JP2006014431A - Current sensorless controller and control method for motor - Google Patents

Current sensorless controller and control method for motor Download PDF

Info

Publication number
JP2006014431A
JP2006014431A JP2004185054A JP2004185054A JP2006014431A JP 2006014431 A JP2006014431 A JP 2006014431A JP 2004185054 A JP2004185054 A JP 2004185054A JP 2004185054 A JP2004185054 A JP 2004185054A JP 2006014431 A JP2006014431 A JP 2006014431A
Authority
JP
Japan
Prior art keywords
phase
axis
current
voltage
voltage command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2004185054A
Other languages
Japanese (ja)
Inventor
Bunno Cho
文農 張
Mitsujiro Sawamura
光次郎 沢村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2004185054A priority Critical patent/JP2006014431A/en
Publication of JP2006014431A publication Critical patent/JP2006014431A/en
Abandoned legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a current sensorless controller and a control method for a motor which can perform high-performance control with good power efficiency even in case that the influence of on duty time can not be ignored such that the load is heavy and so the rotational speed is low. <P>SOLUTION: This current sensorless controller comprises an on delay compensated voltage estimating means 18 which receives the input of a d-axis estimated current and a q-axis estimated current and the position of a rotor and outputs three-phase on delay compensated voltage, and an addition means 19 which outputs a new AC three-phase voltage command where the three-phase on delay compensated voltage is added to an AC three-phase voltage command to a PWM inverter. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電流センサを用いることなく高性能、高効率に電動機を制御する装置および制御方法に関する。   The present invention relates to an apparatus and a control method for controlling an electric motor with high performance and high efficiency without using a current sensor.

一般に、電動機の高性能制御は、電流センサが検出した電機子電流信号に基づき電流制御を行いながら、位置センサが検出した回転子の位置信号に基づき速度(或いは位置)制御を行っている。一方、電動機駆動システムには小型軽量化、低価格化、信頼性向上などが要求されるため、センサをできれば減らしたい。ところが、高性能制御のために位置センサが欠かせないものである。
従来は、電流センサを用いず電流の推定値を用いて制御系を構成している(例えば、非特許文献1参照)。
図3は従来技術の電動機の電流センサレス制御装置の構成を示すブロック図である。
図3において、11は制御補償器であり、速度偏差ωerr、回転子速度ωmおよびd、q軸の推定電流ids、iqsに基づきd、q軸電圧指令vdr、vqrを計算する。12は電流推定器であり、d、q軸電圧指令vdr、vqrに基づきd、q軸の推定電流ids、iqsを計算する。13はd―q/3相交流座標変換器であり、d、q軸電圧指令vdr、vqrおよび回転子位置θmに基づき三相電圧指令vur、vvr、vwrを計算する。14はPWMインバータであり、三相電圧指令vur、vvr、vwrに基づき三相電圧vu、vv、vwを出力し、電動機15を駆動する。
オンディレー時間が十分短くその影響が小さい場合は、電圧指令は電動機の入力電圧と、推定電流が実際の電流と一致するので、電流センサを用いなくても、普通の電動機の駆動システムと同じように安定かつ高性能な制御系を構成することができる。
このように、従来技術の電動機の制御装置は、電圧指令に基づき電流を推定して制御系を構成するものである。
森本茂雄、外2名、「低分解能位置センサのみによる同期モータの電流センサレスドライブシステム」、電気学会、電気学会論文誌D、平成13年(2001)、121巻11号、P.1126−1133
In general, high-performance control of an electric motor performs speed (or position) control based on a rotor position signal detected by a position sensor while performing current control based on an armature current signal detected by a current sensor. On the other hand, motor drive systems are required to be smaller, lighter, cheaper and more reliable, so we want to reduce the number of sensors if possible. However, a position sensor is indispensable for high-performance control.
Conventionally, a control system is configured using an estimated current value without using a current sensor (see, for example, Non-Patent Document 1).
FIG. 3 is a block diagram showing a configuration of a conventional current sensorless control device for an electric motor.
In FIG. 3, 11 is a control compensator, which calculates d and q-axis voltage commands v dr and v qr based on the speed deviation ω err , the rotor speed ω m and d, and the q-axis estimated currents i ds and i qs. To do. Reference numeral 12 denotes a current estimator, which calculates d and q axis estimated currents i ds and i qs based on d and q axis voltage commands v dr and v qr . Reference numeral 13 denotes a dq / 3-phase AC coordinate converter, which calculates three-phase voltage commands v ur , v vr , and v wr based on d and q-axis voltage commands v dr and v qr and the rotor position θ m . A PWM inverter 14 outputs three-phase voltages v u , v v , and v w based on the three-phase voltage commands v ur , v vr , and v wr to drive the motor 15.
When the on-delay time is sufficiently short and the effect is small, the voltage command is the same as the drive system of a normal motor without using a current sensor because the input voltage of the motor and the estimated current match the actual current. A stable and high-performance control system can be configured.
As described above, the motor control device according to the prior art estimates the current based on the voltage command and constitutes the control system.
Shigeo Morimoto, 2 others, “Current Sensorless Drive System for Synchronous Motor Using Only Low-Resolution Position Sensor”, The Institute of Electrical Engineers of Japan, Journal of the Institute of Electrical Engineers of Japan, 2001 (Vol. 121, No. 11, p. 1126-1133

従来の電動機の電流センサレス制御装置は、オンディレーの影響を無視して制御系を構成したので、負荷が重く回転速度が低い場合は、オンディレー時間の影響で電圧指令は電動機の入力電圧と、推定電流が実際の電流とずれるので、制御系の特性は設計の通りにならず悪くなる。また、正確に非干渉補償できなくなり、d軸電流が大きくなり、電力効率が悪いというような問題も抱えていた。
本発明はこのような問題点に鑑みてなされたものであり、オンディレーの影響を補償して制御系を構成することで、電力効率が良く高性能な制御ができる電動機の電流センサレス制御装置および制御方法を提供することを目的とする。
Since the current sensorless control device for a conventional motor ignores the effect of on-delay and configures the control system, when the load is heavy and the rotation speed is low, the voltage command is the motor input voltage due to the effect of the on-delay time, Since the estimated current deviates from the actual current, the characteristics of the control system are not as designed and are deteriorated. In addition, the non-interference compensation cannot be performed accurately, the d-axis current is increased, and the power efficiency is poor.
The present invention has been made in view of such problems, and a current sensorless control device for an electric motor capable of performing power-efficient and high-performance control by compensating for the influence of on-delay and configuring a control system, and An object is to provide a control method.

上記問題を解決するため、本発明は、次のように構成したのである。
請求項1に記載の発明は、電動機の回転子位置を検出する位置センサと、前記回転子位置を微分して前記電動機の回転子速度を出力する微分手段と、速度指令を前記回転子速度で減算して速度偏差を得る減算手段と、前記速度偏差と前記回転子速度とd軸推定電流およびq軸推定電流を入力してd軸電圧指令およびq軸電圧指令を出力する制御補償手段と、前記d軸電圧指令および前記q軸電圧指令を入力して前記d軸推定電流および前記q軸推定電流を出力する電流推定手段と、前記d軸電圧指令と前記q軸電圧指令および前記回転子位置を入力して交流三相電圧指令をPWMインバータへ出力する座標変換手段と、前記三相電圧指令を入力とし前記電動機を駆動する三相電圧を出力するPWMインバータとを備えた電流センサレス制御装置において、
前記d軸推定電流と前記q軸推定電流および前記回転子位置を入力して三相オンディレー補償電圧を加算手段へ出力するオンディレー補償電圧推定手段と、
前記交流三相電圧指令に前記三相オンディレー補償電圧を足した新たな交流三相電圧指令を前記PWMインバータへ出力する加算手段と、を備えるものである。
また、請求項2に記載の発明は、請求項1記載の発明において、前記オンディレー補償電圧推定手段は、前記d軸推定電流と前記q軸推定電流および前記回転子位置に基づきd−q/3相交流座標変換を行い三相推定電流を計算し、前記三相推定電流の正負符号を判定し、オンディレー時間を設けたことによって生じた前記PWMインバータの入力電圧と出力電圧との差の絶対値に前記正負符号を付けて前記三相オンディレー補償電圧とすることを特徴とするものである。
また、請求項3記載の発明は、電動機の回転子位置を検出する位置センサと、前記回転子位置を微分して前記電動機の回転子速度を出力する微分手段と、速度指令を前記回転子速度で減算して速度偏差を得る減算手段と、前記速度偏差と前記回転子速度とd軸推定電流およびq軸推定電流を入力してd軸電圧指令およびq軸電圧指令を出力する制御補償手段と、前記d軸電圧指令および前記q軸電圧指令を入力して前記d軸推定電流および前記q軸推定電流を出力する電流推定手段と、前記d軸電圧指令と前記q軸電圧指令および前記回転子位置を入力して交流三相電圧指令をPWMインバータへ出力する座標変換手段と、前記三相電圧指令を入力とし前記電動機を駆動する三相電圧を出力するPWMインバータとを備えた電流センサレス制御方法において、
オンディレー補償電圧推定手段は、前記d軸推定電流と前記q軸推定電流および前記回転子位置に基づき(d−q)/3相交流座標変換を行い三相推定電流を計算し、前記三相推定電流の正負符号を判定し、オンディレー時間を設けたことによって生じた前記PWMインバータの入力電圧と出力電圧との差の絶対値に前記正負符号を付けて前記三相オンディレー補償電圧として、加算手段へ出力し、加算手段により、前記交流三相電圧指令に前記三相オンディレー補償電圧を足した新たな交流三相電圧指令を前記PWMインバータへ出力したものである。
In order to solve the above problem, the present invention is configured as follows.
The invention according to claim 1 is a position sensor that detects a rotor position of an electric motor, a differentiating unit that differentiates the rotor position and outputs a rotor speed of the electric motor, and a speed command based on the rotor speed. Subtracting means for obtaining a speed deviation by subtraction, control compensation means for inputting the speed deviation, the rotor speed, the d-axis estimated current and the q-axis estimated current and outputting a d-axis voltage command and a q-axis voltage command; Current estimation means for inputting the d-axis voltage command and the q-axis voltage command and outputting the d-axis estimated current and the q-axis estimated current; the d-axis voltage command, the q-axis voltage command, and the rotor position; Current sensorless control device comprising: coordinate conversion means for inputting an AC three-phase voltage command to a PWM inverter; and a PWM inverter for receiving the three-phase voltage command and outputting a three-phase voltage for driving the motor In,
On-delay compensation voltage estimation means for inputting the d-axis estimation current, the q-axis estimation current, and the rotor position and outputting a three-phase on-delay compensation voltage to the addition means;
And adding means for outputting a new AC three-phase voltage command obtained by adding the three-phase on-delay compensation voltage to the AC three-phase voltage command to the PWM inverter.
According to a second aspect of the present invention, in the first aspect of the present invention, the on-delay compensation voltage estimating means is configured to generate a dq / q based on the d-axis estimated current, the q-axis estimated current, and the rotor position. Three-phase alternating current coordinate transformation is performed to calculate a three-phase estimated current, the sign of the three-phase estimated current is determined, and the difference between the input voltage and the output voltage of the PWM inverter caused by providing an on-delay time The three-phase on-delay compensation voltage is obtained by adding the positive / negative sign to the absolute value.
According to a third aspect of the present invention, there is provided a position sensor for detecting a rotor position of an electric motor, a differentiating means for differentiating the rotor position and outputting a rotor speed of the electric motor, and a speed command for the rotor speed. Subtracting means for obtaining a speed deviation by subtracting at, and control compensation means for inputting the speed deviation, the rotor speed, the d-axis estimated current and the q-axis estimated current and outputting a d-axis voltage command and a q-axis voltage command Current estimation means for inputting the d-axis voltage command and the q-axis voltage command to output the d-axis estimated current and the q-axis estimated current, the d-axis voltage command, the q-axis voltage command, and the rotor Current sensorless control comprising coordinate conversion means for inputting a position and outputting an AC three-phase voltage command to a PWM inverter, and a PWM inverter for inputting the three-phase voltage command and outputting a three-phase voltage for driving the motor In the method,
The on-delay compensation voltage estimating means calculates a three-phase estimated current by performing (dq) / 3-phase AC coordinate conversion based on the d-axis estimated current, the q-axis estimated current, and the rotor position, and calculating the three-phase estimated current. The positive / negative sign of the estimated current is determined, and the positive / negative sign is added to the absolute value of the difference between the input voltage and the output voltage of the PWM inverter generated by providing the on-delay time, and the three-phase on-delay compensation voltage is obtained. A new AC three-phase voltage command obtained by adding the three-phase on-delay compensation voltage to the AC three-phase voltage command is output to the PWM inverter.

本発明によれば、推定電流を用いてオンディレー補償電圧を計算し、それを電圧指令に加えることで電圧指令が電動機の入力電圧と良く一致するため、推定電流を電機子電流と良く一致させることができ、安定かつ高性能な制御をする電動機の電流センサレス制御装置および制御方法を提供ことができる。また、正確な推定電流を用いてより正確な非干渉補償ができるので、d軸の電流を小さく抑えることで駆動システムの電力効率をアップすることができる。   According to the present invention, since the on-delay compensation voltage is calculated using the estimated current and added to the voltage command, the voltage command closely matches the input voltage of the motor, so the estimated current matches the armature current well. Therefore, it is possible to provide a current sensorless control device and a control method for an electric motor that can perform stable and high-performance control. In addition, since more accurate non-interference compensation can be performed using an accurate estimated current, the power efficiency of the drive system can be improved by keeping the d-axis current small.

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施例を示す電動機の電流センサレス制御装置のブロック図である。図において、11は制御補償器であり、速度偏差ωerr、回転子速度ωmおよびd、q軸の推定電流ids、iqsに基づきd、q軸電圧指令vdr、vqrを計算する。12は電流推定器であり、d、q軸電圧指令vdr、vqrに基づきd、q軸の推定電流ids、iqsを計算する。18はオンディレー補償電圧推定器であり、d、q軸の推定電流ids、iqsおよび回転子位置θmに基づき三相オンディレー補償電圧Δvus、Δvvs、Δvwsを計算する。13はd―q/3相交流座標変換器であり、d、q軸電圧指令vdr、vqrおよび回転子位置θmに基づき三相電圧指令vur、vvr、vwrを計算する。19は加算器であり、三相電圧指令vur、vvr、vwrに三相オンディレー補償電圧Δvus、Δvvs、Δvwsを足して新たな三相電圧指令vur1、vvr1、vwr1とする。
14はPWMインバータであり、新たな三相電圧指令vur1、vvr1、vwr1に基づき三相電圧vu、vv、vwを出力し、電動機15を駆動する。
本発明が非特許文献1と異なる部分は、オンディレー補償電圧推定器18と加算器19を備えた部分である。
FIG. 1 is a block diagram of a current sensorless control device for an electric motor according to an embodiment of the present invention. In the figure, 11 is a control compensator, which calculates d and q-axis voltage commands v dr and v qr based on speed deviation ω err , rotor speed ω m and d, and q-axis estimated currents i ds and i qs. . Reference numeral 12 denotes a current estimator, which calculates d and q axis estimated currents i ds and i qs based on d and q axis voltage commands v dr and v qr . An on-delay compensation voltage estimator 18 calculates three-phase on-delay compensation voltages Δv us , Δv vs , Δv ws based on the d and q axis estimated currents i ds , i qs and the rotor position θ m . Reference numeral 13 denotes a dq / 3-phase AC coordinate converter, which calculates three-phase voltage commands v ur , v vr , and v wr based on d and q-axis voltage commands v dr and v qr and the rotor position θ m . Reference numeral 19 denotes an adder, which adds three-phase on-delay compensation voltages Δv us , Δv vs , Δv ws to the three-phase voltage commands v ur , v vr , v wr to give new three-phase voltage commands v ur1 , v vr1 , v Let wr1 .
A PWM inverter 14 outputs three-phase voltages v u , v v and v w based on new three-phase voltage commands v ur1 , v vr1 and v wr1 to drive the motor 15.
The present invention is different from Non-Patent Document 1 in that it includes an on-delay compensation voltage estimator 18 and an adder 19.

図2は、図1におけるオンディレー補償電圧推定器の構成を示すブロック図である。図において、181はd―q/3相交流座標変換器であり、d、q軸の推定電流ids、iqsおよび回転子位置θmに基づき三相推定電流ius、ivs、iwsを計算する。182は電流方向判定器であり、三相推定電流ius、ivs、iwsに基づき三相推定電流の正負符号Sius、Sivs、Siwsを決定する。183はオンディレー電圧定数ΔVであり、オンディレー時間を設けたことによって生じたPWMインバータの入力電圧と出力電圧との差の絶対値である。184は乗算器であり、オンディレー電圧定数ΔVに三相推定電流の正負符号Sius、Sivs、Siwsを掛けた値を三相オンディレー補償電圧Δvus、Δvvs、Δvwsとする。 FIG. 2 is a block diagram showing the configuration of the on-delay compensation voltage estimator in FIG. In the figure, reference numeral 181 denotes a dq / 3-phase AC coordinate converter, which is a three-phase estimated current i us , i vs , i ws based on the d and q axis estimated currents i ds and i qs and the rotor position θ m. Calculate A current direction determiner 182 determines the positive and negative signs S ius , S ivs , and S iws of the three-phase estimated current based on the three-phase estimated currents i us , i vs , and i ws . Reference numeral 183 denotes an on-delay voltage constant ΔV, which is an absolute value of a difference between the input voltage and the output voltage of the PWM inverter caused by providing the on-delay time. Reference numeral 184 denotes a multiplier, which is obtained by multiplying the on-delay voltage constant ΔV by the positive and negative signs S ius , S ivs , and S iws of the three-phase estimated current as three-phase on-delay compensation voltages Δv us , Δv vs , Δv ws .

以下、本発明の制御装置の動作原理について説明する。
PWMインバータでは、直流母線の短絡防止のため必ずオンディレー時間を設けなければならない。一方、オンディレー時間を設けると、PWMインバータの出力電圧は入力電圧と差を生じる。その差の絶対値(ここで、オンディレー電圧定数と言う)ΔVは
ΔV=Ed・td・fc …(1)
で表される。ただし、tdはオンディレー時間、Edは直流母線の電圧、fcはPWMキャリア周波数である。また、三相のPWMインバータの入力電圧と出力電圧との差ΔVu、ΔVv、ΔVwはそれぞれ三相の電流iu、iv、iwの方向によって符号が違う。電動機へ流入する方向を電流の正方向とすると、ある相の電流方向は正である時その相のPWMインバータの入力電圧と出力電圧との差が正となり、ある相の電流方向は負である時その相のPWMインバータの入力電圧と出力電圧との差が負となる。また、符号関数Sign(x)を
Hereinafter, the operation principle of the control device of the present invention will be described.
In the PWM inverter, an on-delay time must be provided to prevent a short circuit of the DC bus. On the other hand, when the on-delay time is provided, the output voltage of the PWM inverter is different from the input voltage. The absolute value of the difference (herein referred to as the on-delay voltage constant) ΔV is ΔV = E d · t d · f c (1)
It is represented by Where t d is the on-delay time, E d is the DC bus voltage, and f c is the PWM carrier frequency. Also, the differences ΔV u , ΔV v , ΔV w between the input voltage and the output voltage of the three-phase PWM inverter have different signs depending on the directions of the three-phase currents i u , i v , i w , respectively. Assuming that the direction flowing into the motor is the positive direction of the current, when the current direction of a certain phase is positive, the difference between the input voltage and the output voltage of the PWM inverter of that phase is positive, and the current direction of a certain phase is negative At that time, the difference between the input voltage and the output voltage of the PWM inverter of that phase becomes negative. Also, the sign function Sign (x) is

Figure 2006014431
Figure 2006014431

と定義すると、
ΔVu=Vur1−Vu=Sign(iu)・ΔV …(3)
ΔVv=Vvr1−Vv=Sign(iv)・ΔV …(4)
ΔVw=Vwr1−Vw=Sign(iw)・ΔV …(5)
となる。
また、図2によると、三相オンディレー補償電圧は
ΔVus=Sign(ius)・ΔV …(6)
ΔVvs=Sign(ivs)・ΔV …(7)
ΔVws=Sign(iws)・ΔV …(8)
となる。
仮に、推定電流が電機子電流と一致するとすると、式(3)〜式(8)により、
ΔVus=ΔVu=Vur1−Vu …(9)
ΔVvs=ΔVv=Vvr1−Vv …(10)
ΔVws=ΔVw=Vwr1−Vw …(11)
となる。
また、図1によると、三相電圧指令は
ur=Vur1−ΔVus=Vu …(12)
vr=Vvr1−ΔVvs=Vv …(13)
wr=Vwr1−ΔVws=Vw …(14)
となる。
すなわち、d、q軸電圧指令vdr、vqrは電動機のd、q軸電圧と一致する。よって、d、q軸電圧指令vdr、vqrに基づいて推定した電流は電機子電流と一致する。
このように、推定電流を基づいて計算したオンディレー補償電圧を電圧指令に加えオンディレー時間の影響を補償することによって、電圧指令を電動機の電圧と一致させることができ、逆にこの電圧指令に基づいて推定した電流を電機子電流と一致させることができる。そして、この推定電流を用いて安定化補償および非干渉化補償を行うと、電流センサを用いなくても電流センサがある場合と同じように高性能かつ高効率な制御をすることができる。
Defined as
ΔV u = V ur1 −V u = Sign (i u ) · ΔV (3)
ΔV v = V vr1 −V v = Sign (i v ) · ΔV (4)
ΔV w = V wr1 −V w = Sign (i w ) · ΔV (5)
It becomes.
Further, according to FIG. 2, the three-phase on-delay compensation voltage is ΔV us = Sign (i us ) · ΔV (6)
ΔV vs = Sign (i vs ) · ΔV (7)
ΔV ws = Sign (i ws ) · ΔV (8)
It becomes.
If the estimated current matches the armature current, the equations (3) to (8)
ΔV us = ΔV u = V ur1 −V u (9)
ΔV vs = ΔV v = V vr1 −V v (10)
ΔV ws = ΔV w = V wr1 −V w (11)
It becomes.
Further, according to FIG. 1, the three-phase voltage command is V ur = V ur1 −ΔV us = V u (12)
V vr = V vr1 -ΔV vs = V v (13)
V wr = V wr1 −ΔV ws = V w (14)
It becomes.
That is, the d and q-axis voltage commands v dr and v qr coincide with the d and q-axis voltages of the motor. Therefore, the current estimated based on the d and q-axis voltage commands v dr and v qr matches the armature current.
In this way, by adding the on-delay compensation voltage calculated based on the estimated current to the voltage command to compensate for the influence of the on-delay time, the voltage command can be matched with the voltage of the motor. The estimated current can be matched with the armature current. When stabilization compensation and non-interference compensation are performed using this estimated current, it is possible to perform high-performance and high-efficiency control in the same manner as when there is a current sensor without using a current sensor.

次に、本発明の効果を具体例を用いて説明する。同期電動機に対して従来技術と本発明の技術を用いたシミュレーション結果をそれぞれ図4と図5に示す。従来技術を用いた場合(図4)と較べ、、本発明の技術を用いた場合(図5)は、推定電流が電機子電流と良く一致し、速度応答が速度指令に良く追従し、d軸電流も小さいことが分かる。   Next, the effects of the present invention will be described using specific examples. The simulation results using the prior art and the technique of the present invention for the synchronous motor are shown in FIGS. 4 and 5, respectively. Compared with the case of using the prior art (FIG. 4), when using the technique of the present invention (FIG. 5), the estimated current matches well with the armature current, the speed response follows the speed command well, and d It can be seen that the axial current is also small.

本発明の技術は、オンディレーの影響を補償することによって正確に電流を推定することができるので、PWMインバータを用いた磁気浮上系の電流センサレス制御にも適応できる。   The technique of the present invention can accurately estimate the current by compensating for the influence of on-delay, and thus can be applied to current sensorless control of a magnetic levitation system using a PWM inverter.

本発明の実施例を示す電動機の電流センサレス制御装置のブロック図The block diagram of the electric current sensorless control apparatus of the electric motor which shows the Example of this invention 本発明の電動機の電流センサレス制御装置におけるオンディレー補償電圧推定器の構成を示すブロック図The block diagram which shows the structure of the on-delay compensation voltage estimator in the electric current sensorless control apparatus of the electric motor of this invention 従来技術の電動機の電流センサレス制御装置の構成を示すブロック図The block diagram which shows the structure of the electric current sensorless control apparatus of the motor of a prior art 従来技術を用いた電動機の電流センサレス制御のシミュレーション結果を示す図The figure which shows the simulation result of the current sensorless control of the electric motor using a prior art 本発明の技術を用いた電動機の電流センサレス制御のシミュレーション結果を示す図The figure which shows the simulation result of the electric current sensorless control of the electric motor using the technique of this invention

符号の説明Explanation of symbols

10 減算器
11 制御補償器
12 電流推定器
13、181 d―q/3相交流座標変換器
14 PWMインバータ
15 電動機
16 位置センサ
17 微分器
18 オンディレー補償電圧推定器
19 加算器
182 電流方向判定器
183 オンディレー電圧定数
184 乗算器
DESCRIPTION OF SYMBOLS 10 Subtractor 11 Control compensator 12 Current estimator 13, 181 dq / 3 phase AC coordinate converter 14 PWM inverter 15 Motor 16 Position sensor 17 Differentiator 18 On-delay compensation voltage estimator 19 Adder 182 Current direction determiner 183 On-delay voltage constant 184 Multiplier

Claims (3)

電動機の回転子位置を検出する位置センサと、前記回転子位置を微分して前記電動機の回転子速度を出力する微分手段と、速度指令を前記回転子速度で減算して速度偏差を得る減算手段と、前記速度偏差と前記回転子速度とd軸推定電流およびq軸推定電流を入力してd軸電圧指令およびq軸電圧指令を出力する制御補償手段と、前記d軸電圧指令および前記q軸電圧指令を入力して前記d軸推定電流および前記q軸推定電流を出力する電流推定手段と、前記d軸電圧指令と前記q軸電圧指令および前記回転子位置を入力して交流三相電圧指令をPWMインバータへ出力する座標変換手段と、前記三相電圧指令を入力とし前記電動機を駆動する三相電圧を出力するPWMインバータとを備えた電流センサレス制御装置において、
前記d軸推定電流と前記q軸推定電流および前記回転子位置を入力して三相オンディレー補償電圧を加算手段へ出力するオンディレー補償電圧推定手段と、
前記交流三相電圧指令に前記三相オンディレー補償電圧を足した新たな交流三相電圧指令を前記PWMインバータへ出力する加算手段と、
を備えたことを特徴とする電動機の電流センサレス制御装置。
A position sensor for detecting the rotor position of the electric motor; a differentiation means for differentiating the rotor position to output the rotor speed of the electric motor; and a subtraction means for subtracting a speed command by the rotor speed to obtain a speed deviation. Control compensation means for inputting the speed deviation, the rotor speed, the d-axis estimated current and the q-axis estimated current and outputting a d-axis voltage command and a q-axis voltage command; and the d-axis voltage command and the q-axis Current estimation means for inputting a voltage command and outputting the d-axis estimated current and the q-axis estimated current; and the d-axis voltage command, the q-axis voltage command, and the rotor position are input, and an AC three-phase voltage command In a current sensorless control device comprising: coordinate conversion means for outputting a PWM inverter; and a PWM inverter that outputs the three-phase voltage for driving the motor by receiving the three-phase voltage command.
On-delay compensation voltage estimation means for inputting the d-axis estimation current, the q-axis estimation current, and the rotor position and outputting a three-phase on-delay compensation voltage to the addition means;
Adding means for outputting a new AC three-phase voltage command to the PWM inverter by adding the three-phase on-delay compensation voltage to the AC three-phase voltage command;
An electric current sensorless control device for an electric motor.
前記オンディレー補償電圧推定手段は、前記d軸推定電流と前記q軸推定電流および前記回転子位置に基づき(d−q)/3相交流座標変換を行い三相推定電流を計算し、前記三相推定電流の正負符号を判定し、オンディレー時間を設けたことによって生じた前記PWMインバータの入力電圧と出力電圧との差の絶対値に前記正負符号を付けて前記三相オンディレー補償電圧とすることを特徴とする請求項1記載の電動機の電流センサレス制御装置。   The on-delay compensation voltage estimating means calculates a three-phase estimated current by performing (dq) / 3-phase AC coordinate conversion based on the d-axis estimated current, the q-axis estimated current, and the rotor position, and calculating the three-phase estimated current. The positive / negative sign of the phase estimation current is determined and the positive / negative sign is added to the absolute value of the difference between the input voltage and the output voltage of the PWM inverter caused by providing the on-delay time, and the three-phase on-delay compensation voltage The current sensorless control apparatus for an electric motor according to claim 1. 電動機の回転子位置を検出する位置センサと、前記回転子位置を微分して前記電動機の回転子速度を出力する微分手段と、速度指令を前記回転子速度で減算して速度偏差を得る減算手段と、前記速度偏差と前記回転子速度とd軸推定電流およびq軸推定電流を入力してd軸電圧指令およびq軸電圧指令を出力する制御補償手段と、前記d軸電圧指令および前記q軸電圧指令を入力して前記d軸推定電流および前記q軸推定電流を出力する電流推定手段と、前記d軸電圧指令と前記q軸電圧指令および前記回転子位置を入力して交流三相電圧指令をPWMインバータへ出力する座標変換手段と、前記三相電圧指令を入力とし前記電動機を駆動する三相電圧を出力するPWMインバータとを備えた電流センサレス制御方法において、
オンディレー補償電圧推定手段は、前記d軸推定電流と前記q軸推定電流および前記回転子位置に基づき(d−q)/3相交流座標変換を行い三相推定電流を計算し、前記三相推定電流の正負符号を判定し、オンディレー時間を設けたことによって生じた前記PWMインバータの入力電圧と出力電圧との差の絶対値に前記正負符号を付けて前記三相オンディレー補償電圧として、加算手段へ出力し、
加算手段により、前記交流三相電圧指令に前記三相オンディレー補償電圧を足した新たな交流三相電圧指令を前記PWMインバータへ出力することを特徴とする電動機の電流センサレス制御方法。
A position sensor for detecting the rotor position of the electric motor; a differentiation means for differentiating the rotor position to output the rotor speed of the electric motor; and a subtraction means for subtracting a speed command by the rotor speed to obtain a speed deviation. Control compensation means for inputting the speed deviation, the rotor speed, the d-axis estimated current and the q-axis estimated current and outputting a d-axis voltage command and a q-axis voltage command; and the d-axis voltage command and the q-axis Current estimation means for inputting a voltage command and outputting the d-axis estimated current and the q-axis estimated current; and the d-axis voltage command, the q-axis voltage command, and the rotor position are input, and an AC three-phase voltage command In a current sensorless control method comprising: coordinate conversion means for outputting a PWM inverter to the PWM inverter; and a PWM inverter for outputting the three-phase voltage for driving the electric motor by receiving the three-phase voltage command.
The on-delay compensation voltage estimating means calculates a three-phase estimated current by performing (dq) / 3-phase AC coordinate conversion based on the d-axis estimated current, the q-axis estimated current, and the rotor position, and calculating the three-phase estimated current. The positive / negative sign of the estimated current is determined, and the positive / negative sign is added to the absolute value of the difference between the input voltage and the output voltage of the PWM inverter generated by providing the on-delay time, and the three-phase on-delay compensation voltage is obtained. Output to the adding means,
A current sensorless control method for an electric motor, wherein a new AC three-phase voltage command obtained by adding the three-phase on-delay compensation voltage to the AC three-phase voltage command is output to the PWM inverter by an adding means.
JP2004185054A 2004-06-23 2004-06-23 Current sensorless controller and control method for motor Abandoned JP2006014431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004185054A JP2006014431A (en) 2004-06-23 2004-06-23 Current sensorless controller and control method for motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004185054A JP2006014431A (en) 2004-06-23 2004-06-23 Current sensorless controller and control method for motor

Publications (1)

Publication Number Publication Date
JP2006014431A true JP2006014431A (en) 2006-01-12

Family

ID=35781001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004185054A Abandoned JP2006014431A (en) 2004-06-23 2004-06-23 Current sensorless controller and control method for motor

Country Status (1)

Country Link
JP (1) JP2006014431A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2110941A1 (en) * 2008-04-14 2009-10-21 Jtekt Corporation Motor control apparatus and electric power steering system
CN105846702A (en) * 2016-05-10 2016-08-10 北京泓慧国际能源技术发展有限公司 PWM rectification method of high-speed magnetic suspension energy storage flywheel discharge system
CN108667360A (en) * 2017-03-29 2018-10-16 台达电子工业股份有限公司 The motor system and its control method of no current control
CN110649860A (en) * 2019-10-22 2020-01-03 哈尔滨理工大学 FPGA-based simplified SVPWM algorithm realization method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2110941A1 (en) * 2008-04-14 2009-10-21 Jtekt Corporation Motor control apparatus and electric power steering system
US8115429B2 (en) 2008-04-14 2012-02-14 Jtekt Corporation Motor control apparatus and electric power steering system
CN105846702A (en) * 2016-05-10 2016-08-10 北京泓慧国际能源技术发展有限公司 PWM rectification method of high-speed magnetic suspension energy storage flywheel discharge system
CN108667360A (en) * 2017-03-29 2018-10-16 台达电子工业股份有限公司 The motor system and its control method of no current control
CN108667360B (en) * 2017-03-29 2020-06-02 台达电子工业股份有限公司 Motor system without current control and control method thereof
CN110649860A (en) * 2019-10-22 2020-01-03 哈尔滨理工大学 FPGA-based simplified SVPWM algorithm realization method

Similar Documents

Publication Publication Date Title
JP3860031B2 (en) Synchronous motor control device and control method of synchronous motor
JP4881635B2 (en) Vector controller for permanent magnet motor
KR100655702B1 (en) Control method for permanent magnet synchronous motor and control system thereof
JP4284355B2 (en) High response control device for permanent magnet motor
JP2009124811A (en) Control device of permanent magnet type synchronous motor
JP2009136085A (en) Controller of ac motor
JP2009142116A (en) Position sensorless controller of permanent magnetic motor
JP3783695B2 (en) Motor control device
JP2008011631A (en) Vector controller for permanent-magnet motors and inverter module
JP2006129632A (en) Motor drive unit
JP2010200430A (en) Drive controller for motors
JP4425091B2 (en) Motor position sensorless control circuit
US20140232308A1 (en) Inverter apparatus
JP2006204054A (en) Motor control unit and motor drive system having the same
JP2007135345A (en) Magnet motor controller
JP5150366B2 (en) Vector control equipment
KR20090055070A (en) Control system of permanent magnet synchronous motor and method thereof
JP5499594B2 (en) Control device for permanent magnet type synchronous motor
JP2009290962A (en) Controller of permanent magnet type synchronous motor
JP2005229717A (en) Current sensorless-control method and device of synchronous motor
KR20080019131A (en) Electric motor using a voltage control device and method for controlling thereof
JP2004289927A (en) Motor controller
JP2006014431A (en) Current sensorless controller and control method for motor
JP2005151744A (en) Motor drive unit
JP4937766B2 (en) Voltage inverter control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070515

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20090908