JP2006017271A - Driving transmission device - Google Patents

Driving transmission device Download PDF

Info

Publication number
JP2006017271A
JP2006017271A JP2004197724A JP2004197724A JP2006017271A JP 2006017271 A JP2006017271 A JP 2006017271A JP 2004197724 A JP2004197724 A JP 2004197724A JP 2004197724 A JP2004197724 A JP 2004197724A JP 2006017271 A JP2006017271 A JP 2006017271A
Authority
JP
Japan
Prior art keywords
drive transmission
transmission device
gear
inter
rotational force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004197724A
Other languages
Japanese (ja)
Inventor
Shinya Senoo
晋哉 妹尾
Toshiharu Hatakeyama
寿治 畠山
Tetsuo Watanabe
哲夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004197724A priority Critical patent/JP2006017271A/en
Publication of JP2006017271A publication Critical patent/JP2006017271A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a drive transmission device capable of realizing stable drive transmission by regulating gear engaging position and roller connecting position, always maintaining appropriate gear engaging condition in response to temperature change of surroundings and deviation of gears, and regulating distance and parallel condition between shafts. <P>SOLUTION: This drive transmission device transmits rotation and torque between at least one pair of rotating force transmitting members. The drive transmission device has a center distance regulating member 12 provided on the same shaft with each of the rotating force transmitting members 11 to regulate distance between each of shafts by abutting on each other. Appropriate drive transmitting condition can be always maintained in response to temperature change of surroundings, and stable drive transmission can be realized. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は駆動伝達装置に関し、詳細には歯車の歯噛合い位置を規定した歯車駆動伝達装置やローラ同士の接合位置を規定したローラ駆動伝達装置などの駆動伝達装置において、環境の温度変化、歯車及びローラの偏芯に対しても、常に適切な歯車の歯噛合い状態やローラの接合状態を維持し、安定した駆動伝達を実現する技術に関する。   The present invention relates to a drive transmission device, and in particular, in a drive transmission device such as a gear drive transmission device that defines a gear meshing position of a gear or a roller drive transmission device that defines a joining position between rollers, Further, the present invention relates to a technique for realizing stable drive transmission by always maintaining an appropriate gear meshing state and roller joining state even with respect to roller eccentricity.

デジタルコピー機、レーザプリンタなどの画像形成装置に利用される駆動装置において、歯車噛合い周期の回転ムラが画像に及ぼす影響を抑えるために、大口径小モジュールのギヤを用いた減速系を用いることが有効である。図17に示すような半径50mm程度の大口径小モジュールの歯車における樹脂歯車のモジュール及び歯丈と、熱膨張による半径変化量との関係を示す図18からわかるように、モジュール0.5程度までの小モジュール歯車の使用では熱膨張の影響は比較的少なかったが、モジュール0.2以下の小モジュールにおいては、熱膨張の影響は無視できなくなる。詳細には、大径小モジュールの精密駆動用歯車伝達機構において、環境の温度変化が起こると、熱膨張によって歯車の直径が変化して、適切な噛合い状態を維持できなくなり、安定した駆動伝達ができなくなる。よって、低温環境において、歯車噛合いが外れることによる空回りが発生したり、高温環境において、両歯噛合いと片歯噛合いが混在したりすることによる駆動伝達誤差が生ずるなどの問題がある。更に、駆動軸と従動軸の間を歯車の材質と同材質の部材で固定することによって、熱膨張の影響を抑えることは可能であるが、軸に取付けた状態で歯車に偏芯がある場合には1回転の中で歯車の噛合い位置が変化するため、バックラッシュの大きい区間と小さい区間が生じ、レーザプリンタなどの画像形成装置においては、画像バンディングと呼ばれる画像濃淡ムラの原因となる。   In a drive unit used in an image forming apparatus such as a digital copying machine or a laser printer, a reduction system using gears of a large aperture and a small module is used in order to suppress the influence of uneven rotation of the gear meshing cycle on the image. Is effective. As can be seen from FIG. 18 showing the relationship between the resin gear module and the tooth height in the large-diameter small module gear having a radius of about 50 mm as shown in FIG. The effect of thermal expansion was relatively small when the small module gear was used, but the effect of thermal expansion cannot be ignored in small modules of module 0.2 or less. Specifically, in the gear transmission mechanism for precision driving of large and small modules, when the temperature of the environment changes, the gear diameter changes due to thermal expansion, making it impossible to maintain an appropriate meshing state, and stable drive transmission. Can not be. Therefore, there are problems such as idling due to disengagement of gears in a low temperature environment, and drive transmission errors due to the mixture of both teeth and single teeth in a high temperature environment. In addition, it is possible to suppress the effect of thermal expansion by fixing the drive shaft and driven shaft between the material of the gear and the material of the gear, but when the gear is eccentric when attached to the shaft Since the meshing position of the gear changes in one rotation, a section with a large backlash and a section with a small backlash are generated, which causes image density unevenness called image banding in an image forming apparatus such as a laser printer.

そこで、これらの問題点を解決するための提案が従来よりいくつかなされている。その一つとして、特許文献1によれば、2軸間の温度変化による変化分を歯車の線膨張係数と同等の基材上に2軸を取り付けて駆動する駆動伝達機構が提案されている。
特開2002−21942号公報
Thus, several proposals for solving these problems have been made. As one of them, according to Patent Document 1, a drive transmission mechanism is proposed in which a change due to a temperature change between two axes is driven by mounting the two axes on a base material equivalent to the linear expansion coefficient of the gear.
JP 2002-211942 A

しかしながら、上記特許文献1によれば、実際の装置内において位置が異なることによる温度分布の違いや駆動モータの発熱が基材に伝播することにより温度勾配が発生し、歯車とは異なった収縮量となるという問題が発生する。   However, according to the above-mentioned Patent Document 1, a temperature gradient is generated by a difference in temperature distribution due to a difference in position in an actual apparatus or a heat generation of a drive motor being propagated to a base material, and a contraction amount different from that of a gear. The problem of becoming occurs.

本発明はこれらの問題点を解決するためのものであり、歯噛合い位置やローラ接合位置を規定し、環境の温度変化や歯車の偏芯に対して、常に適切な歯噛合い状態を維持し、軸間の距離や平行を規定して安定した駆動伝達を実現できる駆動伝達装置を提供することを目的とする。   The present invention is for solving these problems, and defines a tooth meshing position and a roller joining position, and always maintains an appropriate tooth meshing state against environmental temperature changes and gear eccentricity. Then, it aims at providing the drive transmission device which can implement | achieve stable drive transmission by prescribing | regulating the distance and parallelism between axes | shafts.

前記問題点を解決するために、本発明の駆動伝達装置は、少なくとも一対の回転力伝達部材の間で回転とトルクを伝達する。そして、本発明の駆動伝達装置は、回転力伝達部材の各軸と同軸であって互いに当接し合って各軸間の距離を規定する軸間距離規定部材を有することに特徴がある。よって、環境の温度変化に対しても、常に適切な駆動伝達状態を維持し、安定した駆動伝達を実現することができる。   In order to solve the above problems, the drive transmission device of the present invention transmits rotation and torque between at least a pair of rotational force transmission members. The drive transmission device of the present invention is characterized by having an inter-axis distance defining member that is coaxial with each axis of the rotational force transmitting member and abuts each other to define the distance between the axes. Therefore, it is possible to always maintain an appropriate drive transmission state even with respect to environmental temperature changes and to realize stable drive transmission.

また、回転力伝達部材が歯車である場合、軸間距離規定部材は、歯車の軸と同軸であって、少なくとも一対の歯車における基準ピッチ円の直径に相当する外径を有する円筒又は同軸円板であることが好ましい。   When the rotational force transmission member is a gear, the inter-axis distance defining member is a cylinder or a coaxial disk that is coaxial with the shaft of the gear and has an outer diameter corresponding to the diameter of a reference pitch circle in at least a pair of gears. It is preferable that

更に、回転力伝達部材がローラである場合、軸間距離規定部材は、ローラの軸と同軸であって、ローラ面同士が所定の当接を維持する際のローラ軸間の距離を規定する外径を有する円筒又は同軸円板であることが好ましい。   Further, when the rotational force transmitting member is a roller, the inter-axis distance defining member is coaxial with the roller axis, and is an outer portion that defines the distance between the roller shafts when the roller surfaces maintain predetermined contact. A cylindrical or coaxial disk having a diameter is preferable.

また、軸間距離規定部材によって規定された各軸間の距離が変化した場合の当該変化分に追従して、少なくとも一方の回転力伝達部材の軸を相対的に移動させて軸間の距離を可変する軸間距離可変機構を設けることにより、環境の温度変化に対して、常に適切な駆動伝達状態を維持し、軸間の距離や平行を規定して安定した駆動伝達を実現できる。   Further, following the change when the distance between the axes defined by the inter-axis distance defining member changes, the axis of at least one of the rotational force transmitting members is relatively moved to reduce the distance between the axes. By providing a variable inter-axis distance variable mechanism, it is possible to always maintain an appropriate drive transmission state with respect to environmental temperature changes, and to realize stable drive transmission by defining the distance and parallelism between the axes.

更に、軸間距離可変機構を構成する材質は、少なくとも一方の回転力伝達部材の材質と線膨張係数が等しい材質であることにより、環境の温度変化に対して、回転伝達部材の熱膨張と同じだけ軸間距離可変機構の熱膨張が発生するので軸間距離も対応して離れ、軸間の距離や平行を規定して安定した駆動伝達を実現できる。   Furthermore, the material constituting the inter-shaft distance variable mechanism is the same as the thermal expansion of the rotation transmission member with respect to the temperature change of the environment because the material has the same linear expansion coefficient as that of at least one of the rotational force transmission members. Since the thermal expansion of the variable inter-axis distance mechanism occurs, the inter-axis distance is also correspondingly increased, and stable drive transmission can be realized by defining the inter-axis distance and parallelism.

また、軸間距離規定部材の材質は回転力伝達部材と同じ材質であることにより、回転伝達部材の熱膨張と同じだけ軸間距離規定部材の熱膨張が発生するので軸間距離も対応して規定でき、軸間の距離や平行を規定して安定した駆動伝達を実現できる。   In addition, since the material of the inter-axis distance defining member is the same material as the rotational force transmitting member, the thermal expansion of the inter-axis distance defining member occurs as much as the thermal expansion of the rotational transmitting member. Stable drive transmission can be realized by defining the distance and parallelism between the axes.

更に、回転力伝達部材と軸間距離規定部材を一体成形にて形成することにより、成形金型内での位置決めによって、回転の偏芯がすくない、高精度な駆動伝達位置の規定が可能になり、環境の温度変化に対しても、常に適切な駆動伝達状態を維持し、安定した駆動伝達を実現することができる。   Furthermore, by forming the rotational force transmission member and the inter-shaft distance regulating member by integral molding, positioning within the molding die is less likely to cause eccentricity of rotation, making it possible to define a highly accurate drive transmission position. Even when the temperature of the environment changes, it is possible to always maintain an appropriate drive transmission state and realize stable drive transmission.

また、軸間距離規定部材の当接面の全面又は一部の面に弾性部材を設けることにより、駆動伝達時に生じる高周波の振動を減衰させて、騒音、高周波領域の回転ムラを低減した精密駆動伝達を達成することができる。また、バックラッシュを低減することが可能であり、負荷変動に強い駆動伝達が可能となる。   In addition, by providing an elastic member on the entire or part of the contact surface of the inter-axis distance regulating member, high-frequency vibration generated during drive transmission is attenuated to reduce noise and rotational unevenness in the high-frequency region. Transmission can be achieved. Further, backlash can be reduced, and drive transmission that is resistant to load fluctuations can be achieved.

更に、歯車のリム側面に、歯車の基準ピッチ円の直径に相当する外径を有するリブを歯車と同軸で有することにより、相手の歯車と噛合う際に各歯車のリブ同士が接する状態で歯噛合い位置を保つことになるので、環境の温度変化に対しても、常に適切な噛合い状態を維持し、安定した駆動伝達を実現することができる。   Further, by having a rib having an outer diameter corresponding to the diameter of the reference pitch circle of the gear on the rim side surface of the gear coaxially with the gear, the teeth of the gears are in contact with each other when the gears are engaged with each other. Since the meshing position is maintained, it is possible to always maintain an appropriate meshing state even when the temperature of the environment changes, and to realize stable drive transmission.

本発明の駆動伝達装置によれば、環境の温度変化に対しても、常に適切な駆動伝達状態を維持し、安定した駆動伝達を実現することができる。   According to the drive transmission device of the present invention, it is possible to always maintain an appropriate drive transmission state with respect to environmental temperature changes and to realize stable drive transmission.

図1は本発明の第1の実施の形態例に係る駆動伝達装置の構成を示す図である。同図の(a)は正面図、同図の(b)は側面図である。同図に示すように、本実施の形態例の駆動伝達装置である歯車100は、外周面に一定の間隔をおいて設けられた歯13を有する歯車部11と、歯車部11における基準ピッチ円の直径に相当する外径を有し、歯車部11と同軸である円筒部12とを含んで構成されている。このような構成の本実施の形態例の歯車100を、図2の(a)に示すようにモータ21の駆動軸22と同軸の歯車と、従動軸23と同軸の歯車にそれぞれ用いることによって、図2の(b)に示すように互いの歯車の歯噛合い位置を、互いの円筒部12が接合する位置で規定する。即ち、互いの歯車の歯噛合い位置が各歯車の基準ピッチ円上に規定される。よって、本実施の形態例の歯車に適用した駆動伝達装置よれば、環境の温度変化に対しても、常に適切な歯噛合い状態を維持し、さらに各軸に設けられるため軸間の距離や平行が規定され、安定した駆動伝達を実現することができる。なお、円筒部12は回転軸と一体の部材とし、更に樹脂歯車と一体成形にて結合されても構わない。   FIG. 1 is a diagram showing a configuration of a drive transmission device according to a first embodiment of the present invention. (A) of the figure is a front view, (b) of the figure is a side view. As shown in the figure, a gear 100 which is a drive transmission device of the present embodiment includes a gear portion 11 having teeth 13 provided on the outer peripheral surface at a constant interval, and a reference pitch circle in the gear portion 11. The cylindrical portion 12 has an outer diameter corresponding to the diameter of the gear portion 11 and is coaxial with the gear portion 11. As shown in FIG. 2A, the gear 100 of the present embodiment having such a configuration is used as a gear coaxial with the drive shaft 22 of the motor 21 and a gear coaxial with the driven shaft 23, respectively. As shown in FIG. 2B, the tooth meshing position of the gears is defined by the position where the cylindrical portions 12 are joined. That is, the tooth meshing position of each gear is defined on the reference pitch circle of each gear. Therefore, according to the drive transmission device applied to the gear according to the present embodiment, the appropriate tooth meshing state is always maintained even with respect to environmental temperature changes, and further, the distance between the shafts is Parallelism is defined, and stable drive transmission can be realized. The cylindrical portion 12 may be a member integrated with the rotating shaft, and may be coupled to the resin gear by integral molding.

次に、図3は本発明の第1の実施の形態例に係る駆動伝達装置に取付けた軸間距離可変機構の構成を示す図である。同図の(a)は本実施の形態例の駆動伝達装置全体の正面図であり、同図の(b)は軸間距離可変機構の構成を示す正面図である。なお、同図において、図1及び図2と同じ参照符号は同じ構成要素を示す。同図の(a)に示す第1の実施の形態例の駆動伝達装置には、軸間距離可変機構30が設けられている。ここで、同図の(a),(b)に示すように、軸間距離可変機構30は、筐体31の一部にネジ等で取付けられ、モータ21の駆動軸22が通る軸穴32を設ける部分に、固定された従動軸23に対するモータ21の駆動軸22の軸平行を保持するために摺動自在の駆動軸受け部材33が収納される切欠き溝34と、従動軸23が通る軸穴35とが設けられている取付け板36を有している。この取付け板36の切欠き溝34に収納された駆動軸受け部材33は、切欠き溝34の長手方向である図3の(b)に示す矢印Aに摺動し、更に切欠き溝34の長手方向の端面と、ストッパ37とのそれぞれの間に設けられた弾性部材38の各弾性力により矢印Aの双方向に押し付けられている。一方、従動軸23が通る軸穴35と同軸の穴が設けられた従動軸受け部材39が取付け板36にネジ等で取付けられている。また、駆動軸受け部材33を矢印Aの双方向のみに安定して摺動させるためにガイド部材40を設けている。ここで、軸間距離可変機構30を設けていない場合、環境温度が変化した際、各歯車部11及び各円筒部12の半径の熱膨張変化に応じて歯車の基準ピッチ円の直径の寸法が変化し、それに伴って固定されている各軸は当該寸法の変化で互いに相反する方向に応力が加わり軸間の距離や平行を保つことができないという現象が引き起こる。そこで、上述したような構成を有する軸間距離可変機構30を設けることにより、駆動軸受け部材33が当該熱膨張変化に応じて変化する各歯車部11及び各円筒部12の半径変化量の和をキャンセルするように軸間方向である矢印Aの双方向に摺動し、駆動軸22と従動軸23の軸間の距離や平行を維持する。よって、常に適切な歯噛合い状態を維持し、安定した駆動伝達を実現することができる。また、軸に取付けた状態で歯車に偏芯がある場合においても、常に適切な噛合い状態を維持し、各軸に設けられるため軸間の距離や平行が規定されて安定した駆動伝達を実現することができる。   Next, FIG. 3 is a view showing the configuration of the inter-shaft distance variable mechanism attached to the drive transmission device according to the first embodiment of the present invention. (A) of the figure is a front view of the entire drive transmission apparatus of the present embodiment, and (b) of the figure is a front view showing the configuration of the inter-axis distance variable mechanism. In the figure, the same reference numerals as those in FIGS. 1 and 2 indicate the same components. In the drive transmission device according to the first embodiment shown in FIG. Here, as shown in FIGS. 3A and 3B, the inter-shaft distance varying mechanism 30 is attached to a part of the housing 31 with screws or the like, and a shaft hole 32 through which the drive shaft 22 of the motor 21 passes. A notch groove 34 in which a slidable drive bearing member 33 is accommodated in order to keep the drive shaft 22 of the motor 21 parallel to the fixed driven shaft 23 and a shaft through which the driven shaft 23 passes. It has a mounting plate 36 provided with a hole 35. The drive bearing member 33 accommodated in the notch groove 34 of the mounting plate 36 slides in the arrow A shown in FIG. 3B which is the longitudinal direction of the notch groove 34, and further the longitudinal direction of the notch groove 34. It is pressed in both directions of the arrow A by each elastic force of an elastic member 38 provided between the end face in the direction and the stopper 37. On the other hand, a driven bearing member 39 provided with a hole coaxial with the shaft hole 35 through which the driven shaft 23 passes is attached to the mounting plate 36 with screws or the like. Further, a guide member 40 is provided in order to stably slide the drive bearing member 33 only in the two directions indicated by the arrow A. Here, in the case where the inter-shaft distance variable mechanism 30 is not provided, when the environmental temperature changes, the diameter of the reference pitch circle of the gear varies depending on the thermal expansion change of the radius of each gear portion 11 and each cylindrical portion 12. Along with this, the fixed axes are subjected to a phenomenon in which stress is applied in opposite directions due to the change in dimensions, and the distance between the axes and parallelism cannot be maintained. Therefore, by providing the inter-shaft distance variable mechanism 30 having the above-described configuration, the sum of the radius change amounts of the gear portions 11 and the cylindrical portions 12 that the drive bearing member 33 changes according to the thermal expansion change. It slides in both directions of the arrow A which is the direction between the axes so as to cancel, and the distance between the drive shaft 22 and the driven shaft 23 and the parallelism are maintained. Therefore, it is possible to always maintain an appropriate tooth meshing state and realize stable drive transmission. In addition, even when the gears are eccentric when attached to the shaft, the gears are always kept in proper mesh, and because they are provided on each shaft, the distance between the shafts and the parallelism are regulated to achieve stable drive transmission. can do.

ここで、図3の軸間距離可変機構30を設けない場合では上述したような現象が起きてしまうが、このような現象に対応する簡単な構成、例えば図4に示すように、取付け板41を、当該取付け板41に設けられた従動軸23が通る軸穴35の中心延長線上での取付け位置にネジ等で筐体31の一部に取付け、更に長溝42内を摺動自在とし取付け板41を保持する平ネジ43で筐体31に取付け、更には取付け板41を、歯車部11及び円筒部12と線膨張率が等しい材質で作製する構成でもよい。このような構成にすることによって、温度変化に応じて熱膨張する歯車部11及び円筒部12と同様に、取付け板41自体も環境温度の変化に応じて熱膨張し、特にネジ止めされている軸穴34の中心延長線上から軸穴32へ向かって熱膨張して駆動軸22が移動することにより、固定されている従動軸23を基準にして駆動軸22との軸間の距離や平行を維持することができる。よって、少なくとも一方の円筒部12の材質と線膨張係数が等しい材質で取付け板41を作製することにより、環境の温度変化に対して、歯車のピッチ円直径の熱膨張と同じだけ円筒部12の直径の熱膨張が発生し、更に取付け板41も同様に熱膨張して軸穴32の位置も変化し駆動軸22も移動しその結果軸間距離も対応して変化するので、歯車は基準ピッチ円上での歯噛合いを維持することができ、かつ駆動軸及び従動軸、軸受け部材、円筒部、歯車に過大なストレスを与えることなく、軸間の距離や平行が規定されて安定した駆動伝達を実現することができる。   Here, in the case where the inter-shaft distance variable mechanism 30 of FIG. 3 is not provided, the above-described phenomenon occurs. However, a simple configuration corresponding to such a phenomenon, for example, as shown in FIG. Is attached to a part of the housing 31 with a screw or the like at a mounting position on the center extension line of the shaft hole 35 through which the driven shaft 23 provided on the mounting plate 41 passes, and is further slidable in the long groove 42. A structure may be employed in which the flat plate 43 holding the pin 41 is attached to the housing 31 and the mounting plate 41 is made of a material having the same linear expansion coefficient as the gear portion 11 and the cylindrical portion 12. By adopting such a configuration, like the gear portion 11 and the cylindrical portion 12 that thermally expands according to a temperature change, the mounting plate 41 itself also thermally expands according to a change in environmental temperature, and is particularly screwed. The drive shaft 22 is moved by thermal expansion from the center extension line of the shaft hole 34 toward the shaft hole 32, so that the distance and parallel between the drive shaft 22 and the drive shaft 22 can be reduced with reference to the fixed driven shaft 23. Can be maintained. Therefore, by producing the mounting plate 41 with a material having the same linear expansion coefficient as that of the material of at least one of the cylindrical portions 12, the cylindrical portion 12 has the same amount of thermal expansion as the pitch circle diameter of the gear with respect to a change in environmental temperature. Since the thermal expansion of the diameter occurs, the mounting plate 41 is also thermally expanded in the same manner, the position of the shaft hole 32 is changed, and the drive shaft 22 is moved. As a result, the distance between the shafts is changed correspondingly. Stable drive that can maintain tooth meshing on a circle and that defines the distance and parallelism between the shafts without excessive stress on the drive shaft, driven shaft, bearing member, cylinder, and gears. Transmission can be realized.

次に、図5は本発明の第2の実施の形態例に係る駆動伝達装置の構成を示す図である。同図の(a)は正面図、同図の(b)は側面図である。なお、図1と同じ参照符号は同じ構成要素を示す。同図に示す本実施の形態例の駆動伝達装置である歯車200は、第1の実施の形態例と異なる構成として、歯車部11を挟むように円筒部12がそれぞれ設けられている。よって、図6の(a),(b)に示すように、歯車13の歯噛合い位置が各歯車の基準ピッチ円上に維持され、環境の温度変化に対しても、常に適切な歯噛合い状態を維持し、より一層安定した駆動伝達を実現することができ、歯車部11の両サイドの円筒部12で互いがより一層軸間の距離や平行が規定されるので、歯噛合い時の歯の倒れや偏芯影響を最小にすることができる。   Next, FIG. 5 is a diagram showing the configuration of the drive transmission device according to the second embodiment of the present invention. (A) of the figure is a front view, (b) of the figure is a side view. The same reference numerals as those in FIG. 1 denote the same components. The gear 200, which is the drive transmission device of the present embodiment shown in the figure, is provided with a cylindrical portion 12 so as to sandwich the gear portion 11 as a configuration different from that of the first embodiment. Therefore, as shown in FIGS. 6 (a) and 6 (b), the tooth meshing position of the gear 13 is maintained on the reference pitch circle of each gear, and the proper tooth meshing is always maintained even when the environmental temperature changes. Can be maintained, and more stable drive transmission can be realized, and the distance between the shafts and the parallelism are further defined by the cylindrical portions 12 on both sides of the gear portion 11, so that the teeth can be engaged. It is possible to minimize the influence of tooth collapse and eccentricity.

ここで、第2の実施の形態例における駆動伝達装置である歯車200変形例について説明する。図7はPOM材料による一体成形した歯車を示す正面図である。同図に示す歯車71は、歯車部と円筒部とを同一材料で構成したもので、円筒部に相当する外周端部の直径を歯車13の基準ピッチ円の直径としているので、環境変動に対して相対的に等しい変形が行われる。よって、型精度を高精度に調整すれば、偏芯量も極小に形成でき、低コストとなる。材料はプラスチックに限らず銅系焼結、鉄系焼結、Al合金の形成でも応用できる。また、図8は円筒部の外周端部及び歯と中心部を別材料で構成した歯車を示す正面図である。同図に示す歯車81には、円筒部の外周端部82と歯13が同一線膨張係数の材料で形成され、かつ中心部83が歯13及び外周端部82と異なる材料で形成されている。歯13の歯噛合い振動が伝播して最終的に例えば駆動伝達装置の軸に連結された感光体へ伝播して生じる微少振動をなくすために、歯13及び外周端部82には高振動減衰材料を使用され、あるいは熱的湿度的に変形の少ない材料を選択したり、低コスト化のための材料を選択したりというように目的別に選択して使用できる。更に、図9は歯と円筒部の外周端部に逃げ溝を形成した歯車を示す正面図である。同図に示す歯車91には、歯13と円筒部の外周端部82の間に逃げ溝92が形成されている。よって、歯噛合う歯車のスラスト方向、つまり軸方向にガタがあっても円筒部の外周端部82でのキズを発生しないようにすることができる。   Here, a modification of the gear 200 that is the drive transmission device in the second embodiment will be described. FIG. 7 is a front view showing an integrally molded gear made of POM material. The gear 71 shown in the figure has a gear part and a cylindrical part made of the same material, and the diameter of the outer peripheral end corresponding to the cylindrical part is the diameter of the reference pitch circle of the gear 13, so that Relatively equal deformations. Therefore, if the mold accuracy is adjusted with high accuracy, the amount of eccentricity can be minimized and the cost can be reduced. The material is not limited to plastic, but can also be applied to copper-based sintering, iron-based sintering, and Al alloy formation. FIG. 8 is a front view showing a gear having an outer peripheral end portion and teeth and a central portion made of different materials. In the gear 81 shown in the figure, the outer peripheral end portion 82 of the cylindrical portion and the teeth 13 are formed of a material having the same linear expansion coefficient, and the central portion 83 is formed of a material different from that of the teeth 13 and the outer peripheral end portion 82. . In order to eliminate the minute vibration caused by the propagation of the tooth meshing vibration of the tooth 13 and finally the propagation to the photosensitive member connected to the shaft of the drive transmission device, the tooth 13 and the outer peripheral end 82 have high vibration damping. The material is used, or a material with little deformation in terms of thermal and humidity can be selected, or a material for cost reduction can be selected and used depending on the purpose. Further, FIG. 9 is a front view showing a gear having a clearance groove formed at the outer peripheral end of the tooth and the cylindrical portion. In the gear 91 shown in the figure, a clearance groove 92 is formed between the tooth 13 and the outer peripheral end portion 82 of the cylindrical portion. Therefore, even if there is a backlash in the thrust direction, that is, the axial direction of the tooth meshing gear, it is possible to prevent the outer peripheral end portion 82 of the cylindrical portion from being damaged.

図10は本発明の第3の実施の形態例に係る駆動伝達装置の構成を示す正面図である。同図に示すように、円筒部12の外周端部の外周面の全面にゴムなどの弾性部材101が設けられている。なお、歯車部11の歯同士が噛合った際弾性部材101の端部の直径が歯車の基準ピッチ円の直径に相当するように弾性部材101の厚みや弾性係数、材質を設定するものとする。よって、相手の歯車と歯噛合う際に各歯車の円筒部同士が接するとき、環境の温度が変化して弾性部材101がわずかに変形するが、当該環境の温度変化に対して歯車の基準ピッチ円の直径における熱膨張と同じだけ円筒部12の直径の熱膨張が発生して、常に適切な歯噛合い状態を維持し、安定した駆動伝達を実現することができる。また、円筒部12の外周端部の外周面の全面に設けられたゴムなどの弾性部材101によって、歯噛合いの際に生じる高周波の振動を減衰させて、騒音、高周波領域の回転ムラを低減した駆動伝達装置を提供することができる。また、バックラッシュを低減することが可能であり、負荷変動に強い駆動伝達が可能となる。   FIG. 10 is a front view showing the configuration of the drive transmission device according to the third embodiment of the present invention. As shown in the figure, an elastic member 101 such as rubber is provided on the entire outer peripheral surface of the outer peripheral end of the cylindrical portion 12. The thickness, elastic coefficient, and material of the elastic member 101 are set so that the diameter of the end portion of the elastic member 101 corresponds to the diameter of the reference pitch circle of the gear when the teeth of the gear portion 11 are engaged with each other. . Therefore, when the cylindrical portions of the gears come into contact with each other when the teeth are engaged with each other, the temperature of the environment changes and the elastic member 101 is slightly deformed. However, the reference pitch of the gears against the temperature change of the environment. The thermal expansion of the diameter of the cylindrical portion 12 occurs as much as the thermal expansion of the diameter of the circle, so that an appropriate tooth meshing state can always be maintained and stable drive transmission can be realized. In addition, the elastic member 101 such as rubber provided on the entire outer peripheral surface of the outer peripheral end of the cylindrical portion 12 attenuates high-frequency vibration generated when the teeth are engaged, thereby reducing noise and rotation unevenness in the high-frequency region. Thus, a drive transmission device can be provided. Further, backlash can be reduced, and drive transmission that is resistant to load fluctuations can be achieved.

図11は本発明の第4の実施の形態例に係る駆動伝達装置の構成を示す正面図である。同図において図10と同じ参照符号は同じ構成要素を示す。同図に示すように、円筒部12の外周端部の外周面の一部に、ゴムなどの弾性部材101が設けられている。なお、歯車部11の歯同士が噛合った際は弾性部材101が設けられていない円筒部12の直径が歯車の基準ピッチ円の直径に相当し、円筒部12同士が常に当接する状態となるように弾性部材101の厚みや弾性係数、材質を設定するものとする。また、この弾性部材101が設けられている部分の半径は、弾性部材101が設けられていない円筒部12の外周端部の外周面の半径より大きくなっている。そして、軸間の押付け力によって弾性部材101が弾性変形した上で円筒部12同士が常に接する状態で歯車が噛合うので、環境の温度変化に対して歯車の基準ピッチ円の直径の熱膨張と同じだけ円筒部12の直径の熱膨張が発生しても、常に適切な歯噛合い状態を維持し、安定した駆動伝達を実現することができる。また、円筒部の一部の外周端部に設けられたゴムなどの弾性部材101によって、歯噛合いの際に生じる高周波の振動を減衰させて、騒音、高周波領域の回転ムラを低減した駆動伝達装置を提供することができる。更に、バックラッシュを低減することが可能であり、負荷変動に強い駆動伝達が可能となる。なお、図10及び図11に示す弾性部材101の表面に溝を形成することにより熱膨張による変化量の吸収をより一層増加できる。   FIG. 11 is a front view showing a configuration of a drive transmission device according to a fourth embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 10 denote the same components. As shown in the figure, an elastic member 101 such as rubber is provided on a part of the outer peripheral surface of the outer peripheral end of the cylindrical portion 12. When the teeth of the gear portion 11 are engaged with each other, the diameter of the cylindrical portion 12 where the elastic member 101 is not provided corresponds to the diameter of the reference pitch circle of the gear, and the cylindrical portions 12 are always in contact with each other. Thus, the thickness, elastic coefficient, and material of the elastic member 101 are set. The radius of the portion where the elastic member 101 is provided is larger than the radius of the outer peripheral surface of the outer peripheral end portion of the cylindrical portion 12 where the elastic member 101 is not provided. Then, the elastic member 101 is elastically deformed by the pressing force between the shafts, and the gear meshes in a state where the cylindrical portions 12 are always in contact with each other. Therefore, the thermal expansion of the diameter of the reference pitch circle of the gear against the temperature change of the environment. Even if the thermal expansion of the diameter of the cylindrical portion 12 occurs in the same amount, it is possible to always maintain an appropriate tooth meshing state and realize stable drive transmission. In addition, the elastic member 101 such as rubber provided at the outer peripheral end of a part of the cylindrical portion attenuates high-frequency vibration generated during tooth meshing, thereby reducing noise and rotation unevenness in the high-frequency region. An apparatus can be provided. Furthermore, it is possible to reduce backlash and drive transmission that is resistant to load fluctuations is possible. In addition, by forming a groove on the surface of the elastic member 101 shown in FIGS. 10 and 11, the amount of change due to thermal expansion can be further increased.

図12は本発明の第5の実施の形態例に係る駆動伝達装置の構成を示す正面図である。同図に示す本実施の形態例の駆動伝達装置である歯車は、基準ピッチ円の直径の位置に外周端部が位置するようなリブ121を歯車部11のリム側面に設けたものである。そして、歯車の基準ピッチ円の直径に相当する外径を有するリブ121は歯車部11と同軸であるので、相手の歯車と歯噛合う際に各歯車のリブ同士が接する状態で歯噛合い位置を保つことになる。よって、環境の温度変化に対して常に適切な歯噛合い状態を維持し、安定した駆動伝達を実現することができる。また、リブ121と歯車部11を一体成形によって得ることもできるので、歯車部11が偏芯している場合は同様にリブ121も偏芯するため、歯噛合い位置を適切な位置に保つことができる。更に、成形において、歯車部11の真円度誤差が生じた場合、例えば外周が楕円状になる場合においても、リブ121も同様に楕円状になるため、歯噛合い位置を保つことができる。   FIG. 12 is a front view showing the configuration of the drive transmission device according to the fifth embodiment of the present invention. The gear, which is the drive transmission device of the present embodiment shown in the figure, is provided with a rib 121 on the rim side surface of the gear portion 11 so that the outer peripheral end portion is located at the diameter of the reference pitch circle. Since the rib 121 having an outer diameter corresponding to the diameter of the reference pitch circle of the gear is coaxial with the gear portion 11, the tooth meshing position in a state where the ribs of each gear are in contact with each other when meshing with the other gear. Will keep. Therefore, it is possible to always maintain an appropriate tooth meshing state with respect to a change in environmental temperature and to realize stable drive transmission. Moreover, since the rib 121 and the gear part 11 can also be obtained by integral molding, when the gear part 11 is eccentric, the rib 121 is similarly eccentric, so that the tooth meshing position is kept at an appropriate position. Can do. Furthermore, when the roundness error of the gear portion 11 occurs in the molding, for example, when the outer periphery is elliptical, the rib 121 is similarly elliptical, so that the tooth meshing position can be maintained.

図13は本発明の第6の実施の形態例に係る駆動伝達装置の構成を示す正面図である。同図に示す本実施の形態例の駆動伝達装置である歯車は、基準ピッチ円の直径の同軸円板131を有している。歯車の基準ピッチ円の直径に相当する外径を有する同軸円板131を歯車部11と同軸で有するので、相手の歯車と噛合う際に各歯車の円板同士が接する状態で歯噛合い位置を保つことになる。よって、環境の温度変化に対しても、常に適切な歯噛合い状態を維持し、安定した駆動伝達を実現することができる。   FIG. 13 is a front view showing the configuration of the drive transmission apparatus according to the sixth embodiment of the present invention. The gear, which is the drive transmission device of the present embodiment shown in the figure, has a coaxial disk 131 having a diameter of a reference pitch circle. Since the coaxial disk 131 having the outer diameter corresponding to the diameter of the reference pitch circle of the gear is coaxial with the gear portion 11, the tooth meshing position in a state where the disks of each gear are in contact with each other when meshing with the other gear. Will keep. Therefore, it is possible to always maintain an appropriate meshing state with respect to changes in environmental temperature, and to realize stable drive transmission.

図14は本発明の駆動伝達装置をローラ駆動機構に適用した例を示す正面図である。同図に示す駆動伝達装置は、駆動伝達部及び被駆動伝達部が互いにローラ状の部材である場合の例であり、第1のローラ141のローラ面が第2のローラ142のローラ面に当接するローラ駆動機構である。同図の(b)に示すように、ローラ駆動機構は、互いのローラ面同士が当接したときの第1のローラ141の軸143と第2のローラ142の軸144との間の距離と平行を規定するために、各ローラ141,142のローラ面以外の部分に同軸の円筒部145をそれぞれ設けて構成されている。よって、第1のローラ141のローラ面が第2のローラ142のローラ面に対して隙間なく、かつ当接面に対して所定の一様な当接力で当接することができる。   FIG. 14 is a front view showing an example in which the drive transmission device of the present invention is applied to a roller drive mechanism. The drive transmission device shown in the figure is an example in which the drive transmission unit and the driven transmission unit are roller-shaped members, and the roller surface of the first roller 141 contacts the roller surface of the second roller 142. It is a roller drive mechanism that contacts. As shown in (b) of the figure, the roller driving mechanism is configured such that the distance between the shaft 143 of the first roller 141 and the shaft 144 of the second roller 142 when the roller surfaces contact each other. In order to define parallelism, a coaxial cylindrical portion 145 is provided in a portion other than the roller surface of each of the rollers 141 and 142, respectively. Therefore, the roller surface of the first roller 141 can be in contact with the roller surface of the second roller 142 with no gap and with a predetermined uniform contact force.

図15は本発明の駆動伝達装置を移動させる移動機構を示す正面図である。同図に示す移動機構は大口径歯車の円筒部の伸縮に追従して移動する小径歯車の移動機構を示す。モータ側に形成された小径歯車はホルダに対して回動可能に支持されている。他端には、大口径歯車にバイアスをかけながら突き当てるためのスプリングフック部151が伸びている。ここにスプリング152をかけて引っ張り両者を当接させる。同様の図において、スプリングフック部151を有するアームの一部に回転カム153を設け、これによって大口径ギヤの着脱を可能とさせている。   FIG. 15 is a front view showing a moving mechanism for moving the drive transmission device of the present invention. The moving mechanism shown in the figure is a moving mechanism for a small-diameter gear that moves following the expansion and contraction of the cylindrical portion of the large-diameter gear. The small-diameter gear formed on the motor side is supported so as to be rotatable with respect to the holder. At the other end, a spring hook portion 151 for abutting the large-diameter gear while applying a bias extends. A spring 152 is applied here to pull the two and bring them into contact. In the same figure, a rotating cam 153 is provided on a part of the arm having the spring hook portion 151, thereby enabling the large-diameter gear to be attached and detached.

図16は回転偏芯によって発生する感光体の位置変動の関係を示す特性図である。同図に示すように、それぞれ4色のギヤ駆動列を偶数比の歯車と同時に回転する円筒部の直径を等しくすることで、回転偏芯によって発生する感光体の位置変動の位相が合って色ズレが最小となる。   FIG. 16 is a characteristic diagram showing the relationship of the positional variation of the photoconductor caused by rotational eccentricity. As shown in the figure, the diameters of the cylindrical portions that rotate simultaneously with the gear drive trains of the four colors at the same time as the gears of the even number ratio are made equal so that the phase fluctuations of the position of the photoconductor generated by the rotation eccentricity are matched. Deviation is minimized.

なお、本発明は上記実施の形態例に限定されるものではなく、特許請求の範囲内の記載であれば多種の変形や置換可能であることは言うまでもない。   The present invention is not limited to the above-described embodiments, and it goes without saying that various modifications and substitutions are possible as long as they are described within the scope of the claims.

本発明の第1の実施の形態例に係る駆動伝達装置の構成を示す図である。It is a figure which shows the structure of the drive transmission device which concerns on the 1st Example of this invention. 第1の実施の形態例の駆動伝達装置の具体例を示す図である。It is a figure which shows the specific example of the drive transmission apparatus of the example of 1st Embodiment. 本発明の第1の実施の形態例に係る駆動伝達装置に取付けた軸間距離可変機構の構成を示す図である。It is a figure which shows the structure of the center distance variable mechanism attached to the drive transmission device which concerns on the 1st Example of this invention. 本発明の第1の実施の形態例に係る駆動伝達装置の別の具体例の構成を示す図である。It is a figure which shows the structure of another specific example of the drive transmission apparatus which concerns on the 1st Example of this invention. 本発明の第2の実施の形態例に係る駆動伝達装置の構成を示す図である。It is a figure which shows the structure of the drive transmission apparatus which concerns on the 2nd Example of this invention. 第2の実施の形態例の駆動伝達装置の具体例を示す図である。It is a figure which shows the specific example of the drive transmission apparatus of the example of 2nd Embodiment. POM材料による一体成形した歯車を示す正面図である。It is a front view which shows the gear integrally formed with the POM material. 円筒部の外周端部及び歯と中心部を別材料で構成した歯車を示す正面図である。It is a front view which shows the gearwheel which comprised the outer peripheral edge part and tooth | gear, and center part of the cylindrical part with another material. 歯と円筒部の外周端部に逃げ溝を形成した歯車を示す正面図である。It is a front view which shows the gearwheel which formed the escape groove in the outer peripheral edge part of a tooth | gear and a cylindrical part. 本発明の第3の実施の形態例に係る駆動伝達装置の構成を示す正面図である。It is a front view which shows the structure of the drive transmission apparatus which concerns on the 3rd Example of this invention. 本発明の第4の実施の形態例に係る駆動伝達装置の構成を示す正面図である。It is a front view which shows the structure of the drive transmission apparatus which concerns on the 4th Example of this invention. 本発明の第5の実施の形態例に係る駆動伝達装置の構成を示す正面図である。It is a front view which shows the structure of the drive transmission apparatus which concerns on the 5th Example of this invention. 本発明の第6の実施の形態例に係る駆動伝達装置の構成を示す正面図である。It is a front view which shows the structure of the drive transmission apparatus which concerns on the 6th Example of this invention. 本発明の駆動伝達装置をローラ駆動機構に適用した例を示す正面図である。It is a front view which shows the example which applied the drive transmission apparatus of this invention to the roller drive mechanism. 本発明の駆動伝達装置を移動させる移動機構を示す正面図である。It is a front view which shows the moving mechanism which moves the drive transmission apparatus of this invention. 回転偏芯によって発生する感光体の位置変動の関係を示す特性図である。FIG. 6 is a characteristic diagram showing a relationship between positional fluctuations of a photoconductor caused by rotational eccentricity. 大口径小モジュールの歯車を示す正面図である。It is a front view which shows the gearwheel of a large aperture small module. 歯車のモジュール及び歯丈と、熱膨張による半径変化量との関係を示す図である。It is a figure which shows the relationship between the module and tooth height of a gearwheel, and the radius variation | change_quantity by thermal expansion.

符号の説明Explanation of symbols

11;歯車部、12,145;円筒部、13;歯、
30;軸間距離可変機構、41;取付け板、
71,81,91,100,200;歯車、
101;弾性部材、121;リブ、131;同軸円板、
141;第1のローラ、142;第2のローラ。
11; Gear portion, 12, 145; Cylindrical portion, 13; Teeth,
30; Inter-shaft distance variable mechanism, 41; Mounting plate,
71, 81, 91, 100, 200; gears,
101; elastic member, 121; rib, 131; coaxial disk,
141; first roller; 142; second roller.

Claims (11)

少なくとも一対の回転力伝達部材の間で回転とトルクを伝達する駆動伝達装置において、
前記回転力伝達部材の各軸と同軸であって互いに当接し合って各軸間の距離を規定する軸間距離規定部材を有することを特徴とする駆動伝達装置。
In a drive transmission device that transmits rotation and torque between at least a pair of rotational force transmission members,
A drive transmission device comprising an inter-axis distance defining member that is coaxial with each axis of the rotational force transmitting member and abuts each other to define a distance between the axes.
前記回転力伝達部材が歯車である場合、前記軸間距離規定部材は、歯車の軸と同軸であって、少なくとも一対の歯車における基準ピッチ円の直径に相当する外径を有する円筒である請求項1記載の駆動伝達装置。   When the rotational force transmission member is a gear, the inter-axis distance defining member is a cylinder that is coaxial with the shaft of the gear and has an outer diameter corresponding to a diameter of a reference pitch circle in at least a pair of gears. The drive transmission device according to 1. 前記回転力伝達部材が歯車である場合、前記軸間距離規定部材は、歯車の軸と同軸であって、少なくとも一対の歯車における基準ピッチ円の直径に相当する外径を有する同軸円板である請求項1記載の駆動伝達装置。   When the rotational force transmission member is a gear, the inter-axis distance defining member is a coaxial disc that is coaxial with the gear shaft and has an outer diameter corresponding to the diameter of a reference pitch circle in at least a pair of gears. The drive transmission device according to claim 1. 前記回転力伝達部材がローラである場合、前記軸間距離規定部材は、ローラの軸と同軸であって、ローラ面同士が所定の当接を維持する際のローラ軸間の距離を規定する外径を有する円筒である請求項1記載の駆動伝達装置。   When the rotational force transmitting member is a roller, the inter-axis distance defining member is coaxial with the roller axis, and is an outer surface that defines the distance between the roller shafts when the roller surfaces maintain predetermined contact. The drive transmission device according to claim 1, wherein the drive transmission device is a cylinder having a diameter. 前記回転力伝達部材がローラである場合、前記軸間距離規定部材は、ローラの軸と同軸であって、ローラ面同士が所定の当接を維持する際のローラ軸間の距離を規定する外径を有する同軸円板である請求項1記載の駆動伝達装置。   When the rotational force transmitting member is a roller, the inter-axis distance defining member is coaxial with the roller axis, and is an outer surface that defines the distance between the roller shafts when the roller surfaces maintain predetermined contact. The drive transmission device according to claim 1, wherein the drive transmission device is a coaxial disk having a diameter. 前記軸間距離規定部材によって規定された各軸間の距離が変化した場合の当該変化分に追従して、少なくとも一方の前記回転力伝達部材の軸を相対的に移動させて軸間の距離を可変する軸間距離可変機構を設ける請求項1〜5のいずれかに記載の駆動伝達装置。   Following the change when the distance between each axis defined by the inter-axis distance defining member changes, the axis of at least one of the rotational force transmitting members is relatively moved to reduce the distance between the axes. The drive transmission device according to claim 1, wherein a variable inter-axis distance variable mechanism is provided. 前記軸間距離可変機構を構成する材質は、少なくとも一方の前記回転力伝達部材の材質と線膨張係数が等しい材質である請求項6に記載の駆動伝達装置。   The drive transmission device according to claim 6, wherein a material constituting the inter-axis distance varying mechanism is a material having a linear expansion coefficient equal to that of at least one of the rotational force transmission members. 前記軸間距離規定部材の材質は前記回転力伝達部材と同じ材質である請求項1〜7のいずれかに記載の駆動伝達装置。   The drive transmission device according to claim 1, wherein a material of the inter-axis distance defining member is the same material as the rotational force transmission member. 前記回転力伝達部材と前記軸間距離規定部材を一体成形にて形成する請求項8記載の駆動伝達装置。   The drive transmission device according to claim 8, wherein the rotational force transmission member and the inter-axis distance defining member are formed by integral molding. 前記軸間距離規定部材の当接面の全面又は一部の面に弾性部材を設ける請求項1〜9のいずれかに記載の駆動伝達装置。   The drive transmission device according to any one of claims 1 to 9, wherein an elastic member is provided on the entire surface or a part of the contact surface of the inter-axis distance defining member. 歯車のリム側面に、歯車の基準ピッチ円の直径に相当する外径を有するリブを歯車と同軸で有する請求項2又は3に記載の駆動伝達装置。
The drive transmission device according to claim 2 or 3, wherein a rib having an outer diameter corresponding to a diameter of a reference pitch circle of the gear is provided coaxially with the gear on a rim side surface of the gear.
JP2004197724A 2004-07-05 2004-07-05 Driving transmission device Pending JP2006017271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004197724A JP2006017271A (en) 2004-07-05 2004-07-05 Driving transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004197724A JP2006017271A (en) 2004-07-05 2004-07-05 Driving transmission device

Publications (1)

Publication Number Publication Date
JP2006017271A true JP2006017271A (en) 2006-01-19

Family

ID=35791738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004197724A Pending JP2006017271A (en) 2004-07-05 2004-07-05 Driving transmission device

Country Status (1)

Country Link
JP (1) JP2006017271A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275664A (en) * 2007-04-25 2008-11-13 Ricoh Co Ltd Shaft interval regulating structure for drive transmitting means and image forming apparatus
JP2009024918A (en) * 2007-07-18 2009-02-05 Sharp Corp Rotary drive structure and humidifier
CN102628604A (en) * 2007-07-18 2012-08-08 夏普株式会社 Humidifier and rotation drive structure
JP2013521447A (en) * 2010-03-01 2013-06-10 ティッセンクルップ ポリシウス アクチェンゲゼルシャフト Rotating drum drive
EP2543592A3 (en) * 2009-12-17 2015-11-11 Compagnie Generale Des Etablissements Michelin System for electric motorisation of a wheel
US10562615B2 (en) 2009-08-28 2020-02-18 Airbus Operations Limited Aircraft landing gear
CN114017493A (en) * 2021-11-26 2022-02-08 中煤隧道工程有限公司 Single-beam and double-beam traveling mechanism of shield machine
CN114033844A (en) * 2021-11-04 2022-02-11 凯临钒机械(杭州)有限公司 Gear box management system based on data acquisition

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275664A (en) * 2007-04-25 2008-11-13 Ricoh Co Ltd Shaft interval regulating structure for drive transmitting means and image forming apparatus
JP2009024918A (en) * 2007-07-18 2009-02-05 Sharp Corp Rotary drive structure and humidifier
CN102628604A (en) * 2007-07-18 2012-08-08 夏普株式会社 Humidifier and rotation drive structure
US8382073B2 (en) 2007-07-18 2013-02-26 Sharp Kabushiki Kaisha Humidifier, filter unit and rotation drive structure
US8500106B2 (en) 2007-07-18 2013-08-06 Sharp Kabushiki Kaisha Humidifier, filter unit and rotation drive structure
US10562615B2 (en) 2009-08-28 2020-02-18 Airbus Operations Limited Aircraft landing gear
US11628931B2 (en) 2009-08-28 2023-04-18 Airbus Operations Limited Aircraft landing gear with pivoting drive transmission
EP2543592A3 (en) * 2009-12-17 2015-11-11 Compagnie Generale Des Etablissements Michelin System for electric motorisation of a wheel
JP2017159907A (en) * 2009-12-17 2017-09-14 コンパニー ゼネラール デ エタブリッスマン ミシュラン Electric motorised system of wheel
JP2013521447A (en) * 2010-03-01 2013-06-10 ティッセンクルップ ポリシウス アクチェンゲゼルシャフト Rotating drum drive
CN114033844A (en) * 2021-11-04 2022-02-11 凯临钒机械(杭州)有限公司 Gear box management system based on data acquisition
CN114017493A (en) * 2021-11-26 2022-02-08 中煤隧道工程有限公司 Single-beam and double-beam traveling mechanism of shield machine

Similar Documents

Publication Publication Date Title
US9705426B2 (en) Ultrasonic motor and lens apparatus including the same
US9268247B2 (en) Power transmission device and image forming apparatus including the same
EP2390104B1 (en) Rotary Drive Device and Image Forming Apparatus Including the Same
US9537429B2 (en) Ultrasonic motor and lens apparatus including the same
US20120075731A1 (en) Gear mechanism
JP2006017271A (en) Driving transmission device
JP2009138927A (en) Traction power transmission device and image formation apparatus equipped therewith
JP4481197B2 (en) Gear reduction device and rotation drive device
JP2000039057A (en) Reduction gear
JP2006118623A (en) Gear device
JP2007040399A (en) Drive transmitting device and image forming device
JP2012082842A (en) Planetary gear train, rotary driving device, and image forming apparatus
JPH0611016A (en) Gear, gear driving device, and image forming apparatus
US6289586B1 (en) Manufacturing of half-crowned gear drives for motion quality improvement
JP2009222219A (en) Gear and gear assembly with this and resin gear
JP6413379B2 (en) Dynamic vibration absorber, rotating body, and image forming apparatus
JP2004003571A (en) Gear transmission mechanism
JP4796310B2 (en) Power transmission mechanism and image forming apparatus
JP4932501B2 (en) Reduction gear
JP2785307B2 (en) Driving force transmission device
JP4721389B2 (en) Method for assembling rotation transmission mechanism of photosensitive member and method for assembling rotation transmission mechanism
JP2000267374A (en) Driving device for photoreceptor drum
JP2004156746A (en) Drive transmission device and image forming device using the same
JP2012229708A (en) Planetary gear train, rotary drive device and image forming apparatus
WO2003036645A1 (en) Disc drive