGS. FIG. 5 is a schematic configuration diagram of a conventional three-dimensional shape measuring apparatus. In FIG. 5, the tip of the probe 16 mounted on the Z-axis moving body 15 attached to the front surface of the moving body 14 follows the measurement surface 13 a of the object 13 such as a lens installed on the stone surface plate 12. The surface shape of the device under test 13 is measured.

詳細には、被測定物13が搭載されている石定盤12には、支持部を介してX参照ミラー17、Y参照ミラー18、及び本発明における基準板であるZ参照ミラー1が配置されている。なお、Z参照ミラー1は図6のごとく石定盤12上に建てられた2本の石柱21上に架設された鋳鉄製の梁22の中央部に設置されている。以下、このZ参照ミラー1を基準板と称することがある。   In detail, the X reference mirror 17, the Y reference mirror 18, and the Z reference mirror 1, which is a reference plate in the present invention, are arranged on the stone surface plate 12 on which the object to be measured 13 is mounted via a support portion. ing. The Z reference mirror 1 is installed at the center of a cast iron beam 22 constructed on two stone pillars 21 built on a stone surface plate 12 as shown in FIG. Hereinafter, the Z reference mirror 1 may be referred to as a reference plate.

基準板1の梁22による支持構造の詳細を、図7、図8に示す。基準板1は、図8に示すように、ガラス材質等で形成される本体1aと、アルミの真空蒸着で形成された反射面1bと、反射面を保護する保護膜1cとで構成されている。梁22の中央部には、図7(a)、(b)に示すように、基準板1を保持する円筒形の保持台4が設けられている。保持台4には、中心回りに周方向に略3等分する120°間隔の位置に円錐形状の切欠部5が設けられ、各切欠部5に金属球3が配置され、これら金属球3の上に基準板1を載置することで支持されている。   Details of the support structure of the reference plate 1 by the beam 22 are shown in FIGS. As shown in FIG. 8, the reference plate 1 includes a main body 1a formed of a glass material or the like, a reflective surface 1b formed by vacuum deposition of aluminum, and a protective film 1c that protects the reflective surface. . As shown in FIGS. 7A and 7B, a cylindrical holding table 4 that holds the reference plate 1 is provided at the center of the beam 22. The holding table 4 is provided with conical cutouts 5 at positions of 120 ° intervals that divide substantially in the circumferential direction around the center, and metal balls 3 are arranged in the cutouts 5. It is supported by placing the reference plate 1 thereon.

なお、Z軸移動体15およびプローブ16を装着した移動体14は、XYテーブル19上に固定されており、被測定物13の測定面13a の表面形状に追従してX軸方向、Y軸方向に移動体14とZ軸移動体15およびプローブ16を走査する構成となっている。   The Z-axis moving body 15 and the moving body 14 to which the probe 16 is attached are fixed on an XY table 19 and follow the surface shape of the measurement surface 13a of the DUT 13 in the X-axis direction and the Y-axis direction. The moving body 14, the Z-axis moving body 15 and the probe 16 are scanned.

さらに、移動体14にはレーザ測長光学系20が設けられており、光干渉法によりX参照ミラー17を基準としたプローブ16のX座標、Y参照ミラー18を基準としたプローブ16のY座標、基準板1の反射面1b を基準としたプローブ16のZ座標をそれぞれ測長することができるように構成されており、被測定物13の表面形状を測定し、位置情報を得ていた。   Further, the moving body 14 is provided with a laser length measuring optical system 20, and the X coordinate of the probe 16 with respect to the X reference mirror 17 and the Y coordinate of the probe 16 with respect to the Y reference mirror 18 by optical interference. The Z coordinate of the probe 16 with respect to the reflecting surface 1b of the reference plate 1 can be measured, and the surface shape of the object 13 to be measured was measured to obtain position information.

また、基準板1を支持する別の方法として、正三角形の各頂点に配置されるように、互いに等間隔に設定された3ヶ所にボールを配置し、また基準面及び支持部材には、ボールが接触する部分にボールの球面と点接触するように溝を形成し、支持部材と基準板とを3点で支持することで、支持部材に対して基準板がガタつくことを防止したものも知られている(例えば、特許文献2参照。)。   As another method for supporting the reference plate 1, balls are arranged at three positions set at equal intervals so as to be arranged at each vertex of the regular triangle. A groove is formed so that it makes point contact with the spherical surface of the ball at the part where the ball contacts, and the support member and the reference plate are supported at three points to prevent the reference plate from rattling against the support member. It is known (for example, refer to Patent Document 2).

また、特許文献2と同様に、基準鏡フレームの支持方法として、3本の柱を設けてこれらの柱にて基準鏡フレームの3ヶ所の支持点を支持するように構成し、第1の支持点は第1の柱と基準鏡フレームの両方に略円錐形状の窪みを設けて球を挟み、第2の支持点は第2の柱と基準鏡フレームの両方に、Y軸に沿う方向に稜線の方向を一致させた略三角柱形状の窪みを設けて球を挟み、第3の支持点は第3の柱と基準鏡フレームの平面間に球を挟んだものも知られている(例えば、特許文献3参照。)。
特開平4−299206号公報 特開平10−170243号公報 特開平10−19504号公報
Similarly to Patent Document 2, as a method of supporting the reference mirror frame, three pillars are provided, and the three support points of the reference mirror frame are supported by these pillars. The point is provided with a substantially conical recess in both the first column and the reference mirror frame to sandwich the sphere, and the second support point is a ridge line in the direction along the Y axis on both the second column and the reference mirror frame. It is also known that a sphere is sandwiched by providing a substantially triangular prism-shaped depression having the same direction, and a sphere is sandwiched between the third pillar and the plane of the reference mirror frame (for example, a patent) Reference 3).
JP-A-4-299206 JP-A-10-170243 Japanese Patent Laid-Open No. 10-19504

しかし、上記従来の基準板の支持構造では、基準板あるいは基準鏡フレームに溝や略円錐形状の窪みや略三角柱形状の窪みを形成しなければならず、表面形状を高精度に測定するには平面度精度を高くすることと相反する結果になるという問題があった。例えば、測定面を50ナノメートルの精度まで測定しようとすれば、基準板の平面度精度を50ナノメートル以下にする必要があり、溝や窪みを形成すると平面度精度はきわめて悪くなるという問題がある。   However, in the conventional reference plate support structure described above, a groove, a substantially conical recess, or a substantially triangular prism recess must be formed on the reference plate or the reference mirror frame, and the surface shape can be measured with high accuracy. There has been a problem that the result is contrary to increasing the flatness accuracy. For example, if the measurement surface is to be measured to an accuracy of 50 nanometers, the flatness accuracy of the reference plate needs to be 50 nanometers or less, and if a groove or a recess is formed, the flatness accuracy becomes extremely poor. is there.

また、基準板と金属球間の点接触部では、基準板と基準板を保持する保持台の熱膨張係数が異なるため、温度変化による磨耗が生じ、基準板の保護膜が削れ、ステージとの平行度精度を維持することができないという問題があった。   In addition, at the point contact portion between the reference plate and the metal sphere, the thermal expansion coefficients of the reference plate and the holding base that holds the reference plate are different, so that wear due to temperature change occurs, the protective film of the reference plate is scraped off, There was a problem that the parallelism accuracy could not be maintained.

被測定物の直径が、X−Y軸方向に±200mmまで測定できる三次元形状測定装置を例にとって説明する。このような装置では、基準板の直径がφ635mmで、基準板を3点で支持している保持台の直径がφ540mmの構成をもつ、基準板と金属球が点接触している状態で、室内温度が2℃上昇すると、鋳物でできている保持台は直径がφ540mmなので熱膨張により一方向へ最大11.3μm延びる。一方、基準板は熱膨張係数がほぼ0に近いガラス材質のものを使用していることが多く、±1℃の温調している空間に設置しているだけで最大11.3μm、金属球で基準板を削っていることになる。頻度の面で考えると約10畳の室内で温調の1サイクルの回数が1時間3回とすると、1日で72回、年間では休暇中の温調停止日数(20日)を考慮しても24840回も磨耗を起こしていることになる。また、基準板は高平面度精度を必要とするため歪を生じさせないだけの厚みが必要となるので、基準板はきわめて重くなり、このような装置の基準板では37kgの重量になる。この基準板を3点支持により保持しているので、各3点への重量は3等分された約12kgの荷重が集中して加わることになる。さらに基準板は、ガラス材質等で形成される本体、アルミの真空蒸着で形成される反射面、反射面を保護する保護膜で形成されているので、基準板表面の硬度、もろさは金属球と比較し、きわめて劣っている。この状態で3点支持への圧力が均等に掛かることは考えにくく、3点支持の各点で荷重のバラツキや、熱膨張による延びのバラツキから、磨耗量のバラツクも発生し基準板は任意の方向へ傾き、ステージとの平行度精度を維持することができなくなる。この傾きにより、ステージ移動範囲内において、基準板、Z軸移動体との絶対量の変化、またレーザ光軸往復光路に角度が発生ることで光軸がずれてしまい、結果として測定値の誤差になってしまうという問題がある。   A three-dimensional shape measuring apparatus capable of measuring the diameter of the object to be measured up to ± 200 mm in the XY axis direction will be described as an example. In such an apparatus, the diameter of the reference plate is φ635 mm, the diameter of the holding base supporting the reference plate at three points is φ540 mm, the reference plate and the metal ball are in point contact, When the temperature rises by 2 ° C., the holding base made of a casting has a diameter of φ540 mm, so that it extends a maximum of 11.3 μm in one direction due to thermal expansion. On the other hand, the reference plate is often made of a glass material having a coefficient of thermal expansion close to 0, and it is a metal ball with a maximum of 11.3 μm even if it is installed in a temperature-controlled space of ± 1 ° C. In this case, the reference plate is cut. In terms of frequency, if the number of cycles of temperature control in an approximately 10 tatami room is 3 times an hour, 72 times a day, taking into account the number of days of temperature control during holidays (20 days) That is, 24840 times have been worn. Further, since the reference plate requires high flatness accuracy and needs to be thick enough not to cause distortion, the reference plate becomes very heavy, and the reference plate of such an apparatus has a weight of 37 kg. Since this reference plate is supported by three-point support, a load of about 12 kg divided into three equal parts is concentrated on each three points. Furthermore, since the reference plate is formed of a main body formed of a glass material, a reflective surface formed by vacuum deposition of aluminum, and a protective film that protects the reflective surface, the hardness and brittleness of the reference plate surface are Compared and very inferior. In this state, it is unlikely that the pressure applied to the three-point support will be evenly applied, and the amount of wear at each point of the three-point support and the variation due to thermal expansion will also occur. It becomes impossible to maintain the accuracy of parallelism with the stage. This tilt causes the optical axis to deviate due to changes in the absolute amount with respect to the reference plate and the Z-axis moving body within the stage movement range, and an angle in the reciprocating optical path of the laser optical axis, resulting in measurement error. There is a problem of becoming.

また、基準板を測定装置に装着した後に、測定台上のステージとの平行度を精度良く調整する必要があるが、従来の方法では、基準板を保持台から一度取外し、直径の異なった金属球と交換し、再び基準板を金属球を介した保持台上に装着するなどの方法で調整を行う必要があり、調整に手間がかかるという問題がある。   In addition, it is necessary to accurately adjust the parallelism with the stage on the measurement table after mounting the reference plate on the measuring device. However, in the conventional method, the reference plate is once removed from the holding table, and the metal with different diameters is removed. There is a problem that it is necessary to perform adjustment by a method such as replacement with a sphere and mounting the reference plate on a holding table via a metal sphere again.

本発明は、上記従来の問題点に鑑み、基準板に溝や窪みを形成することなく基準板を測定装置に装着することができ、また温度変化による磨耗の欠点を無くすことができ、また基準板を測定装置に装着した後に、容易に平行度を調整できる三次元形状測定装置の基準板支持構造を提供することを目的とする。   In view of the above-mentioned conventional problems, the present invention can attach the reference plate to the measuring device without forming a groove or a depression in the reference plate, can eliminate the disadvantage of wear due to temperature change, It is an object of the present invention to provide a reference plate support structure for a three-dimensional shape measuring apparatus that can easily adjust the parallelism after the plate is mounted on the measuring apparatus.

本発明の請求項1記載の三次元形状測定装置の基準板支持構造は、被測定物を固定する測定台と、測定台上にX軸方向又はX−Y軸方向に水平移動するステージと、ステージにX軸方向又はX−Y軸方向に垂直なZ軸方向に上下移動するZ軸移動体と、Z軸移動体に被測定物の表面に沿って接触させながら移動する接触子と、ステージに平行な反射面を有する基準板と、基準板を保持する保持台とを備え、基準板と接触子の位置を測定することにより被測定物の表面形状を測定する三次元形状測定装置において、保持台の略3等分する位置に円錐形状の切欠部を設け、切欠部に金属球を介して基準板を載置し、金属球と基準板間に球側に逆円錐形状の切欠部と基準板側に平面で接する中間支持部材を介存させたものである。   The reference plate support structure of the three-dimensional shape measuring apparatus according to claim 1 of the present invention includes a measurement table for fixing an object to be measured, a stage horizontally moving on the measurement table in the X-axis direction or the XY-axis direction, A Z-axis moving body that moves up and down in the Z-axis direction perpendicular to the X-axis direction or the XY-axis direction; a contact that moves while contacting the Z-axis moving body along the surface of the object to be measured; In a three-dimensional shape measuring apparatus comprising a reference plate having a reflecting surface parallel to the base plate and a holding base for holding the reference plate, and measuring the surface shape of the object to be measured by measuring the position of the reference plate and the contact, A conical cutout is provided at a position that divides the holding base into approximately three equal parts, a reference plate is placed on the cutout via a metal ball, and an inverted conical cutout is provided between the metal ball and the reference plate on the sphere side. An intermediate support member in contact with the reference plate side in a plane is interposed.

この構成によると、金属球と基準板の間に、球側では逆円錐形状の切欠部に接し、基準板側では平面で接する中間支持部材を介存させたことで、高平面度精度のある基準板に溝や窪みを形成することなく装置へ装着することができる。また、基準板側では平面で接触しているため、保護膜への圧力が分散し磨耗が低減するので、ステージとの平行度精度を維持することができる。また、磨耗の低減により保護膜の硬度が低硬度のものでも使用可能となり、平面度精度に対して歪からの影響が少ない基準板を使用することができる。   According to this configuration, a reference plate with high flatness accuracy is provided between the metal sphere and the reference plate by interposing an intermediate support member that is in contact with the inverted conical cutout on the sphere side and in contact with the flat surface on the reference plate side. It can be attached to the apparatus without forming grooves or depressions. Further, since the contact is made in a plane on the reference plate side, the pressure on the protective film is dispersed and wear is reduced, so that the accuracy of parallelism with the stage can be maintained. In addition, it is possible to use a protective film having a low hardness due to reduced wear, and it is possible to use a reference plate that is less affected by strain on flatness accuracy.

また、本発明の請求項2及び4記載の三次元形状測定装置の基準板支持構造は、保持台の中心回りの周方向に略3等分する位置に円錐形状の切欠部を設け、切欠部に金属球を介して基準板を載置するとともに、保持台の切欠部の内少なくとも2箇所の切欠部は保持台に対して着脱可能な基準板支持部材にて構成したものである。   Further, in the reference plate support structure of the three-dimensional shape measuring apparatus according to claims 2 and 4 of the present invention, a conical cutout is provided at a position substantially equally divided into three in the circumferential direction around the center of the holding table. The reference plate is placed on the base plate through at least two metal balls, and at least two of the cutout portions of the holding table are constituted by a reference plate support member that can be attached to and detached from the holding table.

この構成によると、基準板支持部材を調整することで基準板を取外すことなく測定台上のステージと容易に平行度を調整することができる。   According to this configuration, by adjusting the reference plate support member, the parallelism with the stage on the measurement table can be easily adjusted without removing the reference plate.

また、本発明の請求項3及び5記載の三次元形状測定装置の基準板支持構造は、保持台の中心回りの周方向に略3等分する位置に円錐形状の切欠部を設け、切欠部に金属球を介して基準板を載置するとともに、保持台の切欠部の内少なくとも2箇所の切欠部は保持台に対して上下移動可能な基準板支持部材にて構成したものである。   Further, in the reference plate support structure of the three-dimensional shape measuring apparatus according to claims 3 and 5 of the present invention, a conical cutout is provided at a position that is substantially equally divided in the circumferential direction around the center of the holding base, and the cutout The reference plate is placed on the metal plate, and at least two of the cutout portions of the holding table are configured by a reference plate support member that can move up and down with respect to the holding table.

この構成によると、基準板を取外すことなく測定台上のステージと容易に平行度を調整することができる。   According to this configuration, the parallelism with the stage on the measurement table can be easily adjusted without removing the reference plate.

請求項1記載の発明によれば、基準板側に平面で接する中間支持部材を介存させる構成としたことで、高平面度精度のある基準板に溝や窪みを形成することなく装置へ装着することができ、また基準板側では平面で接触しているため、保護膜への圧力が分散し磨耗が低減するので、ステージとの平行度精度を維持することができ、また磨耗の低減により保護膜の硬度が低硬度のものでも使用可能となり、平面度精度に対して歪からの影響が少ない基準板を使用することができる。   According to the first aspect of the present invention, the intermediate support member that is in flat contact with the reference plate side is interposed, so that the reference plate with high flatness accuracy can be mounted on the apparatus without forming a groove or a recess. In addition, since the reference plate side is in contact with a flat surface, the pressure on the protective film is dispersed and wear is reduced, so that the accuracy of parallelism with the stage can be maintained and the wear can be reduced. Even if the hardness of the protective film is low, it can be used, and it is possible to use a reference plate that is less affected by strain on the flatness accuracy.

請求項2及び4記載の発明によれば、保持台の切欠部の内少なくとも2箇所の切欠部は保持台に対して着脱可能な基準板支持部材にて構成したことで、基準板を取外すことなく、金属球の交換か部材の研磨をし再び基準板支持部を基準板の下側へ取付けることで基準板とステージとの平行度精度調整が容易になる。   According to the second and fourth aspects of the present invention, at least two of the cutout portions of the holding table are configured by the reference plate support member that can be attached to and detached from the holding table, thereby removing the reference plate. The parallelism accuracy adjustment between the reference plate and the stage is facilitated by replacing the metal ball or polishing the member and attaching the reference plate support portion to the lower side of the reference plate again.

請求項3及び5記載の発明によれば、保持台の切欠部の内少なくとも2箇所の切欠部は保持台に対して上下移動可能な基準板支持部材にて構成したことで、基準板の取外し、金属球の交換、部材の研磨をすること無く、基準板とステージとの平行度精度調整が容易にでき、かつ調整精度が向上する。   According to the invention described in claims 3 and 5, at least two of the cutout portions of the holding table are configured by the reference plate support member that can move up and down with respect to the holding table, thereby removing the reference plate. The parallelism accuracy between the reference plate and the stage can be easily adjusted and the adjustment accuracy can be improved without exchanging the metal balls and polishing the members.

以下、本発明の三次元形状測定装置の基準板支持構造の各実施形態について、図1〜図4を参照して説明する。なお、三次元形状測定装置の全体構成は、図5〜図7を参照して説明した従来例と同一であり、同一の構成要素については同一参照符号を付して説明を省略し、主として相違点についてのみ説明する。   Hereinafter, each embodiment of the reference plate support structure of the three-dimensional shape measuring apparatus of the present invention will be described with reference to FIGS. Note that the overall configuration of the three-dimensional shape measuring apparatus is the same as that of the conventional example described with reference to FIGS. 5 to 7, and the same components are denoted by the same reference numerals and the description thereof is omitted, and is mainly different. Only the point will be described.

(第1の実施形態)
まず、本発明の第1の実施形態について、図1を参照して説明する。図1は、本実施形態における基準板支持構造を示す。図1において、従来例と異なる点は、基準板1と金属球3の間に球側では逆円錐形状の切欠部で接し、基準板1側では平面で接する中間支持部材2を介在させた点にある。
(First embodiment)
First, a first embodiment of the present invention will be described with reference to FIG. FIG. 1 shows a reference plate support structure in the present embodiment. In FIG. 1, the difference from the conventional example is that an intermediate support member 2 is interposed between the reference plate 1 and the metal ball 3 at the sphere side by an inverted conical notch, and at the reference plate 1 side by a plane. It is in.

本実施形態では、中間支持部材2を介在させたことにより、高精度の平面度に仕上げられた基準板1の本体1aと反射面1bまたは保護膜1cに溝や窪みを形成することなく装置へ装着することができる。また、保護膜1cに対して中間支持部材2が平面で接触しているため、保護膜1cへの圧力が分散し磨耗が低減するので、高精度の平面度を維持することができる。また磨耗が低減することから、保護膜1cで高硬度の保護膜(SiO2 )を蒸着せずに低硬度の保護膜(SiO)でも磨耗に対して十分な耐磨耗を得ることができる。SiO2 とSiOでは、膜形成時の真空蒸着温度において大きな異なる点があり、SiO2 での真空蒸着高温が300℃に対し、SiOでの真空蒸着高温が80℃である。この結果、高温度蒸着のSiO2 から、低温度蒸着のSiOにすることで歪による平面精度への影響が低減し、基準板1の平面精度を向上することができる。 In the present embodiment, the intermediate support member 2 is interposed, so that the main body 1a and the reflecting surface 1b or the protective film 1c of the reference plate 1 finished with high precision flatness can be formed without forming grooves or depressions. Can be installed. In addition, since the intermediate support member 2 is in contact with the protective film 1c in a plane, the pressure on the protective film 1c is dispersed and wear is reduced, so that highly accurate flatness can be maintained. Further, since the wear is reduced, it is possible to obtain sufficient wear resistance even with a low hardness protective film (SiO) without depositing a high hardness protective film (SiO 2 ) with the protective film 1c. There is a big difference between SiO 2 and SiO in the vacuum deposition temperature at the time of film formation. The high vacuum deposition temperature in SiO 2 is 300 ° C., and the high vacuum deposition temperature in SiO is 80 ° C. As a result, the influence of the strain on the planar accuracy is reduced by changing the high temperature deposited SiO 2 to the low temperature deposited SiO, and the planar accuracy of the reference plate 1 can be improved.

なお、本実施形態においては、中間支持部材2に形成する切欠部として、鋭角な先端を持つ逆円錐形状の切欠部でなく、先端が球面を帯びた鈍角状態の逆円錐形状の切欠部でも同じ効果を得ることができる。   In the present embodiment, the notch portion formed in the intermediate support member 2 is not the reverse cone-shaped notch portion having an acute tip, but the reverse cone-shaped notch portion having a blunt end with a spherical tip. An effect can be obtained.

(第2の実施形態)
次に、本発明の第2の実施形態について、図2を参照して説明する。図2は、本実施形態における基準板支持機構を示す。なお、以下の実施形態の説明では、先行する実施形態と同一の構成要素については、同一参照符号を付して説明を省略する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 2 shows a reference plate support mechanism in the present embodiment. In the following description of the embodiment, the same components as those in the preceding embodiment are denoted by the same reference numerals and description thereof is omitted.

図2において、第1の実施形態と異なる点は、円錐形状の切欠部5を有する基準板支持部材6の内の少なくとも2つについては、金属球3と中間支持部材2を基準板支持部材6とともに同時に保持台4に対して着脱可能とした点にある。   In FIG. 2, the difference from the first embodiment is that at least two of the reference plate support members 6 having the conical cutouts 5 are formed by connecting the metal balls 3 and the intermediate support member 2 to the reference plate support member 6. At the same time, it is detachable from the holding table 4.

この支持構造により、基準板1と石定盤(測定台)12上の移動体(ステージ)14との平行度の精度調整の際は、基準板1を保持台4から取外すことなく、基準板1と保持台4の間に隙間ゲージを挿入し、基準板1の傾き防止を行った状態で、円錐形状の切欠部5を有する基準板支持部材6と金属球3と中間支持部材2を同時に保持台4から着脱し、直径の異なった金属球3の交換か、あるいは中間支持部材2の研磨といった上下調整に関する項目選択と作業を行い、再び中間支持部材2と、金属球3と、円錐形状の切欠部5を有する基準板支持部材6を保持台4の下側へ取付ボルト7により取付け、隙間ゲージを取外す、といった基準板1と石定盤(測定台)12上の移動体(ステージ)14との平行度精度調整作業を容易に行うことができる。なお、本実施形態では、中間支持部材2がなくとも同じ効果を得ることができる。   With this support structure, when adjusting the accuracy of the parallelism between the reference plate 1 and the movable body (stage) 14 on the stone surface plate (measurement table) 12, the reference plate 1 is not removed from the holding table 4. In a state where a gap gauge is inserted between 1 and the holding base 4 to prevent the inclination of the reference plate 1, the reference plate support member 6 having the conical cutout 5, the metal ball 3, and the intermediate support member 2 are simultaneously attached. Item selection and work related to vertical adjustment such as replacement of the metal sphere 3 with different diameter or polishing of the intermediate support member 2 is performed from the holding base 4, and the intermediate support member 2, the metal sphere 3, and the conical shape are again formed. A moving body (stage) on the reference plate 1 and a stone surface plate (measuring table) 12 such that a reference plate support member 6 having a notch 5 is attached to the lower side of the holding table 4 with a mounting bolt 7 and a gap gauge is removed. 14 parallelism accuracy adjustment work can be easily performed Kill. In the present embodiment, the same effect can be obtained without the intermediate support member 2.

(第3の実施形態)
次に、本発明の第3の実施形態について、図3を参照して説明する。図3は、本実施形態における基準板支持構造を示す。
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 3 shows a reference plate support structure in the present embodiment.

図3において、第1の実施形態及び第2の実施形態と異なる点は、3箇所の基準板支持部材6の内、少なくとも箇所については、六角穴付き細目ボルトの上端に円錐形状の切欠部5を形成した上下調整ボルト8が基準板支持部材6内に螺合して取付けられており、金属球3と中間支持部材2を同時に上下調整可能とした点にある。   In FIG. 3, the difference from the first embodiment and the second embodiment is that the conical cutout portion 5 is formed at the upper end of the hexagon socket head fine bolt at least in the three reference plate support members 6. The vertical adjustment bolt 8 formed with a screw is screwed into the reference plate support member 6 so that the metal ball 3 and the intermediate support member 2 can be adjusted in the vertical direction at the same time.

この支持構造により、基準板1の取外し、隙間ゲージの挿入、基準板支持部材6を含む金属球3と中間支持部材2の保持台4からの同時着脱を行わなくとも、上下調整ボルト8の締め付け又は緩め操作で、金属球3と中間支持部材2を同時に上下調整でき、調整後は細目ナット9の締め付けで基準板1の上下位置を維持することができ、基準板1と石定盤(測定台)12上の移動体(ステージ)14との平行度精度調整作業を容易に行うことができる。   With this support structure, the vertical adjustment bolt 8 can be tightened without removing the reference plate 1, inserting a gap gauge, and simultaneously detaching the metal ball 3 including the reference plate support member 6 and the intermediate support member 2 from the holding base 4. Alternatively, the metal ball 3 and the intermediate support member 2 can be adjusted up and down simultaneously by loosening operation, and after adjustment, the vertical position of the reference plate 1 can be maintained by tightening the fine nuts 9. The parallelism accuracy adjustment work with the movable body (stage) 14 on the table 12 can be easily performed.

なお、本実施形態では、中間支持部材2、円錐形状の切欠部5を有する基準板支持部材6、取付ボルト7が無くとも同じ効果を得ることができる。   In the present embodiment, the same effect can be obtained without the intermediate support member 2, the reference plate support member 6 having the conical cutout 5, and the mounting bolt 7.

また、本実施形態における基準板支持構造は、図4に示すような位置関係で三次元形状測定装置に取付けられている。図4において、本実施形態における基準板支持構造が適用されているA部は保持台4の中心回りに周方向の略3等分した位置の中で、開閉ウィンドウ10と調整者11に近い2箇所に配設されている。この位置関係により、基準板1と測定台(石定盤)12上のステージ(移動体)14との平行度精度調整の際は、調整者11は開閉ウィンドウ10を開し、調整者側近くに取付けられているA部の2箇所の上下調整ボルト8を上下させて調整を行うことができる。このように開閉ウィンドウ10と調整者11に近い2箇所にA部を配設していることで、A部の調整代を目視確認しつつ、基準板1の上下位置を三次元形状測定装置のレーザ測長光学系を通してモニタリングしながら調整することができるので、第1の実施形態、第2の実施形態での上下調整と比較し、よりシビアな調整が可能となる。   Further, the reference plate support structure in the present embodiment is attached to the three-dimensional shape measuring apparatus in a positional relationship as shown in FIG. In FIG. 4, the portion A to which the reference plate support structure in the present embodiment is applied is close to the opening / closing window 10 and the adjuster 11 in a position approximately divided into three equal parts around the center of the holding table 4. It is arranged at the place. Due to this positional relationship, when adjusting the parallelism accuracy between the reference plate 1 and the stage (moving body) 14 on the measurement table (stone surface plate) 12, the adjuster 11 opens the opening / closing window 10 and is close to the adjuster side. The adjustment can be performed by moving up and down the two vertical adjustment bolts 8 of the A part attached to the A. As described above, the A portion is disposed at two locations close to the opening / closing window 10 and the adjuster 11, so that the vertical position of the reference plate 1 can be adjusted by the three-dimensional shape measuring device while visually checking the adjustment allowance of the A portion. Since adjustment can be performed while monitoring through the laser length measurement optical system, more severe adjustment is possible as compared with the vertical adjustment in the first and second embodiments.

本発明の三次元形状測定装置の基準板支持構造は、基準面への接触圧力が分散し磨耗を低減させる効果を有し、光学分野でのメジャーミラー、リファレンスミラー等の基準面の取付け、調整の用途にも利用できる。   The reference plate support structure of the three-dimensional shape measuring apparatus of the present invention has the effect of reducing the wear by reducing the contact pressure to the reference surface, and mounting and adjusting the reference surface such as a major mirror and reference mirror in the optical field. It can also be used for other applications.

本発明の第1の実施形態における基準板支持構造を示す断面図である。It is sectional drawing which shows the reference | standard board support structure in the 1st Embodiment of this invention. 本発明の第2の実施形態における基準板支持構造を示す断面図である。It is sectional drawing which shows the reference | standard board support structure in the 2nd Embodiment of this invention. 本発明の第3の実施形態における基準板支持構造を示す断面図である。It is sectional drawing which shows the reference | standard board support structure in the 3rd Embodiment of this invention. 同実施形態における基準板支持構造の三次元形状測定装置での位置関係を示す側断面図である。It is a sectional side view which shows the positional relationship in the three-dimensional shape measuring apparatus of the reference | standard board support structure in the embodiment. 従来例の三次元形状測定装置の概略構成図である。It is a schematic block diagram of the three-dimensional shape measuring apparatus of a prior art example. 同従来例における基準板支持部の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the reference | standard board support part in the prior art example. 同従来例の基準板支持部の詳細構成を示し、(a)は平面図、(b)は(a)のB−B断面図である。The detailed structure of the reference | standard board support part of the prior art example is shown, (a) is a top view, (b) is BB sectional drawing of (a). 図7(b)のC部詳細断面図であるIt is C section detail sectional drawing of FIG.7 (b).

符号の説明Explanation of symbols

1 Z参照ミラー(基準板)
1a 本体
1b 反射面
1c 保護膜
2 中間支持部材
3 金属球
4 保持台
5 円錐形状の切欠部
6 基準板支持部材
8 上下調整ボルト(上下移動可能な基準板支持部材)
12 石定盤(測定台)
13 被測定物
14 移動体(ステージ)
15 Z軸移動体
16 プローブ(接触子)
1 Z reference mirror (reference plate)
DESCRIPTION OF SYMBOLS 1a Main body 1b Reflecting surface 1c Protective film 2 Intermediate support member 3 Metal ball 4 Holding stand 5 Conical notch 6 Reference plate support member 8 Vertical adjustment bolt (reference plate support member movable up and down)
12 Stone surface plate (measurement stand)
13 DUT 14 Mobile object (stage)
15 Z-axis moving body 16 Probe (contact)

Claims (5)

被測定物を固定する測定台と、測定台上にX軸方向又はX−Y軸方向に水平移動するステージと、ステージにX軸方向又はX−Y軸方向に垂直なZ軸方向に上下移動するZ軸移動体と、Z軸移動体に被測定物の表面に沿って接触させながら移動する接触子と、ステージに平行な反射面を有する基準板と、基準板を保持する保持台とを備え、基準板と接触子の位置を測定することにより被測定物の表面形状を測定する三次元形状測定装置において、保持台の中心回りの周方向に略3等分する位置に円錐形状の切欠部を設け、切欠部に金属球を介して基準板を載置し、金属球と基準板間に球側に逆円錐形状の切欠部と基準板側に平面で接する中間支持部材を介存させたことを特徴とする三次元形状測定装置の基準板支持構造。   A measuring table for fixing the object to be measured, a stage that moves horizontally on the measuring table in the X-axis direction or the XY-axis direction, and a vertical movement in the Z-axis direction perpendicular to the X-axis direction or the XY-axis direction on the stage A Z-axis moving body, a contact that moves while contacting the Z-axis moving body along the surface of the object to be measured, a reference plate having a reflective surface parallel to the stage, and a holding table that holds the reference plate In a three-dimensional shape measuring apparatus for measuring the surface shape of an object to be measured by measuring the positions of a reference plate and a contact, a conical notch is formed at a position that is approximately divided into three equal parts in the circumferential direction around the center of the holding table. A reference plate is placed on the notch through a metal ball, and an inverted conical notch on the sphere side and an intermediate support member in contact with the reference plate on a plane are interposed between the metal sphere and the reference plate. A reference plate support structure for a three-dimensional shape measuring apparatus. 保持台の切欠部の内少なくとも2箇所の切欠部は、保持台に対して着脱可能な基準板支持部材にて構成したことを特徴とする請求項1記載の三次元形状測定装置の基準板支持構造。   2. The reference plate support for a three-dimensional shape measuring apparatus according to claim 1, wherein at least two of the cutout portions of the holding table are configured by a reference plate support member that can be attached to and detached from the holding table. Construction. 保持台の切欠部の内少なくとも2箇所の切欠部は、保持台に対して上下移動可能な基準板支持部材にて構成したことを特徴とする請求項1又は2記載の三次元形状測定装置の基準板支持構造。   3. The three-dimensional shape measuring apparatus according to claim 1, wherein at least two of the cutout portions of the holding table are configured by a reference plate support member that can move up and down with respect to the holding table. Reference plate support structure. 被測定物を固定する測定台と、測定台上にX軸方向又はX−Y軸方向に水平移動するステージと、ステージにX軸方向又はX−Y軸方向に垂直なZ軸方向に上下移動するZ軸移動体と、Z軸移動体に被測定物の表面に沿って接触させながら移動する接触子と、ステージに平行な反射面を有する基準板と、基準板を保持する保持台とを備え、基準板と接触子の位置を測定することにより被測定物の表面形状を測定する三次元形状測定装置において、保持台の中心回りの周方向に略3等分する位置に円錐形状の切欠部を設け、切欠部に金属球を介して基準板を載置するとともに、保持台の切欠部の内少なくとも2箇所の切欠部は保持台に対して着脱可能な基準板支持部材にて構成したことを特徴とする三次元形状測定装置の基準板支持構造。   A measuring table for fixing the object to be measured, a stage that moves horizontally on the measuring table in the X-axis direction or the XY-axis direction, and a vertical movement in the Z-axis direction perpendicular to the X-axis direction or the XY-axis direction on the stage A Z-axis moving body, a contact that moves while contacting the Z-axis moving body along the surface of the object to be measured, a reference plate having a reflective surface parallel to the stage, and a holding table that holds the reference plate In a three-dimensional shape measuring apparatus for measuring the surface shape of an object to be measured by measuring the positions of a reference plate and a contact, a conical notch is formed at a position that is approximately divided into three equal parts in the circumferential direction around the center of the holding table. And a reference plate is placed on the notch via a metal ball, and at least two of the notches of the holding base are configured by a reference plate support member that can be attached to and detached from the holding base. A reference plate support structure for a three-dimensional shape measuring apparatus. 被測定物を固定する測定台と、測定台上にX軸方向又はX−Y軸方向に水平移動するステージと、ステージにX軸方向又はX−Y軸方向に垂直なZ軸方向に上下移動するZ軸移動体と、Z軸移動体に被測定物の表面に沿って接触させながら移動する接触子と、ステージに平行な反射面を有する基準板と、基準板を保持する保持台とを備え、基準板と接触子の位置を測定することにより被測定物の表面形状を測定する三次元形状測定装置において、保持台の中心回りの周方向に略3等分する位置に円錐形状の切欠部を設け、切欠部に金属球を介して基準板を載置するとともに、保持台の切欠部の内少なくとも2箇所の切欠部は保持台に対して上下移動可能な基準板支持部材にて構成したことを特徴とする三次元形状測定装置の基準板支持構造。   A measuring table for fixing the object to be measured, a stage that moves horizontally on the measuring table in the X-axis direction or the XY-axis direction, and a vertical movement in the Z-axis direction perpendicular to the X-axis direction or the XY-axis direction on the stage A Z-axis moving body, a contact that moves while contacting the Z-axis moving body along the surface of the object to be measured, a reference plate having a reflective surface parallel to the stage, and a holding table that holds the reference plate In a three-dimensional shape measuring apparatus for measuring the surface shape of an object to be measured by measuring the positions of a reference plate and a contact, a conical notch is formed at a position that is approximately divided into three equal parts in the circumferential direction around the center of the holding table. The reference plate is placed on the cutout portion via a metal ball, and at least two of the cutout portions of the holding base are configured by a reference plate support member that can move up and down with respect to the holding base. A reference plate support structure for a three-dimensional shape measuring apparatus.
JP2004196809A 2004-07-02 2004-07-02 Reference plate support structure for 3D shape measuring equipment Expired - Lifetime JP4593987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004196809A JP4593987B2 (en) 2004-07-02 2004-07-02 Reference plate support structure for 3D shape measuring equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004196809A JP4593987B2 (en) 2004-07-02 2004-07-02 Reference plate support structure for 3D shape measuring equipment

Publications (2)

Publication Number Publication Date
JP2006017617A true JP2006017617A (en) 2006-01-19
JP4593987B2 JP4593987B2 (en) 2010-12-08

Family

ID=35792043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004196809A Expired - Lifetime JP4593987B2 (en) 2004-07-02 2004-07-02 Reference plate support structure for 3D shape measuring equipment

Country Status (1)

Country Link
JP (1) JP4593987B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007050399A1 (en) * 2007-10-18 2009-04-23 Volkswagen Ag Measurement adapter for measuring e.g. undercarriage in vehicle, has arbor adapted to retention holes at component and fastened to hemisphere, where center point of cut surface of hemisphere defines measuring point

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01314994A (en) * 1988-06-15 1989-12-20 Tokyo Electron Ltd X-y table
JPH10170243A (en) * 1996-12-11 1998-06-26 Matsushita Electric Ind Co Ltd Method and device for measuring shape
JPH10260008A (en) * 1997-03-19 1998-09-29 Nikon Corp Stage device, coordinate measuring device, and position measuring method
JP2002100315A (en) * 2000-09-25 2002-04-05 Jeol Ltd Sample stage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01314994A (en) * 1988-06-15 1989-12-20 Tokyo Electron Ltd X-y table
JPH10170243A (en) * 1996-12-11 1998-06-26 Matsushita Electric Ind Co Ltd Method and device for measuring shape
JPH10260008A (en) * 1997-03-19 1998-09-29 Nikon Corp Stage device, coordinate measuring device, and position measuring method
JP2002100315A (en) * 2000-09-25 2002-04-05 Jeol Ltd Sample stage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007050399A1 (en) * 2007-10-18 2009-04-23 Volkswagen Ag Measurement adapter for measuring e.g. undercarriage in vehicle, has arbor adapted to retention holes at component and fastened to hemisphere, where center point of cut surface of hemisphere defines measuring point

Also Published As

Publication number Publication date
JP4593987B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
US6347458B1 (en) Displaceable X/Y coordinate measurement table
US6170795B1 (en) Apparatus and method for precision adjustment of the angular position of an optical device
US20100317264A1 (en) Grinding apparatus for manufacturing optical device, method for manufacturing optical device, and precise measuring apparatus for measuring shape and size of mold used to manufacture optical device or shape and size of optical device
CN102162900A (en) Device for clamping reflector at high accuracy
JP2009534206A (en) Fastening device comprising means for measuring the distance between the chuck and the tool holder or workpiece holder
US10108094B2 (en) Projection exposure apparatus with near-field manipulator
JP4802221B2 (en) Area image sensor support device and tilt adjustment method of the sensor
US7315412B2 (en) Focus stabilizing mechanism for microscopes and similar optical instruments
JP4593987B2 (en) Reference plate support structure for 3D shape measuring equipment
US5101301A (en) High-accuracy traveling table apparatus
KR101234343B1 (en) Tilt stage
US20090231594A1 (en) Component mounting in movement-sensitive equipment
US5115354A (en) High accuracy traveling table apparatus
CN112146611B (en) Calibration device and calibration method for parallelism of detection head and substrate detection device
US20090002670A1 (en) Apparatus for the manipulation and/or adjustment of an optical element
US4998957A (en) Device for minimizing the thermal sensitivity of a machining apparatus
JP3203580U (en) Optical element holding mechanism
JPH10332327A (en) Stage structure
JP7340761B2 (en) measurement probe
US20040257675A1 (en) Optical measuring system, and a projection objective
JP2008203191A (en) Probe head for contact type shape measuring device
JP2001249018A (en) Surface mechanical characteristic measuring apparatus and method thereof
JP2714858B2 (en) Processing jig
JPS63238409A (en) Interference device for microscope
JPH02238507A (en) Stage shift mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070516

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4593987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150