JP2006016569A - Crosslinked copolymer and fluorine ion adsorbent comprising the same - Google Patents
Crosslinked copolymer and fluorine ion adsorbent comprising the same Download PDFInfo
- Publication number
- JP2006016569A JP2006016569A JP2004197962A JP2004197962A JP2006016569A JP 2006016569 A JP2006016569 A JP 2006016569A JP 2004197962 A JP2004197962 A JP 2004197962A JP 2004197962 A JP2004197962 A JP 2004197962A JP 2006016569 A JP2006016569 A JP 2006016569A
- Authority
- JP
- Japan
- Prior art keywords
- group
- residue
- fluorine ion
- crosslinked copolymer
- linear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Water Treatment By Sorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
本発明は、新規な架橋共重合体及びその製造方法に関するものであり、さらに詳しくは、フッ素イオンを選択的に吸着し、フッ素イオン含有水からフッ素イオンを除去することを可能とする新規な架橋共重合体、その製造方法及びそれよりなるフッ素イオン吸着剤に関するものである。 The present invention relates to a novel cross-linked copolymer and a method for producing the same, and more specifically, a novel cross-link capable of selectively adsorbing fluorine ions and removing fluorine ions from water containing fluorine ions. The present invention relates to a copolymer, a production method thereof and a fluorine ion adsorbent comprising the copolymer.
近年、水質汚濁防止法に基づく排水基準が強化され、排水からフッ素イオンを効率的に除去する技術が求められている。 In recent years, drainage standards based on the Water Pollution Control Law have been strengthened, and a technique for efficiently removing fluorine ions from wastewater has been demanded.
従来、排水からのフッ素イオン除去技術として、水酸化カルシウムなどのアルカリ塩を排水中に投入し、フッ化カルシウム等の汚泥という形で分離する凝集沈殿法が採用されてきた。しかし、この方法は、フッ化カルシウムの溶解度から、原理的にフッ素イオンの含有濃度を16ppm以下に低減することはできないという課題があった。 Conventionally, as a technique for removing fluoride ions from wastewater, a coagulation precipitation method in which an alkali salt such as calcium hydroxide is introduced into the wastewater and separated in the form of sludge such as calcium fluoride has been employed. However, this method has a problem that, in principle, the concentration of fluorine ions cannot be reduced to 16 ppm or less due to the solubility of calcium fluoride.
そこで、上記の課題を解決する方法として凝集沈殿法に吸着法を組み合わせる方法が提案されている。ここで、吸着法とは、排水中のフッ素イオンを吸着材料に吸着させ、吸着した後に、アルカリ水溶液に接触させることによりフッ素イオンを脱着・回収するものであり、該吸着と脱着を繰り返すことにより、排水からフッ素イオンを除去する方法である。 Therefore, as a method for solving the above problems, a method of combining an adsorption method with an aggregation precipitation method has been proposed. Here, the adsorption method is to adsorb fluorine ions in waste water to an adsorbing material, and after adsorbing the fluorine ions, the fluorine ions are desorbed and recovered by contacting with an alkaline aqueous solution. By repeating the adsorption and desorption, This is a method for removing fluorine ions from waste water.
そして、吸着法によりフッ素イオンを吸着するフッ素イオン吸着樹脂として、母体樹脂に金属水和物を担持させたもの(例えば、特許文献1参照。)、また、イオン交換樹脂のイオン交換基に金属を吸着させたもの(例えば、非特許文献1参照。)が提案されている。 Then, as a fluorine ion adsorption resin that adsorbs fluorine ions by an adsorption method, a resin in which a metal hydrate is supported on a base resin (see, for example, Patent Document 1), and a metal is added to the ion exchange group of the ion exchange resin. What has been adsorbed (see, for example, Non-Patent Document 1) has been proposed.
しかし、特許文献1に提案されたフッ素イオン吸着樹脂を合成する際には、母体樹脂への金属水和物の担持が必要であったり、吸脱着時において酸やアルカリ等の使用により金属水和物が溶出するという課題があった。
However, when synthesizing the fluorine ion-adsorbing resin proposed in
また、非特許文献1に提案されたフッ素イオン吸着樹脂に用いられるイオン交換樹脂を得るためには、重合(母体樹脂の合成)、反応(イオン交換基の導入)、および吸着(金属の担持)といった一連の操作が必要となり、その工程が非常に煩雑であるとともに、イオン交換基の導入について、母体樹脂に対して均一な導入が困難なこと、さらには樹脂内部にまで導入されたイオン交換基は充分な吸着能を発揮することができないという課題があった。
In addition, in order to obtain an ion exchange resin used for the fluorine ion adsorption resin proposed in
そこで、本発明は、樹脂に金属を担持または吸着させる煩雑な操作を実施することなく、しかも効率的にフッ素イオンを吸着することができる新規な架橋共重合体及びそれよりなるフッ素イオン吸着剤を提供することを目的とするものである。 Therefore, the present invention provides a novel cross-linked copolymer capable of efficiently adsorbing fluorine ions and a fluorine ion adsorbent comprising the same without carrying out a complicated operation for supporting or adsorbing a metal on a resin. It is intended to provide.
本発明者らは、上記課題を解決するために鋭意検討を行なった結果、フッ素イオンの吸着性能に優れる新規な架橋共重合体を見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found a novel cross-linked copolymer excellent in fluorine ion adsorption performance and have completed the present invention.
すなわち、本発明は、下記一般式(1)で表されるリン酸エステル金属塩残基単位50〜95重量%および架橋性単量体残基単位50〜5重量%よりなることを特徴とする架橋共重合体、その製造方法及びそれよりなるフッ素イオン吸着剤に関するものである。 That is, the present invention is characterized by comprising 50 to 95% by weight of phosphate metal salt residue units represented by the following general formula (1) and 50 to 5% by weight of crosslinkable monomer residue units. The present invention relates to a crosslinked copolymer, a production method thereof, and a fluorine ion adsorbent comprising the same.
以下、本発明を詳細に説明する。
Hereinafter, the present invention will be described in detail.
本発明の架橋共重合体は、上記一般式(1)で表されるリン酸エステル金属塩残基単位50〜95重量%および架橋性単量体残基単位50〜5重量%よりなる架橋共重合体である。ここで、リン酸エステル金属塩残基単位が50重量%未満である場合、フッ素イオン吸着剤として用いた際のフッ素イオン吸着性能に劣るものとなる。一方、リン酸エステル金属塩残基単位が95重量%を越える場合、得られる架橋共重合体は非常に脆いものとなる。 The crosslinked copolymer of the present invention comprises a crosslinked copolymer comprising 50 to 95% by weight of a phosphate ester metal salt residue unit represented by the general formula (1) and 50 to 5% by weight of a crosslinkable monomer residue unit. It is a polymer. Here, when the phosphate ester metal salt residue unit is less than 50% by weight, the fluorine ion adsorption performance when used as a fluorine ion adsorbent is inferior. On the other hand, when the phosphate ester metal salt residue unit exceeds 95% by weight, the resulting crosslinked copolymer is very brittle.
本発明の架橋共重合体を構成する一般式(1)で表されるリン酸エステル金属塩残基単位において、R1は水素またはメチル基を示し、R2は炭素数1〜6である直鎖状または分岐状アルキレン基を示す。ここで、炭素数1〜6の直鎖状または分岐状アルキレン基としては特に限定されるものではなく、例えばメチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、ペンチレン基、ヘキシレン基等が挙げられ、その中でも、特に容易に架橋共重合体を得ることが可能となり、そのフッ素イオン吸着性能にも優れたものとなることから、エチレン基、プロピレン基、ブチレン基が好ましい。R3は炭素数12〜20の直鎖状若しくは分岐状アルキル基又は直鎖状若しくは分岐状アルケニル基を示す。ここで、炭素数12〜20の直鎖状若しくは分岐状アルキル基又は直鎖状若しくは分岐状アルケニル基としては特に限定されものではなく、例えばラウリル基、ミリスチル基、セチル基、ステアリル基、アラキル基、ヘキシルデシル基、オクチルドデシル基、オレイル基、エライジル基等が挙げられ、その中でも、重合反応として油中水型エマルションによるラジカル重合反応を行った場合の油中水型エマルションが安定し、効率的に架橋共重合体が得られることからステアリル基、アラキル基、オレイル基が好ましい。 In the phosphate ester metal salt residue unit represented by the general formula (1) constituting the cross-linked copolymer of the present invention, R 1 represents hydrogen or a methyl group, and R 2 has 1 to 6 carbon atoms. A chain or branched alkylene group is shown. Here, the linear or branched alkylene group having 1 to 6 carbon atoms is not particularly limited, and for example, a methylene group, an ethylene group, a propylene group, an isopropylene group, a butylene group, an isobutylene group, a pentylene group, Among them, a hexylene group and the like can be mentioned. Among them, an ethylene group, a propylene group, and a butylene group are preferable because a crosslinked copolymer can be obtained particularly easily and the fluorine ion adsorption performance is excellent. R 3 represents a linear or branched alkyl group having 12 to 20 carbon atoms or a linear or branched alkenyl group. Here, the linear or branched alkyl group having 12 to 20 carbon atoms or the linear or branched alkenyl group is not particularly limited, and examples thereof include a lauryl group, a myristyl group, a cetyl group, a stearyl group, and an aralkyl group. Hexyldecyl group, octyldodecyl group, oleyl group, elaidyl group, etc. Among them, the water-in-oil emulsion is stable and efficient when performing a radical polymerization reaction with a water-in-oil emulsion as a polymerization reaction. A stearyl group, an aralkyl group, and an oleyl group are preferable because a crosslinked copolymer is obtained.
また、本発明の架橋共重合体を構成する一般式(1)で表されるリン酸エステル金属塩残基単位において、Mは3〜4価の金属を示し、該金属は、本発明の架橋共重合体にフッ素イオン吸着性能を付与するものであり、Mが3〜4価の金属以外である場合、架橋共重合体はフッ素イオン吸着性能を有しないものとなる。ここで3〜4価の金属としては、例えばアルミニウム、鉄、ジルコニウム、セリウム、ランタン、チタン等が挙げられ、その中でも特に、フッ素イオン吸着性能に優れる架橋共重合体となることからジルコニウム、ランタン、セリウムが好ましく、これらの金属は、単独又は二種以上の金属を用いても良い。 Moreover, in the phosphate ester metal salt residue unit represented by the general formula (1) constituting the cross-linked copolymer of the present invention, M represents a trivalent to tetravalent metal, and the metal is a crosslink of the present invention. When the copolymer imparts fluoride ion adsorption performance and M is other than a trivalent or tetravalent metal, the crosslinked copolymer does not have fluoride ion adsorption performance. Here, examples of the trivalent to tetravalent metals include aluminum, iron, zirconium, cerium, lanthanum, titanium, and the like. Among them, a zirconium, lanthanum, Cerium is preferred, and these metals may be used alone or in combination of two or more.
本発明の架橋共重合体を構成する架橋性単量体残基とは、複数の重合反応性不飽和結合を有する単量体の重合反応残基であり、例えばジビニルベンゼン残基、ジビニルトルエン残基、エチレングリコールジメタクリレート残基、エチレングリコールジアクリレート残基、トリメチロールプロパントリメタクリレート残基、トリメチロールプロパントリアクリレート残基等が挙げられ、これらの架橋性単量体残基は単独又は二種以上の混合であっても良い。 The crosslinkable monomer residue constituting the cross-linked copolymer of the present invention is a polymerization reaction residue of a monomer having a plurality of polymerization-reactive unsaturated bonds, such as a divinylbenzene residue and a divinyltoluene residue. Group, ethylene glycol dimethacrylate residue, ethylene glycol diacrylate residue, trimethylolpropane trimethacrylate residue, trimethylolpropane triacrylate residue, etc., and these crosslinkable monomer residues are used alone or in two kinds The above may be mixed.
また、本発明の架橋共重合体は、第3成分以上の成分として重合性単量体残基を含んでいても良く、該重合性単量体残基としては、例えばスチレン残基、α−メチルスチレン残基、メタクリル酸メチル残基、アクリル酸メチル残基、アクリロニトリル残基、酢酸ビニル残基等が挙げられる。 Further, the crosslinked copolymer of the present invention may contain a polymerizable monomer residue as a component of the third component or more. Examples of the polymerizable monomer residue include a styrene residue, α- Examples thereof include a methylstyrene residue, a methyl methacrylate residue, a methyl acrylate residue, an acrylonitrile residue, and a vinyl acetate residue.
そして、特に剛直性、耐候性、取扱い性に優れる架橋共重合体となることから、該リン酸エステル金属塩残基−ジビニルベンゼン残基架橋共重合体、該リン酸エステル金属塩残基−ジビニルベンゼン残基−スチレン残基架橋共重合体であることが好ましい。 And since it becomes a crosslinked copolymer having excellent rigidity, weather resistance, and handleability, the phosphate ester metal salt residue-divinylbenzene residue crosslinked copolymer, the phosphate ester metal salt residue-divinyl. A benzene residue-styrene residue cross-linked copolymer is preferred.
以下に、本発明の架橋共重合体の製造方法の一例示を具体的に説明する。 Below, an example of the manufacturing method of the crosslinked copolymer of this invention is demonstrated concretely.
本発明の架橋共重合体の製造方法としては、例えば下記一般式(2)で表される重合性リン酸エステル、架橋性単量体、油溶性ラジカル重合反応開始剤からなる親油性溶液と3〜4価金属塩の水溶液とを混合し油中水型エマルションを調整した後にラジカル重合反応を行う方法を挙げることができる。 Examples of the method for producing the crosslinked copolymer of the present invention include an oleophilic solution comprising a polymerizable phosphate ester represented by the following general formula (2), a crosslinking monomer, and an oil-soluble radical polymerization initiator, and 3 A method of performing a radical polymerization reaction after preparing a water-in-oil emulsion by mixing with an aqueous solution of a tetravalent metal salt can be mentioned.
ここで、上記一般式(2)で表される重合性リン酸エステルとは、上記一般式(1)で表されるリン酸エステル金属塩残基単位を誘導する単量体であり、R5としては、R2と同様のものを挙げることができ、R6としては、R3と同様のものを挙げることができる。
Here, the polymerizable phosphate ester represented by the general formula (2) is a monomer that induces a phosphate ester metal salt residue unit represented by the general formula (1), and R 5 Can be the same as R 2, and R 6 can be the same as R 3 .
該重合性リン酸エステルは、公知の方法により入手することが可能であり、例えばオキシ塩化リンと、下記一般式(3)で表されるアクリル酸ヒドロキシアルキルエステル類及び/又はメタクリル酸ヒドロキシアルキルエステル類と下記一般式(4)で表される高級アルコールとの反応により得ることができる。 The polymerizable phosphoric acid ester can be obtained by a known method. For example, phosphorus oxychloride and acrylic acid hydroxyalkyl esters and / or methacrylic acid hydroxyalkyl esters represented by the following general formula (3): And a higher alcohol represented by the following general formula (4).
ここで、一般式(3)で表されるアクリル酸ヒドロキシアルキルエステル類及び/又はメタクリル酸ヒドロキシアルキルエステル類におけるR7は水素またはメチル基を示し、R8は炭素数1〜6である直鎖状または分岐状アルキレン基を示す。炭素数1〜6の直鎖状または分岐状アルキレン基としては特に限定されるものではなく、例えばメチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、ペンチレン基、ヘキシレン基等が挙げられる。
Here, in the acrylic acid hydroxyalkyl esters and / or methacrylic acid hydroxyalkyl esters represented by the general formula (3), R 7 represents hydrogen or a methyl group, and R 8 is a straight chain having 1 to 6 carbon atoms. Or a branched alkylene group. The linear or branched alkylene group having 1 to 6 carbon atoms is not particularly limited, and examples thereof include a methylene group, an ethylene group, a propylene group, an isopropylene group, a butylene group, an isobutylene group, a pentylene group, and a hexylene group. Is mentioned.
一般式(4)で表される高級アルコールにおけるR9は炭素数12〜20の直鎖状若しくは分岐状アルキル基又は直鎖状若しくは分岐状アルケニル基を示す。炭素数12〜20の直鎖状若しくは分岐状アルキル基又は直鎖状若しくは分岐状アルケニル基としては特に限定されるものではなく、例えばラウリル基、ミリスチル基、セチル基、ステアリル基、アラキル基、ヘキシルデシル基、オクチルドデシル基、オレイル基、エライジル基等が挙げられる。 R 9 in the higher alcohol represented by the general formula (4) represents a linear or branched alkyl group having 12 to 20 carbon atoms or a linear or branched alkenyl group. The linear or branched alkyl group or linear or branched alkenyl group having 12 to 20 carbon atoms is not particularly limited, and examples thereof include lauryl group, myristyl group, cetyl group, stearyl group, aralkyl group, and hexyl. Examples include decyl group, octyldodecyl group, oleyl group, and elaidyl group.
架橋性単量体としては、複数の重合反応性不飽和結合を有する単量体であれば特に限定されなく、例えばジビニルベンゼン、ジビニルトルエン、エチレングリコールジメタクリレート、エチレングリコールジアクリレート、トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート等が挙げられ、これら架橋性単量体は単独又は二種以上を混合して用いることも可能である。 The crosslinkable monomer is not particularly limited as long as it is a monomer having a plurality of polymerization-reactive unsaturated bonds. For example, divinylbenzene, divinyltoluene, ethylene glycol dimethacrylate, ethylene glycol diacrylate, trimethylolpropane trimethyl. A methacrylate, a trimethylol propane triacrylate, etc. are mentioned, These crosslinkable monomers can also be used individually or in mixture of 2 or more types.
油溶性ラジカル重合反応開始剤としては、特に制限なく、例えば2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)等のアゾ系開始剤;ジクミルパーオキサイド、過酸化ベンゾイル等の過酸化物、等が挙げられ、その中でも取扱い性に優れることから2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)が好ましい。 The oil-soluble radical polymerization reaction initiator is not particularly limited. For example, 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis ( Azo initiators such as 4-methoxy-2,4-dimethylvaleronitrile), peroxides such as dicumyl peroxide and benzoyl peroxide, and the like. -Azobisisobutyronitrile and 2,2'-azobis (2,4-dimethylvaleronitrile) are preferred.
そして、該重合性リン酸エステル、架橋性単量体、油溶性ラジカル重合反応開始剤からなる親油性溶液とする際には、その他の油溶性成分が含まれても良く、希釈剤としてのトルエン、ベンゼン等の親油性溶媒;油中水型エマルションの安定性の調整剤としてのソルビタンモノオレエート、ソルビタンモノステアレート、ポリオキシエチレンソルビタンモノオレエート等の非イオン性界面活性剤、等を適宜使用することができる。 And when it is set as the lipophilic solution which consists of this polymeric phosphate ester, a crosslinkable monomer, and an oil-soluble radical polymerization reaction initiator, other oil-soluble components may be contained, and toluene as a diluent , Lipophilic solvents such as benzene; nonionic surfactants such as sorbitan monooleate, sorbitan monostearate, polyoxyethylene sorbitan monooleate, etc. as a regulator of the stability of water-in-oil emulsions, etc. Can be used.
また、3〜4価金属塩の水溶液としては、例えば塩化ジルコニウム水溶液、オキシ塩化ジルコニウム水溶液、塩化ランタン水溶液、塩化セリウム水溶液等の塩化物水溶液;オキシ硝酸ジルコニウム水溶液、硝酸ランタン水溶液、硝酸セリウム水溶液等の硝酸化物水溶液;硫酸ジルコニウム水溶液、硫酸ランタン水溶液、硫酸セリウム水溶液等の硫酸化物水溶液が挙げられ、これらの金属塩水溶液は単独又は二種以上を混合して用いることも可能である。 Examples of the aqueous solution of the trivalent to tetravalent metal salt include aqueous chloride solutions such as zirconium chloride aqueous solution, zirconium oxychloride aqueous solution, lanthanum chloride aqueous solution, and cerium chloride aqueous solution; zirconium oxynitrate aqueous solution, lanthanum nitrate aqueous solution, and cerium nitrate aqueous solution. An aqueous solution of nitrate: an aqueous solution of sulfate such as an aqueous solution of zirconium sulfate, an aqueous solution of lanthanum sulfate, or an aqueous solution of cerium sulfate. These aqueous metal salt solutions can be used alone or in combination of two or more.
該親油性溶液と3〜4価金属塩の水溶液とからなる油中水型エマルションの調製方法としては特に制限はなく、例えば一般式(2)で表される重合性リン酸エステル、架橋性単量体、油溶性ラジカル重合反応開始剤、場合によっては希釈剤とからなる親油性溶液と、水および3〜4価金属塩からなる水溶液をホモジナイザー又はソニケーター等の装置を使用して油中水型エマルションを調製する方法が挙げられる。そして、その際の親油性溶液と水溶液の混合比は、油相成分/水相成分(体積比)=90/10〜50/50であることが好ましく、特に80/20〜60/40の範囲で調製することが好ましい。 There is no particular limitation on the method for preparing a water-in-oil emulsion comprising the lipophilic solution and an aqueous solution of a trivalent to tetravalent metal salt. For example, the polymerizable phosphate ester represented by the general formula (2), the crosslinkable monomer Water-in-oil type using an apparatus such as a homogenizer or a sonicator for an oleophilic solution composed of a monomer, an oil-soluble radical polymerization reaction initiator, and optionally a diluent, and an aqueous solution composed of water and a trivalent or tetravalent metal salt. The method of preparing an emulsion is mentioned. In this case, the mixing ratio of the lipophilic solution and the aqueous solution is preferably oil phase component / water phase component (volume ratio) = 90/10 to 50/50, particularly in the range of 80/20 to 60/40. It is preferable to prepare by.
そして、油中水型エマルションを調整した後のラジカル重合反応温度は、重合反応が可能である限りにおいて特に制限はなく、例えば30〜100℃、好ましくは40〜80℃である。反応圧力は特に制限されず、通常常圧で行なわれる。重合時間は、重合反応温度や重合仕込比率により適宜選択すれば良く、通常1〜12時間である。重合反応中の雰囲気は、特に制限されず、例えば窒素、アルゴン、ヘリウム等の不活性雰囲気下で行うことが好ましい。 The radical polymerization reaction temperature after adjusting the water-in-oil emulsion is not particularly limited as long as the polymerization reaction is possible, and is, for example, 30 to 100 ° C, preferably 40 to 80 ° C. The reaction pressure is not particularly limited, and is usually performed at normal pressure. The polymerization time may be appropriately selected depending on the polymerization reaction temperature and the polymerization charge ratio, and is usually 1 to 12 hours. The atmosphere in particular during a polymerization reaction is not restrict | limited, For example, it is preferable to carry out in inert atmosphere, such as nitrogen, argon, helium.
重合終了後、反応容器から取出した重合物は、必要であれば、溶剤を用いて未反応単量体等を除去し、架橋共重合体を得ることができる。その際に使用される溶剤は、特に制限されず、例えばアセトン、メタノール、エタノール等が挙げられる。 After the completion of the polymerization, the polymer taken out from the reaction vessel can remove a non-reacted monomer using a solvent, if necessary, to obtain a crosslinked copolymer. The solvent used in that case is not particularly limited, and examples thereof include acetone, methanol, ethanol and the like.
また、例えばスチレン、α−メチルスチレン、メタクリル酸メチル、アクリル酸メチル、アクリロニトリル、酢酸ビニル等の単量体を併用し重合反応を行うことも可能である。 For example, it is also possible to perform a polymerization reaction using monomers such as styrene, α-methylstyrene, methyl methacrylate, methyl acrylate, acrylonitrile, and vinyl acetate.
このような油中水型エマルションを調整した後にラジカル重合反応を行うことにより得られる架橋共重合体は、油中水型エマルションの油相成分が重合によって樹脂化し、油中水型エマルションの水相部の痕跡が樹脂骨格に形成されことから多孔質構造を示すものとなる。 The cross-linked copolymer obtained by carrying out a radical polymerization reaction after preparing such a water-in-oil emulsion is obtained by converting the oil phase component of the water-in-oil emulsion into a resin by polymerization, and the water phase of the water-in-oil emulsion. Since the trace of the part is formed on the resin skeleton, the porous structure is exhibited.
本発明の架橋共重合体は、フッ素イオン含有水と接触させることにより効率よくフッ素イオンを吸着する事が可能となり、排水等からフッ素イオンを効率的に吸着するフッ素イオン吸着剤として用いることが可能となるものである。 The crosslinked copolymer of the present invention can adsorb fluorine ions efficiently by contacting with fluorine ion-containing water, and can be used as a fluorine ion adsorbent that efficiently adsorbs fluorine ions from waste water or the like. It will be.
そして、本発明の架橋共重合体をフッ素イオン吸着剤として用いる際には、特に優れたフッ素イオン吸着作用を有することから平均粒径1〜1000μm、比表面積1〜200m2/gを有し、孔径0.1〜20μmの空孔を有する多孔質構造を示すものであることが好ましく、特にフッ素イオン吸着特性、ハンドリング性に優れたものとなることから平均粒径10〜500μm、比表面積10〜100m2/gを示し、孔径1〜10μmの空孔を有する多孔質構造を示すものであることが好ましい。 And when using the cross-linked copolymer of the present invention as a fluorine ion adsorbent, it has an average particle diameter of 1 to 1000 μm and a specific surface area of 1 to 200 m 2 / g because it has a particularly excellent fluorine ion adsorption action, It is preferable to exhibit a porous structure having pores with a pore size of 0.1 to 20 μm. In particular, the average particle size is 10 to 500 μm, and the specific surface area is 10 to 10 because it has excellent fluorine ion adsorption characteristics and handling properties. It is preferably 100 m 2 / g and a porous structure having pores with a pore diameter of 1 to 10 μm.
本発明の架橋共重合体をフッ素イオン吸着剤として用いる際には、従来のフッ素イオン吸着樹脂と同様に、架橋共重合体をフッ素イオン含有水と接触させることによって、フッ素イオンを効率よく除去することができる。その接触方法としては、特に限定されず、例えばフッ素イオン含有水中に該フッ素イオン吸着剤を浸漬するバッチ法、またはカラムに該フッ素イオン吸着剤を充填してフッ素イオン含有水を通液するカラム法等が挙げられる。 When the crosslinked copolymer of the present invention is used as a fluorine ion adsorbent, fluorine ions are efficiently removed by bringing the crosslinked copolymer into contact with fluorine ion-containing water in the same manner as conventional fluorine ion adsorbing resins. be able to. The contact method is not particularly limited. For example, a batch method in which the fluorine ion adsorbent is immersed in fluorine ion-containing water, or a column method in which the fluorine ion adsorbent is filled in a column and the fluorine ion-containing water is passed. Etc.
フッ素イオンを吸着した本発明の架橋共重合体、フッ素イオン吸着剤は、アルカリ水溶液、例えば水酸化ナトリウム水溶液等との接触によって、フッ素イオンを脱着することができる。その脱着方法は、該架橋共重合体、該フッ素イオン吸着剤をアルカリ水溶液に接触させる方法であれば、特に制限はなく、先述のフッ素イオンの吸着方法と同様に、バッチ法、またはカラム法等が挙げられる。 The crosslinked copolymer and fluorine ion adsorbent of the present invention adsorbing fluorine ions can desorb fluorine ions by contact with an aqueous alkali solution such as an aqueous sodium hydroxide solution. The desorption method is not particularly limited as long as it is a method in which the cross-linked copolymer and the fluorine ion adsorbent are brought into contact with an alkaline aqueous solution. Similarly to the fluorine ion adsorption method described above, a batch method, a column method, etc. Is mentioned.
さらに、フッ素イオンを脱着した本発明の架橋共重合体、フッ素イオン吸着剤は、再びフッ素イオン含有水に接触させるとフッ素イオンを吸着することができ、繰返しの使用が可能である。 Furthermore, the cross-linked copolymer and fluorine ion adsorbent of the present invention from which fluorine ions have been desorbed can adsorb fluorine ions when brought into contact with fluorine ion-containing water again, and can be used repeatedly.
本発明の架橋共重合体は、簡便な製造方法によって製造でき、なおかつ、フッ素イオン含有水からフッ素イオンを効率的に吸着することができることから有用なフッ素イオン吸着剤となる。 The crosslinked copolymer of the present invention is a useful fluorine ion adsorbent because it can be produced by a simple production method and can efficiently adsorb fluorine ions from water containing fluorine ions.
以下に、本発明を実施例に基づき説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described based on examples, but the present invention is not limited to these examples.
以下に実施例により得られた架橋共重合体の評価・測定方法を示す。 The evaluation / measurement method of the crosslinked copolymer obtained by the Example is shown below.
〜比表面積測定〜
実施例により得られた架橋共重合体を80℃で乾燥し、比表面積測定装置(micrometrics社製、商品名ASAP2400)を用い、BET法により比表面積を求めた。
~ Specific surface area measurement ~
The crosslinked copolymers obtained in the examples were dried at 80 ° C., and the specific surface area was determined by the BET method using a specific surface area measuring device (trade name ASAP2400, manufactured by micrometrics).
〜ジルコニウム含有量測定〜
得られた架橋共重合体をアルカリ溶融後、溶液化し、誘導結合プラズマ発光分析装置(京都光研製、商品名UOP−1 MK−II)を用い、ジルコニウム含有量の測定を行った。
~ Zirconium content measurement ~
The obtained cross-linked copolymer was melted with alkali and then converted into a solution, and the zirconium content was measured using an inductively coupled plasma emission spectrometer (trade name UOP-1 MK-II, manufactured by Kyoto Koken).
〜多孔質性の観察〜
得られた架橋共重合体を破断し、該破断面に金蒸着を施して該破断面を電子顕微鏡(明石製作所製、商品名SIGMA−II)で観察することにより、多孔質性を観察した。
~ Observation of porosity ~
The obtained cross-linked copolymer was broken, gold was deposited on the fractured surface, and the fractured surface was observed with an electron microscope (trade name: SIGMA-II, manufactured by Akashi Seisakusho) to observe the porosity.
合成例1(重合性リン酸エステルの合成例)
攪拌機、冷却管、滴下ロート、および温度計を備えた1Lの4口フラスコに、オキシ塩化リン50g(0.33mol)とテトラヒドロフラン180mlを入れ、−25℃に冷却した。オレイルアルコール88g(0.33mol)とトリエチルアミン36g(0.36mol)のテトラヒドロフラン100ml溶液を、オキシ塩化リン溶液の中へ滴下した。滴下中は温度を−20〜−30℃の範囲内となるように保ち、攪拌を行なった。
Synthesis example 1 (Synthesis example of polymerizable phosphate ester)
In a 1 L four-necked flask equipped with a stirrer, a condenser, a dropping funnel, and a thermometer, 50 g (0.33 mol) of phosphorus oxychloride and 180 ml of tetrahydrofuran were placed and cooled to −25 ° C. A solution of 88 g (0.33 mol) of oleyl alcohol and 36 g (0.36 mol) of triethylamine in 100 ml of tetrahydrofuran was dropped into the phosphorus oxychloride solution. During the dropping, the temperature was kept within the range of -20 to -30 ° C and stirring was performed.
全量滴下後、さらに3時間攪拌し続け、次いでメタクリル酸2−ヒドロキシエチル43g(0.33mol)とトリエチルアミン36g(0.36mol)のテトラヒドロフラン50ml溶液を滴下した。全量滴下後、さらに−20〜−30℃の範囲内で4時間攪拌し続けた。その後、析出したトリエチルアミン塩酸塩をろ別により除去し、ろ液にイオン交換水50gとメトキシヒドロキノン0.1gを加え、40℃で2時間加熱した。 After dropwise addition of the whole amount, the mixture was further stirred for 3 hours, and then a solution of 43 g (0.33 mol) of 2-hydroxyethyl methacrylate and 36 g (0.36 mol) of triethylamine in 50 ml of tetrahydrofuran was dropped. After the entire amount was dropped, the mixture was further stirred for 4 hours in the range of -20 to -30 ° C. Thereafter, the precipitated triethylamine hydrochloride was removed by filtration, and 50 g of ion-exchanged water and 0.1 g of methoxyhydroquinone were added to the filtrate, followed by heating at 40 ° C. for 2 hours.
反応終了後、エバポレーションにより、テトラヒドロフランを留去し、残渣から有機相と水相を分離した。有機相には硫酸ナトリウムを加えて乾燥し、その後、さらに有機相を減圧濃縮して、褐色液体155gを得た。該褐色液体は、プロトン核磁気共鳴測定によって、メタクリル酸エチル基とオレイル基を有する重合性リン酸エステルであることを確認した。 After completion of the reaction, tetrahydrofuran was distilled off by evaporation, and the organic phase and the aqueous phase were separated from the residue. Sodium sulfate was added to the organic phase for drying, and then the organic phase was further concentrated under reduced pressure to obtain 155 g of a brown liquid. The brown liquid was confirmed to be a polymerizable phosphate ester having an ethyl methacrylate group and an oleyl group by proton nuclear magnetic resonance measurement.
実施例1
合成例1で得たメタクリル酸エチル基とオレイル基を有する重合性リン酸エステル13.7g、ジビニルベンゼン12.0g、トルエン144.7gおよび2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.5gの均一な親油性溶液と、オキシ塩化ジルコニウム4.7gおよび純水90gの水溶液を混合し、ホモジナイザーを使用して10,000rpm、5分間攪拌し、油中水型エマルションを調製した。
Example 1
13.7 g of a polymerizable phosphate ester having an ethyl methacrylate group and an oleyl group obtained in Synthesis Example 1, 12.0 g of divinylbenzene, 144.7 g of toluene, and 2,2′-azobis (2,4-dimethylvaleronitrile) 0.5 g of a uniform lipophilic solution was mixed with an aqueous solution of 4.7 g of zirconium oxychloride and 90 g of pure water, and stirred at 10,000 rpm for 5 minutes using a homogenizer to prepare a water-in-oil emulsion.
得られたエマルションを攪拌機、冷却管、窒素導入管、および温度計を備えた300mlの4口フラスコの中で攪拌しながら60℃で6時間保持することによりラジカル重合反応を行った。重合反応終了後、フラスコの中の重合反応物をアセトンで洗浄し、最後に純水で洗浄してメタクリル酸エチル基とオレイル基を有するリン酸エステルジルコニウム塩残基単位/ジビニルベンゼン残基単位=56.5/43.5(重量%)からなる架橋共重合体を得た。その際の収率63%であった。 The obtained emulsion was held at 60 ° C. for 6 hours while stirring in a 300 ml four-necked flask equipped with a stirrer, a cooling tube, a nitrogen introduction tube, and a thermometer, thereby carrying out a radical polymerization reaction. After completion of the polymerization reaction, the polymerization reaction product in the flask was washed with acetone, and finally washed with pure water to obtain a phosphate ester zirconium salt residue unit having an ethyl methacrylate group and an oleyl group / divinylbenzene residue unit = A cross-linked copolymer consisting of 56.5 / 43.5 (% by weight) was obtained. The yield at that time was 63%.
そして、得られた該架橋共重合体は平均粒径80μm、比表面積47m2/g、孔径4μmの空孔を有する多孔質構造を有するものであり、ジルコニウム含有量は7.5重量%であった。また、該架橋共重合体の内部構造の観察結果を図1に示す。 The obtained crosslinked copolymer has a porous structure having pores with an average particle diameter of 80 μm, a specific surface area of 47 m 2 / g, and a pore diameter of 4 μm, and the zirconium content was 7.5% by weight. It was. Moreover, the observation result of the internal structure of this crosslinked copolymer is shown in FIG.
さらに得られた該架橋共重合体1.0gを、フッ素イオン濃度50mg/lでpH3.0とpH6.0にそれぞれ調製した水溶液100mlに浸漬し、23℃恒温槽中で振盪6時間、静置18時間することにより、フッ素イオンを吸着させフッ素イオン吸着性能の評価を行った。水溶液中の残存フッ素イオン濃度を測定することによりフッ素イオン平衡吸着量の評価を行ったところ、pH3.0の水溶液では10mg/l(10ppm)であり、pH6.0の水溶液では15mg/l(15ppm)であった。 Further, 1.0 g of the obtained crosslinked copolymer was immersed in 100 ml of an aqueous solution prepared at pH 3.0 and pH 6.0 at a fluorine ion concentration of 50 mg / l, and left to stand in a 23 ° C. constant temperature bath for 6 hours. After 18 hours, fluorine ions were adsorbed and the fluorine ion adsorption performance was evaluated. The fluorine ion equilibrium adsorption amount was evaluated by measuring the residual fluorine ion concentration in the aqueous solution. As a result, the pH 3.0 aqueous solution was 10 mg / l (10 ppm), and the pH 6.0 aqueous solution was 15 mg / l (15 ppm). )Met.
比較例1
重合性リン酸エステル13.7gを10.0gとし、ジビニルベンゼン12.0gを15.0gとした以外は、実施例1と同様の方法により重合反応を行うことにより、メタクリル酸エチル基とオレイル基を有するリン酸エステルジルコニウム塩残基単位/ジビニルベンゼン残基単位=43.3/56.7(重量%)からなる架橋共重合体を得た。その際の収率は75%であった。
Comparative Example 1
By carrying out the polymerization reaction in the same manner as in Example 1 except that 13.7 g of the polymerizable phosphate ester was changed to 10.0 g and 12.0 g of divinylbenzene was changed to 15.0 g, an ethyl methacrylate group and an oleyl group were obtained. A cross-linked copolymer consisting of phosphoric acid ester zirconium salt residue unit / divinylbenzene residue unit = 43.3 / 56.7 (% by weight) was obtained. The yield at that time was 75%.
そして、得られた架橋共重合体は平均粒径100μm、比表面積58m2/g、孔径4μmの空孔を有する多孔質構造を有するものであり、ジルコニウム含有量は5.5重量%であった。 The obtained crosslinked copolymer had a porous structure having pores with an average particle size of 100 μm, a specific surface area of 58 m 2 / g, and a pore size of 4 μm, and the zirconium content was 5.5% by weight. .
さらに得られた該架橋共重合体1.0gを、フッ素イオン濃度50mg/lでpH3.0とpH6.0にそれぞれ調製した水溶液100mlに浸漬し、23℃恒温槽中で振盪6時間、静置18時間することにより、フッ素イオンを吸着させフッ素イオン吸着性能の評価を行った。水溶液中の残存フッ素イオン濃度を測定することによりフッ素イオン平衡吸着量の評価を行ったところ、pH3.0の水溶液では17mg/l(17ppm)であり、pH6.0の水溶液では25mg/l(25ppm)であった。 Further, 1.0 g of the obtained crosslinked copolymer was immersed in 100 ml of an aqueous solution prepared at pH 3.0 and pH 6.0 at a fluorine ion concentration of 50 mg / l, and left to stand in a 23 ° C. constant temperature bath for 6 hours. After 18 hours, fluorine ions were adsorbed and the fluorine ion adsorption performance was evaluated. The fluorine ion equilibrium adsorption amount was evaluated by measuring the residual fluorine ion concentration in the aqueous solution. As a result, the pH 3.0 aqueous solution was 17 mg / l (17 ppm), and the pH 6.0 aqueous solution was 25 mg / l (25 ppm). )Met.
比較例2
重合性リン酸エステル13.7gを33.0gとし、ジビニルベンゼン12.0gを1.7gとした以外は、実施例1と同様の方法により重合反応を行うことにより、メタクリル酸エチル基とオレイル基を有するリン酸エステルジルコニウム塩残基単位/ジビニルベンゼン残基単位=95.2/4.8(重量%)からなる架橋共重合体を得た。
Comparative Example 2
By carrying out the polymerization reaction in the same manner as in Example 1 except that 13.7 g of the polymerizable phosphate ester was changed to 33.0 g and 12.0 g of divinylbenzene was changed to 1.7 g, an ethyl methacrylate group and an oleyl group were obtained. A cross-linked copolymer consisting of phosphoric acid ester zirconium salt residue unit / divinylbenzene residue unit = 95.2 / 4.8 (% by weight) was obtained.
そして、得られた架橋共重合体は平均粒径70μm、比表面積1m2/g、孔径1μm未満の空孔を有する多孔質構造を有するものであり、ジルコニウム含有量は3重量%であった。 The resulting crosslinked copolymer had a porous structure having pores with an average particle size of 70 μm, a specific surface area of 1 m 2 / g, and a pore size of less than 1 μm, and the zirconium content was 3% by weight.
さらに得られた該架橋共重合体1.0gを、フッ素イオン濃度50mg/lでpH3.0とpH6.0にそれぞれ調製した水溶液100mlに浸漬し、23℃恒温槽中で振盪6時間、静置18時間することにより、フッ素イオンを吸着させフッ素イオン吸着性能の評価を行った。水溶液中の残存フッ素イオン濃度を測定することによりフッ素イオン平衡吸着量の評価を行ったところ、いずれもフッ素イオンは吸着されなかった。 Further, 1.0 g of the obtained crosslinked copolymer was immersed in 100 ml of an aqueous solution prepared at pH 3.0 and pH 6.0 at a fluorine ion concentration of 50 mg / l, and left to stand in a 23 ° C. constant temperature bath for 6 hours. After 18 hours, fluorine ions were adsorbed and the fluorine ion adsorption performance was evaluated. When the amount of fluorine ion equilibrium adsorption was evaluated by measuring the residual fluorine ion concentration in the aqueous solution, no fluorine ion was adsorbed in any case.
Claims (7)
A method for removing fluorine ions, comprising supplying the fluorine ion adsorbent according to claim 5 or 6 to water containing fluorine ions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004197962A JP4830273B2 (en) | 2004-07-05 | 2004-07-05 | Cross-linked copolymer and fluorine ion adsorbent comprising the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004197962A JP4830273B2 (en) | 2004-07-05 | 2004-07-05 | Cross-linked copolymer and fluorine ion adsorbent comprising the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006016569A true JP2006016569A (en) | 2006-01-19 |
JP4830273B2 JP4830273B2 (en) | 2011-12-07 |
Family
ID=35791118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004197962A Expired - Fee Related JP4830273B2 (en) | 2004-07-05 | 2004-07-05 | Cross-linked copolymer and fluorine ion adsorbent comprising the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4830273B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011115772A (en) * | 2009-10-26 | 2011-06-16 | Toshiba Corp | Method and apparatus for treating waste liquid |
CN101412778B (en) * | 2007-10-17 | 2012-07-04 | 中国科学院大连化学物理研究所 | Preparation of polymer material for enriching phosphorylated peptide segments |
CN104558358A (en) * | 2013-10-21 | 2015-04-29 | 王颖华 | Microporous polymer sphere, preparation method of microporous polymer sphere and method for removing fluorine in wastewater by using microporous polymer sphere |
CN104826615A (en) * | 2015-04-30 | 2015-08-12 | 衡水利得绿色生物科技有限公司 | Adsorption resin for crystallization of stevioside |
EP3851464A4 (en) * | 2018-09-14 | 2022-06-15 | Sekisui Kasei Co., Ltd. | Hollow polymer particles and method for manufacturing same |
CN115400742A (en) * | 2022-08-26 | 2022-11-29 | 核工业北京化工冶金研究院 | Adsorption material and preparation method and application thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57180618A (en) * | 1981-04-30 | 1982-11-06 | Goou Kagaku Kogyo Kk | Photocurable resin composition |
JPS6215203A (en) * | 1985-07-12 | 1987-01-23 | Kao Corp | Reactive dispersant for reversed phase suspension polymerization |
JPS6356510A (en) * | 1986-08-26 | 1988-03-11 | Nippon Paint Co Ltd | Disintegrating type vinyl resin particle |
JPH0194948A (en) * | 1987-10-07 | 1989-04-13 | Agency Of Ind Science & Technol | Fluorine ion removal method |
JPH08136727A (en) * | 1994-09-13 | 1996-05-31 | Kureha Chem Ind Co Ltd | Resin-made optical material and its production |
JP2001047042A (en) * | 1999-08-17 | 2001-02-20 | Mitsubishi Chemicals Corp | Method for removing fluorine |
JP2001089535A (en) * | 1999-09-24 | 2001-04-03 | Jsr Corp | Resin composition and its cured product |
-
2004
- 2004-07-05 JP JP2004197962A patent/JP4830273B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57180618A (en) * | 1981-04-30 | 1982-11-06 | Goou Kagaku Kogyo Kk | Photocurable resin composition |
JPS6215203A (en) * | 1985-07-12 | 1987-01-23 | Kao Corp | Reactive dispersant for reversed phase suspension polymerization |
JPS6356510A (en) * | 1986-08-26 | 1988-03-11 | Nippon Paint Co Ltd | Disintegrating type vinyl resin particle |
JPH0194948A (en) * | 1987-10-07 | 1989-04-13 | Agency Of Ind Science & Technol | Fluorine ion removal method |
JPH08136727A (en) * | 1994-09-13 | 1996-05-31 | Kureha Chem Ind Co Ltd | Resin-made optical material and its production |
JP2001047042A (en) * | 1999-08-17 | 2001-02-20 | Mitsubishi Chemicals Corp | Method for removing fluorine |
JP2001089535A (en) * | 1999-09-24 | 2001-04-03 | Jsr Corp | Resin composition and its cured product |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101412778B (en) * | 2007-10-17 | 2012-07-04 | 中国科学院大连化学物理研究所 | Preparation of polymer material for enriching phosphorylated peptide segments |
JP2011115772A (en) * | 2009-10-26 | 2011-06-16 | Toshiba Corp | Method and apparatus for treating waste liquid |
CN104558358A (en) * | 2013-10-21 | 2015-04-29 | 王颖华 | Microporous polymer sphere, preparation method of microporous polymer sphere and method for removing fluorine in wastewater by using microporous polymer sphere |
CN104826615A (en) * | 2015-04-30 | 2015-08-12 | 衡水利得绿色生物科技有限公司 | Adsorption resin for crystallization of stevioside |
EP3851464A4 (en) * | 2018-09-14 | 2022-06-15 | Sekisui Kasei Co., Ltd. | Hollow polymer particles and method for manufacturing same |
JP2022169699A (en) * | 2018-09-14 | 2022-11-09 | 積水化成品工業株式会社 | Hollow polymer particles and method for producing the same |
JP7358586B2 (en) | 2018-09-14 | 2023-10-10 | 積水化成品工業株式会社 | Hollow polymer particles and method for producing the same |
CN115400742A (en) * | 2022-08-26 | 2022-11-29 | 核工业北京化工冶金研究院 | Adsorption material and preparation method and application thereof |
CN115400742B (en) * | 2022-08-26 | 2023-11-24 | 核工业北京化工冶金研究院 | Adsorption material and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4830273B2 (en) | 2011-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Baydemir et al. | Supermacroporous poly (hydroxyethyl methacrylate) based cryogel with embedded bilirubin imprinted particles | |
KR100861452B1 (en) | Method for preparing surface-imprinted polyacrylate microsphere in the form of core-shell for the selective separation of heavy metal ion | |
Perçin et al. | Poly (hydroxyethyl methacrylate) based affinity cryogel for plasmid DNA purification | |
US11999808B2 (en) | Polymer particles with a gradient composition and methods of production thereof | |
JP2007217670A (en) | Selective separation of heavy metal ion using the metal ion imprinted polymer | |
JP6733900B2 (en) | Separation carrier, method for producing separation carrier, column, and device for liquid chromatography or solid phase extraction | |
Zhang et al. | Uniform core–shell molecularly imprinted polymers: a correlation study between shell thickness and binding capacity | |
JP3158186B2 (en) | Alkyl group-containing porous resin, production method thereof and use thereof | |
JPS5861463A (en) | Carrier for liquid chromatography and separating and refining method for fat soluble material using said carrier | |
Ban et al. | Preparation and characterization of an imprinted monolith by atom transfer radical polymerization assisted by crowding agents | |
JP4830273B2 (en) | Cross-linked copolymer and fluorine ion adsorbent comprising the same | |
JP6843127B2 (en) | How to regenerate acrylic resin | |
WO2007043485A1 (en) | Process for producing organic porous material and organic porous column and organic porous material | |
Haleem et al. | Chitosan functionalization with vinyl monomers via ultraviolet illumination under cryogenic conditions for efficient palladium recovery from waste electronic materials | |
JP2013136035A (en) | Adsorbent and gold recovery method using the same | |
Viveiros et al. | Green strategy to produce large core–shell affinity beads for gravity-driven API purification processes | |
Jaques et al. | Insights into the synthesis of hydrogels containing glycerol-based macromonomers for wastewater treatment: Focus on the efficient extraction of caffeine and mercury | |
de Santa Maria et al. | Synthesis of crosslinked resin based on methacrylamide, styrene and divinylbenzene obtained from polymerization in aqueous suspension | |
JP4929635B2 (en) | Maleimide group-containing porous crosslinked polystyrene particles and method for producing the same | |
CN113996272B (en) | Molecularly imprinted polymer and preparation method and application thereof | |
JPWO2013069681A1 (en) | Vinyl chloride copolymer porous body and method for producing the same | |
JP6868612B2 (en) | How to purify water | |
Maciejewska et al. | Synthesis and characterization of porous microspheres bearing pyrrolidone units | |
JPH1194813A (en) | Preparation of polymer filler for liquid chromatography and polymer filler | |
KR101776369B1 (en) | Polymer having high adsorption ability for metal ions and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070620 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091006 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101207 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110823 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110905 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140930 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |