JP2006014498A - Drive unit, guide device, and rotating device - Google Patents

Drive unit, guide device, and rotating device Download PDF

Info

Publication number
JP2006014498A
JP2006014498A JP2004188499A JP2004188499A JP2006014498A JP 2006014498 A JP2006014498 A JP 2006014498A JP 2004188499 A JP2004188499 A JP 2004188499A JP 2004188499 A JP2004188499 A JP 2004188499A JP 2006014498 A JP2006014498 A JP 2006014498A
Authority
JP
Japan
Prior art keywords
drive
movable member
driving
piece
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004188499A
Other languages
Japanese (ja)
Inventor
Nobuaki Tanaka
伸明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2004188499A priority Critical patent/JP2006014498A/en
Publication of JP2006014498A publication Critical patent/JP2006014498A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a drive unit which uses a piezoelectric element in a direction a compression stress is applied, regardless of the moving direction of a movable member. <P>SOLUTION: The drive unit 6 comprises a drive piece 61 in which a contact part 64 is provided toward the drive surface 51 provided to a movable member 3 along the moving direction L of the movable member 3 moving relative to a base plate 2, a frame 62 fixed to the base plate 2; and at least two piezoelectric elements 63 which are fitted between the drive piece 61 and the frame 62 in a direction that vectors V1, V2 which are applied with voltage and extend, pass through the drive piece 61 and obliquely cross the drive surface 51. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、圧電素子をアクチュエータとして用いた駆動装置、この駆動装置を備える案内装置および回転装置に関する。   The present invention relates to a driving device using a piezoelectric element as an actuator, a guide device including the driving device, and a rotating device.

圧電素子に電圧を加えることでこの圧電素子が伸び縮みする圧電逆効果を利用して駆動させるマイクロモータや送り装置などの駆動装置がある。この駆動装置は、矩形平板形状に形成された圧電素子の一方の面にほぼ前面を覆う電極が取り付けられ、もう一方の面に4つの電極が格子状に配列されて取り付けられている。対角の位置に配置された電極同士は、電気的に接続されている。駆動装置は、圧電素子の電極面が回転円筒体の軸線を横切る方向に配置されている。   There are driving devices such as a micromotor and a feeding device that are driven by applying a piezoelectric inverse effect in which the piezoelectric element expands and contracts by applying a voltage to the piezoelectric element. In this driving device, an electrode covering substantially the front surface is attached to one surface of a piezoelectric element formed in a rectangular flat plate shape, and four electrodes are arranged in a grid pattern on the other surface. The electrodes arranged at the diagonal positions are electrically connected. The driving device is disposed in a direction in which the electrode surface of the piezoelectric element crosses the axis of the rotating cylindrical body.

圧電素子の外周部分のうち、1つの短縁部は、回転円筒体の外表面に面しており、セラミックスペーサが取り付けられている。駆動装置は、長縁部に沿う方向に配置された支持体およびばねと接触している。圧電素子の一方の対角線上の電極が圧電素子のもつ共振周波数の繰返し速度で通電されると、セラミックスペーサの先端は、円運動を描く。この円運動を利用して、セラミックスペーサが回転円筒体を周方向に移動させる。(例えば、特許文献1参照。)。   One short edge portion of the outer peripheral portion of the piezoelectric element faces the outer surface of the rotating cylindrical body, and a ceramic spacer is attached thereto. The drive device is in contact with a support and a spring arranged in a direction along the long edge. When the electrode on one diagonal line of the piezoelectric element is energized at a repetition rate of the resonance frequency of the piezoelectric element, the tip of the ceramic spacer draws a circular motion. Using this circular motion, the ceramic spacer moves the rotating cylinder in the circumferential direction. (For example, refer to Patent Document 1).

また、駆動機構が、可動部材の移動方向に挟んで一対かつ移動方向に2組配置された送り装置がある。各駆動機構は、可動部材を保持するためのクランプ用圧電素子と、可動部材を移動させるための送り用圧電素子とを備える。クランプ用圧電素子は、可動部材を挟む方向に配置され、送り用圧電素子は、伸縮方向を可動部材の移動方向に揃えて配置されている。この送り機構は、クランプ用圧電素子と送り用圧電素子とに、それぞれ異なる波形の周期的な電圧変化を印加する場合と、90°位相差を有した正弦波電圧を印加する場合とがある(例えば、非特許文献1参照。)。
特願平7-184382号公報(第1図) 社本 英治、外2名、「Walking Driveによる精密送り機構の開発(第3報)」、精密光学会誌、2001年、第67巻、第7号、p.1125−1129
In addition, there is a feeding device in which two pairs of driving mechanisms are arranged in the moving direction of the movable member and two pairs are arranged in the moving direction. Each drive mechanism includes a clamping piezoelectric element for holding the movable member and a feeding piezoelectric element for moving the movable member. The clamping piezoelectric element is arranged in a direction sandwiching the movable member, and the feeding piezoelectric element is arranged with the expansion / contraction direction aligned with the moving direction of the movable member. This feed mechanism may apply a periodic voltage change having a different waveform to the clamp piezoelectric element and the feed piezoelectric element, or may apply a sinusoidal voltage having a 90 ° phase difference ( For example, refer nonpatent literature 1.).
Japanese Patent Application No. 7-184382 (Fig. 1) Eiji Shamoto and two others, “Development of Precision Feeding Mechanism Using Walking Drive (3rd Report)”, Journal of Precision Optics, 2001, Vol. 67, No. 7, p. 1125-1129

矩形平板状に形成された圧電素子に電極を取り付けた駆動装置は、モータなどの駆動源として使う場合に、一方向から回転軸あるいは可動部材に押付けている。駆動装置と可動部材との間には、摩擦抵抗が必要であるため、予圧が加えられる。モータ駆動時、可動部材は、駆動装置が接触している場合と接触していない場合とが生じることで、駆動装置がモータによって保持されない時間を有する。また、駆動装置は、共振現象を利用しているので、可動部材の移動速度を早くすることには適しているが、精度よく位置決めすることには不向きである。   A drive device in which an electrode is attached to a piezoelectric element formed in a rectangular flat plate shape is pressed against a rotating shaft or a movable member from one direction when used as a drive source such as a motor. Since a frictional resistance is required between the driving device and the movable member, a preload is applied. When the motor is driven, the movable member has a time during which the drive device is not held by the motor due to the case where the drive device is in contact and the case where the drive device is not in contact. Further, since the driving device uses a resonance phenomenon, it is suitable for increasing the moving speed of the movable member, but is not suitable for positioning with high accuracy.

また、2つの圧電素子をそれぞれ駆動機構に備え、一方の圧電素子をクランプ用に、他方の圧電素子を送り用に使用する送り機構は、ある方向に可動部材を移動させる場合、送り用圧電素子に圧縮応力がかかるとすると、これと反対方向に可動部材を移動させる場合、必ず送り用圧電素子に引張応力が加わる。そのため、送り用圧電素子が破損しやすい。送り用圧電素子に圧縮応力のみ加わるように、駆動機構をそれぞれの移動方向に対応させて設けることは容易であるが、駆動機構が2倍必要となるとともに、移動方向に対応した半数の駆動機構しか使用されないので、無駄である。   In addition, a feed mechanism that includes two piezoelectric elements in the drive mechanism, and uses one piezoelectric element for clamping and the other piezoelectric element for feeding is used when the movable member is moved in a certain direction. If compressive stress is applied to the piezoelectric element, tensile force is always applied to the feeding piezoelectric element when the movable member is moved in the opposite direction. Therefore, the feeding piezoelectric element is easily damaged. Although it is easy to provide a driving mechanism corresponding to each moving direction so that only compressive stress is applied to the feeding piezoelectric element, the driving mechanism requires twice as much and half of the driving mechanisms corresponding to the moving direction Since it is only used, it is useless.

そこで、本発明は、可動部材の移動方向に因らず圧縮応力が加わる方向に圧電素子を使用する駆動装置、およびこの駆動装置を使用して簡単な構造で予圧の影響を軽減することのできる案内装置または回転装置を提供することを目的とする。   Therefore, the present invention can reduce the influence of preload with a simple structure using a driving device that uses a piezoelectric element in a direction in which a compressive stress is applied regardless of the moving direction of the movable member. An object is to provide a guide device or a rotating device.

本発明に係る駆動装置は、基台に対して移動する可動部材の移動方向に沿って可動部材に設けられる駆動面に向けて接触部が設けられる駆動片と、基台に固定されるフレームと、電圧が印加されて伸長する方向のベクトルが駆動片を通って駆動面を斜めに横切る向きに駆動片とフレームとの間に取り付けられる少なくとも2つの圧電素子とを備える。   The drive device according to the present invention includes a drive piece provided with a contact portion toward a drive surface provided on the movable member along a moving direction of the movable member moving with respect to the base, and a frame fixed to the base. , And at least two piezoelectric elements attached between the drive piece and the frame in a direction in which a vector in a direction in which a voltage is applied extends obliquely across the drive surface through the drive piece.

または、本発明に係る駆動装置は、基台に対して移動する可動部材の移動方向に沿って可動部材に平行に設けられる一対の駆動面に接触部を互いに反対方向に向けて一対に配置される少なくとも1組の駆動片と、基台に固定されて駆動面のそれぞれに面して一対に配置される少なくとも1組のフレームと、電圧が印加されて伸長される方向のベクトルが駆動片を通って駆動面を斜めに横切る向きに駆動片と前記フレームとの間にそれぞれの駆動片毎に少なくとも2つずつ取り付けられる圧電素子とを備える。この場合、各駆動片が可動部材を押圧することによって可動部材を安定した精度、速度で移動させるために、一対の駆動片を、可動部材の移動方向に少なくとも2組並べて配置し、一対の駆動片同士は、駆動面に対して互いに鏡像の位置関係で作動させ、移動方向に並ぶ駆動片同士は、互いに位相のずれた位置関係で作動させる。   Alternatively, the drive device according to the present invention is arranged in a pair with contact portions facing in opposite directions to a pair of drive surfaces provided in parallel to the movable member along the moving direction of the movable member moving relative to the base. At least one set of drive pieces, at least one set of frames fixed to the base and facing each of the drive faces, and a vector in a direction in which a voltage is applied to extend the drive pieces. And at least two piezoelectric elements attached to each drive piece between the drive piece and the frame in a direction that passes through and obliquely crosses the drive surface. In this case, at least two pairs of drive pieces are arranged side by side in the moving direction of the movable member in order to move the movable member with stable accuracy and speed by pressing the movable member with each drive piece. The pieces are operated with a positional relationship of mirror images with respect to the driving surface, and the driving pieces arranged in the moving direction are operated with a positional relationship shifted from each other.

また、圧電素子の取り付け角度による駆動力、保持力、および移動ストロークに方向性が生じないようにするために、圧電素子は、電圧が印加されることによって伸長する方向のベクトルが駆動面から駆動片の接触部を通る垂線に対して回転対称の位置関係に傾斜する状態に配置する。または、圧電素子は、電圧が印加されることによって伸長する方向のベクトルが、駆動片を通って移動方向を垂直に横切る中立面を基準とする鏡像の位置関係に傾斜する状態に配置する。ベクトルを傾ける角度として好ましい設定範囲は、駆動面に対して45°±5°である。   In addition, in order to prevent directionality from occurring in the driving force, holding force, and movement stroke depending on the mounting angle of the piezoelectric element, the piezoelectric element is driven from the driving surface by a vector in the direction that expands when a voltage is applied. It arrange | positions in the state inclined to the rotationally symmetrical positional relationship with respect to the perpendicular passing through the contact part of a piece. Alternatively, the piezoelectric element is arranged in a state in which a vector in a direction extending by applying a voltage is inclined to a mirror image positional relationship with respect to a neutral plane passing through the driving piece and perpendicularly crossing the moving direction. A preferable setting range for the angle at which the vector is inclined is 45 ° ± 5 ° with respect to the drive surface.

可動部材を一方向に連続して移動させる駆動装置とするために、少なくとも2つの圧電素子のそれぞれに異なる電圧変化を印加することによって、駆動片を回帰運動させる。また、可動部材を安定した移動速度で移動させる駆動装置とするために、少なくとも2つの圧電素子のそれぞれに互いに位相差を有する高周波電圧を印加することによって駆動片を周期的に回帰運動させる。この場合、高周波電圧の周波数は、圧電素子の固有振動数を含む帯域に設定することが好ましい。   In order to obtain a drive device that continuously moves the movable member in one direction, the drive piece is reciprocated by applying different voltage changes to each of the at least two piezoelectric elements. Further, in order to obtain a driving device that moves the movable member at a stable moving speed, the driving piece is periodically reciprocated by applying high-frequency voltages having a phase difference to each of at least two piezoelectric elements. In this case, the frequency of the high frequency voltage is preferably set in a band including the natural frequency of the piezoelectric element.

また、1つの駆動装置によって可動部材を駆動面に沿って移動させるために、少なくとも3つの圧電素子に位相と振幅と波形とがそれぞれ異なる電圧変化を印加して駆動片を変位させ、可動部材を駆動面に沿って互いに交差する少なくとも2方向に移動させる制御部を備える。   Further, in order to move the movable member along the driving surface by one driving device, voltage changes with different phases, amplitudes, and waveforms are applied to at least three piezoelectric elements to displace the driving piece, A control unit is provided that moves in at least two directions intersecting each other along the driving surface.

本発明に係る案内装置は、基台と、この基台に対して相対的に移動する可動部材と、相対的に移動する第1部材および第2部材とこれらの間でそれぞれに転接する複数の転動体とを具備して第1部材と第2部材との一方が基台に固定されるとともに他方が可動部材に取り付けられる案内機構と、可動部材の移動方向に沿って平行に設けられる少なくとも2つの摩擦部材と、移動方向に沿う摩擦部材の駆動面に向けて互いに反対向きに一対に配置される少なくとも2組の駆動装置とを備える。そして、それぞれの駆動装置が、駆動面に向けて接触部が設けられる駆動片と、基台に固定されるフレームと、電圧が印加されて伸長する方向のベクトルが駆動片を通って駆動面を斜めに横切る向きに駆動片とフレームとの間に取り付けられる少なくとも2つの圧電素子とを有する。少なくとも2つの圧電素子にそれぞれ位相差を有する高周波電圧を印加することによって駆動片を周期的に回帰運動させ、かつ、一対の駆動装置に設けられる駆動片の回帰運動の位相を同期させるとともに同じ駆動面に向けられる異なる組同士の駆動装置に設けられる駆動片の回帰運動の位相をずらす制御によって、可動部材を移動方向に沿って一方に移動させ、回帰運動の周回方向を反転して同様の制御を行なうことで可動部材を移動方向に沿って他方に移動させる。   The guide device according to the present invention includes a base, a movable member that moves relative to the base, a first member and a second member that move relative to each other, and a plurality of members that are in rolling contact with each other. A guide mechanism having one of the first member and the second member fixed to the base and having the other attached to the movable member, and at least two provided in parallel along the moving direction of the movable member. One friction member, and at least two sets of drive devices arranged in a pair opposite to each other toward the drive surface of the friction member along the moving direction. Each driving device includes a driving piece provided with a contact portion toward the driving surface, a frame fixed to the base, and a vector in a direction in which a voltage is applied to extend the driving surface through the driving piece. And at least two piezoelectric elements attached between the drive piece and the frame in an obliquely transverse direction. By applying a high-frequency voltage having a phase difference to at least two piezoelectric elements, the drive piece is periodically regressed, and the phases of the return movements of the drive pieces provided in the pair of drive devices are synchronized and the same drive The same control is performed by moving the movable member to one side along the moving direction by reversing the phase of the return motion of the drive pieces provided in the different sets of drive devices directed to the surface, and reversing the revolving direction of the return motion. To move the movable member to the other along the moving direction.

この場合、駆動面は、可動部材の移動方向に沿って平行に設け、一対の駆動装置は、駆動片を向き合わせた状態で移動方向と直交する直線上に配置する。または、駆動面は、可動部材の移動方向に沿って平行に設け、一対の駆動装置は、駆動片を互いに背けた状態で移動方向と直交する直線上に配置する。安定した精度および速度で可動部材を移動させるために、駆動装置は、移動方向に複数組並べて配置する。または、駆動装置は、移動方向を横切る方向に複数組並べて配置する。   In this case, the driving surface is provided in parallel along the moving direction of the movable member, and the pair of driving devices are arranged on a straight line orthogonal to the moving direction with the driving pieces facing each other. Alternatively, the driving surface is provided in parallel along the moving direction of the movable member, and the pair of driving devices are arranged on a straight line orthogonal to the moving direction with the driving pieces facing away from each other. In order to move the movable member with stable accuracy and speed, a plurality of sets of drive devices are arranged in the moving direction. Alternatively, a plurality of sets of drive devices are arranged in a direction crossing the moving direction.

本発明に係る回転装置は、基台と、基台に対して相対的に回転する可動部材と、相対的に回転する第1部材および第2部材とこれらの間でそれぞれに転接する複数の転動体とを具備して第1部材と第2部材との一方が基台に固定されるとともに他方が可動部材に取り付けられる転がり軸受と、可動部材の回転中心線に対して同心に設けられる摩擦部材と、摩擦部材の回転方向に沿って形成される駆動面を垂直に横切る同一線上に互いに反対向きに一対に配置される少なくとも2組の駆動装置とを備える。そして、それぞれの駆動装置が、駆動面に向けて接触部が設けられる駆動片と、基台に固定されるフレームと、電圧が印加されて伸長する方向のベクトルが駆動片を通って駆動面を斜めに横切る向きに駆動片とフレームとの間に取り付けられる少なくとも2つの圧電素子とを有する。少なくとも2つの圧電素子にそれぞれ位相差を有する高周波電圧を印加することによって駆動片を周期的に回帰運動させ、かつ、一対の駆動装置に設けられる駆動片の回帰運動の位相を同期させるとともに同じ駆動面に向けられる異なる組同士の駆動装置に設けられる駆動片の回帰運動の位相をずらす制御によって、可動部材を回転方向に沿って一方に移動させ、回帰運動の周回方向を反転して同様の制御を行なうことで可動部材を回転方向に沿って他方に移動させる。   The rotating device according to the present invention includes a base, a movable member that rotates relative to the base, a first member and a second member that rotate relative to each other, and a plurality of rolling members that are in rolling contact with each other. A rolling bearing provided with a moving body, wherein one of the first member and the second member is fixed to the base and the other is attached to the movable member, and a friction member provided concentrically with respect to the rotation center line of the movable member And at least two sets of drive devices arranged in pairs opposite to each other on the same line perpendicularly crossing the drive surface formed along the rotation direction of the friction member. Each driving device includes a driving piece provided with a contact portion toward the driving surface, a frame fixed to the base, and a vector in a direction in which a voltage is applied to extend the driving surface through the driving piece. And at least two piezoelectric elements attached between the drive piece and the frame in an obliquely transverse direction. By applying a high-frequency voltage having a phase difference to at least two piezoelectric elements, the drive piece is periodically regressed, and the phases of the return movements of the drive pieces provided in the pair of drive devices are synchronized and the same drive The same control is performed by moving the movable member to one side along the rotational direction by reversing the phase of the return motion of the drive pieces provided in different sets of drive devices directed to the surface, and reversing the revolving direction of the return motion. To move the movable member to the other along the rotation direction.

この場合、駆動面は、可動部材の回転中心線に対して垂直に設け、一対の駆動装置は、駆動片を回転中心線に沿う方向に向き合わせた状態で回転中心線に沿う方向に配置する。または、駆動面は、可動部材の外周に沿って設け、一対の駆動装置は、駆動片を可動部材の回転中心線に向けた状態で回転中心線と直交する直線上に配置する。または、駆動面は、可動部材の内周に沿って設け、一対の駆動装置は、駆動片を可動部材の回転中心線から離れる方向に向けた状態で回転中心線と直交する直線上に配置する。安定した精度および速度で可動部材を移動させるために、回転装置は、駆動装置を回転方向に複数組等配に配置する。または、回転装置は、駆動装置を可動部材の回転中心線に沿う方向に複数組並べて配置する。   In this case, the drive surface is provided perpendicular to the rotation center line of the movable member, and the pair of drive devices are arranged in the direction along the rotation center line in a state where the drive pieces face each other in the direction along the rotation center line. . Alternatively, the drive surface is provided along the outer periphery of the movable member, and the pair of drive devices are arranged on a straight line orthogonal to the rotation center line in a state where the drive piece faces the rotation center line of the movable member. Alternatively, the drive surface is provided along the inner periphery of the movable member, and the pair of drive devices are arranged on a straight line orthogonal to the rotation center line in a state where the drive piece is directed away from the rotation center line of the movable member. . In order to move the movable member with stable accuracy and speed, the rotating device arranges the driving devices in a plurality of pairs in the rotational direction. Alternatively, the rotating device arranges a plurality of driving devices in a direction along the rotation center line of the movable member.

本発明に係る駆動装置によれば、電圧が印加されて伸長する方向のベクトルが駆動片を通って駆動面を斜めに横切る向きに、圧電素子を駆動片とフレームとの間に取り付けている。したがって、可動部材を移動させる方向に因らず、圧縮応力が加わる方向に圧電素子を使用することができる。圧電素子に引張応力が積極的に加わらない構造であるので、駆動装置の耐久性が向上する。   According to the driving device of the present invention, the piezoelectric element is attached between the driving piece and the frame in such a direction that the vector in the direction in which the voltage is applied extends in an oblique direction across the driving surface through the driving piece. Therefore, the piezoelectric element can be used in the direction in which the compressive stress is applied regardless of the direction in which the movable member is moved. Since the piezoelectric element has a structure in which tensile stress is not positively applied, the durability of the driving device is improved.

本発明に係る他の駆動装置によれば、可動部材の移動方向に沿って可動部材に平行に設けられる一対の駆動面に接触部を互いに反対方向に向けて一対に配置される少なくとも1組の駆動片と、一対の駆動面のそれぞれに面して一対に配置される少なくとも1組のフレームと、電圧が印加されて伸長する方向のベクトルが駆動片を通って駆動面を斜めに横切る向きに駆動片とフレームとの間にそれぞれの駆動片毎に少なくとも2つずつ取り付けられる圧電素子とを備える。   According to another driving device of the present invention, at least one set of a pair of contact portions disposed in a direction opposite to each other on a pair of driving surfaces provided in parallel to the movable member along the moving direction of the movable member. The driving piece, at least one pair of frames arranged in a pair facing each of the pair of driving surfaces, and a vector in a direction in which a voltage is applied and extended so as to cross the driving surface diagonally through the driving piece Piezoelectric elements attached at least two for each driving piece are provided between the driving piece and the frame.

本発明に係る案内装置によれば、可動部材の移動方向に沿って形成される駆動面に対して互いに反対向きに駆動片を向けて駆動装置が少なくとも一対配置され、かつ一対の駆動装置の駆動片が回帰運動する位相を同期させている。したがって、駆動片によって可動部材に作用する移動方向を横切る方向の力は、互いに相殺され、可動部材の位置決め精度が向上する。また、可動部材の移動中においても少なくとも一対の駆動装置によって可動部材を保持することができるので、可動部材の移動量および移動速度を正確に制御することができる。   According to the guide device of the present invention, at least a pair of drive devices are arranged with the drive pieces facing each other in the opposite directions with respect to the drive surface formed along the moving direction of the movable member, and the drive of the pair of drive devices The phase in which the piece regresses is synchronized. Therefore, the forces in the direction crossing the moving direction acting on the movable member by the driving piece are canceled each other, and the positioning accuracy of the movable member is improved. In addition, since the movable member can be held by at least a pair of drive devices even during the movement of the movable member, the moving amount and moving speed of the movable member can be accurately controlled.

本発明に係る回転装置によれば、可動部材の回転中心線に対して同心に形成される駆動面を垂直に横切る同一線上に互いに反対向きに駆動装置が一対に配置され、かつ一対の駆動装置の駆動片が回帰運動する位相を同期させている。したがって、駆動片によって可動部材に作用する回転方向を横切る方向の力は、互いに相殺され、可動部材に対し、駆動装置取付時に掛かる力を軽減することができる。また、可動部材の回転中においても少なくとも一対の駆動装置によって可動部材を保持することができるので、可動部材の回転位置及び回転速度を正確に制御することができる。   According to the rotating device of the present invention, a pair of driving devices are disposed in the opposite direction on the same line perpendicularly crossing the driving surface formed concentrically with the rotation center line of the movable member, and the pair of driving devices. The phase of the driving piece is reciprocating. Therefore, the force in the direction across the rotational direction acting on the movable member by the drive piece is canceled out, and the force applied to the movable member when the drive device is attached can be reduced. In addition, since the movable member can be held by at least a pair of driving devices even during rotation of the movable member, the rotational position and rotational speed of the movable member can be accurately controlled.

本発明に係る第1の実施形態の案内装置1について、図1から図7を参照して説明する。図1に示す案内装置1は、基台2と可動部材3と案内機構4と摩擦部材5と駆動装置6とを備える。案内機構4は、第1部材41と第2部材42と複数の転動体43を備えている。第1部材41は、基台2に固定され、第2部材42は、可動部材3に固定されている。転動体43は、第1部材41および第2部材42のそれぞれに形成された軌道溝41a,42aに転接する。したがって、第2部材42が第1部材41に対して相対的に移動するので、可動部材3は、基台2に対して相対的に移動する。摩擦部材5は、可動部材3の移動方向Lに沿って延びる両側部31に取り付けられており、駆動面51が平行に設けられている。なお、駆動面51が可動部材3の移動方向Lに沿って設けられていれば、摩擦部材5は、可動部材3の側部31に一体に形成されていても良い。   A guide device 1 according to a first embodiment of the present invention will be described with reference to FIGS. A guide device 1 shown in FIG. 1 includes a base 2, a movable member 3, a guide mechanism 4, a friction member 5, and a drive device 6. The guide mechanism 4 includes a first member 41, a second member 42, and a plurality of rolling elements 43. The first member 41 is fixed to the base 2, and the second member 42 is fixed to the movable member 3. The rolling elements 43 are in rolling contact with raceway grooves 41 a and 42 a formed in the first member 41 and the second member 42, respectively. Accordingly, since the second member 42 moves relative to the first member 41, the movable member 3 moves relative to the base 2. The friction member 5 is attached to both side portions 31 extending along the moving direction L of the movable member 3, and a drive surface 51 is provided in parallel. Note that the friction member 5 may be formed integrally with the side portion 31 of the movable member 3 as long as the drive surface 51 is provided along the moving direction L of the movable member 3.

駆動装置6は、図2に示すように、駆動片61とフレーム62と圧電素子63とを備える。駆動片61は、駆動面51に向けて接触部64が設けられている。フレーム62は、基台2に固定されている。フレーム62には、駆動片61を配置するための凹部62aと、この凹部62aを取り囲むようにスリット状に形成された弾性ヒンジ62bが配置されている。この弾性ヒンジ62bは、圧電素子63が伸長して駆動片61を駆動面51に押し付ける力(予圧)を調整するために設けられている。なお、弾性ヒンジ62bの代わりに、コイルばねや板ばね、あるいはゴム状の弾性部材を取り付けても良い。   As illustrated in FIG. 2, the driving device 6 includes a driving piece 61, a frame 62, and a piezoelectric element 63. The drive piece 61 is provided with a contact portion 64 toward the drive surface 51. The frame 62 is fixed to the base 2. The frame 62 is provided with a recess 62a for arranging the driving piece 61 and an elastic hinge 62b formed in a slit shape so as to surround the recess 62a. The elastic hinge 62b is provided to adjust a force (preload) for extending the piezoelectric element 63 and pressing the driving piece 61 against the driving surface 51. A coil spring, a leaf spring, or a rubber-like elastic member may be attached instead of the elastic hinge 62b.

圧電素子63は、駆動片61とフレーム62との間に2つ取り付けられている。これらの圧電素子63は、電圧を印加することによって伸長する。各圧電素子63は、この伸長する方向のベクトルV1,V2が駆動片61を通って駆動面51を斜めに横切る向きに、かつ、駆動片61の接触部64を通る駆動面51の垂線Sに対して回転対称に傾斜した状態に配置される。この場合、本実施形態では圧電素子63が2つであるので、圧電素子63は、圧電素子63が伸長する方向のベクトルV1,V2が接触部64を通って可動部材3の移動方向Lを垂直に横切る中立面Aについて鏡像の位置関係となるように傾斜した状態に配置される。   Two piezoelectric elements 63 are attached between the drive piece 61 and the frame 62. These piezoelectric elements 63 expand when a voltage is applied. Each piezoelectric element 63 has a direction S in which the vectors V1 and V2 in the extending direction pass obliquely across the drive surface 51 through the drive piece 61 and a perpendicular line S of the drive surface 51 passing through the contact portion 64 of the drive piece 61. On the other hand, it is arranged in a state of being inclined in a rotational symmetry. In this case, since there are two piezoelectric elements 63 in the present embodiment, the piezoelectric element 63 has the vectors V1 and V2 in the direction in which the piezoelectric element 63 expands pass through the contact portion 64 so that the moving direction L of the movable member 3 is perpendicular. The neutral plane A that crosses the plane is arranged in an inclined state so as to have a mirror image positional relationship.

ベクトルV1,V2の具体的な傾斜角度として好ましい範囲は、駆動面51に対して45°±5°である。なお、駆動装置6による可動部材3の保持力を高めたい場合は、駆動片61に対して圧電素子63のベクトルV1,V2同士が成す角度を狭く(鋭角に)し、可動部材3の移動量を大きくしたい場合は、駆動片61に対して圧電素子63のベクトルV1,V2同士が成す角度を広く(鈍角に)するなど、案内装置1の仕様に応じて駆動装置6の圧電素子63のベクトルV1,V2が成す角度は、適宜設定される。   A preferable range for the specific inclination angles of the vectors V1 and V2 is 45 ° ± 5 ° with respect to the drive surface 51. In order to increase the holding force of the movable member 3 by the driving device 6, the angle formed by the vectors V <b> 1 and V <b> 2 of the piezoelectric element 63 with respect to the driving piece 61 is narrowed (acute), and the moving amount of the movable member 3 is increased. To increase the angle of the vectors V1 and V2 of the piezoelectric element 63 with respect to the drive piece 61, such as widening (obtuse angle), the vector of the piezoelectric element 63 of the drive device 6 according to the specifications of the guide device 1. The angle formed by V1 and V2 is appropriately set.

駆動装置6は、駆動面51に向けて互いに反対向きに一対配置されている。具体的には、第1の実施形態において、駆動装置6は、図1に示すように可動部材3を移動方向Lに沿う両側から挟むように、駆動片61を互いに向き合わせた状態で可動部材3の移動方向Lと直交する直線上に配置される。また、このように設けられた駆動装置6の組を可動部材3の移動方向Lに沿って3組並べて配置している。   A pair of drive devices 6 are arranged in the opposite directions toward the drive surface 51. Specifically, in the first embodiment, the driving device 6 includes the movable member 61 in a state where the driving pieces 61 face each other so as to sandwich the movable member 3 from both sides along the moving direction L as shown in FIG. 3 are arranged on a straight line perpendicular to the moving direction L. Further, three sets of the drive devices 6 thus provided are arranged side by side along the moving direction L of the movable member 3.

以上のように構成された案内装置1の動作について図3から図5を参照して説明する。案内装置1は、1つの駆動装置6に設けられる2つの圧電素子63のそれぞれに、位相差を有するとともに時間軸方向に反転された波形の電圧変化を印加する。これにより、移動方向Lに沿って駆動面51と交差する面内で駆動片61を回帰運動させる。接触部64が駆動面51に接している間、可動部材3は、駆動装置6に保持されるとともに、一方向に送られる。   The operation of the guide device 1 configured as described above will be described with reference to FIGS. The guide device 1 applies a voltage change of a waveform having a phase difference and inverted in the time axis direction to each of the two piezoelectric elements 63 provided in one drive device 6. As a result, the drive piece 61 is caused to reciprocate in a plane that intersects the drive surface 51 along the movement direction L. While the contact portion 64 is in contact with the drive surface 51, the movable member 3 is held by the drive device 6 and is sent in one direction.

そして、駆動片61の回帰運動の位相は、可動部材3を挟んで一対に設けられる駆動装置6同士で同期させ、可動部材3の移動方向Lに並んで同じ駆動面51に向けられる異なる組の駆動装置6同士でずらす。また、1つの駆動装置6に設けられる2つの圧電素子63に印加される電圧変化を時間軸方向に反転させると、駆動片61の回帰運動の周回方向Cが逆転する。つまり、可動部材3の移動方向Lが逆向きになる。   And the phase of the return motion of the drive piece 61 is synchronized between the drive devices 6 provided in a pair with the movable member 3 interposed therebetween, and is in a different set directed toward the same drive surface 51 along the moving direction L of the movable member 3. Shift between the drive devices 6. Further, when the voltage change applied to the two piezoelectric elements 63 provided in one drive device 6 is reversed in the time axis direction, the revolving motion C of the drive piece 61 is reversed. That is, the moving direction L of the movable member 3 is reversed.

いずれの場合にも、各駆動装置6の圧電素子63は、電圧が印加されることによって伸長する方向のベクトルV1,V2が、駆動面51に対して駆動片61の接触部64を通る垂線Sから傾いている。駆動装置6が駆動片61を駆動面51に押圧しながら可動部材3の移動方向へ駆動片61を移動させる場合、一方の圧電素子63に印加する電圧を徐々に大きくしてこの圧電素子63を伸張させるとともに、他方の圧電素子63に印加されている電圧を徐々に小さくしてこの圧電素子63を収縮させる。この場合、一方の圧電素子63が伸長するよりも速く他方の圧電素子63が収縮すると、駆動片61を駆動面51に十分な力で押圧できなくなる。   In any case, the piezoelectric element 63 of each driving device 6 has a perpendicular line S in which the vectors V1 and V2 extending in the direction in which a voltage is applied pass through the contact portion 64 of the driving piece 61 with respect to the driving surface 51. Leaning from. When the driving device 6 moves the driving piece 61 in the moving direction of the movable member 3 while pressing the driving piece 61 against the driving surface 51, the voltage applied to one piezoelectric element 63 is gradually increased so that the piezoelectric element 63 is moved. At the same time, the piezoelectric element 63 is contracted by gradually decreasing the voltage applied to the other piezoelectric element 63. In this case, if the other piezoelectric element 63 contracts faster than one piezoelectric element 63 expands, the driving piece 61 cannot be pressed against the driving surface 51 with sufficient force.

つまり、駆動装置6は、一方の圧電素子63を他方の圧電素子63が収縮するよりも先行して伸張させることによって、駆動片61を駆動面51に押圧し、可動部材3を移動させている。その結果、それぞれの圧電素子63には、圧縮応力が作用し、引張応力が作用しないので、圧電素子63が破損することを防止することができる。したがって、駆動装置6の信頼性が向上し、延いては、この駆動装置6を備える案内装置1の信頼性が向上する。   That is, the driving device 6 presses the driving piece 61 against the driving surface 51 and moves the movable member 3 by extending one piezoelectric element 63 before the other piezoelectric element 63 contracts. . As a result, compressive stress acts on each piezoelectric element 63 and tensile stress does not act on each piezoelectric element 63, so that the piezoelectric element 63 can be prevented from being damaged. Therefore, the reliability of the drive device 6 is improved, and further, the reliability of the guide device 1 including the drive device 6 is improved.

また、案内装置1は、駆動片61を互いに向き合わせる一対に駆動装置6を備え、これらの駆動片61の回帰運動を同期させているので、可動部材3が駆動片61によって受ける力のうち、移動方向Lを横切る方向の成分は、互いに相殺される。したがって、可動部材3が移動方向Lに沿う方向から捩れる、いわゆるヨーイングを防止することができる。   In addition, the guide device 1 includes a pair of drive devices 6 that face the drive pieces 61 to each other, and synchronizes the return movements of the drive pieces 61, so that the movable member 3 receives the force received by the drive pieces 61. Components in the direction crossing the moving direction L cancel each other. Therefore, so-called yawing in which the movable member 3 is twisted from the direction along the moving direction L can be prevented.

図3から図5に示す案内装置1の状態は、3組の駆動装置6の駆動片61がそれぞれ120°ずつ位相差を有して一方向に回帰運動している状態であり、可動部材3を図の右から左に移動させている状態である。駆動装置6の駆動片61は、回帰運動の周回軌道状の送り始め位置から送り終わり位置まで可動部材3の摩擦部材5に設けられた駆動面51に押圧された状態で移動する。送り終わり位置まで移動した駆動片61は、駆動面51から離されて送り始め位置まで戻される。駆動片61は、送り始め位置まで来ると再び駆動面51に押圧される。   The state of the guide device 1 shown in FIG. 3 to FIG. 5 is a state in which the drive pieces 61 of the three sets of drive devices 6 are each reciprocating in one direction with a phase difference of 120 °. Is moving from right to left in the figure. The drive piece 61 of the drive device 6 moves while being pressed by the drive surface 51 provided on the friction member 5 of the movable member 3 from the feed start position to the feed end position in the orbital shape of the return motion. The drive piece 61 that has moved to the feed end position is separated from the drive surface 51 and returned to the feed start position. When the drive piece 61 reaches the feed start position, the drive piece 61 is pressed against the drive surface 51 again.

図3の状態において、左端の駆動片61は、回帰運動の周回軌道上の送り終わり位置、中央の駆動片61は、回帰運動の周回軌道上の送り始め位置、右端の駆動片61は、回帰運動の周回軌道上の戻り途中にそれぞれある。図4の状態において、各駆動片61は、図3の状態からそれぞれ120°ずつ位相が進んだ状態で、左端の駆動片61は、戻り途中、中央の駆動片61は、送り終わり位置、右端の駆動片61は、送り始め位置にある。図5の状態において、各駆動片61は、図4の状態からさらに120°ずつ位相が進んだ状態で、左端の駆動片61は、送り始め位置、中央の駆動片61は、戻り途中、右端の駆動片61は、送り終わり位置にある。そして、図5の状態から120°ずつ位相が進むと、再び図3の状態となる。このように、案内装置1は、各駆動装置6を制御し、図3の状態から図5の状態まで繰り返させることによって、図3から図5に示すように可動部材3を図の右から左へと移動する。   In the state of FIG. 3, the leftmost drive piece 61 is the feed end position on the orbit of the return motion, the center drive piece 61 is the feed start position on the orbit of the return motion, and the right end drive piece 61 is the return position. Each is in the middle of return on the orbit of motion. In the state of FIG. 4, each drive piece 61 is in a state in which the phase has advanced by 120 ° from the state of FIG. 3, the leftmost drive piece 61 is in the middle of returning, the central drive piece 61 is the feed end position, and the right end The drive piece 61 is in the feed start position. In the state of FIG. 5, each drive piece 61 is in a state in which the phase is further advanced by 120 ° from the state of FIG. 4, the left end drive piece 61 is the feed start position, and the center drive piece 61 is in the middle of return, the right end The drive piece 61 is in the feed end position. Then, when the phase advances by 120 ° from the state of FIG. 5, the state of FIG. 3 is obtained again. In this way, the guide device 1 controls each driving device 6 and repeats from the state of FIG. 3 to the state of FIG. 5, thereby moving the movable member 3 from the right to the left in the drawing as shown in FIGS. 3 to 5. Move to.

また、案内装置1は、可動部材3を移動させる間、いずれかの組の駆動装置6の駆動片61で可動部材3を保持している。つまり、少なくとも2つの駆動装置6の駆動片61によって、可動部材3は、支持される。したがって、基台2に対して可動部材3を安定した状態で移動させることができるとともに、可動部材3の移動量を正確に把握できるため、基台2に対する可動部材3の位置決め精度がよい。   Further, the guide device 1 holds the movable member 3 by the drive piece 61 of any one of the drive devices 6 while the movable member 3 is moved. That is, the movable member 3 is supported by the drive pieces 61 of at least two drive devices 6. Therefore, the movable member 3 can be moved in a stable state relative to the base 2 and the amount of movement of the movable member 3 can be accurately grasped, so that the positioning accuracy of the movable member 3 with respect to the base 2 is good.

さらに、駆動片61の回帰運動の位相について240°以上連続して駆動片61が駆動面51に接しているように、圧電素子63に印加する電圧変化を制御することによって、可動部材3は、常に4か所以上で支持される。つまり、移動方向Lに配置する駆動装置6の個数に応じて等配の位相差を設けて可動部材3を移動させる場合、2組以上の駆動装置6の駆動片61が駆動面51に接しているように各駆動装置6を制御する。言い換えると、駆動片61の回帰運動の位相について、(駆動片61が駆動面51に接触している位相角度)≧〔{360°/(可動部材3の移動方向Lに並ぶ駆動装置6の個数)}×2〕とすることによって、案内装置1は、可動部材3を4か所以上の駆動片61で保持することができる。   Furthermore, by controlling the voltage change applied to the piezoelectric element 63 so that the drive piece 61 is in contact with the drive surface 51 continuously for 240 ° or more with respect to the phase of the return motion of the drive piece 61, the movable member 3 is Always supported at 4 or more locations. That is, when the movable member 3 is moved by providing an equal phase difference according to the number of the drive devices 6 arranged in the movement direction L, the drive pieces 61 of the two or more sets of the drive devices 6 are in contact with the drive surface 51. Each drive device 6 is controlled so as to be In other words, regarding the phase of the return motion of the drive piece 61, (the phase angle at which the drive piece 61 is in contact with the drive surface 51) ≧ [{360 ° / (the number of drive devices 6 arranged in the moving direction L of the movable member 3). )} × 2], the guide device 1 can hold the movable member 3 with four or more driving pieces 61.

案内装置1は、各圧電素子63に印加する周期的な電圧変化の周波数を変化させることによって、可動部材3の移動速度を変化させることができる。可動部材3をゆっくり移動させる場合、案内装置1は、各駆動片61を駆動面51に対してほぼ一定の押付力で接触させつつ可動部材3の移動方向Lにそって移動させる周期的な波形の電圧変化を各圧電素子63に印加する。また、可動部材3を速く移動させる場合、電圧変化の波形の波長を短くすればよい。この場合、波長が短くなると特徴的な波形は、圧電素子63の電圧変化の応答速度によって丸められ、正弦波形状に近似されてくる。そのため、駆動装置6の各圧電素子63に位相差のある正弦波形状の高周波電圧を印加することによって、可動部材3の移動速度を速くすることができる。   The guide device 1 can change the moving speed of the movable member 3 by changing the frequency of the periodic voltage change applied to each piezoelectric element 63. When the movable member 3 is moved slowly, the guide device 1 causes the drive pieces 61 to move along the moving direction L of the movable member 3 while bringing the drive pieces 61 into contact with the drive surface 51 with a substantially constant pressing force. Is applied to each piezoelectric element 63. Further, when the movable member 3 is moved quickly, the wavelength of the voltage change waveform may be shortened. In this case, when the wavelength is shortened, the characteristic waveform is rounded by the response speed of the voltage change of the piezoelectric element 63 and approximated to a sine wave shape. Therefore, the moving speed of the movable member 3 can be increased by applying a sinusoidal high frequency voltage having a phase difference to each piezoelectric element 63 of the driving device 6.

そこで、圧電素子63の固有振動数、もしくは駆動片61が取り付けられた状態の圧電素子63の固有振動数、あるいはこれらの他に弾性ヒンジ62bの固有振動数をも加味した固有振動数を含む帯域に高周波電圧の周波数を設定すると、駆動片61を回帰運動させる駆動力が共振によって補われる。したがって、駆動装置6およびこれを備える案内装置1は、可動部材3を効率良く移動させることができるとともに、可動部材3の移動速度および移動量を安定させやすい。   Therefore, a band including the natural frequency of the piezoelectric element 63, the natural frequency of the piezoelectric element 63 with the driving piece 61 attached thereto, or the natural frequency in addition to the natural frequency of the elastic hinge 62b. If the frequency of the high frequency voltage is set to, the driving force for reciprocating the driving piece 61 is supplemented by resonance. Therefore, the drive device 6 and the guide device 1 including the same can move the movable member 3 efficiently, and can easily stabilize the moving speed and the moving amount of the movable member 3.

基台2に対して可動部材3を駆動片61の接触部64の範囲内で微動させる場合、各駆動装置6の2つの圧電素子63に印加される電圧のバランスを調整し、図6および図7に示すように、駆動片61の接触部64が駆動面51に転接するように駆動片61を回動させる。この場合、各駆動装置6の駆動片61は、それぞれの回動角度を同期させても良いし、図3から図5に示したような位相差を有した状態であっても良い。   When the movable member 3 is finely moved within the range of the contact portion 64 of the driving piece 61 with respect to the base 2, the balance of the voltages applied to the two piezoelectric elements 63 of each driving device 6 is adjusted. 7, the drive piece 61 is rotated so that the contact portion 64 of the drive piece 61 is in rolling contact with the drive surface 51. In this case, the drive piece 61 of each drive device 6 may synchronize each rotation angle, and may be in the state which has a phase difference as shown in FIGS.

なお、第1の実施形態において、案内装置1は、駆動面51に接触部64を互いに反対方向に向ける一対の駆動装置6を可動部材3の移動方向Lに3組配置しており、各駆動装置6は、1つのフレームに1つの駆動片61が取り付けられた構成となっているが、可動部材3の移動方向Lに並ぶ駆動装置6同士のフレーム62を一体に設け、1つのフレームに複数の駆動片61が取り付けられるように設けても良い。この場合、それぞれの駆動片61は、フレームに対して少なくとも2つの圧電素子63によって支持される。   In the first embodiment, the guide device 1 has three pairs of driving devices 6 that are arranged on the driving surface 51 in the moving direction L of the movable member 3 so that the contact portions 64 are directed in opposite directions to each other. The device 6 has a configuration in which one drive piece 61 is attached to one frame. However, a plurality of frames 62 of the drive devices 6 arranged in the moving direction L of the movable member 3 are integrally provided, and a plurality of frames are provided in one frame. The drive piece 61 may be provided so as to be attached. In this case, each driving piece 61 is supported by at least two piezoelectric elements 63 with respect to the frame.

本発明に係る第2の実施形態の案内装置11について、図8を参照して説明する。なお、第1の実施形態における案内装置1と同じ機能を有する構成については、同一の符号を付してその説明を省略する。図8に示す案内装置11は、可動部材3を両外側から挟み込むように配置される一対の駆動装置6を可動部材3の移動方向Lを横切る方向に複数組並べて配置している。具体的には、本実施形態において、駆動装置6は、3組上下に重ね合わせて配置されている。   A guide device 11 according to a second embodiment of the present invention will be described with reference to FIG. In addition, about the structure which has the same function as the guidance apparatus 1 in 1st Embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted. In the guide device 11 shown in FIG. 8, a plurality of pairs of drive devices 6 arranged so as to sandwich the movable member 3 from both outer sides are arranged side by side in a direction crossing the moving direction L of the movable member 3. Specifically, in the present embodiment, the driving device 6 is arranged so as to overlap three sets.

駆動片61を向き合わせている一対の駆動装置6同士は、駆動片61の回帰運動の位相を同期させ、同じ駆動面51に面して配置されて重ね合わされる異なる組の駆動装置6同士は、駆動片61の回帰運動の位相を互いにずらす。図8の状態において、上段の駆動装置6の駆動片61は、回帰運動の周回軌道上の戻り途中、中段の駆動装置6の駆動片61は、回帰運動の周回軌道上の送り終わり位置、下段の駆動装置6の駆動片61は、回帰運動の周回軌道状の送り始め位置にある。   A pair of drive devices 6 facing the drive piece 61 synchronize the phase of the return movement of the drive piece 61, and the different sets of drive devices 6 arranged facing each other and facing the same drive surface 51 are overlapped. The phases of the return movements of the drive piece 61 are shifted from each other. In the state of FIG. 8, the drive piece 61 of the upper drive device 6 is in the middle of return on the orbit of the return motion, while the drive piece 61 of the intermediate drive device 6 is the feed end position on the return orbit of the return motion, the lower step. The driving piece 61 of the driving device 6 is located at the starting position of the circular orbit of the reciprocating motion.

以上のように構成された案内装置11は、第1の実施形態の案内装置1と比較した場合、駆動装置6を配置する方向が異なっているだけで、個々の駆動装置6の制御については同じである。したがって、第2の実施形態の案内装置11は、第1の実施形態の案内装置1と同様に可動部材3を移動させることができる。また、第1の実施形態の案内装置1に比べて、可動部材3の移動方向Lを横切る方向に駆動装置6を配置しているので、駆動装置6の取り付け面積を小さくすることができる。   The guide device 11 configured as described above differs from the guide device 1 of the first embodiment only in the direction in which the drive device 6 is arranged, and the control of each drive device 6 is the same. It is. Therefore, the guide device 11 of the second embodiment can move the movable member 3 in the same manner as the guide device 1 of the first embodiment. Moreover, since the drive device 6 is arranged in a direction crossing the moving direction L of the movable member 3 as compared with the guide device 1 of the first embodiment, the mounting area of the drive device 6 can be reduced.

なお、第1の実施形態の案内装置1および第2の実施形態の案内装置11において、一対の駆動装置6は、駆動片61を向き合わせた状態で可動部材3の移動方向Lに直交する直線上に配置されているが、駆動片61を互いに背けた状態で可動部材3の移動方向Lに直交する直線上に配置されていても良い。後者のように配置することで、駆動装置6は、案内装置1および案内装置11の可動部材3の幅よりも内側、すなわち、可動部材3で覆われる内側に隠されることになるので、駆動装置6が保護されるとともに外観上の見栄えが良くなる。さらに、可動部材3の移動方向Lに並ぶ駆動装置6のフレーム62同士を一体化させるのみならず、駆動片61の回帰運動を同期させている駆動装置6同士のフレーム62も一体かさせることができるようになる。   In the guide device 1 of the first embodiment and the guide device 11 of the second embodiment, the pair of drive devices 6 are straight lines orthogonal to the moving direction L of the movable member 3 with the drive pieces 61 facing each other. Although arranged above, the drive pieces 61 may be arranged on a straight line orthogonal to the moving direction L of the movable member 3 with the drive pieces 61 facing away from each other. By disposing like the latter, the drive device 6 is hidden inside the width of the movable member 3 of the guide device 1 and the guide device 11, that is, hidden inside the movable member 3. 6 is protected and the appearance is improved. Further, not only the frames 62 of the drive devices 6 arranged in the moving direction L of the movable member 3 are integrated, but also the frames 62 of the drive devices 6 that synchronize the return movement of the drive pieces 61 are integrated. become able to.

また、第1の実施形態の案内装置1は、駆動装置6を可動部材3の移動方向Lに配置し、第2の実施形態の案内装置11は、駆動装置6を可動部材3の移動方向Lを横切る方向に配置しているが、これら両方の形態を取り入れて、可動部材3の移動方向Lおよび移動方向Lを横切る方向に駆動装置6を複数列複数段に配置すると、可動部材3をより大きな駆動力で移動させることができる。   Further, the guide device 1 of the first embodiment arranges the driving device 6 in the moving direction L of the movable member 3, and the guiding device 11 of the second embodiment places the driving device 6 in the moving direction L of the movable member 3. However, if both of these forms are adopted and the drive devices 6 are arranged in multiple rows and multiple stages in the direction crossing the moving direction L of the movable member 3 and the moving direction L, the movable member 3 is more It can be moved with a large driving force.

本発明に係る第3の実施形態の回転装置101について、図9および図10を参照して説明する。なお、第1の実施形態における案内装置1および第2の実施形態における案内装置11と同じ機能を有する構成については、同一の符号を付してその説明を省略する。   A rotating device 101 according to a third embodiment of the present invention will be described with reference to FIGS. 9 and 10. In addition, about the structure which has the same function as the guidance apparatus 1 in 1st Embodiment, and the guidance apparatus 11 in 2nd Embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

図9に示す回転装置101は、可動部材103が円板状に形成されており、第1の実施形態の案内装置1および第2の実施形態の案内装置11における案内機構4の代わりに、転がり軸受104を備えている。転がり軸受104は、図10に示すように第1部材141と第2部材142とこれらの間でそれぞれに転接する複数の転動体143とを備えている。これにより、可動部材103は、基台2に対して回転する。第1部材141は、基台2に固定され、第2部材142は、可動部材103の外周縁131の内側に固定される。摩擦部材105は、可動部材103の外周縁131の外側に回転方向Mに沿って同心に設けられている。   In the rotating device 101 shown in FIG. 9, the movable member 103 is formed in a disk shape, and instead of the guiding mechanism 4 in the guiding device 1 of the first embodiment and the guiding device 11 of the second embodiment, it rolls. A bearing 104 is provided. As shown in FIG. 10, the rolling bearing 104 includes a first member 141, a second member 142, and a plurality of rolling elements 143 that are in rolling contact with each other. Thereby, the movable member 103 rotates with respect to the base 2. The first member 141 is fixed to the base 2, and the second member 142 is fixed inside the outer peripheral edge 131 of the movable member 103. The friction member 105 is provided concentrically along the rotation direction M on the outer side of the outer peripheral edge 131 of the movable member 103.

駆動装置106は、可動部材103の周りに同心円上にかつ等配に配置されており、摩擦部材105の駆動面151に駆動片61の接触部64を向けている。本実施形態においては、6つの駆動装置106が、駆動片61の接触部64を可動部材103の回転中心線Tに向けた状態で、可動部材103の回転中心線Tについて60°ずつの等配に配置されている。   The drive devices 106 are arranged concentrically and equally around the movable member 103, and the contact portion 64 of the drive piece 61 is directed to the drive surface 151 of the friction member 105. In the present embodiment, the six driving devices 106 are equally spaced by 60 ° with respect to the rotation center line T of the movable member 103 in a state where the contact portion 64 of the driving piece 61 faces the rotation center line T of the movable member 103. Is arranged.

駆動片61は、基台2に固定されたフレーム162に対して圧電素子63によって取り付けられている。フレーム162は、可動部材103の外径に沿って扇形に湾曲している。圧電素子63は、電圧が印加されて伸長する方向のベクトルV1,V2が駆動片61を通って駆動面151を斜めに横切る向きに取り付けられている。具体的には、駆動片61の接触部64を通って駆動面151に対して垂直な中立面A、すなわち可動部材103の回転中心線Tが通る面について、伸長する方向のベクトルV1,V2が鏡像の位置関係に傾斜する状態に配置される。   The driving piece 61 is attached to the frame 162 fixed to the base 2 by a piezoelectric element 63. The frame 162 is curved in a sector shape along the outer diameter of the movable member 103. The piezoelectric element 63 is attached in such a direction that vectors V1 and V2 extending in a direction in which a voltage is applied pass through the driving piece 61 and obliquely cross the driving surface 151. Specifically, the vectors V1 and V2 in the extending direction of the neutral plane A perpendicular to the drive surface 151 through the contact portion 64 of the drive piece 61, that is, the plane through which the rotation center line T of the movable member 103 passes. Are inclined in a mirror image positional relationship.

回転装置101は、回転中心線Tに対して対称の位置に配置される駆動装置106同士を一対にして駆動片61の回帰運動の位相を同期させ、回転中心線Tに対して回転位置の異なる駆動装置106の組同士について駆動片61の回帰運動の位相をずらしている。第3の実施形態における回転装置101の場合、6つの駆動装置106が等配に配置されているので、直径方向に配置される2つの駆動装置106を一対として、3組の駆動装置106が、それぞれの駆動片61の回帰運動について120°ずつ位相をずらして制御される。そして、一対の駆動装置106同士の駆動片61が回帰運動する方向は、回転中心線Tに対して回転対称の位置関係となる。   The rotation device 101 makes a pair of drive devices 106 arranged at a symmetrical position with respect to the rotation center line T to synchronize the phase of the return motion of the drive piece 61, and the rotation position differs with respect to the rotation center line T. The phase of the return motion of the drive piece 61 is shifted between the sets of the drive devices 106. In the case of the rotation device 101 according to the third embodiment, since the six drive devices 106 are arranged at equal intervals, the two drive devices 106 arranged in the diametric direction are used as a pair, and the three sets of drive devices 106 are: The return motion of each drive piece 61 is controlled by shifting the phase by 120 °. The direction in which the drive pieces 61 of the pair of drive devices 106 reciprocate is rotationally symmetric with respect to the rotation center line T.

1つの駆動装置106の各圧電素子63に印加する電圧は、第1の実施形態の駆動装置6と同様に印加される。この場合、第3の実施形態において、駆動面151が可動部材103の径に応じた曲率を有しているので、第1の実施形態で各圧電素子63に印加される電圧変化の波形とは、多少異なるが、駆動片61を通って駆動面151に垂直な中立面Aに対して鏡像の位置関係に配置される圧電素子63同士に印加される電圧変化の波形は、時間軸方向について互いに鏡像の波形となる。そして、各圧電素子63に印加される電圧変化の波形を時間軸方向について反転することによって、駆動片61の回帰運動の方向が逆転し、その結果、可動部材103の回転方向Mが逆転する。   The voltage applied to each piezoelectric element 63 of one drive device 106 is applied in the same manner as the drive device 6 of the first embodiment. In this case, in the third embodiment, since the driving surface 151 has a curvature corresponding to the diameter of the movable member 103, what is the waveform of the voltage change applied to each piezoelectric element 63 in the first embodiment? Although slightly different, the waveform of the voltage change applied between the piezoelectric elements 63 arranged in a mirror image positional relationship with respect to the neutral surface A perpendicular to the driving surface 151 through the driving piece 61 is the time axis direction. The waveforms are mirror images of each other. Then, by reversing the waveform of the voltage change applied to each piezoelectric element 63 in the time axis direction, the direction of the return motion of the drive piece 61 is reversed, and as a result, the rotation direction M of the movable member 103 is reversed.

また、第3の実施形態の回転装置101は、一対の駆動装置106の駆動片61が回帰運動する方向が同じ方向であることを除いて、第1の実施形態の案内装置1および第2の実施形態の案内装置11と同様に、異なる組同士の駆動装置106にそれぞれ位相のずれた高周波電圧を印加することによって、可動部材103を安定した速度で回転させることができる。   Further, the rotating device 101 of the third embodiment is the same as the guiding device 1 and the second device of the first embodiment, except that the directions in which the driving pieces 61 of the pair of driving devices 106 return are the same. Similar to the guide device 11 of the embodiment, the movable member 103 can be rotated at a stable speed by applying high-frequency voltages having different phases to the driving devices 106 of different sets.

このように各駆動装置106を制御することによって、可動部材103が直径方向に位置する一対の駆動装置106によって支持されるので、一対の駆動装置106の駆動片61から可動部材103に作用する力のうち、半径方向の成分が相殺される。したがって、可動部材103が偏心してしまうことを防止することができ、回転中心線Tに対する可動部材103の位置決め精度が向上する。   By controlling each drive device 106 in this manner, the movable member 103 is supported by the pair of drive devices 106 positioned in the diametrical direction, so that the force acting on the movable member 103 from the drive piece 61 of the pair of drive devices 106. Of these, the radial component is canceled out. Therefore, the movable member 103 can be prevented from being eccentric, and the positioning accuracy of the movable member 103 with respect to the rotation center line T is improved.

なお、第3の実施形態の回転装置101において、駆動片61の回帰運動の位相を同期させる駆動装置106は、回転中心線Tに対して対称の位置に配置する以外に、回転中心線Tに対して120°ずつ回転位置の異なる駆動装置106同士を1セットにしてその駆動片61の回帰運動の位相を同期させても良い。このようにすることによって、可動部材103は、3方向から均等に支持されるようになるので、直径方向に支持するよりも偏心に対する位置決め精度が向上する。   In the rotation device 101 of the third embodiment, the drive device 106 that synchronizes the phase of the return motion of the drive piece 61 is arranged at the rotation center line T in addition to being arranged at a symmetric position with respect to the rotation center line T. On the other hand, the drive devices 106 having different rotational positions by 120 ° may be set as one set to synchronize the phase of the return motion of the drive piece 61. By doing in this way, since the movable member 103 comes to be supported equally from 3 directions, the positioning accuracy with respect to eccentricity improves rather than supporting in the diameter direction.

また、第3の実施形態の回転装置101は、駆動装置106を可動部材103の回転中心線Tに対して同心円上に等配に配置しているが、可動部材103の回転中心線Tに対して同心円上に配置される摩擦部材105の駆動面151を垂直に横切る同一線上に互いに反対向きに一対に配置される少なくとも2組の駆動装置106を備えれば、どちらか一方の組の一対の駆動装置106によって可動部材103の回転中にも可動部材103を保持しておくことができ、可動部材103の位置決め精度や回転速度を安定させることができる。   Further, in the rotation device 101 of the third embodiment, the driving device 106 is arranged in a concentric manner on the concentric circle with respect to the rotation center line T of the movable member 103. If at least two sets of drive devices 106 arranged in a pair opposite to each other are provided on the same line perpendicularly across the drive surface 151 of the friction member 105 arranged concentrically, The movable member 103 can be held while the movable member 103 is rotated by the driving device 106, and the positioning accuracy and rotational speed of the movable member 103 can be stabilized.

したがって、摩擦部材105を可動部材103の外周縁131から半径方向に広がる円板状に形成し、摩擦部材105を可動部材の回転中心線Tに沿う方向に互いに駆動片61を向き合わせた状態、すなわち、円板状に設けた摩擦部材105を板厚方向に駆動片61で挟む状態に駆動装置106を配置しても良い。または、可動部材103の内周に沿って摩擦部材105を設け、この摩擦部材105の内周面に形成される駆動面151に駆動片61を向けて同じ直径上に配置される駆動装置106を一対として異なる直径上に少なくとも2組の駆動装置106を配置しても良い。   Therefore, the friction member 105 is formed in a disk shape extending radially from the outer peripheral edge 131 of the movable member 103, and the friction member 105 faces the drive pieces 61 in the direction along the rotation center line T of the movable member. That is, the driving device 106 may be arranged in a state where the friction member 105 provided in a disk shape is sandwiched between the driving pieces 61 in the plate thickness direction. Alternatively, the friction member 105 is provided along the inner periphery of the movable member 103, and the driving device 106 disposed on the same diameter with the driving piece 61 facing the driving surface 151 formed on the inner peripheral surface of the friction member 105. As a pair, at least two sets of driving devices 106 may be arranged on different diameters.

なお、第1から第3の実施形態の図において、電圧を印加されて伸長および収縮する圧電素子63の長さや、回帰運動する駆動片61の位置は、説明を分かりやすくするために誇張して描いている。   In the drawings of the first to third embodiments, the length of the piezoelectric element 63 that expands and contracts when a voltage is applied and the position of the drive piece 61 that makes a reciprocating motion are exaggerated for easy understanding. I'm drawing.

本発明に係る第4の実施形態の駆動装置206について、図11を参照して説明する。なお、第1から第3の実施形態において説明した駆動装置6,106と同じ機能を有する構成については、同一の符号を付してその説明を省略する。   A drive device 206 according to a fourth embodiment of the present invention will be described with reference to FIG. In addition, about the structure which has the same function as the drive devices 6 and 106 demonstrated in the 1st-3rd embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

図11に示す駆動装置206は、駆動片61とフレーム262との間に4つの圧電素子63が取り付けられている。圧電素子63は、電圧が印加されて伸長する方向のベクトルV1,V2が、駆動片61を通って駆動面51を斜めに横切る向きに配置される。そして、4つの圧電素子63のうちの2つずつをそれぞれ平行に配置される対にし、この圧電素子63の対を駆動片61の接触部64を通って可動部材の主移動方向L1を垂直に横切る中立面Aに対して鏡像の位置関係に配置している。駆動片61の接触部64は、可動部材の主移動方向L1およびこれを横切る副移動方向L2のそれぞれに曲率を有した曲面に形成されている。フレーム262は、駆動片61を取り付ける凹部62aが駆動面51に向けて形成され、圧電素子63が伸長する方向の延長線上の位置にスリット状の弾性ヒンジ62bが形成されている。第4の実施形態において、弾性ヒンジ62bは、駆動片61の駆動面51に対する押付力(予圧)を調整し、可動部材を主移動方向L1に沿って移動させる場合に圧電素子63の取付部に生じる歪のほか、副移動方向L2に沿って移動させる場合に圧電素子63の取付部に生じる歪も緩和させる働きをする。   In the drive device 206 shown in FIG. 11, four piezoelectric elements 63 are attached between the drive piece 61 and the frame 262. The piezoelectric element 63 is arranged in a direction in which vectors V1 and V2 extending in a direction in which a voltage is applied pass obliquely across the drive surface 51 through the drive piece 61. Two of the four piezoelectric elements 63 are paired in parallel, and the pair of piezoelectric elements 63 passes through the contact portion 64 of the drive piece 61 so that the main movement direction L1 of the movable member is perpendicular. They are arranged in a mirror image positional relationship with respect to the neutral plane A that crosses. The contact portion 64 of the drive piece 61 is formed in a curved surface having a curvature in each of the main movement direction L1 of the movable member and the sub movement direction L2 crossing the main movement direction L1. In the frame 262, a recess 62a for attaching the drive piece 61 is formed toward the drive surface 51, and a slit-like elastic hinge 62b is formed at a position on an extension line in the direction in which the piezoelectric element 63 extends. In the fourth embodiment, the elastic hinge 62b adjusts the pressing force (preload) against the drive surface 51 of the drive piece 61, and moves the movable member along the main movement direction L1 to the attachment portion of the piezoelectric element 63. In addition to the strain that occurs, it also acts to alleviate strain that occurs in the mounting portion of the piezoelectric element 63 when moving along the sub-movement direction L2.

以上のように構成された駆動装置206は、対になっている圧電素子63同士に印加する電圧変化の位相を同期させ、異なる対の圧電素子63同士に印加する電圧変化の位相をずらすことで、第1および第2の実施形態の駆動装置6と同様に、可動部材を主移動方向L1に移動させる。また、対になっている圧電素子63同士に印加する電圧変化の位相をずらし、中立面Aに対して鏡像の位置関係の異なる対の圧電素子63同士に印加する電圧変化の位相を同期させると、可動部材は、副移動方向L2に移動される。   The drive device 206 configured as described above synchronizes the phase of the voltage change applied to the paired piezoelectric elements 63 and shifts the phase of the voltage change applied to the different pairs of piezoelectric elements 63. Similarly to the drive device 6 of the first and second embodiments, the movable member is moved in the main movement direction L1. Further, the phase of the voltage change applied to the pair of piezoelectric elements 63 is shifted, and the phase of the voltage change applied to the pair of piezoelectric elements 63 having a different mirror image positional relationship with respect to the neutral plane A is synchronized. Then, the movable member is moved in the sub moving direction L2.

このように、第4の実施形態の駆動装置206は、第1および第2の実施形態の駆動装置6と同じ機能を有するだけでなく、4つの圧電素子63に印加する電圧変化の位相を適宜制御することにより、可動部材を主移動方向L1と副移動方向L2とを組み合わせた斜め方向にも移動させることができる。   Thus, the drive device 206 of the fourth embodiment not only has the same function as the drive device 6 of the first and second embodiments, but also appropriately changes the phase of the voltage change applied to the four piezoelectric elements 63. By controlling, the movable member can also be moved in an oblique direction in which the main movement direction L1 and the sub movement direction L2 are combined.

本発明に係る第5の実施形態の駆動装置について、図12を参照して説明する。なお、第1から第4の実施形態における駆動装置6,106,206と同じ機能を有する構成については、同一の符号を付してその説明を省略する。   A drive device according to a fifth embodiment of the present invention will be described with reference to FIG. In addition, about the structure which has the same function as the drive device 6,106,206 in 1st-4th embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

図12に示す駆動装置306は、駆動片61とフレーム362との間に3つの圧電素子63が取り付けられている。各圧電素子63は、電圧が印加されて伸長する方向のベクトルV1,V2,V3が駆動片61を通って駆動面51を斜めに横切る方向に配置されている。より詳しく説明すると、各圧電素子63の伸長方向のベクトルV1,V2,V3は、駆動面51から駆動片61の接触部64を通る垂線Sに対して回転対称の位置関係に傾斜した状態に設けられ、かつ、垂線Sに対して等配に配置されている。   In the driving device 306 shown in FIG. 12, three piezoelectric elements 63 are attached between the driving piece 61 and the frame 362. Each piezoelectric element 63 is arranged in a direction in which vectors V1, V2, and V3 extending in a direction in which a voltage is applied pass through the driving piece 61 and obliquely cross the driving surface 51. More specifically, the extension vectors V1, V2, and V3 of the piezoelectric elements 63 are provided in a state of being inclined in a rotationally symmetric positional relationship with respect to the normal S passing through the contact portion 64 of the drive piece 61 from the drive surface 51. And arranged equidistantly with respect to the perpendicular S.

この場合、ベクトルV1,V2,V3と垂線Sとの成す角度は、45°±5°の範囲に設けることが好ましい。ただし、駆動装置306による可動部材の保持力を高めたい場合は、ベクトルV1,V2,V3と垂線Sとが成す角度を狭く(鋭角に)し、可動部材の移動量を大きくしたい場合は、ベクトルV1,V2,V3と垂線Sとが成す角度を広く(鈍角に)するなど、案内装置や回転装置、あるいは可動部材を2軸方向に移動させるX−Yテーブルなどの仕様に応じて、ベクトルV1,V2,V3と垂線Sとが成す角度は、適宜設定される。   In this case, it is preferable that the angle formed by the vectors V1, V2, V3 and the perpendicular line S is in a range of 45 ° ± 5 °. However, when it is desired to increase the holding force of the movable member by the driving device 306, the angle formed by the vectors V1, V2, and V3 and the perpendicular S is narrowed (acute), and the amount of movement of the movable member is increased. The vector V1 depends on the specifications of the XY table or the like that moves the movable member in two axes, such as widening (obtuse) the angle formed by V1, V2, V3 and the perpendicular S. , V2, V3 and the perpendicular line S are appropriately set.

また、駆動片61の接触部64は、球面状に形成されている。フレーム362は、駆動片61が取り付けられる凹部62aが駆動面51に向けて形成され、各圧電素子63が取り付けられてこれら圧電素子63の伸長方向の延長上となる部分にスリット状の弾性ヒンジ62bが形成されている。また、フレーム362は、圧電素子63の数に起因するとともに駆動装置306を複数並べて配置することを考慮して、第5の実施形態では六角形に形成されている。圧電素子63は、3つであるので、フレーム362の外形は、三角形でも良い。また、圧電素子63の数によらず、複数並べて配置しやすいように四角形にしても良い。   The contact portion 64 of the drive piece 61 is formed in a spherical shape. In the frame 362, a recess 62a to which the drive piece 61 is attached is formed toward the drive surface 51, and a slit-like elastic hinge 62b is provided at a portion on which each piezoelectric element 63 is attached and extends in the extension direction of the piezoelectric element 63. Is formed. The frame 362 is formed in a hexagonal shape in the fifth embodiment in consideration of the number of piezoelectric elements 63 and considering that a plurality of drive devices 306 are arranged side by side. Since there are three piezoelectric elements 63, the outer shape of the frame 362 may be a triangle. Further, a quadrangular shape may be used so that a plurality of the piezoelectric elements 63 can be easily arranged side by side.

以上のように構成された駆動装置306は、さらに制御部307を備え、各圧電素子63に位相と振幅と波形とがそれぞれ個別に設定された電圧変化が印加される。これにより、駆動片61は、可動部材をその駆動面51に沿って互いに交差する2方向に移動させることができる。したがって、この駆動装置306は、平坦な駆動面51に沿って多数個並べて直交2軸座標系で位置決め制御する装置、いわゆるX−Yテーブル、または、円筒状の駆動面に沿って多数個並べて円筒座標系で位置決め制御する装置、あるいは、球面状の駆動面に沿って多数個並べて極座標系で位置決め制御する装置の駆動源として使用することができる。また、平坦な駆動面51に沿って多数個の駆動装置306を並べている場合、直交2軸座標系に沿った制御以外に、駆動面51の任意の位置にこの駆動面51に対して垂直に設定される軸を中心に可動部材を旋回させることもできる。   The drive device 306 configured as described above further includes a control unit 307, and a voltage change in which the phase, amplitude, and waveform are individually set is applied to each piezoelectric element 63. Accordingly, the drive piece 61 can move the movable member along the drive surface 51 in two directions intersecting each other. Therefore, a large number of drive devices 306 are arranged along the flat drive surface 51 and are positioned and controlled by an orthogonal biaxial coordinate system, a so-called XY table, or a large number of drive devices 306 are arranged along a cylindrical drive surface. It can be used as a drive source for a device that performs positioning control in a coordinate system or a device that performs positioning control in a polar coordinate system by arranging a plurality of devices along a spherical drive surface. In addition, when a large number of drive devices 306 are arranged along the flat drive surface 51, in addition to the control along the orthogonal biaxial coordinate system, an arbitrary position of the drive surface 51 is perpendicular to the drive surface 51. The movable member can also be turned around a set axis.

本発明に係る第1の実施形態の案内装置を示す斜視図。The perspective view which shows the guide apparatus of 1st Embodiment which concerns on this invention. 図1の駆動装置を拡大して示す平面図。The top view which expands and shows the drive device of FIG. 図1の案内装置の駆動状態を示す平面図。The top view which shows the drive state of the guide apparatus of FIG. 図1の案内装置の駆動状態を示す平面図。The top view which shows the drive state of the guide apparatus of FIG. 図1の案内装置の駆動状態を示す平面図。The top view which shows the drive state of the guide apparatus of FIG. 図1の駆動装置によって可動部材の位置を微調整する状態を示す平面図。The top view which shows the state which finely adjusts the position of a movable member with the drive device of FIG. 図1の駆動装置によって可動部材の位置を微調整する状態を示す平面図。The top view which shows the state which finely adjusts the position of a movable member with the drive device of FIG. 本発明に係る第2の実施形態の案内装置を示す分解斜視図。The disassembled perspective view which shows the guide apparatus of 2nd Embodiment which concerns on this invention. 本発明に係る第3の実施形態の回転装置を示す平面図。The top view which shows the rotating apparatus of 3rd Embodiment which concerns on this invention. 図9中のF10−F10に沿って回転装置を示す断面図。Sectional drawing which shows a rotation apparatus along F10-F10 in FIG. 本発明に係る第4の実施形態の駆動装置を示す斜視図。The perspective view which shows the drive device of 4th Embodiment which concerns on this invention. 本発明に係る第5の実施形態の駆動装置を示す斜視図。The perspective view which shows the drive device of 5th Embodiment which concerns on this invention.

符号の説明Explanation of symbols

1…案内装置、2…基台、3…可動部材、31…側部、4…案内機構、41…第1部材、42…第2部材、43…転動体、5…摩擦部材、51…駆動面、6…駆動装置、61…駆動片、62…フレーム、63…圧電素子、64…接触部、11…案内装置、101…回転装置、103…可動部材、131…外周縁、104…軸受、141…第1部材、142…第2部材、143…転動体、105…摩擦部材、151…駆動面、106…駆動装置、162…フレーム、206…駆動装置、262…フレーム、306…駆動装置、362…フレーム、307…制御部、L…移動方向、V1,V2,V3…ベクトル、S…垂線、A…中立面、C…周回方向、M…回転方向、T…回転中心線。   DESCRIPTION OF SYMBOLS 1 ... Guide apparatus, 2 ... Base, 3 ... Movable member, 31 ... Side part, 4 ... Guide mechanism, 41 ... 1st member, 42 ... 2nd member, 43 ... Rolling element, 5 ... Friction member, 51 ... Drive 6, driving device, 61, driving piece, 62, frame, 63, piezoelectric element, 64, contact portion, 11, guiding device, 101, rotating device, 103, movable member, 131, outer peripheral edge, 104, bearing, 141 ... first member, 142 ... second member, 143 ... rolling element, 105 ... friction member, 151 ... drive surface, 106 ... drive device, 162 ... frame, 206 ... drive device, 262 ... frame, 306 ... drive device, 362: Frame, 307: Control unit, L: Movement direction, V1, V2, V3 ... Vector, S ... Vertical, A ... Neutral plane, C ... Circumference direction, M ... Rotation direction, T ... Rotation center line.

Claims (21)

基台に対して移動する可動部材の移動方向に沿って前記可動部材に設けられる駆動面に向けて接触部が設けられる駆動片と、
基台に固定されるフレームと、
電圧が印加されて伸長する方向のベクトルが前記駆動片を通って前記駆動面を斜めに横切る向きに前記駆動片と前記フレームとの間に取り付けられる少なくとも2つの圧電素子と
を備えることを特徴とする駆動装置。
A drive piece in which a contact portion is provided toward a drive surface provided in the movable member along a moving direction of the movable member that moves relative to the base;
A frame fixed to the base,
A vector extending in a direction to which a voltage is applied includes at least two piezoelectric elements attached between the driving piece and the frame in a direction passing through the driving piece and obliquely crossing the driving surface. To drive.
基台に対して移動する可動部材の移動方向に沿って前記可動部材に平行に設けられる一対の駆動面に接触部を互いに反対方向に向けて一対に配置される少なくとも1組の駆動片と、
前記基台に固定されて前記駆動面のそれぞれに面して一対に配置される少なくとも1組のフレームと、
電圧が印加されて伸長される方向のベクトルが前記駆動片を通って前記駆動面を斜めに横切る向きに前記駆動片と前記フレームとの間にそれぞれの前記駆動片毎に少なくとも2つずつ取り付けられる圧電素子と
を備えることを特徴とする駆動装置。
At least one pair of driving pieces arranged in a pair with the contact portions facing in opposite directions to a pair of driving surfaces provided in parallel to the movable member along the moving direction of the movable member moving relative to the base;
At least one pair of frames fixed to the base and arranged in pairs facing each of the drive surfaces;
At least two vectors for each drive piece are attached between the drive piece and the frame in a direction that obliquely crosses the drive surface through the drive piece and is extended by applying a voltage. A drive device comprising: a piezoelectric element.
一対の前記駆動片が、前記可動部材の移動方向に少なくとも2組並べて配置され、一対の前記駆動片同士は、前記駆動面に対して互いに鏡像の位置関係で作動し、前記移動方向に並ぶ駆動片同士は、互いに位相のずれた位置関係で作動することを特徴とする請求項2に記載の駆動装置。   A pair of the drive pieces are arranged side by side in the moving direction of the movable member, and the pair of drive pieces operate in a mirror image positional relationship with respect to the drive surface and are arranged in the moving direction. The drive device according to claim 2, wherein the pieces operate in a positional relationship with a phase shift from each other. 前記圧電素子は、前記駆動面から前記駆動片の前記接触部を通る垂線に対して回転対称の位置関係に傾斜した状態に、前記ベクトルが設けられることを特徴とする請求項1から請求項3のいずれか1項に記載の駆動装置。   The vector is provided in a state in which the piezoelectric element is inclined in a rotationally symmetric positional relationship with respect to a normal passing through the contact portion of the driving piece from the driving surface. The driving device according to any one of the above. 前記圧電素子は、前記駆動片を通って前記移動方向を垂直に横切る中立面を基準とする鏡像の位置関係に傾斜した状態に前記ベクトルが配置されることを特徴とする請求項1から請求項3に記載の駆動装置。   2. The vector according to claim 1, wherein the piezoelectric element is arranged such that the vector is inclined in a positional relationship of a mirror image with respect to a neutral plane passing through the driving piece and perpendicularly crossing the moving direction. Item 4. The driving device according to Item 3. 前記圧電素子は、前記ベクトルが前記駆動面に対して45°±5°の角度の範囲に設けられることを特徴とする請求項1から請求項5のいずれか1項に記載の駆動装置。   6. The driving device according to claim 1, wherein the piezoelectric element has the vector provided in an angle range of 45 ° ± 5 ° with respect to the driving surface. 7. 少なくとも2つの前記圧電素子のそれぞれに異なる電圧変化を印加することによって前記駆動片を回帰運動させることを特徴とする請求項1から請求項6のいずれか1項に記載の駆動装置。   The drive device according to any one of claims 1 to 6, wherein the drive piece is caused to reciprocate by applying different voltage changes to each of the at least two piezoelectric elements. 少なくとも2つの前記圧電素子のそれぞれに位相差を有する高周波電圧を印加することによって前記駆動片を周期的に回帰運動させることを特徴とする請求項1から請求項6のいずれか1項に記載の駆動装置。   The drive piece is periodically reciprocated by applying a high-frequency voltage having a phase difference to each of at least two of the piezoelectric elements. Drive device. 前記高周波電圧の周波数は、圧電素子の固有振動数を含む帯域に設定することを特徴とする請求項8に記載の駆動装置。   The driving device according to claim 8, wherein the frequency of the high-frequency voltage is set in a band including a natural frequency of the piezoelectric element. 少なくとも3つの前記圧電素子に位相と振幅と波形とがそれぞれ個別に設定される電圧変化を印加して前記駆動片を変位させ、前記可動部材を前記駆動面に沿って互いに交差する少なくとも2方向に移動させる制御部を備えることを特徴とする請求項1から請求項8のいずれか1項に記載の駆動装置。   Applying voltage changes in which phase, amplitude, and waveform are individually set to at least three of the piezoelectric elements to displace the driving piece, and moving the movable member in at least two directions intersecting each other along the driving surface The drive device according to any one of claims 1 to 8, further comprising a control unit to be moved. 基台と、
前記基台に対して相対的に移動する可動部材と、
相対的に移動する第1部材および第2部材とこれらの間でそれぞれに転接する複数の転動体とを具備して前記第1部材と前記第2部材との一方が基台に固定されるとともに他方が前記可動部材に取り付けられる案内機構と、
前記可動部材の移動方向に沿って平行に設けられる少なくとも2つの摩擦部材と、
前記移動方向に沿う前記摩擦部材の駆動面に向けて互いに反対向きに一対に配置される少なくとも2組の駆動装置とを備え、
それぞれの前記駆動装置が、
前記駆動面に向けて接触部が設けられる駆動片と、前記基台に固定されるフレームと、電圧が印加されて伸長する方向のベクトルが前記駆動片を通って前記駆動面を斜めに横切る向きに前記駆動片と前記フレームとの間に取り付けられる少なくとも2つの圧電素子とを有し、
少なくとも2つの前記圧電素子にそれぞれ位相差を有する高周波電圧を印加することによって前記駆動片を周期的に回帰運動させ、かつ、一対の前記駆動装置に設けられる前記駆動片の回帰運動の位相を同期させるとともに同じ前記駆動面に向けられる異なる組同士の前記駆動装置に設けられる前記駆動片の回帰運動の位相をずらす制御によって、前記可動部材を前記移動方向に沿って一方に移動させ、前記回帰運動の周回方向を反転して前記制御を行なうことで前記可動部材を前記移動方向に沿って他方に移動させることを特徴とする案内装置。
The base,
A movable member that moves relative to the base;
The first member and the second member that move relative to each other and a plurality of rolling elements that are in rolling contact with each other, and one of the first member and the second member is fixed to the base A guide mechanism with the other attached to the movable member;
At least two friction members provided in parallel along the moving direction of the movable member;
And at least two sets of driving devices arranged in a pair opposite to each other toward the driving surface of the friction member along the moving direction,
Each said driving device is
A direction in which a driving piece provided with a contact portion toward the driving surface, a frame fixed to the base, and a vector extending in a direction in which a voltage is applied crosses the driving surface diagonally through the driving piece. And at least two piezoelectric elements attached between the drive piece and the frame,
By applying a high frequency voltage having a phase difference to at least two of the piezoelectric elements, the drive piece is periodically regressed, and the phases of the return movements of the drive pieces provided in the pair of drive devices are synchronized. And moving the movable member in one direction along the moving direction by controlling to shift the phase of the return movement of the drive pieces provided in the drive devices of different sets directed to the same drive surface, and the return movement The guide device is characterized in that the movable member is moved to the other side in the moving direction by performing the control by reversing the direction of rotation.
前記駆動面は、前記可動部材の移動方向に沿って平行に設けられ、一対の前記駆動装置は、前記駆動片を向き合わせた状態で前記移動方向と直交する直線上に配置されることを特徴とする請求項11に記載の案内装置。   The driving surface is provided in parallel along the moving direction of the movable member, and the pair of driving devices are arranged on a straight line orthogonal to the moving direction with the driving pieces facing each other. The guide device according to claim 11. 前記駆動面は、前記可動部材の移動方向に沿って平行に設けられ、一対の前記駆動装置は、前記駆動片を互いに背けた状態で前記移動方向と直交する直線上に配置されることを特徴とする請求項11または請求項12に記載の案内装置。   The driving surface is provided in parallel along the moving direction of the movable member, and the pair of driving devices are arranged on a straight line perpendicular to the moving direction with the driving pieces facing away from each other. The guide device according to claim 11 or 12. 前記駆動装置が、前記移動方向に複数組並べて配置されることを特徴とする請求項11から請求項13のいずれか1項に記載の案内装置。   The guide device according to any one of claims 11 to 13, wherein a plurality of sets of the drive devices are arranged in the moving direction. 前記駆動装置が、前記移動方向を横切る方向に複数組並べて配置されることを特徴とする請求項11から請求項14のいずれか1項に記載の案内装置。   The guide device according to any one of claims 11 to 14, wherein a plurality of sets of the drive devices are arranged in a direction crossing the moving direction. 基台と、
前記基台に対して相対的に回転する可動部材と、
相対的に回転する第1部材および第2部材とこれらの間でそれぞれに転接する複数の転動体とを具備して前記第1部材と前記第2部材との一方が基台に固定されるとともに他方が前記可動部材に取り付けられる転がり軸受と、
前記可動部材の回転中心線に対して同心に設けられる摩擦部材と、
前記摩擦部材の回転方向に沿って形成される駆動面を垂直に横切る同一線上に互いに反対向きに一対に配置される少なくとも2組の駆動装置とを備え、
それぞれの前記駆動装置が、
前記駆動面に向けて接触部が設けられる駆動片と、前記基台に固定されるフレームと、電圧が印加されて伸長する方向のベクトルが前記駆動片を通って前記駆動面を斜めに横切る向きに前記駆動片と前記フレームとの間に取り付けられる少なくとも2つの圧電素子とを有し、
少なくとも2つの前記圧電素子にそれぞれ位相差を有する高周波電圧を印加することによって前記駆動片を周期的に回帰運動させ、かつ、一対の前記駆動装置に設けられる前記駆動片の回帰運動の位相を同期させるとともに同じ前記駆動面に向けられる異なる組同士の前記駆動装置に設けられる前記駆動片の回帰運動の位相をずらす制御によって、前記可動部材を前記回転方向に沿って一方に移動させ、前記回帰運動の周回方向を反転して前記制御を行なうことで前記可動部材を前記回転方向に沿って他方に移動させることを特徴とする回転装置。
The base,
A movable member that rotates relative to the base;
The first member and the second member that rotate relative to each other and a plurality of rolling elements that are in rolling contact with each other, and one of the first member and the second member is fixed to the base A rolling bearing with the other attached to the movable member;
A friction member provided concentrically with respect to the rotation center line of the movable member;
And at least two sets of driving devices arranged in a pair opposite to each other on the same line perpendicularly crossing a driving surface formed along the rotation direction of the friction member,
Each said driving device is
A direction in which a driving piece provided with a contact portion toward the driving surface, a frame fixed to the base, and a vector extending in a direction in which a voltage is applied crosses the driving surface diagonally through the driving piece. And at least two piezoelectric elements attached between the drive piece and the frame,
By applying a high frequency voltage having a phase difference to at least two of the piezoelectric elements, the drive piece is periodically regressed, and the phases of the return movements of the drive pieces provided in the pair of drive devices are synchronized. And moving the movable member in one direction along the rotational direction by controlling to shift the phase of the return motion of the drive pieces provided in the drive devices of different sets directed to the same drive surface, and the return motion The rotating device is characterized in that the movable member is moved to the other along the rotation direction by performing the control by reversing the rotation direction.
前記駆動面は、前記可動部材の回転中心線に対して垂直に設けられ、一対の前記駆動装置は、前記駆動片を前記回転中心線に沿う方向に向き合わせた状態で前記回転中心線に沿う方向に配置されることを特徴とする請求項16に記載の回転装置。   The drive surface is provided perpendicular to the rotation center line of the movable member, and the pair of drive devices follow the rotation center line in a state where the drive pieces face each other in a direction along the rotation center line. The rotating device according to claim 16, wherein the rotating device is arranged in a direction. 前記駆動面は、前記可動部材の外周に沿って設けられ、一対の前記駆動装置は、前記駆動片を前記可動部材の回転中心線に向けた状態で前記回転中心線と直交する直線上に配置されることを特徴とする請求項16または請求項17に記載の回転装置。   The drive surface is provided along the outer periphery of the movable member, and the pair of drive devices are arranged on a straight line orthogonal to the rotation center line in a state where the drive piece faces the rotation center line of the movable member. The rotating device according to claim 16 or 17, characterized in that: 前記駆動面は、前記可動部材の内周に沿って設けられ、一対の前記駆動装置は、前記駆動片を前記可動部材の回転中心線から離れる方向に向けた状態で前記回転中心線と直交する直線上に配置されることを特徴とする請求項16から請求項18のいずれか1項に記載の回転装置。   The drive surface is provided along the inner periphery of the movable member, and the pair of drive devices are orthogonal to the rotation center line in a state in which the drive piece is directed away from the rotation center line of the movable member. The rotating device according to any one of claims 16 to 18, wherein the rotating device is arranged on a straight line. 前記駆動装置が、前記回転方向に複数組等配に配置されることを特徴とする請求項16から請求項19のいずれか1項に記載の回転装置。   The rotating device according to any one of claims 16 to 19, wherein the driving devices are arranged in a plurality of equal intervals in the rotating direction. 前記駆動装置が、前記可動部材の回転中心線に沿う方向に複数組並べて配置されることを特徴とする請求項16から請求項20のいずれか1項に記載の回転装置。   The rotating device according to any one of claims 16 to 20, wherein a plurality of sets of the driving devices are arranged in a direction along a rotation center line of the movable member.
JP2004188499A 2004-06-25 2004-06-25 Drive unit, guide device, and rotating device Pending JP2006014498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004188499A JP2006014498A (en) 2004-06-25 2004-06-25 Drive unit, guide device, and rotating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004188499A JP2006014498A (en) 2004-06-25 2004-06-25 Drive unit, guide device, and rotating device

Publications (1)

Publication Number Publication Date
JP2006014498A true JP2006014498A (en) 2006-01-12

Family

ID=35781058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004188499A Pending JP2006014498A (en) 2004-06-25 2004-06-25 Drive unit, guide device, and rotating device

Country Status (1)

Country Link
JP (1) JP2006014498A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096205A1 (en) * 2008-01-29 2009-08-06 Konica Minolta Opto, Inc. Actuator mechanism
JP5257454B2 (en) * 2008-09-09 2013-08-07 株式会社村田製作所 Piezoelectric generator
JP2020198687A (en) * 2019-05-31 2020-12-10 キヤノン株式会社 Vibration type actuator, device, multiaxial stage unit, and multi-joint robot

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096205A1 (en) * 2008-01-29 2009-08-06 Konica Minolta Opto, Inc. Actuator mechanism
JP5521553B2 (en) * 2008-01-29 2014-06-18 コニカミノルタ株式会社 Actuator mechanism
JP5257454B2 (en) * 2008-09-09 2013-08-07 株式会社村田製作所 Piezoelectric generator
JP2020198687A (en) * 2019-05-31 2020-12-10 キヤノン株式会社 Vibration type actuator, device, multiaxial stage unit, and multi-joint robot

Similar Documents

Publication Publication Date Title
US5079471A (en) High torque harmonic traction motor
WO2010007837A1 (en) Vibration actuator
US20130108407A1 (en) Two-axis inertial positioner
WO2007055052A1 (en) Ultrasonic motor
JP4328412B2 (en) Vibration type actuator and vibration type drive device
JP5211463B2 (en) Vibration actuator
JP2013223406A (en) Oscillator, oscillatory wave driving device, and process of manufacturing oscillator
JP2012178947A (en) Piezoelectric actuator and piezoelectric actuator array
JPH02262876A (en) Piezoelectric rotery device
JP2006014498A (en) Drive unit, guide device, and rotating device
US6362557B1 (en) Ultrasonic method and actuator for inducing motion of an object
JP2007135270A (en) Spherical surface ultrasonic motor
JPH08275558A (en) Piezoelectric motor
JP2009219281A (en) Piezoelectric actuator
KR101049394B1 (en) Vibrating actuator
JP2007274791A (en) Driving device
JPS6223382A (en) Rotary type actuator
JP4910381B2 (en) Drive device, drive system, and drive method
JP2002272149A (en) Feeder and rotor
US9293685B2 (en) Rotating load bearer
JP2008199696A (en) Vibration actuator
JP3616712B2 (en) Ultrasonic motor and electronic equipment with ultrasonic motor
JPS62259484A (en) Piezoelectric driving apparatus
KR19990082167A (en) Displacement device with modular system of displacement units
KR20220066405A (en) Rotary actuators and methods of operation of such rotary actuators

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090728