WO2010007837A1 - Vibration actuator - Google Patents
Vibration actuator Download PDFInfo
- Publication number
- WO2010007837A1 WO2010007837A1 PCT/JP2009/060062 JP2009060062W WO2010007837A1 WO 2010007837 A1 WO2010007837 A1 WO 2010007837A1 JP 2009060062 W JP2009060062 W JP 2009060062W WO 2010007837 A1 WO2010007837 A1 WO 2010007837A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- roller
- stator
- piezoelectric element
- vibration
- vibration actuator
- Prior art date
Links
- 230000000149 penetrating effect Effects 0.000 claims 4
- 230000036316 preload Effects 0.000 description 10
- 230000008602 contraction Effects 0.000 description 5
- 239000002131 composite material Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 210000004394 hip joint Anatomy 0.000 description 1
- 210000001503 joint Anatomy 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 210000000323 shoulder joint Anatomy 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J17/00—Joints
- B25J17/02—Wrist joints
- B25J17/0258—Two-dimensional joints
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
- H02N2/106—Langevin motors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
- H02N2/108—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors around multiple axes of rotation, e.g. spherical rotor motors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/20—Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
- H10N30/202—Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using longitudinal or thickness displacement combined with bending, shear or torsion displacement
- H10N30/2027—Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using longitudinal or thickness displacement combined with bending, shear or torsion displacement having cylindrical or annular shape
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S901/00—Robots
- Y10S901/19—Drive system for arm
Definitions
- the present invention relates to a vibration actuator that rotates a roller by vibration of vibration means.
- Patent Document 1 discloses a vibration actuator that includes two stators with a spherical rotor interposed therebetween, and further includes a rotor and one wire that passes through the two stators. Each of the two stators includes a stacked piezoelectric body. Further, a pre-pressure, which is a force in a direction in which the stator is pressed against the rotor, is applied between the rotor and the stator by the tension of the wire.
- the present invention has been made to solve such problems, and provides a vibration actuator that can rotate in a predetermined direction with respect to a rotor and can operate in a wide movable range.
- the purpose is to do.
- the vibration actuator according to the present invention includes a rotor integrally including a first roller and a second roller having different rotation center axes, a first stator disposed in contact with the first roller, and a contact with the second roller.
- the vibration actuator according to the present invention rotates the first roller by vibrating the first roller having the rotation center axis, the first stator disposed in contact with the first roller, and the first stator.
- a first vibration actuator having a first vibration means, a second roller having a rotation center axis, a second stator disposed in contact with the second roller, and a second stator by vibrating the second stator,
- a second vibration actuator portion having a second vibration means for rotating the roller, and the first roller of the first vibration actuator portion and the second roller of the second vibration actuator portion are integrated and integrated.
- the rotation center axis of the first roller is different from the rotation center axis of the second roller.
- the vibration actuator can be rotated in a predetermined direction with respect to the rotor and can operate in a wide movable range.
- FIG. 3 is a schematic diagram showing a cross section taken along line III-III in FIG. 1. It is a fragmentary sectional view which shows the structure which concerns on the piezoelectric element of FIG. It is a perspective view which shows the polarization direction of the piezoelectric element board contained in the piezoelectric element of FIG. It is a perspective view which shows the structure of the vibration actuator which concerns on Embodiment 2 of this invention.
- FIG. 7 is a schematic diagram showing a cross section taken along line VII-VII in FIG. 6.
- FIG. 11 is a schematic diagram illustrating a cross section taken along line XI-XI in FIG. 10. It is a perspective view which shows the polarization direction of the piezoelectric element board contained in the piezoelectric element of FIG.
- Embodiment 1 FIG. First, the configuration of the vibration actuator 101 according to the first embodiment of the present invention will be described with reference to FIGS.
- the vibration actuator 101 includes a pair of roller portions 1a and 1b having a semi-cylindrical shape.
- the roller portions 1a and 1b are provided to face each other and have a mirror image relationship with the same shape.
- the roller portions 1a and 1b are connected by a first roller shaft 10 which is a rotation center shaft, and the cylindrical shaft center of the roller portions 1a and 1b and the shaft center of the first roller shaft 10 are the same.
- the roller portions 1a and 1b constitute the first roller 1 as one roller that operates integrally, as will be described later.
- the substantially cylindrical 1st stator 3 arrange
- the first stator 3 is formed with groove portions 3c passing through the center of the end surfaces on the roller portions 1a and 1b side, and the corner portions 3a1 and 3b1 at the upper portion of the groove portion 3c are chamfered. Therefore, band-shaped convex portions 3a and 3b having a substantially trapezoidal pentagonal cross section are formed at the end portions of the first stator 3 on the roller portions 1a and 1b side with the groove portion 3c interposed therebetween.
- the first stator 3 contacts the cylindrical surface 1aa of the roller portion 1a and the cylindrical surface 1ba of the roller portion 1b at the chamfered portion 3a1 of the convex portion 3a and the chamfered portion 3b1 of the convex portion 3b, respectively.
- the roller portions 1a and 1b are respectively supported by both 3b.
- the chamfered portion 3a1 of the convex portion 3a and the chamfered portion 3b1 of the convex portion 3b have shapes that match the cylindrical surfaces 1aa and 1ba of the roller portions 1a and 1b (see FIG. 3).
- a cylindrical first piezoelectric element 5 is disposed on the end surface of the first stator 3 opposite to the roller portions 1a and 1b so that one end surface thereof is in contact with the first piezoelectric element 5.
- One vibration means is constituted.
- a cylindrical first base block 7 and a third base block 9 are sequentially provided on the other end surface of the first piezoelectric element 5 opposite to the first stator 3.
- the first base block 7 is fixed to the third base block 9.
- the first stator 3, the first piezoelectric element 5, and the first base block 7 form one cylindrical outer shape and constitute a first actuator body 101 a.
- the third base block 9 is fixed to a machine such as a robot hand or arm (not shown) provided with the vibration actuator 101.
- a first support member 12 is provided on the first roller shaft 10 so as to be rotatable with respect to the first roller shaft 10, and the first support member 12 is a first roller with respect to the first stator 3. 1 is fixed and supported.
- the first support member 12 connects two plate-like attachment portions 12a and 12b that are penetrated by the first roller shaft 10 with one plate-like connection portion 12c, and further has a rod-like first shaft portion connected to the connection portion 12c. It has the shape which connected the shaft part 12d which is.
- the shaft portion 12 d extends through the first stator 3, the first piezoelectric element 5, and the first base block 7 into the third base block 9.
- the shaft portion 12 d has a disc 12 e at its end, and further has a spring 12 f that is an elastic member between the disc 12 e and the first base block 7.
- the spring 12f is arranged so as to be wound around the shaft portion 12d, and the shaft portion 12d receives a tensile force in the direction A by the spring 12f. Accordingly, the first roller 1 is pressed against the first stator 3 by the tensile force applied to the first support member 12, that is, the first roller 1 is applied to the first stator 3. A preload to be pressed is applied, and the spring 12f constitutes a first preload means.
- the axis of the shaft portion 12d of the first support member 12 from the third base block 9 toward the first roller shaft 10 is defined as the z axis, and the first roller is perpendicular to the z axis. It is assumed that the x-axis extends in the axial direction of the shaft 10 and the y-axis extends perpendicular to the x-axis and the z-axis.
- a U-shaped first sensor support 16 protrudes in the z-axis positive direction in the groove 3c between the protrusions 3a and 3b on the side surface of the first stator 3.
- a first angle sensor 18 is attached to the first sensor support portion 16, and the first angle sensor 18 is connected to the first roller shaft 10.
- the first angle sensor 18 detects a rotation angle of the first roller 1 with respect to the initial setting position, and is electrically connected to the first actuator body 101a to control driving. (See FIG. 3).
- the rotation angle information detected by the first angle sensor 18 is sent to the drive circuit 56 (see FIG. 3), and the drive circuit 56 (see FIG. 3) drives the first actuator body 101a based on the rotation angle information.
- the first roller 1 is rotated by a predetermined angle. The details of the operation of rotating the first roller 1 by driving the first actuator body 101a will be described later.
- the first piezoelectric element 5 has a first and second piezoelectric element portions 51 and 52 that are located on the xy plane and overlap each other. ing.
- the first piezoelectric element portion 51 and the second piezoelectric element portion 52 are insulated from the first stator 3 and the first base block 7 via the insulating sheets 53 and 55 and insulated from each other via the insulating sheet 54.
- a drive circuit 56 is provided for applying a drive voltage to the first piezoelectric element unit 51 and the second piezoelectric element unit 52 to drive them, and the drive circuit 56 includes the first piezoelectric element unit 51 and the first piezoelectric element unit 51.
- the two piezoelectric element portions 52 are electrically connected to each other.
- the first piezoelectric element portion 51 of the first piezoelectric element 5 includes an electrode plate 51a, a piezoelectric element plate 51b, an electrode plate 51c, a piezoelectric element plate 51d, and an electrode plate each having a substantially annular plate shape.
- 51e has a stacked structure in which the layers are sequentially stacked.
- the second piezoelectric element portion 52 has a laminated structure in which an electrode plate 52a, a piezoelectric element plate 52b, an electrode plate 52c, a piezoelectric element plate 52d, and an electrode plate 52e each having a substantially annular plate shape are sequentially stacked. ing.
- the electrode plate 51a and the electrode plate 51e disposed at both end surface portions of the first piezoelectric element portion 51 and the electrode plate 52a and the electrode plate 52e disposed at both end surface portions of the second piezoelectric element portion 52 are electrically connected, respectively. Grounded. Further, the electrode plate 51 c disposed between the pair of piezoelectric element plates 51 b and 51 d of the first piezoelectric element portion 51 and the pair of piezoelectric element plates 52 b and 52 d of the second piezoelectric element portion 52 are disposed. The electrode plates 52c are electrically connected to the drive circuit 56, respectively.
- each of the pair of piezoelectric element plates 51b and 51d of the first piezoelectric element portion 51 is divided into two so as to be separated in the y-axis direction, and the respective parts have opposite polarities. And polarized so as to perform deformation behavior opposite to expansion and contraction in the z-axis direction (thickness direction). That is, when an AC voltage is applied to the electrode plate 51c (see FIG. 4) disposed between the piezoelectric element plates 51b and 51d, the convex portions 3a and 3b (FIG. 3) of the first stator 3 cooperate with each other.
- the piezoelectric element plate 51b and the piezoelectric element plate 51d are disposed inside out so as to vibrate around the x axis (in the yz plane).
- each of the pair of piezoelectric element plates 52b and 52d of the second piezoelectric element portion 52 is polarized so that the whole performs deformation behavior of expansion or contraction in the z-axis direction (thickness direction). That is, when an AC voltage is applied to the electrode plate 52c (see FIG. 4) disposed between the piezoelectric element plates 52b and 52d, the convex portions 3a and 3b (FIG. 3) cooperate with each other.
- the piezoelectric element plate 52b and the piezoelectric element plate 52d are disposed inside out so as to vibrate in the z-axis direction.
- roller portions 2 a and 2 b arranged so as to connect them are coupled to the roller portions 1 a and 1 b of the first roller 1. Therefore, the roller parts 1a and 1b and the roller parts 2a and 2b are combined with each other to form a roller body 100 that is a single rotor.
- the roller portions 2a and 2b are provided to face each other with the first roller shaft 10 interposed therebetween, and have a semi-cylindrical shape of the same shape and have a mirror image relationship. Further, the roller portions 2a and 2b are provided so that the respective cylindrical surfaces 2aa and 2ba are arranged on the opposite side to the roller portions 1a and 1b.
- the roller portions 2a and 2b have the same rotation center axis, and the rotation center axes of the roller portions 2a and 2b are the axis of the first roller shaft 10 which is the rotation center axis of the roller portions 1a and 1b. Are perpendicular to each other and in the same plane. Therefore, the roller parts 2a and 2b constitute one second roller 2 and rotate together in the same direction, and the roller parts 1a and 1b of the first roller 1 also rotate together in the same direction.
- a substantially cylindrical second stator 4 is provided so as to be in contact with the cylindrical surfaces 2aa and 2ba of the roller portions 2a and 2b, respectively.
- the second stator 4 has the same shape as that of the first stator 3, and comes into contact with the cylindrical surfaces 2aa and 2ba of the roller portions 2a and 2b at the belt-like convex portions 4a and 4b, respectively.
- a cylindrical second piezoelectric element 6 is disposed on the end face of the second stator 4 opposite to the roller portions 2a and 2b so that one end face thereof is in contact with the second piezoelectric element 6. It constitutes two vibration means.
- the second piezoelectric element 6 has the same configuration as the first piezoelectric element 5 and is electrically connected to the drive circuit 56 (see FIG. 3).
- a cylindrical second base block 8 is provided on the end surface of the second piezoelectric element 6 opposite to the second stator 4.
- the second stator 4, the second piezoelectric element 6, and the second base block 8 form one cylindrical outer shape and constitute a second actuator body 101 b.
- a second support member 13 having the same shape as the first support member 12 is provided inside the second actuator main body 101b.
- the second support member 13 includes the second stator 4 and the second piezoelectric element. 6 extends through the second base block 8.
- the second support member 13 has an attachment portion 13a connected to the roller portion 2a by a second roller shaft 11a that is a rotation center axis, and the attachment portion 13b is connected to the roller portion 2b by a third roller shaft 11b that is a rotation center axis (not shown). It is connected.
- the first roller shaft 10, the second roller shaft 11a, and the third roller shaft 11b have their respective axes on the same plane, and between the second roller shaft 11a and the third roller shaft 11b,
- the first roller shaft 10 is disposed so as to extend at right angles thereto.
- the shaft portion 13d that is the second shaft portion of the second support member 13 has the same configuration as the shaft portion 12d of the first support member 12, and receives a tensile force in the direction B by the spring 13f.
- the second roller 2 is pressed against the second stator 4 by the tensile force applied to the second support member 13, that is, the second roller 2 is applied to the second stator 4.
- a preload to be pressed is applied, and the spring 13f constitutes a second preload means.
- the second stator 4 is provided with a U-shaped second sensor support portion 17 in the same manner as the first stator 3.
- a second angle sensor 19 is attached.
- the second angle sensor 19 is connected to a third roller shaft 11b (not shown), and is electrically connected to a drive circuit 56 (see FIG. 3). Therefore, the vibration actuator 101 forms the roller body 100 having two cylindrical surfaces with different directions of the central axis by integrating the first roller 1 and the second roller 2, and each cylinder of the first roller 1 and the second roller 2.
- the first actuator body 101a and the second actuator body 101b are arranged in contact with each other on the surface.
- the vibration actuator 101 combines the first vibration actuator portion 110a and the second vibration actuator portion 110b so that the directions of the rotation center axes of the first roller 1 and the second roller 2 are different from each other. It can also be regarded as
- the drive circuit 56 (see FIG. 3) has a frequency close to the natural frequency of the first actuator body 101 a (see FIG. 3) on the electrode plate 51 c (see FIG. 4) of the first piezoelectric element portion 51.
- the two divided portions of the pair of piezoelectric element plates 51b and 51d of the first piezoelectric element portion 51 alternately repeat expansion and contraction in the z-axis direction, and the convex portion 3a of the first stator 3 3b (see FIG.
- a flexural vibration (ultrasonic vibration) is generated that swings around the x axis on the yz plane.
- the drive circuit 56 applies an AC voltage to the electrode plate 52c (see FIG. 4) of the second piezoelectric element portion 52
- a pair of piezoelectric element plates 52b and 52d of the second piezoelectric element portion 52 are provided. Repeats expansion and contraction in the z-axis direction, and generates longitudinal vibration (ultrasonic vibration) in the z-axis direction with respect to the convex portions 3a and 3b (see FIG. 3) of the first stator 3.
- both the electrode plate 51 c (see FIG. 4) of the first piezoelectric element portion 51 and the electrode plate 52 c (see FIG. 4) of the second piezoelectric element portion 52 are controlled according to the control of the drive circuit 56.
- an AC voltage whose phase is shifted by 90 degrees is applied, a flexural vibration that swings around the x axis and a longitudinal vibration in the z axis direction are combined, and the convex portions 3a and 3b of the first stator 3 are in the yz plane.
- Elliptical vibration occurs. That is, the convex portions 3a and 3b of the first stator 3 perform elliptical vibration around the x axis.
- the phase of the AC voltage to be applied is advanced or delayed by 90 degrees for the electrode plate 52c (see FIG. 4) of the second piezoelectric element portion 52 relative to the electrode plate 51c (see FIG. 4) of the first piezoelectric element portion 51.
- the rotation direction of the elliptical vibration can be selected from any of directions P10 and Q10.
- the first stator 3 that elliptically vibrates in the direction P10 or Q10 around the x axis.
- the convex portions 3a and 3b are rotated around the x-axis so as to scratch the first roller 1, that is, are rotated around the first roller shaft 10 in the direction P1 or Q1.
- the convex portions 3a and 3b of the first stator 3 perform elliptical vibration in the direction P10, the first roller 1 rotates in the direction P1, and the convex portions 3a and 3b of the first stator 3 are elliptic in the direction Q10.
- the first roller 1 rotates in the direction Q1.
- the first stator 3 is fixed in the rotational directions of the directions P1 and Q1. become. Therefore, by applying an AC voltage to the first piezoelectric element 5, the first actuator body 101 a moves the first roller 1 and the first roller 1 in the direction B side from the first roller 1. The roller is rotated in the direction P1 or Q1 around the roller shaft 10. (See Figure 1) The rotation angle of the first roller 1 is detected by the first angle sensor 18 (see FIG. 2) and is sent to the drive circuit 56. The drive circuit 56 is based on the rotation angle information, and the first actuator body 101a (first The drive of one piezoelectric element 5) is controlled to rotate the first roller 1 in a predetermined direction and angle.
- the roller body 100 that is, the second roller 2 is fixed with respect to the rotational directions of the directions P2 and Q2 through the third base block 9. Therefore, by applying an AC voltage to the second piezoelectric element 6, the second actuator body 101 b causes the second roller 2 to move the second stator 4 and the portion on the direction B side from the second stator 4. It is rotated in the direction P2 or Q2 around the second roller shaft 11a and the third roller shaft 11b.
- the rotation angle of the second roller 2 with respect to the second stator 4 is detected by the second angle sensor 19 (see FIG. 2) and sent to the drive circuit 56 (see FIG. 3), and the drive circuit 56 (see FIG. 3).
- the vibration actuator 101 applies the AC voltage to the first piezoelectric element 5 and the second piezoelectric element 6, so that the second stator 4, that is, the first actuator body 101 a is applied to the first stator 3.
- the second actuator body 101b performs a multi-degree-of-freedom refraction operation, which is a multi-degree-of-freedom operation combining two rotations having different rotation center axes with the roller body 100 as a fulcrum.
- the vibration actuator 101 includes the first roller 1 having the first roller shaft 10, the second roller shaft 11a, and the second roller shaft 11b having different rotation center axes.
- a roller main body 100 integrally including the roller 2 is provided. Furthermore, by vibrating the first stator 3 disposed in contact with the first roller 1, the second stator 4 disposed in contact with the second roller 2, and the first stator 3, the first roller 1 is moved.
- a first piezoelectric element 5 to be rotated and a second piezoelectric element 6 to rotate the second roller 2 by vibrating the second stator 4 are provided.
- the first stator 3 vibrated by the first piezoelectric element 5 rotates the first roller 1 around the first roller shaft 10.
- the second stator 4 vibrated by the second piezoelectric element 6 rotates the second roller 2 around the second roller shaft 11a and the third roller shaft 11b. Therefore, the second stator 4 is an operation in which two rotations with different rotation center axes are combined with the first stator 3 with the roller body 100 integrally including the first roller 1 and the second roller 2 as a fulcrum. Will be able to do. That is, the second stator 4 can operate so as to be refracted with multiple degrees of freedom with respect to the first stator 3 with the roller body 100 as a fulcrum.
- the rotation directions of the first roller 1 and the second roller 2 are restricted to one direction by the first roller shaft 10 and the second roller shaft 11a and the third roller shaft 11b, respectively. For this reason, when rotating the 1st roller 1 and the 2nd roller 2 with respect to the 1st stator 3 and the 2nd stator 4, the rotation direction does not shift to the direction which is not intended.
- the movable ranges of the first roller 1 and the second roller 2 are respectively defined by the cylindrical surfaces 1aa and 1ba, which are contact surfaces with the first stator 3 and the second stator 4, and the cylindrical surfaces 2aa and 2ba. . For this reason, the rotation range of the 1st roller 1 and the 2nd roller 2 is expanded by adjusting the contact surface of the 1st roller 1 and the 2nd roller 2 with respect to the 1st stator 3 and the 2nd stator 4, respectively. Can do.
- first piezoelectric element 5 formed by stacking the piezoelectric element plates 51b, 51d, 52b and 52d, and the second piezoelectric element 6 formed by stacking the piezoelectric element plates in the same manner have the structure. Miniaturization can be achieved, and only one power source is required to drive the first piezoelectric element 5 and the second piezoelectric element 6, and the vibration actuator 101 can be miniaturized.
- first roller 1 and the second roller 2 it is possible to reduce the resistance to rotation received by the preload via the first support member 12 and the second support member 13, respectively.
- first roller 1 and the second roller 2 are respectively fixed to the first stator 3 and the second stator 4 by these preloads, so that no electric power or the like is required for maintaining the operation.
- the first roller 1 is in contact with the first stator 3 at the cylindrical surfaces 1aa and 1ba
- the second roller 2 is in contact with the second stator 4 at the cylindrical surfaces 2aa and 2ba.
- the frictional force generated between them is uniform. Therefore, the rotation operation of the first roller 1 and the second roller 2 with respect to the first stator 3 and the second stator 4 can be made smooth. Further, since the direction of the first roller shaft 10 of the first roller 1 and the directions of the second roller shaft 11a and the third roller shaft 11b of the second roller 2 are perpendicular to each other, The positioning of the two stators 4 can be facilitated.
- the rotation center of the first roller 1 is fixed to the first roller shaft 10
- the rotation center of the second roller 2 is fixed to the second roller shaft 11a and the third roller shaft 11b. Therefore, the first angle sensor 18 and the second angle sensor 19 that detect the positions of the first roller 1 and the second roller 2, that is, the rotation angle, are the first roller shaft 10 and the second roller shaft 11a or the third roller sensor. It can be easily installed using the roller shaft 11b.
- FIG. The vibration actuator 102 according to the second embodiment of the present invention changes the configuration of the first piezoelectric element 5 in the vibration actuator 101 of the first embodiment, and further uses a first base block 7 as a third stator to form a third base.
- the block 9 is slidable without being fixed.
- the same reference numerals as those in the previous drawings are the same or similar components, and thus detailed description thereof is omitted.
- the vibration actuator 102 in the same manner as in the first embodiment, the first roller 1 and the first stator 3 are provided, and the first stator 3 has an end surface opposite to the first roller 1.
- the cylindrical first piezoelectric element 50 is arranged so that one end face thereof is brought into contact. Furthermore, the other end surface of the first piezoelectric element 50 opposite to the first stator 3 is arranged so that the substantially cylindrical third stator 20 is in contact therewith.
- the third base block 9 is disposed on the end surface of the third stator 20 opposite to the first piezoelectric element 50 so that one end surface of the third base block 9 is in contact therewith.
- the third stator 20 has a plurality of convex portions 20a on the third base block 9 side.
- a first support member 122 is provided on the first roller shaft 10 that connects the roller portions 1 a and 1 b of the first roller 1.
- the first support member 122 has a disc 122 e at the end of the shaft portion 122 d, and further has a spring 122 f between the disc 122 e and the third base block 9 inside the third base block 9. is doing.
- the spring 122f is arranged so as to be wound around the shaft portion 122d, and applies the preload of the first stator 3 to the first roller 1 and the preload of the third stator 20 to the third base block 9. Has been granted. (See Figure 7) Next, referring to FIG.
- the first piezoelectric element 50 is provided with the first piezoelectric element 5 in the first embodiment, and generates the first vibration that swings around the x axis on the yz plane.
- the third piezoelectric element portion 503 that generates flexural vibration that swings around the y-axis on the xz plane is provided. Yes.
- the third piezoelectric element portion 503 has a pair of piezoelectric element plates 503b and 503d as shown in FIG.
- Each of the piezoelectric element plates 503b and 503d is divided into two so as to be separated in the x-axis direction, each part has opposite polarity, and is opposite to expansion and contraction in the z-axis direction (thickness direction), respectively. It is polarized to perform the deformation behavior. Further, the piezoelectric element plate 503b and the piezoelectric element plate 503d are arranged in an inverted manner.
- the third piezoelectric element portion 503 has the same configuration as the first piezoelectric element portion 51 and the second piezoelectric element portion 52 except for the pair of piezoelectric element plates 503b and 503d.
- the second piezoelectric element portion 52 is overlaid. Referring to FIG. 7, the pair of electrode plates disposed at both end portions of the third piezoelectric element portion 503 are electrically grounded, and the pair of piezoelectric element plates 503b and 503d (see FIG. 8). ) Are electrically connected to the drive circuit 56.
- first piezoelectric element unit 51 and the third piezoelectric element unit 503 are insulated from the first stator 3 and the third stator 20 via the insulating sheets 53 and 506, and the first piezoelectric element unit 51 and the second piezoelectric element unit 503 are insulated.
- the element part 52 and the third piezoelectric element part 503 are arranged in a state of being insulated from each other via insulating sheets 54 and 55.
- the operation of the vibration actuator 102 according to the second embodiment of the present invention will be described with reference to FIGS.
- the drive circuit 56 applies an AC voltage to the first piezoelectric element portion 51
- the first piezoelectric element portion 51 is connected to the convex portions 3 a and 3 b and the first stator 3.
- a flexural vibration that swings around the x axis on the yz plane is generated with respect to the three stators 20 (see FIG. 7).
- the drive circuit 56 applies an AC voltage to the second piezoelectric element portion 52
- the second piezoelectric element portion 52 includes the convex portions 3 a and 3 b and the third stator of the first stator 3.
- the first piezoelectric element unit 51 is applied to the first piezoelectric element unit 51, the second piezoelectric element unit 52, and the third piezoelectric element unit 503 by applying an AC voltage whose phase is shifted.
- a combined vibration that is a combination of a flexural vibration that swings around the x-axis, a longitudinal vibration in the z-axis direction of the second piezoelectric element portion 52, and a flexural vibration that swings around the y-axis of the third piezoelectric element portion 503. It occurs on the convex portions 3 a and 3 b of the first stator 3 and the third stator 20.
- the third stator 20 rotates in the direction P3 or Q3 with respect to the third base block 9 so that the convex portion 20a scratches the surface of the third base block 9.
- the third base block 9 is fixed to a machine such as a robot hand or arm (not shown) provided with the vibration actuator 102, the first stator 3, the first piezoelectric element 50, and the third stator 20
- the configured first actuator body 102a rotates in the direction P3 or Q3.
- the first roller 1 also rotates in the direction P1 or Q1 depending on the direction of the composite vibration, also by the composite vibration generated in the convex portions 3a and 3b of the first stator 3.
- the other operations of the vibration actuator 102 according to the second embodiment of the present invention are the same as those in the first embodiment, and thus the description thereof is omitted.
- the vibration actuator 102 according to the second embodiment, the same effect as that of the vibration actuator 101 of the first embodiment can be obtained. Further, by placing the third stator 20 in contact with the first piezoelectric element 5, the third base block 9 placed in contact with the third stator 20 can be rotated. That is, since the third base block 9 is fixed, the first actuator body 102 a can rotate around the first support member 122 with respect to the third base block 9. In addition, since the rotation center axis is fixed to the first support member 122, this rotation operation can prevent the rotation axis from being displaced.
- Embodiment 3 FIG.
- the vibration actuator 103 according to the third embodiment of the present invention includes the first roller shaft 10 of the first roller 1 and the second roller 2 provided on the same plane as the vibration actuator 101 of the first embodiment.
- the positional relationship between the two-roller shaft 11a and the third roller shaft 11b is changed.
- the roller portions 31 a and 31 b of the first roller 31 are connected by a first roller shaft 310, and the roller portions 32 a and 32 b of the second roller 32 are connected by a second roller shaft 311.
- the roller portions 31a and 31b and the roller portions 32a and 32b are combined and integrated with each other.
- the first roller shaft 310 and the second roller shaft 311 are Although the directions are perpendicular to each other, they are arranged apart in the vertical direction without crossing each other.
- the roller portions 31a and 31b of the first roller 31 and the roller portions 32a and 32b of the second roller 32 have a shape closer to a cylinder than in the first embodiment. Therefore, the rotation angle range of the first roller 31 movable with respect to the first stator 3 and the rotation angle range of the second roller 32 movable with respect to the second stator 4 are compared with the first embodiment. It is increasing.
- the first roller shaft 310 is provided with a first support member 123 having a substantially triangular prism-shaped attachment portion 123a and a shaft portion 123d, and the second roller shaft 311 has the same shape as the first support member 123.
- a second support member 133 is provided.
- the other configuration and operation of the vibration actuator 103 according to the third embodiment of the present invention are the same as those of the first embodiment, and thus the description thereof is omitted. Thus, in the vibration actuator 103 according to the third embodiment, the same effect as that of the vibration actuator 101 of the first embodiment can be obtained. Further, by increasing the separation distance between the first roller shaft 310 and the second roller shaft 311, each movable relative to the first stator 3 and the second stator 4 of the first roller 31 and the second roller 32.
- the roller body 300 has a shape in which the roller portions 31a and 31b of the first roller 31 and the roller portions 32a and 32b of the second roller 32 all form a part of a cylinder. However, these may be complete cylinders.
- the roller parts 32a and 32b of the cylindrical second roller 32 are arranged between the roller parts 31a and 31b of the cylindrical first roller 31, and a part of the roller parts 32a and 32b is the roller part 31a.
- the roller main body 300 may be formed so as to protrude outward from the cylindrical surface of 31b.
- Embodiment 4 FIG.
- the vibration actuator 104 according to the fourth embodiment of the present invention is obtained by changing the configuration of the second roller 2 and the second stator 4 in the vibration actuator 101 of the first embodiment. That is, the second roller 2 rotates around the shaft portion 13d of the second support member 13.
- the vibration actuator 104 is provided with a first roller 1 and a first stator 3 each including a pair of semi-cylindrical roller portions 1a and 1b. Yes.
- a first piezoelectric element 5, a first base block 7, and a third base block 9 are sequentially provided on the end surface of the first stator 3 opposite to the first roller 1.
- the first piezoelectric element 5 has the same configuration as the first piezoelectric element 5 in the vibration actuator 101 of the first embodiment.
- a first support member 12 is rotatably provided on the first roller shaft 10 of the first roller 1, and a spring 12 f provided on the first support member 12 is a first stator 3 for the first roller 1. The pre-pressure is given.
- a rectangular plate member 42 is coupled to the roller portions 1a and 1b of the first roller 1 so as to connect them.
- the plate member 42 is coupled to the flat outer peripheral surfaces 1ab and 1bb of the semi-cylindrical roller portions 1a and 1b.
- the plate member 42 constitutes a second roller, and the roller portions 1a and 1b and the plate member 42 are joined together to constitute a roller body 400 that is a single rotor.
- the shape of the plate member 42 is not limited to a rectangular shape, and may be a circular shape, an elliptical shape, a polygonal shape, or the like.
- the substantially cylindrical 2nd stator 44 arrange
- the 2nd stator 44 connects the 1st cylindrical part 44a and the 2nd cylindrical part 44b from which diameter differs mutually so that these axial centers may become the same.
- the first cylindrical portion 44a has the same shape as the third stator 20 in the vibration actuator 102 of the second embodiment.
- the first cylindrical portion 44 a has a plurality of convex portions 44 ab formed along the outer periphery of the end surface 44 aa in contact with the end surface 42 a of the plate member 42, and the convex portion 44 ab is in the end surface 42 a of the plate member 42. It is formed to fit.
- a cylindrical second piezoelectric element 64 is disposed on the end surface of the second cylindrical portion 44b on the opposite side of the plate member 42 in the second stator 44, and the details of the configuration will be described later. To do. Further, a second base block 8 is provided on the end surface of the second piezoelectric element 64 opposite to the second stator 44.
- the end surface 42 a of the plate member 42 is coupled to the shaft portion 134 d of the second support member 134 perpendicularly to the end surface 42 a, and the shaft portion 134 d is It is integrated with the plate member 42.
- the shaft portion 134 d of the second support member 134 extends in a direction perpendicular to the axial direction of the first roller shaft 10 of the first roller 1.
- the second support member 134 has a shaft part 134d extending through the second stator 44 and the second piezoelectric element 64 to the second base block 8, and having a disk 134e at the end of the shaft part 134d. is doing.
- the second support member 134 has a spring 134 f around the shaft portion 134 d between the disk 12 e and the second base block 8 inside the second base block 8.
- the spring 134f applies a preload of the second stator 44 to the plate member 42.
- the plate member 42 and the second stator 44 are rotatable about the shaft portion 134d of the second support member 134 with respect to each other. Therefore, the shaft portion 134d of the second support member 134 constitutes a roller shaft in the plate member 42 that is the second roller, that is, the second roller shaft and the third roller shaft in the first embodiment. Yes.
- the axis direction of the shaft portion 12d of the first support member 12 is the z axis
- the axis direction of the first roller shaft 10 is the x axis
- y is perpendicular to the x axis and the z axis. It defines the axis.
- the axial center direction of the shaft portion 134d of the second support member 134 that is perpendicular to the x-axis and travels from the plate member 42 toward the second base block 8 is defined as the z4 axis, and with respect to the x-axis and the z4-axis It is assumed that the y4 axis extends vertically.
- the coordinate system consisting of the xyz axes is applied to the first roller 1, the first stator 3, the first piezoelectric element 5, and the first base block 7, and the coordinate system consisting of the xy4z4 axes is the plate member 42, The following description will be made by applying to the second stator 44, the second piezoelectric element 64, and the second base block 8.
- the permanent magnet 174 is embedded at the tip of the convex portion 44ab of the second stator 44, and the end surface 42a of the plate member 42 is located at a position facing the permanent magnet 174.
- the Hall sensor 194 is embedded.
- the hall sensor 194 detects the relative position of the permanent magnet 174 from the magnetic flux of the permanent magnet 174 that changes as the position of the permanent magnet 174 changes.
- the hall sensor 194 is electrically connected to the drive circuit 56, and relative position information of the permanent magnet 174 detected by the hall sensor 194 is sent to the drive circuit 56.
- the drive circuit 56 rotates based on the relative position information of the Hall sensor 194 and the permanent magnet 174 with respect to the plate member 42 relative to the second stator 44, that is, the shaft portion 134 d of the second support member 134. Calculate the angle.
- the second piezoelectric element 64 has the first piezoelectric element portion 51 provided in the first piezoelectric element 50 of the second embodiment as the first piezoelectric element portion 51, and is provided in the same first piezoelectric element 50.
- the provided third piezoelectric element portion 503 is provided as the second piezoelectric element portion 504. Therefore, in the present embodiment, the first piezoelectric element portion 51 generates a flexural vibration that swings around the x axis on the y4z4 plane, and the second piezoelectric element portion 504 swings around the y4 axis on the xz4 plane. Generates flexural vibration to be moved.
- first piezoelectric element portion 51 and the second piezoelectric element portion 504 are insulated from the second base block 8 and the second stator 44 via the insulating sheets 53 and 506, and the first piezoelectric element portion 51 and the second piezoelectric element portion 504 are insulated.
- the element portions 504 are arranged in a state of being insulated from each other via the insulating sheet 54.
- the other configuration of the vibration actuator 104 according to the fourth embodiment of the present invention is the same as that of the first or second embodiment, and thus the description thereof is omitted.
- the operation of the vibration actuator 104 according to the fourth embodiment of the present invention will be described with reference to FIGS.
- the operations of the first roller 1, the first stator 3, the first piezoelectric element 5, and the first base block 7 are the same as those of the vibration actuator 101 of the first embodiment, and thus the description thereof is omitted. Therefore, the operations of the plate member 42, the second stator 44, the second piezoelectric element 64, and the second base block 8 that are the second rollers will be described below.
- the elliptical vibration in the xy4 plane causes the second stator 44 to rotate the plate member 42 in the direction P4 or Q4 around the z4 axis so as to scratch the end surface 42a of the plate member 42 by the convex portion 44ab.
- the first roller 1 is constrained to rotate around the z-axis by the convex portions 3a and 3b of the first stator 3, and the first stator 3, the first piezoelectric element 5, the first base block 7 and The third base blocks 9 are fixed to each other. Therefore, since the plate member 42 is constrained with respect to the rotation about the z4 axis, the second stator 44 together with the second piezoelectric element 64 and the second base block 8 fixed to the second stator 44 have the plate member 42. Rotates in the direction Q4 or P4. (See Figure 10)
- the rotation angle of the second stator 44 is calculated by the drive circuit 56 from the relative position information of the second stator 44 with respect to the plate member 42 detected by the Hall sensor 194, and the drive circuit 56 calculates the calculated rotation angle. Based on this, the driving of the second piezoelectric element 64 is controlled to rotate the second stator 44 in a predetermined direction and angle.
- the other operations of the vibration actuator 104 according to the fourth embodiment of the present invention are the same as those in the first embodiment, and thus the description thereof is omitted.
- the vibration actuator 104 includes the first roller 1 that rotates about the x axis and the third stator 20 that rotates about the z axis.
- the vibration actuator 104 according to the present embodiment includes a first roller 1 that rotates about the x axis and a plate member 42 that is a second roller that rotates about the z4 axis.
- the first roller 1 and the third stator 20 in the vibration actuator 102 are disposed away from each other, but the first roller 1 and the plate member 42 in the vibration actuator 104 are disposed close to each other.
- the vibration actuator 104 enables a combined operation of two types of rotation operations in which the rotation site around the x axis and the rotation site around the z4 axis are close to each other, as compared with the vibration actuator 102.
- the vibration actuator 102 can reproduce the movement of a human finger and can be applied to a finger part in a robot hand, but the vibration actuator 104 can reproduce the movement of a human shoulder or hip joint,
- the robot can be applied to a portion corresponding to a human shoulder or crotch. Therefore, the application target of the vibration actuator according to the present invention can be expanded by the vibration actuator 104.
- the first rollers 1 and 31 and the second rollers 2 and 32 are cylindrical.
- the present invention is not limited to this, and may be spherical.
- the pair of roller portions 1a and 1b, 31a and 31b of the first rollers 1 and 31, and the pair of roller portions 2a and 2b, 32a and 32b of the second rollers 2 and 32 all constitute a part of a cylinder.
- it may be a shape constituting a part of the truncated cone.
- the convex portions 3a and 3b of the first stator 3 have the roller portions 1a and 1b.
- a groove having a shape matching the roller surface forming the truncated cone may be formed, and the roller portions 1a and 1b may be fitted into the groove. Thereby, it can prevent that the roller parts 1a and 1b move to the 1st roller shaft 10 direction, ie, a rotation center axis direction.
- the first roller 1, 31 and the second roller 2, 32, 42 have a relationship in which the direction of the rotation center axis is a right angle.
- the present invention is not limited to this. It is only necessary that the direction of the rotation center axis is different.
- the rotation center axis of the first rollers 1, 31 and the rotation center axis of the second rollers 2, 32, 42 may be parallel.
- the vibration actuator 101 of Embodiment 1 since the first roller 1 and the second roller 2 are arranged in parallel, the second actuator body 101b is The roller body 100 can be rotated about 360 ° with the fulcrum as a fulcrum.
- the 3rd stator 20 of Embodiment 2 has the some convex part 20a
- the 2nd stator 44 of Embodiment 4 also has the some convex part 44ab
- the plurality of convex portions 20a and 44ab may be formed by one convex portion, or may be a ring-shaped one in which the convex portions adjacent to each other are connected.
- the convex parts 20a and 44ab were arrange
- the combined vibrations combined with the flexural vibrations to be swung are generated in the convex portions 3 a and 3 b of the first stator 3 and the third stator 20.
- the 3rd stator 20 was supposed to rotate to the direction P3 or Q3 with respect to the 3rd base block 9 by this composite vibration.
- the third stator 20 is moved in the direction with respect to the third base block 9 even by the composite vibration in which only the first piezoelectric element portion 51 and the third piezoelectric element portion 503 are vibrated. It can be rotated to P3 or Q3. (See Figure 6)
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Description
例えば、特許文献1には、球状の回転子を挟んで2つの固定子を備え、さらに回転子及び2つの固定子を貫通する1つのワイヤを備える振動アクチュエータが示されている。2つの固定子はそれぞれ積層された圧電体を備えている。また、このワイヤの張力により、回転子と固定子のそれぞれとの間には、回転子に対して固定子が圧着させられる方向の力である予圧力が与えられている。そこで、交流電圧を印加されて圧電体が振動すると、振動する圧電体を備える固定子は振動し、この振動により回転子が回転する。
よって、この振動アクチュエータは、2つの固定子が1つの回転子を回転させることにより、一方の固定子に対して他方の固定子が多自由度に屈折するように駆動する。 Vibration actuators that generate and drive ultrasonic vibrations have been proposed as actuators used for parts that require a high degree of freedom and high torque drive, such as robot hands and arm joints. Yes.
For example,
Therefore, in this vibration actuator, two stators rotate one rotor so that the other stator is refracted with multiple degrees of freedom with respect to one stator.
まず、図1~5を用いて、この発明の実施の形態1に係る振動アクチュエータ101の構成を示す。
First, the configuration of the
ここで、説明の便宜上、第三基部ブロック9から第一ローラ軸10へ向かう第一支持部材12の軸部12dの軸心をz軸と規定し、z軸に対して垂直である第一ローラ軸10の軸心方向にx軸が、x軸及びz軸に対して垂直にy軸がそれぞれ延びているものとする。 A
Here, for convenience of explanation, the axis of the
さらに、図4を参照すると、第一圧電素子5の第一圧電素子部51は、それぞれ略円環板形状を有する電極板51a、圧電素子板51b、電極板51c、圧電素子板51d及び電極板51eが順次重ね合わされた積層構造を有している。同様に、第二圧電素子部52は、それぞれ略円環板形状を有する電極板52a、圧電素子板52b、電極板52c、圧電素子板52d及び電極板52eが順次重ね合わされた積層構造を有している。 Next, referring to FIG. 3, the first
Further, referring to FIG. 4, the first
また、ローラ部2a及び2bは、第一ローラ軸10を挟んで対向して設けられており、同形状の半円筒状を有し鏡像の関係となっている。さらに、ローラ部2a及び2bは、それぞれの円筒面2aa及び2baをローラ部1a及び1bと反対側に配置するようにして設けられている。また、ローラ部2a及び2bはそれぞれの回転中心軸を互いに同一としており、ローラ部2a及び2bのそれぞれ回転中心軸は、ローラ部1a及び1bの回転中心軸である第一ローラ軸10の軸心と互いに直角で同一平面内にある関係となっている。
よって、ローラ部2a及び2bは、1つの第二ローラ2を構成して一体に同一方向に回転動作し、また、第一ローラ1のローラ部1a及び1bも一体に同一方向に回転動作する。 Next, returning to FIG. 1, a pair of
The
Therefore, the
さらに、第二圧電素子6における第二固定子4と反対側の端面には、円筒状をした第二基部ブロック8が設けられている。第二固定子4、第二圧電素子6、及び第二基部ブロック8は、1つの円柱状の外形を形成し第二アクチュエータ本体101bを構成している。 A cylindrical second
Furthermore, a cylindrical
従って、振動アクチュエータ101は、第一ローラ1及び第二ローラ2を一体として中心軸の方向が異なる2つの円筒面を有するローラ本体100を形成し、第一ローラ1及び第二ローラ2の各円筒面に第一アクチュエータ本体101a及び第二アクチュエータ本体101bをそれぞれ接触配置した構成を有するものである。 Referring to FIG. 2, the
Therefore, the
まず、第一ローラ1及び第一アクチュエータ本体101aの動作について説明する。
図5を参照すると、駆動回路56(図3参照)が、第一圧電素子部51の電極板51c(図4参照)に第一アクチュエータ本体101a(図3参照)の固有振動数に近い周波数の交流電圧を印加すると、第一圧電素子部51の一対の圧電素子板51b及び51dの2分割された部分がz軸方向に膨張と収縮とを交互に繰り返し、第一固定子3の凸部3a及び3b(図3参照)に対してyz平面上のx軸回りに揺動させるたわみ振動(超音波振動)を発生する。同様に、駆動回路56(図3参照)が、第二圧電素子部52の電極板52c(図4参照)に交流電圧を印加すると、第二圧電素子部52の一対の圧電素子板52b及び52dがz軸方向に膨張と収縮とを繰り返し、第一固定子3の凸部3a及び3b(図3参照)に対してz軸方向の縦振動(超音波振動)を発生する。 Next, the operation of the
First, operations of the
Referring to FIG. 5, the drive circuit 56 (see FIG. 3) has a frequency close to the natural frequency of the
なお、第一ローラ1の回転角度は、第一角度センサ18(図2参照)によって検出されて駆動回路56に送られ、駆動回路56は、この回転角度情報に基づき第一アクチュエータ本体101a(第一圧電素子5)の駆動を制御して、第一ローラ1を所定の方向・角度に回転させる。 Further, since the
The rotation angle of the
なお、第二固定子4に対する第二ローラ2の回転角度は、第二角度センサ19(図2参照)によって検出されて駆動回路56(図3参照)に送られ、駆動回路56(図3参照)は、この回転角度情報に基づき第二アクチュエータ本体101b(第二圧電素子6)の駆動を制御して、第二ローラ2、すなわち、第二固定子4を所定の方向・角度に回転させる。 Further, the
The rotation angle of the
また、第一ローラ1の第一ローラ軸10の方向、並びに、第二ローラ2の第二ローラ軸11a及び第三ローラ軸11bの方向は、互いに直角であるため、第一固定子3に対する第二固定子4の位置決めを容易にすることが可能になる。
また、第一ローラ1の回転中心は第一ローラ軸10に固定され、第二ローラ2の回転中心は第二ローラ軸11a及び第三ローラ軸11bに固定される。このため、第一ローラ1及び第二ローラ2の位置、すなわち回転角度を検出する第一角度センサ18及び第二角度センサ19は、第一ローラ軸10、並びに、第二ローラ軸11a或いは第三ローラ軸11bを利用して、容易に設置することができる。 The
Further, since the direction of the
The rotation center of the
この発明の実施の形態2に係る振動アクチュエータ102は、実施の形態1の振動アクチュエータ101における第一圧電素子5の構成を変更し、さらに、第一基部ブロック7を第三固定子として第三基部ブロック9に対して固定せず摺動可能としたものである。
なお、以下の実施の形態において、前出した図における参照符号と同一の符号は、同一または同様な構成要素であるので、その詳細な説明は省略する。
The
In the following embodiments, the same reference numerals as those in the previous drawings are the same or similar components, and thus detailed description thereof is omitted.
図6を参照すると、実施の形態1と同様にして、振動アクチュエータ102において、第一ローラ1及び第一固定子3が設けられ、第一固定子3における第一ローラ1と反対側の端面には、円筒状の第一圧電素子50がその一方の端面を接触させるようにして配置されている。さらに、第一圧電素子50における第一固定子3と反対側となる他方の端面には、略円筒形状をした第三固定子20が接触するようにして配置されている。また、第三固定子20における第一圧電素子50と反対側となる端面には、第三基部ブロック9がその一方の端面を接触させるようにして配置されている。なお、第三固定子20は、第三基部ブロック9側に複数の凸部20aを有している。 First, the configuration of the
Referring to FIG. 6, in the same manner as in the first embodiment, in the
次に、図7を参照すると、第一圧電素子50は、実施の形態1における第一圧電素子5に設けられた、yz平面上のx軸回りに揺動させるたわみ振動を発生する第一圧電素子部51、及びz軸方向の縦振動を発生する第二圧電素子部52に加えて、xz平面上のy軸回りに揺動させるたわみ振動を発生する第三圧電素子部503を有している。 A
Next, referring to FIG. 7, the first
また、図7を参照すると、第三圧電素子部503の両端面部分に配置されている一対の電極板がそれぞれ電気的に接地されていると共に、一対の圧電素子板503b及び503d(図8参照)の間に配置されている電極板が駆動回路56に電気的に接続されている。
さらに、第一圧電素子部51及び第三圧電素子部503は、絶縁シート53及び506を介して第一固定子3及び第三固定子20から絶縁され、第一圧電素子部51、第二圧電素子部52、及び第三圧電素子部503は、絶縁シート54及び55を介して互いに絶縁された状態で配置されている。 The third
Referring to FIG. 7, the pair of electrode plates disposed at both end portions of the third
Further, the first
また、この発明の実施の形態2に係る振動アクチュエータ102のその他の構成は、実施の形態1と同様であるため、説明を省略する。 Further, when an AC voltage is applied from the
The other configuration of the
図8を参照すると、駆動回路56(図7参照)が、第一圧電素子部51に交流電圧を印加すると、第一圧電素子部51は、第一固定子3の凸部3a,3b及び第三固定子20(図7参照)に対してyz平面上のx軸回りに揺動させるたわみ振動を発生する。同様に、駆動回路56(図7参照)が、第二圧電素子部52に交流電圧を印加すると、第二圧電素子部52は、第一固定子3の凸部3a,3b及び第三固定子20(図7参照)に対してz軸方向の縦振動を発生する。さらに、第三圧電素子部503に交流電圧を印加すると、第三圧電素子部503は、第一固定子3の凸部3a,3b及び第三固定子20(図7参照)に対してxz平面上のy軸回りに揺動させるたわみ振動を発生する。 Next, the operation of the
Referring to FIG. 8, when the drive circuit 56 (see FIG. 7) applies an AC voltage to the first
この複合振動により、第三固定子20は、その凸部20aで第三基部ブロック9の表面を引っ掻くようにして、第三基部ブロック9に対して方向P3又はQ3に回転する。このとき、第三基部ブロック9は振動アクチュエータ102を備える図示しないロボットのハンドやアーム等の機械に固定されているため、第一固定子3、第一圧電素子50、及び第三固定子20により構成される第一アクチュエータ本体102aは、方向P3又はQ3に回転する。(図6参照)
なお、第一固定子3の凸部3a,3bに発生する複合振動によっても、複合振動の方向により第一ローラ1は方向P1又はQ1に回転する。
また、この発明の実施の形態2に係る振動アクチュエータ102のその他の動作は、実施の形態1と同様であるため、説明を省略する。 Further, under the control of the
By this combined vibration, the
Note that the
The other operations of the
また、第一圧電素子5に第三固定子20を接触配置することにより、第三固定子20に対して接触配置される第三基部ブロック9を回転させることができる。すなわち、第三基部ブロック9は固定されているので、第一アクチュエータ本体102aは、第三基部ブロック9に対して第一支持部材122を中心として、回転することができる。また、この回転動作は、回転中心軸が第一支持部材122に固定されているため、回転軸のズレの発生を防ぐことができる。 Thus, in the
Further, by placing the
この発明の実施の形態3に係る振動アクチュエータ103は、実施の形態1の振動アクチュエータ101において同一平面上に設けられていた、第一ローラ1の第一ローラ軸10と、第二ローラ2の第二ローラ軸11a及び第三ローラ軸11bとの位置関係を変更したものである。
The
また、この発明の実施の形態3に係る振動アクチュエータ103のその他の構成及び動作は、実施の形態1と同様であるため、説明を省略する。
このように、実施の形態3に係る振動アクチュエータ103において、上記実施の形態1の振動アクチュエータ101と同様な効果が得られる。
また、第一ローラ軸310と第二ローラ軸311との乖離距離を増大することにより、第一ローラ31及び第二ローラ32の第一固定子3及び第二固定子4に対して可動なそれぞれの回転角度範囲を増大することができる。従って、第一固定子3に対する第二固定子4、すなわち第一アクチュエータ本体103aに対する第二アクチュエータ本体103bの動作の自由度を増大することができる。
また、実施の形態3において、ローラ本体300は、第一ローラ31のローラ部31a及び31b、並びに、第二ローラ32のローラ部32a及び32bが、いずれも円筒の一部を形成する形状であったが、これらが完全な円筒であってもよい。例えば、円筒形状をした第一ローラ31のローラ部31a及び31bの間に、円筒形状をした第二ローラ32のローラ部32a及び32bを配置し、ローラ部32a及び32bの一部がローラ部31a及び31bの円筒面より外側に突出するようにして、ローラ本体300を形成してもよい。 The
The other configuration and operation of the
Thus, in the
Further, by increasing the separation distance between the
In
この発明の実施の形態4に係る振動アクチュエータ104は、実施の形態1の振動アクチュエータ101における第二ローラ2及び第二固定子4の構成を変更したものである。すなわち、第二ローラ2が第二支持部材13における軸部13dを中心として回転するようにしたものである。
The
図10を参照すると、実施の形態1と同様にして、振動アクチュエータ104において、半円筒状をした一対のローラ部1a及びローラ部1bからなる第一ローラ1及び第一固定子3が設けられている。また、第一固定子3における第一ローラ1と反対側の端面には、第一圧電素子5、第一基部ブロック7及び第三基部ブロック9が順次設けられている。なお、第一圧電素子5は、実施の形態1の振動アクチュエータ101における第一圧電素子5と同じ構成を有している。
また、第一ローラ1の第一ローラ軸10には第一支持部材12が回転可能に設けられ、第一支持部材12に設けられているバネ12fは、第一ローラ1に対する第一固定子3の予圧力を付与している。 First, the configuration of the
Referring to FIG. 10, in the same manner as in the first embodiment, the
A
板部材42は第二ローラを構成しており、ローラ部1a及び1b、並びに、板部材42は、互いに結合されて一体となって、1つの回転子であるローラ本体400を構成している。なお、板部材42の形状は、矩形状に限らず、円形、楕円形又は多角形形状などであってもよい。 Next, a
The
第二固定子44は、互いに径の異なる第一円筒部44a及び第二円筒部44bをこれらの軸心が同一となるように連結したものである。そして、第一円筒部44aは、実施の形態2の振動アクチュエータ102における第三固定子20と同様の形状を有している。第一円筒部44aは、端面44aaにおいてその外周に沿って形成された複数の凸部44abを、板部材42の端面42aに接触させており、凸部44abは、板部材42の端面42a内に収まるように形成されている。
また、第二固定子44における板部材42と反対側となる、第二円筒部44bの端面には、円筒状の第二圧電素子64が配置されており、その構成の詳細は後述にて説明する。
さらに、第二圧電素子64における第二固定子44と反対側の端面には、第二基部ブロック8が設けられている。 Furthermore, the substantially cylindrical
The
A cylindrical second
Further, a
さらに、第二支持部材134は、軸部134dが第二固定子44及び第二圧電素子64を貫通して第二基部ブロック8に延びており、軸部134dの端部に円板134eを有している。そして、第二支持部材134は、第二基部ブロック8の内部において、円板12eと第二基部ブロック8との間における軸部134dの周りにバネ134fを有している。バネ134fは、板部材42に対する第二固定子44の予圧力を付与している。
このとき、板部材42及び第二固定子44は、互いに対して、第二支持部材134の軸部134dを中心に回転可能となっている。よって、第二支持部材134の軸部134dは、第二ローラである板部材42におけるローラ軸を構成している、すなわち、実施の形態1における第二ローラ軸及び第三ローラ軸を構成している。 Referring also to FIG. 11, the
Further, the
At this time, the
よって、xyz軸からなる座標系は、第一ローラ1、第一固定子3、第一圧電素子5及び第一基部ブロック7に対して適用し、xy4z4軸からなる座標系は、板部材42、第二固定子44、第二圧電素子64及び第二基部ブロック8に対して適用して以下の説明を行う。 Here, for convenience of explanation, the axis direction of the
Therefore, the coordinate system consisting of the xyz axes is applied to the
さらに、第一圧電素子部51及び第二圧電素子部504は、絶縁シート53及び506を介して第二基部ブロック8及び第二固定子44から絶縁され、第一圧電素子部51及び第二圧電素子部504は、絶縁シート54を介して互いに絶縁された状態で配置されている。
また、この発明の実施の形態4に係る振動アクチュエータ104のその他の構成は、実施の形態1又は2と同様であるため、説明を省略する。 Next, the second
Further, the first
The other configuration of the
まず、第一ローラ1、第一固定子3、第一圧電素子5及び第一基部ブロック7の動作は、実施の形態1の振動アクチュエータ101と同様であるため、その説明を省略する。
このため、第二ローラである板部材42、第二固定子44、第二圧電素子64及び第二基部ブロック8の動作について以下に説明する。 Next, the operation of the
First, the operations of the
Therefore, the operations of the
そこで、図11を参照すると、駆動回路56の制御に従って、第一圧電素子部51と第二圧電素子部504との双方に位相を90度シフトさせた交流電圧を印加すると、第一圧電素子部51のx軸回りに揺動させるたわみ振動、及び第二圧電素子部504のy4軸回りに揺動させるたわみ振動が組み合わされた複合振動、すなわち、xy4面内の楕円振動が、第二固定子44の凸部44abに発生する。 Referring to FIGS. 11 and 12, when the
Therefore, referring to FIG. 11, when an AC voltage whose phase is shifted by 90 degrees is applied to both the first
また、この発明の実施の形態4に係る振動アクチュエータ104のその他の動作は、実施の形態1と同様であるため、説明を省略する。 The rotation angle of the
The other operations of the
また、実施の形態2に係る振動アクチュエータ102は、x軸回りに回転する第一ローラ1、及び、z軸回りに回転する第三固定子20とを有している。一方、本実施の形態に係る振動アクチュエータ104は、x軸回りに回転する第一ローラ1と、z4軸回りに回転する第二ローラである板部材42とを有している。そして、振動アクチュエータ102における第一ローラ1及び第三固定子20は互いに離れて配置されているが、振動アクチュエータ104における第一ローラ1及び板部材42は、互いに近接して配置されている。このため、振動アクチュエータ104は、振動アクチュエータ102に比べ、x軸回りの回転部位とz4軸回りの回転部位とを近接させた、2種類の回転動作を複合した動作を可能にする。よって、例えば、振動アクチュエータ102は、人間の指の動作を再現できるためロボットハンドにおける指部分への適用が可能であるが、振動アクチュエータ104は、人間の肩関節又は股関節の動作を再現できるため、ロボットにおける人間の肩又は股に相当する部位への適用が可能である。従って、振動アクチュエータ104によって、本願発明に係る振動アクチュエータの適用対象を拡大することができる。 Thus, in the
The
さらに、第一ローラ1,31の一対のローラ部1a及び1b,31a及び31b、並びに、第二ローラ2,32の一対のローラ部2a及び2b,32a及び32bは、すべて円筒の一部を構成する形状であったが、円錐台の一部を構成する形状であってもよい。例えば、実施の形態1の振動アクチュエータ101における第一ローラ1の一対のローラ部1a及び1bが円錐台形状である場合、第一固定子3の凸部3a及び3bにおいて、ローラ部1a及び1bの円錐台を形成するローラ面に整合する形状をした溝を形成し、ローラ部1a及び1bをこの溝に嵌合させるようにしてもよい。これにより、ローラ部1a及び1bが、第一ローラ軸10方向、すなわち回転中心軸方向へ移動するのを防ぐことができる。 In the first to fourth embodiments, the
Further, the pair of
Claims (9)
- 互いに異なる回転中心軸を有する第一ローラと第二ローラとを一体に含む回転子と、
前記第一ローラに接触配置される第一固定子と、
前記第二ローラに接触配置される第二固定子と、
前記第一固定子を振動させることにより、前記第一ローラを回転させる第一振動手段と、
前記第二固定子を振動させることにより、前記第二ローラを回転させる第二振動手段と
を備える振動アクチュエータ。 A rotor integrally including a first roller and a second roller having different rotation center axes;
A first stator disposed in contact with the first roller;
A second stator disposed in contact with the second roller;
First vibrating means for rotating the first roller by vibrating the first stator;
A vibration actuator comprising: second vibration means for rotating the second roller by vibrating the second stator. - 回転中心軸をもつ第一ローラと、
前記第一ローラに接触配置される第一固定子と、
前記第一固定子を振動させることにより、前記第一ローラを回転させる第一振動手段と
を有する第一振動アクチュエータ部と、
回転中心軸をもつ第二ローラと、
前記第二ローラに接触配置される第二固定子と、
前記第二固定子を振動させることにより、前記第二ローラを回転させる第二振動手段と
を有する第二振動アクチュエータ部と
を備え、
前記第一振動アクチュエータ部の前記第一ローラと、前記第二振動アクチュエータ部の前記第二ローラとが一体化され、
一体化された前記第一ローラの前記回転中心軸と前記第二ローラの前記回転中心軸とが異なる振動アクチュエータ。 A first roller having a central axis of rotation;
A first stator disposed in contact with the first roller;
A first vibration actuator unit having first vibration means for rotating the first roller by vibrating the first stator;
A second roller having a center axis of rotation;
A second stator disposed in contact with the second roller;
A second vibration actuator unit having second vibration means for rotating the second roller by vibrating the second stator,
The first roller of the first vibration actuator unit and the second roller of the second vibration actuator unit are integrated,
A vibration actuator in which the rotation center axis of the integrated first roller and the rotation center axis of the second roller are different. - 前記第一振動手段及び前記第二振動手段は、
互いに積層されると共に、電圧を印加されて超音波振動を発生する複数の圧電素子板からなり、
前記第一振動手段における前記圧電素子板の積層方向の端部に、前記第一固定子が配置され、
前記第二振動手段における前記圧電素子板の積層方向の端部に、前記第二固定子が配置される
請求項1または2に記載の振動アクチュエータ。 The first vibrating means and the second vibrating means are:
It consists of a plurality of piezoelectric element plates that are laminated together and generate ultrasonic vibrations when a voltage is applied,
The first stator is disposed at an end of the piezoelectric element plate in the stacking direction of the first vibration unit,
3. The vibration actuator according to claim 1, wherein the second stator is disposed at an end of the second vibration unit in the stacking direction of the piezoelectric element plates. - 前記第一ローラの前記回転中心軸の周りにおいて、前記第一ローラを回転自在に支持し、
前記第一固定子及び前記第一振動手段を貫通する第一軸部を有する
第一支持部材と、
前記第一支持部材を介して前記第一固定子に対して前記第一ローラを加圧する第一予圧手段と、
前記第二ローラの前記回転中心軸の周りにおいて、前記第二ローラを回転自在に支持し、
前記第二固定子及び前記第二振動手段を貫通する第二軸部を有する
第二支持部材と、
前記第二支持部材を介して前記第二固定子に対して前記第二ローラを加圧する第二予圧手段と
をさらに備える
請求項1または2に記載の振動アクチュエータ。 Around the rotation center axis of the first roller, the first roller is rotatably supported,
A first support member having a first shaft portion penetrating the first stator and the first vibration means;
First preloading means for pressing the first roller against the first stator via the first support member;
Around the rotation center axis of the second roller, the second roller is rotatably supported,
A second support member having a second shaft portion penetrating the second stator and the second vibration means;
3. The vibration actuator according to claim 1, further comprising a second preloading unit that pressurizes the second roller against the second stator via the second support member. - 前記第一振動手段に接触配置される第三固定子をさらに備え、
前記第三固定子は、前記第一振動手段の振動により振動されると、前記第一支持部材を中心に、前記第三固定子に対して接触配置される対象物を回転させる
請求項4に記載の振動アクチュエータ。 A third stator disposed in contact with the first vibration means;
The said 3rd stator will rotate the target object arranged in contact with the said 3rd stator centering | focusing on a said 1st support member, if it vibrates by the vibration of a said 1st vibration means. The vibration actuator described. - 前記第一ローラと前記第一固定子との接触面が円筒面の一部であり、
前記第二ローラと前記第二固定子との接触面が円筒面の一部である
請求項1または2に記載の振動アクチュエータ。 A contact surface between the first roller and the first stator is a part of a cylindrical surface;
The vibration actuator according to claim 1, wherein a contact surface between the second roller and the second stator is a part of a cylindrical surface. - 前記第一ローラの前記回転中心軸と前記第二ローラの前記回転中心軸とは、それらの回転中心軸の方向が互いに直角な関係になっている
請求項1または2に記載の振動アクチュエータ。 3. The vibration actuator according to claim 1, wherein the rotation center axis of the first roller and the rotation center axis of the second roller are in a relationship in which the directions of the rotation center axes are perpendicular to each other. - 前記第一ローラにおける前記第一固定子との接触面が円筒面の一部であり、
前記第二ローラにおける前記第二固定子との接触面が平面であり、
前記第一ローラは、前記第一固定子との接触面である前記円筒面の中心軸を中心に回転可能であり、
前記第二ローラは、前記第二固定子との接触面に直角な軸を中心に回転可能である
請求項1または2に記載の振動アクチュエータ。 The contact surface of the first roller with the first stator is a part of a cylindrical surface,
The contact surface of the second roller with the second stator is a flat surface,
The first roller is rotatable around a central axis of the cylindrical surface that is a contact surface with the first stator,
The vibration actuator according to claim 1, wherein the second roller is rotatable about an axis perpendicular to a contact surface with the second stator. - 前記第一ローラの前記回転中心軸の周りにおいて、前記第一ローラを回転自在に支持し、
前記第一固定子及び前記第一振動手段を貫通する第一軸部を有する
第一支持部材と、
前記第一支持部材を介して前記第一固定子に対して前記第一ローラを加圧する第一予圧手段と、
前記第二ローラにおける前記第二固定子との接触面に結合されて、前記第二ローラを支持し、
前記第二固定子及び前記第二振動手段を貫通する第二軸部を有する
第二支持部材と、
前記第二支持部材を介して前記第二固定子に対して前記第二ローラを加圧する第二予圧手段と
をさらに備える
請求項8に記載の振動アクチュエータ。 Around the rotation center axis of the first roller, the first roller is rotatably supported,
A first support member having a first shaft portion penetrating the first stator and the first vibration means;
First preloading means for pressing the first roller against the first stator via the first support member;
Coupled to the contact surface of the second roller with the second stator to support the second roller;
A second support member having a second shaft portion penetrating the second stator and the second vibration means;
The vibration actuator according to claim 8, further comprising second preloading means that pressurizes the second roller against the second stator via the second support member.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980122317.XA CN102067435B (en) | 2008-07-17 | 2009-06-02 | Vibration actuator |
JP2010520805A JP5304788B2 (en) | 2008-07-17 | 2009-06-02 | Vibration actuator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-186285 | 2008-07-17 | ||
JP2008186285 | 2008-07-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010007837A1 true WO2010007837A1 (en) | 2010-01-21 |
Family
ID=41550245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/060062 WO2010007837A1 (en) | 2008-07-17 | 2009-06-02 | Vibration actuator |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5304788B2 (en) |
KR (1) | KR20110009705A (en) |
CN (1) | CN102067435B (en) |
WO (1) | WO2010007837A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102315790A (en) * | 2010-07-01 | 2012-01-11 | 株式会社丰田自动织机 | Oscillation actuator |
JP2014184524A (en) * | 2013-03-25 | 2014-10-02 | Seiko Epson Corp | Robot hand and robot |
CN105538288A (en) * | 2014-10-22 | 2016-05-04 | 精工爱普生株式会社 | Robot |
JP2016078213A (en) * | 2014-10-22 | 2016-05-16 | セイコーエプソン株式会社 | robot |
JP2016215374A (en) * | 2016-09-30 | 2016-12-22 | セイコーエプソン株式会社 | Robot hand and robot |
JP2018516656A (en) * | 2015-05-14 | 2018-06-28 | シーエムアール サージカル リミテッドCmr Surgical Limited | Torque sensing in a list of surgical robots |
CN110238873A (en) * | 2019-04-25 | 2019-09-17 | 浙江师范大学 | A kind of orthogonal formula piezoelectricity articulation mechanism and its control method |
US11224488B2 (en) | 2014-03-07 | 2022-01-18 | Cmr Surgical Limited | Surgical arm |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103853363B (en) * | 2012-11-29 | 2017-09-29 | 联想(北京)有限公司 | The method and electronic equipment of a kind of touch feedback |
KR101413114B1 (en) * | 2012-12-18 | 2014-07-01 | 주식회사 에이스컴텍 | Jig plate supporting apparatus capable of multi-directional inclination adjustment |
CN106514699B (en) * | 2016-12-08 | 2018-11-20 | 南京航空航天大学 | A kind of Three Degree Of Freedom machine swivel of hand and its working method |
CN106549601B (en) * | 2016-12-08 | 2018-06-26 | 南京航空航天大学 | Mechanical hand and its working method based on ultrasonic start principle |
CN106956284B (en) * | 2017-04-28 | 2023-07-21 | 南京航空航天大学 | Deep sea full-open type mechanical finger structure and working mode thereof |
CN106956291B (en) * | 2017-04-28 | 2023-06-23 | 南京航空航天大学 | Deep sea full-open mechanical arm structure and working mode thereof |
CN111283669B (en) * | 2020-03-27 | 2022-04-22 | 南京航空航天大学 | Sandwich type piezoelectric two-degree-of-freedom mechanical arm and driving method thereof |
CN111688204A (en) * | 2020-07-01 | 2020-09-22 | 隋秀华 | Mechanical control arm torsion joint based on fused deposition 3D printing |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003102185A (en) * | 2001-09-25 | 2003-04-04 | Canon Inc | Vibration type actuator and vibration type drive unit |
JP2005253127A (en) * | 2004-03-01 | 2005-09-15 | Nippon Telegr & Teleph Corp <Ntt> | Joint actuator |
JP2006051568A (en) * | 2004-08-11 | 2006-02-23 | Nippon Telegr & Teleph Corp <Ntt> | Articulated robot |
JP2008100317A (en) * | 2006-10-19 | 2008-05-01 | Toyota Industries Corp | Object handling device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6265186U (en) * | 1985-10-15 | 1987-04-22 | ||
CN1639956B (en) * | 2002-03-04 | 2010-12-08 | 精工爱普生株式会社 | Linear actuator |
JP2004009281A (en) * | 2002-06-11 | 2004-01-15 | Nsk Ltd | Joint actuator |
-
2009
- 2009-06-02 JP JP2010520805A patent/JP5304788B2/en not_active Expired - Fee Related
- 2009-06-02 CN CN200980122317.XA patent/CN102067435B/en not_active Expired - Fee Related
- 2009-06-02 KR KR1020107028074A patent/KR20110009705A/en not_active Application Discontinuation
- 2009-06-02 WO PCT/JP2009/060062 patent/WO2010007837A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003102185A (en) * | 2001-09-25 | 2003-04-04 | Canon Inc | Vibration type actuator and vibration type drive unit |
JP2005253127A (en) * | 2004-03-01 | 2005-09-15 | Nippon Telegr & Teleph Corp <Ntt> | Joint actuator |
JP2006051568A (en) * | 2004-08-11 | 2006-02-23 | Nippon Telegr & Teleph Corp <Ntt> | Articulated robot |
JP2008100317A (en) * | 2006-10-19 | 2008-05-01 | Toyota Industries Corp | Object handling device |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102315790A (en) * | 2010-07-01 | 2012-01-11 | 株式会社丰田自动织机 | Oscillation actuator |
US8760038B2 (en) | 2010-07-01 | 2014-06-24 | Kabushiki Kaisha Toyota Jidoshokki | Vibration actuator |
JP2014184524A (en) * | 2013-03-25 | 2014-10-02 | Seiko Epson Corp | Robot hand and robot |
US11224488B2 (en) | 2014-03-07 | 2022-01-18 | Cmr Surgical Limited | Surgical arm |
CN105538288B (en) * | 2014-10-22 | 2020-08-28 | 精工爱普生株式会社 | Robot |
US10052773B2 (en) | 2014-10-22 | 2018-08-21 | Seiko Epson Corporation | Robot |
JP2016078213A (en) * | 2014-10-22 | 2016-05-16 | セイコーエプソン株式会社 | robot |
CN105538288A (en) * | 2014-10-22 | 2016-05-04 | 精工爱普生株式会社 | Robot |
JP2018516656A (en) * | 2015-05-14 | 2018-06-28 | シーエムアール サージカル リミテッドCmr Surgical Limited | Torque sensing in a list of surgical robots |
US11291516B2 (en) | 2015-05-14 | 2022-04-05 | Cmr Surgical Limited | Torque sensing in a surgical robotic wrist |
US11903668B2 (en) | 2015-05-14 | 2024-02-20 | Cmr Surgical Limited | Torque sensing in a surgical robotic wrist |
JP2016215374A (en) * | 2016-09-30 | 2016-12-22 | セイコーエプソン株式会社 | Robot hand and robot |
CN110238873A (en) * | 2019-04-25 | 2019-09-17 | 浙江师范大学 | A kind of orthogonal formula piezoelectricity articulation mechanism and its control method |
CN110238873B (en) * | 2019-04-25 | 2023-12-08 | 浙江师范大学 | Orthogonal piezoelectric joint mechanism and control method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN102067435A (en) | 2011-05-18 |
JP5304788B2 (en) | 2013-10-02 |
KR20110009705A (en) | 2011-01-28 |
CN102067435B (en) | 2013-07-10 |
JPWO2010007837A1 (en) | 2012-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5304788B2 (en) | Vibration actuator | |
US5872417A (en) | Multiple degrees of freedom vibration actuator | |
WO2007055052A1 (en) | Ultrasonic motor | |
JP5211463B2 (en) | Vibration actuator | |
JP4328412B2 (en) | Vibration type actuator and vibration type drive device | |
US8350446B2 (en) | Vibratory actuator and drive device using the same | |
KR101053805B1 (en) | Vibrating actuator | |
KR100712591B1 (en) | Omni-directional ultrasonic piezoelectric actuator system | |
JP2004274916A (en) | Actuator | |
JP2010166720A (en) | Drive unit of ultrasonic motor | |
JP4650221B2 (en) | Multi-degree-of-freedom ultrasonic motor | |
JP4654884B2 (en) | Multi-degree-of-freedom ultrasonic motor | |
JPH11220891A (en) | Vibration-type actuator and vibration-type drive unit | |
JP4654885B2 (en) | Ultrasonic motor | |
JP2667931B2 (en) | Multi-degree-of-freedom actuator | |
JP2004242493A (en) | Piezoelectric actuator and electronic device using the same | |
JP2007202340A (en) | Driving apparatus and control method of driving apparatus | |
JP2008199696A (en) | Vibration actuator | |
JP4477915B2 (en) | Ultrasonic motor | |
JP5669446B2 (en) | Driving mechanism of moving body | |
JP2010166722A (en) | Drive unit of ultrasonic motor | |
JP2008072803A (en) | Multi-freedom actuator | |
JP2009005549A (en) | Vibration actuator | |
JP2008236908A (en) | Vibration actuator | |
JP2009044815A (en) | Vibration actuator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980122317.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09797765 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010520805 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20107028074 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09797765 Country of ref document: EP Kind code of ref document: A1 |