JP2006015223A - Nozzle for cleaning substrate - Google Patents

Nozzle for cleaning substrate Download PDF

Info

Publication number
JP2006015223A
JP2006015223A JP2004194588A JP2004194588A JP2006015223A JP 2006015223 A JP2006015223 A JP 2006015223A JP 2004194588 A JP2004194588 A JP 2004194588A JP 2004194588 A JP2004194588 A JP 2004194588A JP 2006015223 A JP2006015223 A JP 2006015223A
Authority
JP
Japan
Prior art keywords
nozzle
substrate
droplet
tip opening
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004194588A
Other languages
Japanese (ja)
Other versions
JP4711325B2 (en
Inventor
Keiji Miyaji
計二 宮地
Sayuri Kawashima
早由里 川島
Masahiko Amari
昌彦 甘利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Sunac Corp
Original Assignee
Asahi Sunac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Sunac Corp filed Critical Asahi Sunac Corp
Priority to JP2004194588A priority Critical patent/JP4711325B2/en
Publication of JP2006015223A publication Critical patent/JP2006015223A/en
Application granted granted Critical
Publication of JP4711325B2 publication Critical patent/JP4711325B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nozzle for cleaning substrates capable of uniformly and efficiently cleaning a substrate. <P>SOLUTION: This nozzle for cleaning substrates, which comprises an approximately rectangularly formed tip opening part 2, is used to clean the surface of the substrate by injecting a cleaning liquid as droplets in a fan shape expanding in a width direction and letting the droplets collide with the surface of the substrate having a dimension of 400 mm at least in the width direction, and the shape provided for the tip opening part 2 of the nozzle allows trapezoidal kinetic energy distribution to be obtained in which the kinetic energy distribution of the droplets colliding with the surface of the substrate becomes uniform except the portions at both ends in width direction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、洗浄装置により基板を洗浄する際、洗浄装置から噴出される高圧液の噴出口をもつ基板洗浄用ノズルに関する。   The present invention relates to a nozzle for cleaning a substrate having a jet port for high-pressure liquid ejected from the cleaning device when the substrate is cleaned by the cleaning device.

従来のノズルの先端開口の形状は猫目状であり、そこから洗浄液を扇状に噴出するものであった。   The shape of the opening of the tip of the conventional nozzle is a cat-like shape, and the cleaning liquid is ejected from the fan shape.

従来のノズルによると、洗浄対象となる基板を、むら無く効率よく洗浄することは困難である。なぜなら、ノズルの先端開口から扇状に噴出される洗浄液(以下、適宜「液滴」と称する)により基板を洗浄する際、液滴の衝突する基板表面(以下、適宜「衝突面」と称する)の両端部分は、衝突面の中央部分と比べて十分に洗浄されないからである。なお、ここでは、衝突面から両端部分を除いた部分、すなわち基板表面のノズル先端開口近傍を「中央部分」と定義する。   According to the conventional nozzle, it is difficult to efficiently and uniformly clean the substrate to be cleaned. This is because, when a substrate is cleaned with a cleaning liquid (hereinafter referred to as “droplet” as appropriate) ejected in a fan shape from the opening at the tip of the nozzle, the surface of the substrate (hereinafter referred to as “impact surface” as appropriate) on which the droplet collides. This is because both end portions are not sufficiently cleaned as compared with the central portion of the collision surface. Here, the portion excluding both end portions from the collision surface, that is, the vicinity of the nozzle tip opening on the substrate surface is defined as the “center portion”.

そこで、従来のノズルを用いて基板表面をむら無く洗浄するためには、ノズルの位置もしくは基板の位置を変えながら複数回洗浄する必要が生じる。これは、作業効率の低減を意味し、早急に解決すべき課題となっている。   Therefore, in order to clean the substrate surface uniformly using the conventional nozzle, it is necessary to clean the substrate surface a plurality of times while changing the position of the nozzle or the position of the substrate. This means a reduction in work efficiency and has become an issue to be solved immediately.

本発明は、上記課題に鑑みてなされたものである。すなわち、本発明の目的は、基板をむら無く効率よく洗浄することができる基板洗浄用ノズルを提供すること、である。   The present invention has been made in view of the above problems. That is, an object of the present invention is to provide a substrate cleaning nozzle that can efficiently clean a substrate without unevenness.

本発明の基板洗浄用ノズルは、先端開口が略長方形状であり、洗浄液を液滴として幅方向に広がる扇状に噴出させて少なくとも幅方向が400mmの基板表面に衝突させることにより該基板表面を洗浄する洗浄用ノズルであって、該基板表面に衝突する該液滴の運動エネルギー分布が幅方向の両端部分を除いて均一となる台形状の運動エネルギー分布を得る先端開口の形状を持つことを特徴とする。   The nozzle for cleaning a substrate of the present invention has a substantially rectangular opening at the tip, and the cleaning liquid is ejected in the form of a fan that spreads in the width direction as droplets, and the substrate surface is cleaned by colliding with the substrate surface at least in the width direction of 400 mm. A cleaning nozzle that has a shape of a tip opening that obtains a trapezoidal kinetic energy distribution in which the kinetic energy distribution of the liquid droplets colliding with the substrate surface is uniform except for both end portions in the width direction. And

従来のノズルによると、ノズルの先端開口から噴出された時点において、洗浄液は扇状の水膜である。水膜は両端部分に近づくほど薄くなる。そのため、中央部分に衝突する洗浄液の流量と比べて、両端部分に衝突する洗浄液の流量は少ない。また水膜は薄いほど、空気との衝突により水膜の微粒子化が促進されるため水膜は液滴になり易くなる。なお、液滴となった水膜の失速は大きい。そのため、中央部分に衝突する液滴の粒子速度と比べて、両端部分に衝突する液滴の粒子速度は小さい。すなわち、中央部分に衝突する液滴の運動エネルギーと比べて、両端部分に衝突する液滴の運動エネルギーは小さい。したがって、中央部分と比べて両端部分は十分に洗浄されない。   According to the conventional nozzle, the cleaning liquid is a fan-shaped water film at the time when it is ejected from the tip opening of the nozzle. The water film becomes thinner as it gets closer to both ends. For this reason, the flow rate of the cleaning liquid that collides with both end portions is smaller than the flow rate of the cleaning liquid that collides with the central portion. Also, the thinner the water film, the more easily the water film becomes droplets by collision with air, so the water film tends to become droplets. In addition, the stall of the water film which became the droplet is large. For this reason, the particle velocity of the droplet that collides with both end portions is smaller than the particle velocity of the droplet that collides with the central portion. That is, the kinetic energy of the droplet that collides with both end portions is smaller than the kinetic energy of the droplet that collides with the central portion. Therefore, both end portions are not sufficiently cleaned as compared with the central portion.

基板をむら無く効率よく洗浄するためには、基板表面の両端部分に衝突する液滴の運動エネルギーを中央部分に衝突する液滴の運動エネルギーと同程度にする必要がある。   In order to efficiently clean the substrate uniformly, it is necessary to make the kinetic energy of the liquid droplets colliding with both end portions of the surface of the substrate equal to the kinetic energy of the liquid droplet colliding with the central portion.

本発明の基板洗浄用ノズルの先端開口の形状は略長方形である。そのため、中央部分に衝突する洗浄液の流量より両端部分に衝突する洗浄液の流量を増やすことができる。これにより、両端部分に衝突する液滴の運動エネルギーを中央部分に衝突する液滴の運動エネルギーと同程度にすることができる。   The shape of the tip opening of the substrate cleaning nozzle of the present invention is substantially rectangular. Therefore, the flow rate of the cleaning liquid that collides with both end portions can be increased from the flow rate of the cleaning liquid that collides with the central portion. Thereby, the kinetic energy of the droplet colliding with both end portions can be made the same level as the kinetic energy of the droplet colliding with the central portion.

本発明の基板洗浄用ノズルを用いることにより、基板をむら無く効率よく洗浄することができる。   By using the substrate cleaning nozzle of the present invention, the substrate can be efficiently cleaned without unevenness.

以下、本発明の基板洗浄用ノズルの実施形態について説明する。   Hereinafter, embodiments of the substrate cleaning nozzle of the present invention will be described.

(ノズルの先端開口)
はじめに、本発明の基板洗浄用ノズルの先端開口について説明する。
(Nozzle tip opening)
First, the tip opening of the substrate cleaning nozzle of the present invention will be described.

本発明の基板洗浄用ノズルの先端開口は略長方形状である。先端開口が略長方形状であることにより、先端開口から噴出される液滴は先端開口の略長方形の長辺方向に広がる扇状に噴出される。   The tip opening of the substrate cleaning nozzle of the present invention has a substantially rectangular shape. Since the tip opening has a substantially rectangular shape, the liquid droplets ejected from the tip opening are ejected in a fan shape spreading in the long side direction of the substantially rectangular shape of the tip opening.

先端開口の形状は、一方向に伸びる溝の中央部の底面とその両壁面に跨り開口する形状が好ましい。なぜなら、先端開口の形状が一方向に伸びる溝の中央部の底面とその両壁面に跨り開口する形状であることにより、先端開口の中央部から噴出する洗浄液を溝の両壁面で規制し、洗浄液を先端開口の両端部に押し広げる作用をなすからである。   The shape of the tip opening is preferably a shape that opens across the bottom surface of the center of the groove extending in one direction and both wall surfaces thereof. Because the shape of the tip opening is a shape that extends across the bottom surface of the groove extending in one direction and both wall surfaces thereof, the cleaning liquid ejected from the center part of the tip opening is regulated by both wall surfaces of the groove, and the cleaning liquid This is because it has the effect of pushing the both ends of the tip opening.

ところで、先端開口の形状である略長方形の互いに背向する短辺は外側に膨れていてもよい。先端開口が略長方形状であることにより、基板を洗浄する際、基板の両端部分に衝突する液滴の流量を、基板の中央部分に衝突する液滴の流量より増やすことが可能である。これにより、両端部分に衝突する液滴の運動エネルギーを中央部分に衝突する液滴の運動エネルギーと同程度にすることができる。すなわち、中央部分と比べて洗浄されにくい両端部分の洗浄効果を高めることができ、むらの無い基板を仕上げることができる。   By the way, the short sides of the substantially rectangular shape, which is the shape of the tip opening, facing each other may swell outward. Since the tip opening has a substantially rectangular shape, when the substrate is cleaned, it is possible to increase the flow rate of droplets that collide with both end portions of the substrate, compared to the flow rate of droplets that collide with the central portion of the substrate. Thereby, the kinetic energy of the droplet colliding with both end portions can be made the same level as the kinetic energy of the droplet colliding with the central portion. That is, it is possible to enhance the cleaning effect of both end portions that are difficult to be cleaned as compared with the central portion, and it is possible to finish the substrate without unevenness.

(液滴)
つぎに、本発明の基板洗浄用ノズルの先端開口から噴出され、基板に衝突する液滴について説明する。
(Droplet)
Next, the liquid droplets ejected from the tip opening of the substrate cleaning nozzle of the present invention and colliding with the substrate will be described.

液滴の洗浄能力は、基板に衝突する液滴の粒子径、粒子速度および流量に起因する。そこで、好ましい液滴の粒子径は1〜100μmである。また、好ましい粒子速度は10〜100m/sである。液滴の粒子径が1μmより小さい、もしくは液滴の粒子速度が10m/sより小さいと、液滴の運動エネルギーは過小となり基板が十分に洗浄されないためである。一方、液滴の粒子径が100μmより大きい、もしくは液滴の粒子速度が100m/sより大きいと、液滴の運動エネルギーは過大となり基板を傷つける可能性が生じるためである。   The cleaning ability of the droplet is caused by the particle size, particle velocity, and flow rate of the droplet that collides with the substrate. Therefore, a preferable particle diameter of the droplet is 1 to 100 μm. The preferred particle speed is 10 to 100 m / s. This is because if the particle diameter of the droplet is smaller than 1 μm or the particle velocity of the droplet is smaller than 10 m / s, the kinetic energy of the droplet is too small to clean the substrate sufficiently. On the other hand, if the particle diameter of the droplet is larger than 100 μm or the particle velocity of the droplet is larger than 100 m / s, the kinetic energy of the droplet becomes excessive, and the substrate may be damaged.

さらに好ましい液滴の粒子径は10〜50μmである。また、さらに好ましい液滴の粒子速度は10〜70m/sである。なぜなら、10〜50μmの粒子径であり、かつ10〜70m/sの粒子速度である液滴は、基板の洗浄効果に大きく寄与するからである。なお、このことは後述する性能測定より明らかになったことである。   A more preferable droplet diameter is 10 to 50 μm. Further, the particle speed of the droplet is more preferably 10 to 70 m / s. This is because droplets having a particle diameter of 10 to 50 μm and a particle velocity of 10 to 70 m / s greatly contribute to the substrate cleaning effect. This is clarified from the performance measurement described later.

(基板)
さらに、本発明の基板洗浄用ノズルの先端開口から噴出される液滴により、洗浄される基板について説明する。特に基板の材料、材質は制限を受けるものではない。しかし、洗浄される基板の幅は400mm以上とする。なぜなら、本発明の基板洗浄用ノズルから噴出される液滴は扇状で幅方向に大きく広がるため、幅広の基板、特に幅400mm以上の基板、に対して洗浄効果を奏するからである。
(substrate)
Further, the substrate to be cleaned by the droplets ejected from the tip opening of the substrate cleaning nozzle of the present invention will be described. In particular, the material and the material of the substrate are not limited. However, the width of the substrate to be cleaned is 400 mm or more. This is because the droplets ejected from the substrate cleaning nozzle of the present invention are fan-shaped and greatly spread in the width direction, so that a cleaning effect is exerted on a wide substrate, particularly a substrate having a width of 400 mm or more.

なお、ノズルは複数個まとめて使用することもできる。この場合、各ノズルから噴出される洗浄液が重ならないようにノズルを斜めに設置することが好ましい。   A plurality of nozzles can be used together. In this case, it is preferable to install the nozzles obliquely so that the cleaning liquid ejected from each nozzle does not overlap.

以下の性能測定において、本発明の基板洗浄用ノズルを具体化した実施例のノズル1と、従来のノズルである比較例のノズル6とを対比する。   In the following performance measurement, the nozzle 1 of the embodiment embodying the nozzle for cleaning a substrate of the present invention is compared with the nozzle 6 of a comparative example which is a conventional nozzle.

(性能測定準備)
まず、図1に示すように、実施例のノズル1を用意した。この実施例のノズル1の先端には、中央部の底面4と両壁面5からなる断面U字状の溝3が深く凹設されている。なお、両壁面5は互いに平行である。略長方形状の先端開口2は、断面U字状の溝3の中央部の底面4と両壁面5に跨り開口している。先端開口2の略長方形の互いに背向する短辺は外側に膨れている。
(Preparation for performance measurement)
First, as shown in FIG. 1, the nozzle 1 of the Example was prepared. At the tip of the nozzle 1 of this embodiment, a groove 3 having a U-shaped cross section composed of a bottom surface 4 at the center and both wall surfaces 5 is deeply recessed. Both wall surfaces 5 are parallel to each other. The substantially rectangular tip opening 2 extends across the bottom surface 4 and both wall surfaces 5 of the central portion of the groove 3 having a U-shaped cross section. The substantially rectangular short sides of the front end opening 2 swell outward.

この実施例のノズル1に対し、図2に示すように、比較例のノズル6を用意した。この比較例のノズル6の先端には、断面V字状の溝10が凹設されている。猫目状の先端開口9は、断面V字状の溝10の両壁面11に跨り開口している。   For the nozzle 1 of this example, a nozzle 6 of a comparative example was prepared as shown in FIG. A groove 10 having a V-shaped cross section is recessed at the tip of the nozzle 6 of this comparative example. The cat-like tip opening 9 extends over both wall surfaces 11 of the groove 10 having a V-shaped cross section.

(性能測定1)
以下の性能測定1では、実施例のノズル1から噴出される液滴8の流量および比較例のノズル6から噴出される液滴12の流量を測定した。
(Performance measurement 1)
In the following performance measurement 1, the flow rate of the droplet 8 ejected from the nozzle 1 of the example and the flow rate of the droplet 12 ejected from the nozzle 6 of the comparative example were measured.

まず、性能測定準備で用意した実施例のノズル1を所定の高さに設置した。実施例のノズル1の先端開口2の真下方向100mm位置(以下、「パターン中心部7」と称する)に液滴8を受けるためのセルを配置した。同様のセルをパターン中心部7から左右の幅方向に10mm間隔で左右各100mmまで全21個配置した。そして、噴出圧力10MPaで、実施例のノズル1から下方向へ液滴8を噴出させた。一定時間後の各セル内に溜まった液滴の容積を測ることにより、流量を測定した。実施例のノズル1から噴出される液滴8の流量を図3中、実施例のノズルとして示す。   First, the nozzle 1 of the example prepared in the performance measurement preparation was installed at a predetermined height. A cell for receiving the droplet 8 was disposed at a position 100 mm below the tip opening 2 of the nozzle 1 of the example (hereinafter referred to as “pattern center 7”). A total of 21 similar cells were arranged from the pattern central portion 7 to the left and right sides in the left-right width direction at intervals of 10 mm up to 100 mm on each side. The droplet 8 was ejected downward from the nozzle 1 of the example at an ejection pressure of 10 MPa. The flow rate was measured by measuring the volume of droplets accumulated in each cell after a certain time. The flow rate of the droplet 8 ejected from the nozzle 1 of the embodiment is shown as the nozzle of the embodiment in FIG.

つぎに、実施例のノズル1に替え、比較例のノズル6を設置した。そして、比較例のノズル6から噴出される液滴12の流量を、実施例のノズル1と同様の手順で測定した。噴出圧力、セルの位置、およびセルの数などの測定条件は上記実施例のノズル1による流量測定と同様である。比較例のノズル6から噴出される液滴12の流量を図3中、比較例のノズルとして示す。   Next, the nozzle 6 of the comparative example was installed instead of the nozzle 1 of the example. And the flow volume of the droplet 12 ejected from the nozzle 6 of a comparative example was measured in the procedure similar to the nozzle 1 of an Example. Measurement conditions such as the ejection pressure, the position of the cells, and the number of cells are the same as the flow rate measurement by the nozzle 1 of the above embodiment. The flow rate of the droplet 12 ejected from the nozzle 6 of the comparative example is shown as the nozzle of the comparative example in FIG.

(性能測定2)
以下の性能測定2では、実施例のノズル1から噴出される液滴8の平均粒子速度、平均粒子径、および比較例のノズル6から噴出される液滴12の平均粒子速度、平均粒子径を測定した。
(Performance measurement 2)
In the following performance measurement 2, the average particle velocity and average particle diameter of the droplets 8 ejected from the nozzle 1 of the example, and the average particle velocity and average particle diameter of the droplets 12 ejected from the nozzle 6 of the comparative example are determined. It was measured.

まず、性能測定準備で用意した実施例のノズル1を所定の高さに設置した。そして、噴出圧力10MPaで、実施例のノズル1から下方向へ液滴8を噴出させた。各測定点における液滴8の平均粒子速度および液滴8の平均粒子径をSDPA(Shadow Doppler Particle Analyzer)〈メーカ:日本カノマックス株式会社〉により測定した。なお、測定点はパターン中心部7から左右の幅方向に10mm間隔で左右各80mmまで全17点とした。   First, the nozzle 1 of the example prepared in the performance measurement preparation was installed at a predetermined height. The droplet 8 was ejected downward from the nozzle 1 of the example at an ejection pressure of 10 MPa. The average particle velocity of the droplet 8 and the average particle size of the droplet 8 at each measurement point were measured by an SDPA (Shadow Doppler Particle Analyzer) (manufacturer: Nippon Kanomax Co., Ltd.). The measurement points were 17 points from the pattern center 7 to the left and right 80 mm at 10 mm intervals in the left and right width direction.

実施例のノズル1から噴出される液滴8の平均粒子速度を図4中、実施例のノズルとして示す。また、実施例のノズル1から噴出される液滴8の平均粒子径を図5中、実施例のノズルとして示す。   The average particle velocity of the droplet 8 ejected from the nozzle 1 of the embodiment is shown as the nozzle of the embodiment in FIG. Moreover, the average particle diameter of the droplet 8 ejected from the nozzle 1 of an Example is shown as a nozzle of an Example in FIG.

つぎに、実施例のノズル1に替え、比較例のノズル6を設置した。そして、比較例のノズル6から噴出される液滴12の平均粒子速度および液滴12の平均粒子径を測定した。測定機器、噴出圧力、および測定位置などの測定条件は上記実施例のノズル1による液滴の粒子速度および液滴の粒子径測定と同様である。   Next, the nozzle 6 of the comparative example was installed instead of the nozzle 1 of the example. And the average particle velocity of the droplet 12 ejected from the nozzle 6 of the comparative example and the average particle size of the droplet 12 were measured. The measurement conditions such as the measurement device, the ejection pressure, and the measurement position are the same as those of the measurement of the particle velocity of the droplet and the particle size of the droplet by the nozzle 1 of the above embodiment.

比較例のノズル6から噴出される液滴12の平均粒子速度を図4中、比較例のノズルとして示す。また、比較例のノズル6から噴出される液滴12の平均粒子径を図5中、比較例のノズルとして示す。   The average particle velocity of the droplets 12 ejected from the nozzle 6 of the comparative example is shown as the nozzle of the comparative example in FIG. Moreover, the average particle diameter of the droplet 12 ejected from the nozzle 6 of a comparative example is shown as a nozzle of a comparative example in FIG.

(考察)
以下、性能測定1、2から得られた結果を考察する。
(Discussion)
Hereinafter, the results obtained from the performance measurements 1 and 2 will be considered.

数1を用いて、性能測定1、2の測定値から実施例のノズル1から噴出される液滴8の運動エネルギーを算出した。同様に、比較例のノズル6から噴出される液滴12の運動エネルギーを算出した。これらの結果を図6に示す。   Using Equation 1, the kinetic energy of the droplet 8 ejected from the nozzle 1 of the example was calculated from the measured values of the performance measurements 1 and 2. Similarly, the kinetic energy of the droplet 12 ejected from the nozzle 6 of the comparative example was calculated. These results are shown in FIG.

Figure 2006015223
ただし、E(J/(cm・s)):各測定点の幅方向1cm当たりの液滴の運動エネルギー
Q(m3/(cm・s)):各測定点の幅方向1cm当たりの液滴の流量
D(m):各液滴の粒子径
v(m/s):各液滴の粒子速度
Figure 2006015223
However, E (J / (cm · s)): Kinetic energy Q (m 3 / (cm · s)) of a droplet per 1 cm in the width direction of each measurement point: Droplet per 1 cm in the width direction of each measurement point Flow rate D (m): particle diameter of each droplet v (m / s): particle velocity of each droplet

図6に示されるように、比較例のノズル6から噴出される液滴12の運動エネルギー分布は山形状になった。なぜなら、ノズルの先端開口9は猫目状であることにより、パターン中心部7から離れた両端部分の液滴12の流量は、パターン中心部7に衝突する液滴12の流量に比べて著しく少なかったからである。さらに、パターン中心部7に衝突する液滴12の粒子速度と比べて、両端部分に衝突する液滴12の粒子速度は小さかったからである。   As shown in FIG. 6, the kinetic energy distribution of the droplets 12 ejected from the nozzle 6 of the comparative example has a mountain shape. This is because the tip opening 9 of the nozzle has a cat-like shape, so that the flow rate of the droplets 12 at both ends away from the pattern center portion 7 is significantly smaller than the flow rate of the droplets 12 that collide with the pattern center portion 7. This is because the. Furthermore, the particle velocity of the droplets 12 that collide with both end portions was lower than the particle velocity of the droplets 12 that collide with the pattern central portion 7.

これに対し、実施例のノズル1から噴出される液滴8の運動エネルギー分布は台形状となった。なぜなら、パターン中心部7から幅方向に左右各70mm離れた両端部分へ衝突する液滴8の流量が増加されたことにより(図3参照)、両端部分へ衝突する液滴8の運動エネルギーの減少を抑制できたからである。なお、両端部分へ衝突する液滴8の流量増加は、実施例のノズル1の先端開口の形状に起因するものである。   On the other hand, the kinetic energy distribution of the droplet 8 ejected from the nozzle 1 of the example was trapezoidal. This is because the flow rate of the droplet 8 that collides with both end portions 70 mm apart from each other in the width direction from the pattern center portion 7 is increased (see FIG. 3), and thus the kinetic energy of the droplet 8 that collides with both end portions is reduced. It is because it was able to suppress. The increase in the flow rate of the droplet 8 that collides with both end portions is caused by the shape of the tip opening of the nozzle 1 of the embodiment.

パターン中心部7における、液滴の粒子径に対する液滴の粒子速度の分布を図7に示す。また、パターン中心部7から左右の幅方向に40mm離れた位置における、液滴の粒子径に対する液滴の粒子速度の分布を図8に示す。   FIG. 7 shows the distribution of the particle velocity of the droplet with respect to the particle diameter of the droplet in the pattern central portion 7. Further, FIG. 8 shows the distribution of the particle velocity of the droplet with respect to the particle size of the droplet at a position 40 mm away from the pattern center portion 7 in the left-right width direction.

この図7、8より、10〜50μmの粒子径であり、かつ10〜70m/sの粒子速度である液滴8は、基板の洗浄効果に大きく寄与したことが判る。   7 and 8, it can be seen that the droplet 8 having a particle diameter of 10 to 50 μm and a particle velocity of 10 to 70 m / s greatly contributed to the cleaning effect of the substrate.

実施例のノズルの形状を示す斜視図である。It is a perspective view which shows the shape of the nozzle of an Example. 比較例のノズルの形状を示す斜視図である。It is a perspective view which shows the shape of the nozzle of a comparative example. 実施例のノズルおよび比較例のノズルから噴出された液滴の流量を示す図である。It is a figure which shows the flow volume of the droplet ejected from the nozzle of an Example and the nozzle of a comparative example. 実施例のノズルおよび比較例のノズルから噴出された液滴の平均粒子速度を示す図である。It is a figure which shows the average particle velocity of the droplet ejected from the nozzle of an Example and the nozzle of a comparative example. 実施例のノズルおよび比較例のノズルから噴出された液滴の平均粒子径を示す図である。It is a figure which shows the average particle diameter of the droplet ejected from the nozzle of an Example and the nozzle of a comparative example. 実施例のノズルおよび比較例のノズルから噴出された液滴の運動エネルギーを示す図である。It is a figure which shows the kinetic energy of the droplet ejected from the nozzle of an Example and the nozzle of a comparative example. パターン中心部における、実施例のノズルおよび比較例のノズルから噴出された液滴の粒子径に対する液滴の粒子速度の分布を示す図である。It is a figure which shows distribution of the particle velocity of the droplet with respect to the particle diameter of the droplet ejected from the nozzle of an Example and the nozzle of a comparative example in the pattern center part. パターン中心部から左右の幅方向に40mm離れた位置における、実施例のノズルおよび比較例のノズルから噴出された液滴の粒子径に対する液滴の粒子速度の分布を示す図である。It is a figure which shows distribution of the particle velocity of the droplet with respect to the particle diameter of the droplet ejected from the nozzle of an Example and the nozzle of a comparative example in the position 40 mm away from the pattern center part in the left-right width direction.

符号の説明Explanation of symbols

1:実施例のノズル 2:先端開口
3:溝 4:底面 5:壁面 6:比較例のノズル
7:パターン中心部 8:液滴 9:先端開口
10:溝 11:壁面 12:液滴
1: Nozzle of Example 2: Opening of tip 3: Groove 4: Bottom surface 5: Wall surface 6: Nozzle of comparative example 7: Pattern center 8: Droplet 9: Opening of tip 10: Groove 11: Wall surface 12: Droplet

Claims (6)

先端開口が略長方形状であり、洗浄液を液滴として幅方向に広がる扇状に噴出させて少なくとも幅方向が400mmの基板表面に衝突させることにより該基板表面を洗浄する洗浄用ノズルであって、
該基板表面に衝突する該液滴の運動エネルギー分布が幅方向の両端部分を除いて均一となる台形状の運動エネルギー分布を得る先端開口の形状を持つことを特徴とする基板洗浄用ノズル。
A cleaning nozzle that cleans the surface of the substrate by causing the tip opening to have a substantially rectangular shape, ejecting the cleaning liquid into a fan-shaped fan that spreads in the width direction and colliding with the substrate surface having a width direction of at least 400 mm,
A nozzle for cleaning a substrate, characterized by having a shape of a tip opening that obtains a trapezoidal kinetic energy distribution in which the kinetic energy distribution of the droplets impinging on the substrate surface is uniform except for both end portions in the width direction.
前記基板表面に衝突する前記液滴の流量分布が幅方向の中央部分で均一で該中央部分と該両端部分の境界部分で該中央部分よりも大流量となる流量分布を得る前記先端開口の形状を持つ請求項1記載の基板洗浄用ノズル。   The shape of the tip opening that obtains a flow rate distribution in which the flow rate distribution of the liquid droplets colliding with the substrate surface is uniform in the central portion in the width direction and has a larger flow rate than the central portion at the boundary portion between the central portion and the both end portions The substrate cleaning nozzle according to claim 1. 前記液滴の粒子径は1〜100μmであり、該液滴の粒子速度は10〜100m/sである前記先端開口の形状を持つ請求項1〜2記載の基板洗浄用ノズル。   3. The substrate cleaning nozzle according to claim 1, wherein the droplet has a particle diameter of 1 to 100 μm and a particle velocity of the droplet of 10 to 100 m / s. 前記液滴の粒子径は10〜50μmであり、該液滴の粒子速度は10〜70m/sである前記先端開口の形状を持つ請求項1〜2記載の基板洗浄用ノズル。   The substrate cleaning nozzle according to claim 1, wherein the droplet has a particle diameter of 10 to 50 μm and a particle velocity of the droplet of 10 to 70 m / s. 前記先端開口は一方向に伸びる溝の中央部の底面と壁面に跨り開口している請求項1〜4記載の基板洗浄用ノズル。   The substrate cleaning nozzle according to claim 1, wherein the tip opening is opened across the bottom surface and wall surface of a central portion of a groove extending in one direction. 前記先端開口の形状は前記略長方形の互いに背向する短辺が外側に膨れる形状となっている請求項4記載の基板洗浄用ノズル。   The substrate cleaning nozzle according to claim 4, wherein the tip opening has a shape in which short sides of the substantially rectangular shape facing each other swell outward.
JP2004194588A 2004-06-30 2004-06-30 Substrate cleaning nozzle Active JP4711325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004194588A JP4711325B2 (en) 2004-06-30 2004-06-30 Substrate cleaning nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004194588A JP4711325B2 (en) 2004-06-30 2004-06-30 Substrate cleaning nozzle

Publications (2)

Publication Number Publication Date
JP2006015223A true JP2006015223A (en) 2006-01-19
JP4711325B2 JP4711325B2 (en) 2011-06-29

Family

ID=35789934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004194588A Active JP4711325B2 (en) 2004-06-30 2004-06-30 Substrate cleaning nozzle

Country Status (1)

Country Link
JP (1) JP4711325B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012120963A (en) * 2010-12-07 2012-06-28 Asahi Sunac Corp Nozzle for powder coating
JP2015148747A (en) * 2014-02-07 2015-08-20 株式会社ジャパンディスプレイ Manufacturing method and manufacturing device of liquid crystal display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05212318A (en) * 1992-02-05 1993-08-24 Kyoritsu Gokin Seisakusho:Kk Liquid jet nozzle
JP2001269603A (en) * 2000-03-27 2001-10-02 Kyoritsu Gokin Seisakusho:Kk Fluid jetting nozzle
JP2002016031A (en) * 2000-06-28 2002-01-18 Sumitomo Precision Prod Co Ltd Substrate treatment method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05212318A (en) * 1992-02-05 1993-08-24 Kyoritsu Gokin Seisakusho:Kk Liquid jet nozzle
JP2001269603A (en) * 2000-03-27 2001-10-02 Kyoritsu Gokin Seisakusho:Kk Fluid jetting nozzle
JP2002016031A (en) * 2000-06-28 2002-01-18 Sumitomo Precision Prod Co Ltd Substrate treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012120963A (en) * 2010-12-07 2012-06-28 Asahi Sunac Corp Nozzle for powder coating
JP2015148747A (en) * 2014-02-07 2015-08-20 株式会社ジャパンディスプレイ Manufacturing method and manufacturing device of liquid crystal display device

Also Published As

Publication number Publication date
JP4711325B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
JP4087894B2 (en) Hand dryer
KR101899604B1 (en) Printing system with self-purge, sediment prevention and fumes removal arrangements
JP5025358B2 (en) Cleaning method and apparatus and cleaning nozzle
TW200800084A (en) Hand dryer apparatus
US9259767B2 (en) Device to clean a component of deposits
EP3104760B1 (en) Vacuum cleaner tool
JP2015524546A (en) Method and apparatus for cleaning fin heat exchanger surfaces
CN114226353B (en) Low temperature denitration catalyst regenerating unit
JP4642559B2 (en) Impurity removal device
JP4711325B2 (en) Substrate cleaning nozzle
JP2017121703A5 (en)
KR101874714B1 (en) Nozzle assembly for a dry cleaning apparatus for a large area substrate
JP2007059417A (en) Substrate treatment device
JP2007327736A (en) Air-cooled heat exchanger
JP2004105511A (en) Dryer
JP3747723B2 (en) Hand dryer
JP3930829B2 (en) Cleaning dust collector
JP3137959B2 (en) Connecting nozzle unit for cleaning air conditioners
JP4088578B2 (en) Exhaust gas treatment tower
JP2003106593A (en) Dust removing device for tunnel work
JP6656255B2 (en) System and method for rinsing a substrate
JPH063429U (en) Wet dust collector
JP3169573U (en) Bubble generator
JP3488109B2 (en) Cleaning equipment
JP2003237094A (en) Maintenance module for fluid jet device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100224

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100308

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110317

R150 Certificate of patent or registration of utility model

Ref document number: 4711325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250