JP2006013962A - Pressure wave generating element - Google Patents

Pressure wave generating element Download PDF

Info

Publication number
JP2006013962A
JP2006013962A JP2004188790A JP2004188790A JP2006013962A JP 2006013962 A JP2006013962 A JP 2006013962A JP 2004188790 A JP2004188790 A JP 2004188790A JP 2004188790 A JP2004188790 A JP 2004188790A JP 2006013962 A JP2006013962 A JP 2006013962A
Authority
JP
Japan
Prior art keywords
layer
heating element
pressure wave
wave generating
generating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004188790A
Other languages
Japanese (ja)
Other versions
JP4534625B2 (en
Inventor
Yoshiaki Honda
由明 本多
Yoshifumi Watabe
祥文 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2004188790A priority Critical patent/JP4534625B2/en
Priority to PCT/JP2005/008252 priority patent/WO2005107318A1/en
Priority to KR1020067025008A priority patent/KR100855788B1/en
Priority to EP05737154A priority patent/EP1761105A4/en
Priority to CN2005800158353A priority patent/CN1954640B/en
Priority to US11/568,419 priority patent/US7474590B2/en
Publication of JP2006013962A publication Critical patent/JP2006013962A/en
Application granted granted Critical
Publication of JP4534625B2 publication Critical patent/JP4534625B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transducers For Ultrasonic Waves (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pressure wave generating element capable of preventing reduction of output due to oxidization of a thermal insulating layer consisting of a porous silicon layer. <P>SOLUTION: The pressure wave generating element is provided with a heating element layer 3 consisting of a metal film on one surface side of a supporting substrate 1 consisting of a single crystal silicon substrate, is provided with a thermal insulating layer 2 consisting of a porous silicon layer between the supporting substrate 1 and the layer 3, and allows an oxidation preventing layer 5 for preventing oxidation of the layer 2 to intervene between the layer 3 and the layer 2. This pressure wave generating element generates a pressure wave by heat exchange between the layer 3 and air in response to a temperature change according to the waveform of electrical input to be given to the layer 3. The layer 3 is formed of W, and the layer 5 comprises a high melting point film formed of HfC, one kind of a material of melting point higher than that of a silicon, and its film thickness is set at thermal diffusion or low which is decided by a thermal conductivity, a thermal capacitance and a waveform. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば、スピーカを対象とした音波や、超音波や単パルス的な粗密波などの圧力波を発生する圧力波発生素子に関するものである。   The present invention relates to a pressure wave generating element that generates a pressure wave such as a sound wave targeted for a speaker, an ultrasonic wave, or a monopulse density wave.

従来から、圧電効果による機械的振動を利用した超音波発生素子が広く知られている。この種の超音波発生素子としては、例えば、チタン酸バリウムのような圧電材料からなる結晶の両面に電極を設けた構成のものが知られており、この超音波発生素子では、両電極間に電気エネルギを与えて機械的振動を発生させることにより、空気を振動させて超音波を発生させることができる。   2. Description of the Related Art Conventionally, an ultrasonic wave generating element using mechanical vibration due to a piezoelectric effect is widely known. As this type of ultrasonic generating element, for example, one having a structure in which electrodes are provided on both sides of a crystal made of a piezoelectric material such as barium titanate is known. By applying electrical energy to generate mechanical vibration, air can be vibrated to generate ultrasonic waves.

上述のような機械的振動を利用した超音波発生素子は、固有の共振周波数をもつので周波数帯域が狭い、外部の振動や外気圧の変動の影響を受けやすい、などの問題があった。   The ultrasonic generating element using the mechanical vibration as described above has a problem that the frequency band is narrow because it has a specific resonance frequency, and it is easily affected by external vibration and fluctuations in external pressure.

これに対して、機械的振動を伴わずに熱励起により超音波などの圧力波を発生させることができる素子として、図3に示すように、支持基板1と、支持基板1の一表面側に形成された支持基板1に比べて熱伝導率および熱容量が十分に小さな断熱層2と、断熱層2上に形成された発熱体層3とを備え、発熱体層3への交流電流の通電に伴う発熱体層3と空気との熱交換により圧力波を発生する圧力波発生素子が提案されている(特許文献1、2、3)。   On the other hand, as an element that can generate pressure waves such as ultrasonic waves by thermal excitation without mechanical vibration, as shown in FIG. A heat insulating layer 2 having a sufficiently small thermal conductivity and heat capacity as compared to the formed support substrate 1 and a heat generating layer 3 formed on the heat insulating layer 2 are provided, and an AC current is supplied to the heat generating layer 3. A pressure wave generating element that generates a pressure wave by heat exchange between the heating element layer 3 and air has been proposed (Patent Documents 1, 2, and 3).

図3に示した構成の圧力波発生素子では、発熱体層3の直下には断熱層2が形成されているので、発熱体層3へ例えば交流電源から交流を通電することにより、発熱体層3へ通電される入力波形に応じて発熱体層3の温度が変化する一方で、発熱体層3近傍の空気との間で効率的な熱交換が起こり、空気の膨張・圧縮の結果、超音波などの圧力波が発生する。なお、図3に示した構成の圧力波発生素子は、発熱体層3へ通電する交流の周波数を調整することにより、発生する圧力波の周波数を広範囲にわたって変化させることができ、例えば、超音波音源やスピーカの音源として用いることができる。要するに、図4に示した構成の圧力波発生素子では、発熱体層3へ与える電気的な入力(発熱体層3へ印加する電圧または発熱体層3へ供給する電流)の波形を周期波(例えば、正弦波、方形波など)として周期波の周期を変化させることで波形を変化させることによって、発生する圧力波の周波数を広範囲にわたって変化させることができ、また、発熱体層3へ与える電気的な入力の波形を孤立波とすれば、圧力波として単パルス的な粗密波(インパルス音波)を発生させることができる。   In the pressure wave generating element having the configuration shown in FIG. 3, the heat insulating layer 2 is formed immediately below the heat generating body layer 3. While the temperature of the heating element layer 3 changes according to the input waveform energized to 3, efficient heat exchange occurs with the air in the vicinity of the heating element layer 3. Pressure waves such as sound waves are generated. Note that the pressure wave generating element having the configuration shown in FIG. 3 can change the frequency of the generated pressure wave over a wide range by adjusting the frequency of the alternating current supplied to the heating element layer 3. It can be used as a sound source or a sound source of a speaker. In short, in the pressure wave generating element having the configuration shown in FIG. 4, the waveform of the electrical input (voltage applied to the heating element layer 3 or current supplied to the heating element layer 3) given to the heating element layer 3 is a periodic wave ( For example, by changing the waveform by changing the period of the periodic wave as a sine wave, square wave, etc., the frequency of the generated pressure wave can be changed over a wide range, and the electricity applied to the heating element layer 3 can be changed. If the input waveform is a solitary wave, a single-pulse dense wave (impulse sound wave) can be generated as a pressure wave.

ここにおいて、上記特許文献1、2に記載された赤外線放射素子では、支持基板1が単結晶のシリコン基板により構成されるとともに、断熱層2がシリコン基板の一部を陽極酸化処理にて多孔質化することにより形成された多孔質シリコン層により構成されている。また、上記特許文献1には、断熱層2の熱伝導度および熱容量を支持基板1の熱伝導度および熱容量に比べて小さくすることが望ましく、断熱層2の熱伝導度と熱容量との積を支持基板1の熱伝導度と熱容量との積に比べて十分に小さくすることが好ましいことが記載されている。   Here, in the infrared radiation elements described in Patent Documents 1 and 2, the support substrate 1 is composed of a single crystal silicon substrate, and the heat insulating layer 2 is made porous by anodizing a part of the silicon substrate. It is comprised by the porous silicon layer formed by forming. Further, in Patent Document 1, it is desirable to make the thermal conductivity and heat capacity of the heat insulating layer 2 smaller than the heat conductivity and heat capacity of the support substrate 1, and the product of the heat conductivity and the heat capacity of the heat insulating layer 2 is calculated. It is described that it is preferable to make it sufficiently smaller than the product of the thermal conductivity and the heat capacity of the support substrate 1.

なお、上記特許文献1,2に記載された圧力波発生素子では、発熱体層3が断熱層2上で断熱層2の外周よりも内側に位置しており、発熱体層3の表面(図3における発熱体層3の上面)および断熱層2の一部(発熱体層3が積層されていない部分)の表面が露出した構造を採用しており、さらに、上記特許文献2には、断熱層2を多孔質シリコン層により構成する代わりに、多孔質シリコン層に対して急速熱酸化処理を施すことにより断熱層2を形成した構造も記載されている。また、上記特許文献3に記載された圧力波発生素子では、発熱体層3の表面がSiO膜からなる絶縁保護層により覆われた構造を採用している。また、上記特許文献1,2には発熱体層3をアルミニウム薄膜により構成した実施例が記載され、上記特許文献3には発熱体層3を窒化タンタル膜により構成した実施例が記載されている。なお、上記特許文献3の実施例において、発熱体層3を構成する窒化タンタル膜の膜厚は0.5μmに設定され、絶縁保護層を構成するSiO膜の膜厚は1.5μmに設定されている。
特開平11−300274号公報 特開2002−186097号公報 特開平3−140100号公報
In the pressure wave generating elements described in Patent Documents 1 and 2, the heating element layer 3 is positioned on the heat insulating layer 2 on the inner side of the outer periphery of the heat insulating layer 2, and the surface of the heat generating layer 3 (see FIG. 3 is employed, and the surface of a part of the heat insulating layer 2 (the portion where the heat generating layer 3 is not laminated) is exposed. There is also described a structure in which the heat insulating layer 2 is formed by subjecting the porous silicon layer to a rapid thermal oxidation treatment instead of forming the layer 2 with a porous silicon layer. Further, the pressure wave generating element described in Patent Document 3 employs a structure in which the surface of the heating element layer 3 is covered with an insulating protective layer made of a SiO 2 film. Patent Documents 1 and 2 describe examples in which the heating element layer 3 is made of an aluminum thin film, and Patent Document 3 describes an example in which the heating element layer 3 is made of a tantalum nitride film. . In the example of Patent Document 3, the film thickness of the tantalum nitride film constituting the heating element layer 3 is set to 0.5 μm, and the film thickness of the SiO 2 film constituting the insulating protective layer is set to 1.5 μm. Has been.
Japanese Patent Laid-Open No. 11-3000274 JP 2002-186097 A JP-A-3-140100

ところで、本願発明者らは、図3に示した構成の圧力波発生素子において例えば周波数が60kHzの超音波を発生させるような場合、圧力波発生素子から30cm離れた位置で、15Pa程度の音圧を得るには発熱体層3の温度を400℃程度まで上昇させる必要があり、30Pa程度の音圧を得るには発熱体層3の温度を1000℃を超えるような高温まで上昇させる必要があるという実験結果を得た。しかしながら、上記特許文献1,2に記載された圧力波発生素子では、高出力化のために発熱体層3の材料としてアルミニウムに比べて高融点で耐酸化性に優れた金属を採用したとしても、断熱層2の一部の表面が露出して空気に曝されているので、断熱層2が酸化されて断熱層2の熱容量が増加し、出力が低下してしまうという不具合があった。   By the way, when the pressure wave generating element having the configuration shown in FIG. 3 generates ultrasonic waves having a frequency of 60 kHz, the inventors of the present application have a sound pressure of about 15 Pa at a position 30 cm away from the pressure wave generating element. In order to obtain the above, it is necessary to raise the temperature of the heating element layer 3 to about 400 ° C., and in order to obtain the sound pressure of about 30 Pa, it is necessary to raise the temperature of the heating element layer 3 to a high temperature exceeding 1000 ° C. The experimental results were obtained. However, in the pressure wave generating elements described in Patent Documents 1 and 2, even if a metal having a high melting point and excellent oxidation resistance as compared with aluminum is used as the material of the heating element layer 3 in order to increase the output, Since a part of the surface of the heat insulating layer 2 is exposed and exposed to air, the heat insulating layer 2 is oxidized, the heat capacity of the heat insulating layer 2 is increased, and the output is lowered.

また、断熱層2を多孔質シリコン層により構成する代わりに、多孔質シリコン層に対して急速熱酸化処理を施すことにより断熱層2を形成した構造を採用した場合、経時安定性は向上するものの、断熱層2の初期の熱容量が大きくなるので、出力が低いという不具合があった。   In addition, when the structure in which the heat insulating layer 2 is formed by subjecting the porous silicon layer to rapid thermal oxidation instead of the heat insulating layer 2 made of a porous silicon layer, stability over time is improved. Since the initial heat capacity of the heat insulating layer 2 is increased, there is a problem that the output is low.

そこで、上記特許文献3に記載の圧力波発生素子のように、支持基板1の上記一表面側に発熱体層3および断熱層2において発熱体層3が形成されていない部分を覆う絶縁保護層を設けることが考えられるが、絶縁保護層がSiO膜により構成されているので、発熱体層3の温度が高温になると空気中の酸素が絶縁保護層中へ拡散して断熱層2と絶縁保護層との界面に到達し、断熱層2が酸化されてしまう。 Therefore, as in the pressure wave generating element described in Patent Document 3, the insulating protective layer that covers the heating element layer 3 and the heat insulating layer 2 where the heating element layer 3 is not formed on the one surface side of the support substrate 1. However, since the insulating protective layer is composed of a SiO 2 film, oxygen in the air diffuses into the insulating protective layer and insulates from the heat insulating layer 2 when the temperature of the heating element layer 3 becomes high. It reaches the interface with the protective layer and the heat insulating layer 2 is oxidized.

また、上記特許文献3に記載された圧力波発生素子では、断熱層2としてSiO膜を採用しており、発熱体層3の材料として窒化タンタルを採用しており、発熱体層3が酸化するのを防止することができるが、窒化タンタルはアルミニウムなどの金属に比べて抵抗が高いので、定電圧で駆動する場合、上記特許文献1,2に記載された圧力波発生素子に比べて発熱体層3へ高電圧を印加する必要が生じて入力電力が高くなってしまう(つまり、低消費電力化が難しい)という不具合があった。また、上記特許文献3に記載された圧力波発生素子では、上記特許文献1,2に記載された圧力波発生素子に比べて発熱体層3の熱容量が大きいので、発熱体層3へ与える電気的な入力の波形に対する温度変化の応答が遅くなって発熱体層3の温度が上昇しにくくなり、高出力化および応答速度の高速化が難しいという不具合があった。 Further, in the pressure wave generating element described in Patent Document 3, a SiO 2 film is adopted as the heat insulating layer 2, tantalum nitride is adopted as the material of the heating element layer 3, and the heating element layer 3 is oxidized. However, since tantalum nitride has a higher resistance than metals such as aluminum, it generates heat compared to the pressure wave generating elements described in Patent Documents 1 and 2 when driven at a constant voltage. There is a problem in that it is necessary to apply a high voltage to the body layer 3 and the input power becomes high (that is, it is difficult to reduce power consumption). In the pressure wave generating element described in Patent Document 3, the heat capacity of the heating element layer 3 is larger than that of the pressure wave generating elements described in Patent Documents 1 and 2, so The response of the temperature change to a typical input waveform is delayed, the temperature of the heating element layer 3 is difficult to rise, and it is difficult to increase the output and increase the response speed.

本発明は上記事由に鑑みて為されたものであり、その目的は、多孔質シリコン層からなる断熱層の酸化による出力低下を防止することができる圧力波発生素子を提供することにある。   The present invention has been made in view of the above-described reasons, and an object thereof is to provide a pressure wave generating element capable of preventing a decrease in output due to oxidation of a heat insulating layer made of a porous silicon layer.

請求項1の発明は、シリコン基板と当該シリコン基板の一表面側に設けられる発熱体層との間に多孔質シリコン層からなる断熱層が設けられ、発熱体層へ与える電気的な入力の波形に応じた発熱体層の温度変化に伴って発熱体層と空気との熱交換により圧力波を発生する圧力波発生素子であって、発熱体層と断熱層との間に断熱層の酸化を防止する酸化防止層を介在させてなることを特徴とする。ここにおいて、発熱体層へ与える電気的な入力とは、発熱体層へ印加する電圧または発熱体層へ供給する電流を意味している。   According to the first aspect of the present invention, there is provided a heat insulating layer made of a porous silicon layer between a silicon substrate and a heating element layer provided on one surface side of the silicon substrate, and a waveform of electrical input given to the heating element layer. A pressure wave generating element that generates a pressure wave by heat exchange between the heating element layer and air in accordance with the temperature change of the heating element layer according to the condition, wherein the thermal insulation layer is oxidized between the heating element layer and the thermal insulation layer. It is characterized by interposing an antioxidant layer to prevent. Here, the electrical input given to the heating element layer means a voltage applied to the heating element layer or a current supplied to the heating element layer.

この発明によれば、発熱体層と多孔質シリコン層からなる断熱層との間に断熱層の酸化を防止する酸化防止層を介在させてあることにより、多孔質シリコン層からなる断熱層の酸化を防止することができ、多孔質シリコン層の酸化による出力低下を防止することができる。   According to this invention, an oxidation preventing layer that prevents oxidation of the heat insulating layer is interposed between the heat generating layer and the heat insulating layer made of the porous silicon layer, thereby oxidizing the heat insulating layer made of the porous silicon layer. It is possible to prevent the decrease in output due to the oxidation of the porous silicon layer.

請求項2の発明は、請求項1の発明において、前記発熱体層は、シリコンよりも高融点の金属により形成され、前記酸化防止層は、シリコンよりも高融点の材料により形成され且つ厚さが熱伝導率と熱容量と前記波形とで決まる熱拡散長以下であることを特徴とする。   The invention according to claim 2 is the invention according to claim 1, wherein the heating element layer is made of a metal having a higher melting point than silicon, and the antioxidant layer is made of a material having a higher melting point than silicon and has a thickness. Is less than or equal to the thermal diffusion length determined by the thermal conductivity, the heat capacity, and the waveform.

この発明によれば、前記発熱体層がシリコンよりも高融点の金属により形成されるとともに、前記酸化防止層がシリコンよりも高融点の材料により形成されていることにより、前記発熱体層の温度をシリコンの最高使用温度まで上昇させることができる(シリコンの融点は1410℃)から、前記発熱体層をアルミニウムなどの比較的低融点の金属材料により形成する場合に比べて高出力化を図ることができ、しかも、前記酸化防止層の厚さを熱拡散長以下としてあるので、前記酸化防止層を設けたことによる出力の低下を抑制することができる。   According to the present invention, the heating element layer is formed of a metal having a melting point higher than that of silicon, and the antioxidant layer is formed of a material having a melting point higher than that of silicon. Can be raised to the maximum use temperature of silicon (the melting point of silicon is 1410 ° C.), so that higher output can be achieved compared to the case where the heating element layer is formed of a metal material having a relatively low melting point such as aluminum. Moreover, since the thickness of the antioxidant layer is equal to or less than the thermal diffusion length, it is possible to suppress a decrease in output due to the provision of the antioxidant layer.

請求項3の発明は、請求項1または請求項2の発明において、前記酸化防止層は、炭化物、窒化物、ホウ化物、シリサイドの群から選択される材料により形成されてなることを特徴とする。ここにおいて、炭化物としては、例えば、TaC、HfC、NbC、ZrC、TiC、VC、WC、ThC、SiCなどがあり、窒化物としては、例えば、HfN、TiN、TaN、BN、Siなどがあり、ホウ化物としては、例えば、HfB、TaB、ZrB、TiB、NbB、WB、VB、MoB、CrBなどがあり、シリサイドとしては、例えば、WSi、MoSi、TiSiなどがある。 According to a third aspect of the present invention, in the first or second aspect of the present invention, the antioxidant layer is made of a material selected from the group consisting of carbide, nitride, boride, and silicide. . Here, examples of the carbide include TaC, HfC, NbC, ZrC, TiC, VC, WC, ThC, and SiC, and examples of the nitride include HfN, TiN, TaN, BN, Si 3 N 4, and the like. Examples of borides include HfB, TaB, ZrB, TiB, NbB, WB, VB, MoB, and CrB. Examples of silicide include WSi, MoSi, and TiSi.

この発明によれば、前記酸化防止層を、スパッタ法、蒸着法、CVD法などの半導体製造プロセスで利用される一般的な薄膜形成法により形成することができる。   According to the present invention, the antioxidant layer can be formed by a general thin film forming method used in a semiconductor manufacturing process such as sputtering, vapor deposition, or CVD.

請求項1の発明では、多孔質シリコン層の酸化による出力低下を防止することができるという効果がある。   According to the first aspect of the invention, there is an effect that it is possible to prevent a decrease in output due to oxidation of the porous silicon layer.

本実施形態の圧力波発生素子は、図1(a),(b)に示すように、単結晶のシリコン基板からなる支持基板1の一表面側に金属膜からなる発熱体層3が設けられるとともに、支持基板1と発熱体層3との間に断熱層2が設けられ、支持基板1の上記一表面側に発熱体層3の両端部(図1(b)における左右両端部)それぞれと接する形で一対のパッド4,4が形成されており、発熱体層3と断熱層2との間に断熱層2の酸化を防止する酸化防止層5が介在している。ここにおいて、本実施形態の圧力波発生素子は、発熱体層3へ与える電気的な入力(発熱体層3へ印加する電圧または発熱体層3へ供給する電流)の波形に応じた発熱体層3の温度変化に伴って発熱体層3と空気との熱交換により圧力波を発生する。なお、支持基板1の平面形状は長方形状であって、断熱層2、発熱体層3、酸化防止層5それぞれの平面形状も長方形状に形成してある。ただし、酸化防止層5の平面形状における長辺、短辺それぞれの長さ寸法を断熱層2の平面形状における長辺、短辺それぞれの長さ寸法よりも大きく設定してあり、断熱層2において発熱体層3が積層されていない部位の表面が酸化防止層5により覆われている。   As shown in FIGS. 1A and 1B, the pressure wave generating element of the present embodiment is provided with a heating element layer 3 made of a metal film on one surface side of a support substrate 1 made of a single crystal silicon substrate. In addition, a heat insulating layer 2 is provided between the support substrate 1 and the heating element layer 3, and both end portions (left and right end portions in FIG. 1 (b)) of the heating element layer 3 on the one surface side of the support substrate 1. A pair of pads 4 and 4 are formed in contact with each other, and an antioxidant layer 5 for preventing oxidation of the heat insulating layer 2 is interposed between the heating element layer 3 and the heat insulating layer 2. Here, the pressure wave generating element of the present embodiment is a heating element layer corresponding to the waveform of an electrical input (voltage applied to the heating element layer 3 or current supplied to the heating element layer 3) applied to the heating element layer 3. A pressure wave is generated by heat exchange between the heating element layer 3 and air in accordance with the temperature change of 3. In addition, the planar shape of the support substrate 1 is a rectangular shape, and the planar shapes of the heat insulating layer 2, the heating element layer 3, and the antioxidant layer 5 are also formed in a rectangular shape. However, the length dimension of each of the long side and the short side in the planar shape of the antioxidant layer 5 is set to be larger than the length dimension of each of the long side and the short side in the planar shape of the heat insulating layer 2. The surface of the part where the heating element layer 3 is not laminated is covered with the antioxidant layer 5.

ところで、本実施形態では、上述のように支持基板1として単結晶のシリコン基板を用いており、断熱層2を多孔度が略70%の多孔質シリコン層により構成しているので、支持基板1として用いるシリコン基板の一部をフッ化水素水溶液中で陽極酸化処理することにより断熱層2となる多孔質シリコン層を形成することができる。ここに、陽極酸化処理の条件(例えば、電流密度、通電時間など)を適宜設定することにより、断熱層2となる多孔質シリコン層の多孔度や厚みそれぞれを所望の値とすることができる。多孔質シリコン層は、多孔度が高くなるにつれて熱伝導率および熱容量が小さくなり、例えば、熱伝導率が148W/(m・K)、熱容量が1.63×10J/(m・K)の単結晶のシリコン基板を陽極酸化して形成される多孔度が60%の多孔質シリコン層は、熱伝導率が1W/(m・K)、熱容量が0.7×10J/(m・K)であることが知られている。なお、本実施形態では、上述のように断熱層2を多孔度が略70%の多孔質シリコン層により構成してあり、断熱層2の熱伝導率が0.12W/(m・K)、熱容量が0.5×10J/(m・K)となっている。 By the way, in this embodiment, since the single crystal silicon substrate is used as the support substrate 1 as described above, and the heat insulating layer 2 is composed of a porous silicon layer having a porosity of approximately 70%, the support substrate 1 A porous silicon layer serving as the heat insulating layer 2 can be formed by anodizing a part of the silicon substrate used as a hydrogen fluoride aqueous solution. Here, by appropriately setting the conditions for anodizing treatment (for example, current density, energization time, etc.), the porosity and thickness of the porous silicon layer to be the heat insulating layer 2 can be set to desired values, respectively. The porous silicon layer has a smaller thermal conductivity and heat capacity as the porosity increases. For example, the thermal conductivity is 148 W / (m · K), and the heat capacity is 1.63 × 10 6 J / (m 3 · K. The porous silicon layer having a porosity of 60% formed by anodizing a single crystal silicon substrate of) has a thermal conductivity of 1 W / (m · K) and a heat capacity of 0.7 × 10 6 J / ( m 3 · K). In this embodiment, as described above, the heat insulating layer 2 is composed of a porous silicon layer having a porosity of approximately 70%, and the heat conductivity of the heat insulating layer 2 is 0.12 W / (m · K), The heat capacity is 0.5 × 10 6 J / (m 3 · K).

また、発熱体層3は、高融点金属の一種であるタングステンにより形成してあり、発熱体層3は、熱伝導率が174W/(m・K)、熱容量が2.5×10J/(m・K)となっている。発熱体層3の材料はタングステンに限らず、シリコンよりも高融点の金属であればよく、例えば、タンタル、モリブデン、イリジウムなどを採用してもよい。 The heating element layer 3 is made of tungsten which is a kind of high melting point metal. The heating element layer 3 has a thermal conductivity of 174 W / (m · K) and a heat capacity of 2.5 × 10 6 J /. (M 3 · K). The material of the heating element layer 3 is not limited to tungsten, but may be any metal having a melting point higher than that of silicon. For example, tantalum, molybdenum, iridium, or the like may be employed.

酸化防止層5は、シリコンよりも高融点のHfCにより形成してあるが、酸化防止層5の材料は、炭化物、窒化物、ホウ化物、シリサイドの群から選択される材料を採用すればよく、シリコンよりも高融点の炭化物としては、TaC、HfC、NbC、ZrC、TiC、VC、WC、ThC、SiCなどが採用可能であり、シリコンよりも高融点の窒化物としては、HfN、TiN、TaN、BN、Siなどが採用可能であり、シリコンよりも高融点のホウ化物としては、HfB、TaB、ZrB、TiB、NbB、WB、VB、MoB、CrBなどが採用可能であり、シリコンよりも高融点のシリサイドとしては、WSi、MoSi、TiSiなどが採用可能である。 Although the antioxidant layer 5 is formed of HfC having a melting point higher than that of silicon, the material of the antioxidant layer 5 may be a material selected from the group of carbide, nitride, boride, and silicide. TaC, HfC, NbC, ZrC, TiC, VC, WC, ThC, SiC, and the like can be adopted as the carbide having a higher melting point than silicon, and HfN, TiN, TaN as the nitride having a higher melting point than silicon. , BN, Si 3 N 4, etc. can be adopted, and HfB, TaB, ZrB, TiB, NbB, WB, VB, MoB, CrB, etc. can be adopted as borides having a melting point higher than that of silicon. As the silicide having a higher melting point, WSi, MoSi, TiSi, or the like can be used.

なお、本実施形態の圧力波発生素子では、断熱層2の形成前のシリコン基板の厚さを525μm、断熱層2の厚さを2μm、発熱体層3の厚さを50nm、各パッド4,4の厚さを0.5μm、酸化防止層5の厚さを50nmとしてあるが、これらの厚さは一例であって特に限定するものではない。   In the pressure wave generating element of this embodiment, the thickness of the silicon substrate before the formation of the heat insulation layer 2 is 525 μm, the thickness of the heat insulation layer 2 is 2 μm, the thickness of the heating element layer 3 is 50 nm, and each pad 4, Although the thickness of 4 is 0.5 μm and the thickness of the antioxidant layer 5 is 50 nm, these thicknesses are merely examples and are not particularly limited.

以下、本実施形態の圧力波発生素子の製造方法について簡単に説明する。   Hereinafter, the manufacturing method of the pressure wave generating element of this embodiment will be briefly described.

まず、支持基板1として用いるシリコン基板の他表面(図1(b)における下面)側に陽極酸化処理時に用いる通電用電極(図示せず)を形成した後、シリコン基板の一表面側における断熱層2の形成予定部位を陽極酸化処理にて多孔質化することで多孔質シリコンからなる断熱層2を形成する陽極酸化処理工程を行う。ここにおいて、陽極酸化処理工程では、電解液として55wt%のフッ化水素水溶液とエタノールとを1:1で混合した混合液を用い、シリコン基板を主構成とする被処理物を処理槽に入れられた電解液に浸漬し、通電用電極を陽極、シリコン基板の上記一表面側に対向配置された白金電極を陰極として、電源から陽極と陰極との間に所定の電流密度の電流を所定時間だけ流すことにより多孔質シリコンからなる断熱層2を形成している。   First, after a current-carrying electrode (not shown) used for anodizing treatment is formed on the other surface (the lower surface in FIG. 1B) side of the silicon substrate used as the support substrate 1, a heat insulating layer on one surface side of the silicon substrate is formed. An anodizing treatment step for forming a heat insulating layer 2 made of porous silicon is performed by making a portion to be formed 2 porous by anodizing treatment. Here, in the anodizing process, a mixed solution in which a 55 wt% aqueous solution of hydrogen fluoride and ethanol are mixed at a ratio of 1: 1 is used as an electrolytic solution, and an object to be processed mainly composed of a silicon substrate can be placed in a processing tank. The electrode is immersed in the electrolyte, the current-carrying electrode is the anode, the platinum electrode facing the one surface side of the silicon substrate is the cathode, and a current of a predetermined current density is supplied from the power source to the anode and the cathode for a predetermined time. The heat insulating layer 2 made of porous silicon is formed by flowing.

上述の陽極酸化処理工程の後、酸化防止層5を形成する酸化防止層形成工程、発熱体層3を形成する発熱体層形成工程、パッド4,4を形成するパッド形成工程を順次行うことによって、圧力波発生素子が完成する。なお、酸化防止層形成工程、発熱体層形成工程、およびパッド形成工程では、例えば、各種のスパッタ法、各種の蒸着法、各種のCVD法などによって膜形成を行えばよい。   After the above-described anodizing process, an antioxidant layer forming process for forming the antioxidant layer 5, a heating element layer forming process for forming the heating element layer 3, and a pad forming process for forming the pads 4 and 4 are sequentially performed. The pressure wave generating element is completed. In the antioxidant layer forming step, the heating element layer forming step, and the pad forming step, the film may be formed by, for example, various sputtering methods, various vapor deposition methods, various CVD methods, or the like.

ところで、本施形態の圧力波発生素子の比較例として、図1の構造において酸化防止層5を設けない素子を試作して、発熱体層3への入力電力を種々変化させた場合の出力音圧および発熱体層3の温度それぞれを測定した結果を図2に示す。ここに、図2の横軸は周波数が30kHzの正弦波の電圧を入力としてピーク値を種々変化させた場合の入力電力のピーク値を、左側の縦軸は発熱体層3の表面から30cmだけ離れた位置で測定した周波数が60kHzの超音波の音圧(出力音圧)を、右側の縦軸は発熱体層3の表面の温度を、それぞれ示しており、同図中の「イ」が音圧の変化を示し、「ロ」が発熱体層3の温度の変化を示している。   By the way, as a comparative example of the pressure wave generating element of the present embodiment, an output sound is produced when an element in which the antioxidant layer 5 is not provided in the structure of FIG. 1 is prototyped and the input power to the heating element layer 3 is varied. The results of measuring the pressure and the temperature of the heating element layer 3 are shown in FIG. Here, the horizontal axis in FIG. 2 indicates the peak value of the input power when the peak value is variously changed by inputting the voltage of a sine wave having a frequency of 30 kHz, and the vertical axis on the left side is only 30 cm from the surface of the heating element layer 3. The sound pressure (output sound pressure) of the ultrasonic wave having a frequency of 60 kHz measured at a distant position is shown, and the vertical axis on the right side shows the surface temperature of the heating element layer 3, respectively. A change in sound pressure is indicated, and “B” indicates a change in temperature of the heating element layer 3.

図2から、発熱体層3への入力電力の増加に伴って音圧および発熱体層3の温度が上昇する傾向にあり、15Pa程度の音圧を得るには発熱体層3の温度を400℃程度まで上昇させる必要があり、30Pa程度の音圧を得るには発熱体層3の温度を1000℃を超えるような高温まで上昇させる必要があることが分かる。しかしながら、この比較例のように多孔質シリコン層からなる断熱層2の一部の表面が露出している構造では、発熱体層3の温度が400℃程度になると、空気中で断熱層2の酸化が起こり始めるので、断熱層2の熱容量が増加してしまう。なお、一般的に多孔質シリコン層は、同じ厚さのバルクのシリコンに比べて表面積が大きく、非常に活性なので、空気中で酸化されやすく、発熱体層3の熱により加熱されると、酸化がより加速することが考えらる。   From FIG. 2, the sound pressure and the temperature of the heating element layer 3 tend to increase as the input power to the heating element layer 3 increases. To obtain a sound pressure of about 15 Pa, the temperature of the heating element layer 3 is set to 400. It can be seen that it is necessary to increase the temperature of the heating element layer 3 to a high temperature exceeding 1000 ° C. in order to obtain a sound pressure of about 30 Pa. However, in the structure in which a part of the surface of the heat insulating layer 2 made of a porous silicon layer is exposed as in this comparative example, when the temperature of the heating element layer 3 reaches about 400 ° C., the heat insulating layer 2 in the air Since oxidation begins to occur, the heat capacity of the heat insulating layer 2 increases. In general, the porous silicon layer has a larger surface area than bulk silicon having the same thickness and is very active. Therefore, the porous silicon layer is easily oxidized in the air. When heated by the heat of the heating element layer 3, the porous silicon layer is oxidized. Can be accelerated.

これに対して、本実施形態の圧力波発生素子では、断熱層2の酸化を防止する酸化防止層5を発熱体層3と断熱層2との間に介在させて、断熱層2において発熱体層3が積層されていない部分の表面が露出しないようにしてある。ここにおいて、酸化防止層5を構成する高融点膜の膜厚(厚さ)が厚すぎると、酸化防止層5の熱容量が大きくなりすぎて、断熱層2の機能が発揮されなくなって出力が低下してしまう。そこで、本実施形態では、酸化防止層5として許容される高融点膜の膜厚を、熱伝導率と熱容量と発熱体層3へ与える電気的な入力の波形とで決まる熱拡散長以下に設定してある。熱拡散長Lは、発熱体層3へ与える電気的な入力の波形を例えば周波数がf’〔Hz〕の交流の正弦波とするときには、発熱体層3の温度変化の波形の周波数をf(=2f’)、発熱体層3の温度変化の波形の角周波数をω(=2πf)、酸化防止層5の熱伝導率および熱容量をそれぞれα〔W/(m・K)〕、C〔J/(m・K)〕とすれば、熱伝導方程式から導出される下記の数式で表される。 On the other hand, in the pressure wave generating element of the present embodiment, an anti-oxidation layer 5 that prevents oxidation of the heat insulating layer 2 is interposed between the heat generating layer 3 and the heat insulating layer 2 so that the heat generating layer 2 has a heat generating element. The surface of the portion where the layer 3 is not laminated is not exposed. Here, if the film thickness (thickness) of the high melting point film constituting the antioxidant layer 5 is too thick, the heat capacity of the antioxidant layer 5 becomes too large, the function of the heat insulating layer 2 is not exhibited, and the output decreases. Resulting in. Therefore, in the present embodiment, the film thickness of the high melting point film allowed as the antioxidant layer 5 is set to be equal to or less than the thermal diffusion length determined by the thermal conductivity, the heat capacity, and the waveform of the electric input given to the heating element layer 3. It is. When the electric input waveform applied to the heating element layer 3 is, for example, an alternating sine wave having a frequency of f ′ [Hz], the thermal diffusion length L is set to f ( = 2f ′), the angular frequency of the temperature change waveform of the heating element layer 3 is ω (= 2πf), and the thermal conductivity and heat capacity of the antioxidant layer 5 are α [W / (m · K)], C [J / (M 3 · K)], it is expressed by the following formula derived from the heat conduction equation.

Figure 2006013962
Figure 2006013962

なお、上述の熱拡散長Lは、酸化防止層5の厚み方向の温度分布に関して、酸化防止層5における発熱体層3との界面の温度の1/e倍(eは自然対数の底)となる位置と上記界面との間の距離である。また、発熱体層3から発生する圧力波の周波数は上記周波数fに等しい。   Note that the thermal diffusion length L described above is 1 / e times the temperature of the interface between the antioxidant layer 5 and the heating element layer 3 in the thickness direction of the antioxidant layer 5 (e is the base of the natural logarithm). The distance between the position and the interface. The frequency of the pressure wave generated from the heating element layer 3 is equal to the frequency f.

ここで、本実施形態の圧力波発生素子から超音波を発生させる場合の数値例を挙げれば、酸化防止層5の材料がHfCの場合、周波数fが20kHzのとき(つまり、周波数が20kHzの超音波を発生するとき)には熱拡散長L=11μmとなるので酸化防止層5の厚みを11μm以下とすればよく、周波数fが100kHzのとき(つまり、周波数が100kHzの超音波を発生するとき)には熱拡散長Lが5.1μmとなるので酸化防止層5の厚みを5.1μm以下とすればよい(本実施形態では、上述のように酸化防止層5の材料としてHfCを採用し、酸化防止層5の厚みを50nmに設定してある)。また、酸化防止層5がTaNの場合、周波数fが20kHzのときには熱拡散長L=5.9μmとなるので酸化防止層5の厚みを5.9μm以下とすればよく、周波数fが100kHzのときには熱拡散長Lが2.6μmとなるので酸化防止層5の厚みを2.6μm以下とすればよい。要するに、本実施形態の圧力波発生素子でも、発熱体層3へ与える電気的な入力の波形を周期波(例えば、正弦波、方形波など)として周期波の周期を変化させることで波形を変化させることによって、発生する圧力波の周波数を広範囲にわたって変化させることができ、また、発熱体層3へ与える電気的な入力の波形を孤立波とすれば、圧力波として単パルス的な粗密波(インパルス音波)を発生させることができる。   Here, to give a numerical example when ultrasonic waves are generated from the pressure wave generating element of the present embodiment, when the material of the antioxidant layer 5 is HfC, when the frequency f is 20 kHz (that is, the frequency is higher than 20 kHz). When the sound wave is generated), the thermal diffusion length L is 11 μm, so the thickness of the antioxidant layer 5 may be set to 11 μm or less, and when the frequency f is 100 kHz (that is, when the ultrasonic wave having a frequency of 100 kHz is generated). ), The thermal diffusion length L is 5.1 μm, so the thickness of the antioxidant layer 5 should be 5.1 μm or less (in this embodiment, HfC is used as the material of the antioxidant layer 5 as described above. The thickness of the antioxidant layer 5 is set to 50 nm). When the antioxidant layer 5 is TaN, the thermal diffusion length L = 5.9 μm when the frequency f is 20 kHz, so the thickness of the antioxidant layer 5 may be 5.9 μm or less, and when the frequency f is 100 kHz. Since the thermal diffusion length L is 2.6 μm, the thickness of the antioxidant layer 5 may be 2.6 μm or less. In short, even in the pressure wave generating element of the present embodiment, the waveform is changed by changing the period of the periodic wave as the waveform of the electrical input given to the heating element layer 3 as a periodic wave (eg, sine wave, square wave, etc.). The frequency of the generated pressure wave can be changed over a wide range, and if the waveform of the electrical input applied to the heating element layer 3 is a solitary wave, a single-pulse coarse wave (as a pressure wave) Impulse sound waves) can be generated.

以上説明した本実施形態の圧力波発生素子では、発熱体層3と多孔質シリコン層からなる断熱層2との間に断熱層2の酸化を防止する酸化防止層5を介在させてあることにより、多孔質シリコン層からなる断熱層2の酸化を防止することができ、多孔質シリコン層の酸化による出力低下を防止することができる。また、発熱体層3がシリコンよりも高融点の金属により形成されるとともに、酸化防止層5がシリコンよりも高融点の材料により形成されていることにより、発熱体層3の温度をシリコンの最高使用温度まで上昇させることができる(シリコンの融点は1410℃)から、発熱体層3をアルミニウムなどの比較的低融点の金属材料により形成する場合に比べて高出力化を図ることができ、しかも、酸化防止層5の膜厚を上述の熱拡散長L以下としてあるので、酸化防止層5を設けたことによる出力の低下を抑制することができる。   In the pressure wave generating element of the present embodiment described above, the antioxidant layer 5 for preventing oxidation of the heat insulating layer 2 is interposed between the heat generating layer 3 and the heat insulating layer 2 made of a porous silicon layer. Further, it is possible to prevent oxidation of the heat insulating layer 2 made of a porous silicon layer, and to prevent a decrease in output due to oxidation of the porous silicon layer. In addition, the heating element layer 3 is made of a metal having a melting point higher than that of silicon, and the antioxidant layer 5 is made of a material having a melting point higher than that of silicon. Since the temperature can be raised to the use temperature (the melting point of silicon is 1410 ° C.), it is possible to increase the output as compared with the case where the heating element layer 3 is formed of a metal material having a relatively low melting point such as aluminum. In addition, since the film thickness of the antioxidant layer 5 is equal to or less than the above-described thermal diffusion length L, it is possible to suppress a decrease in output due to the provision of the antioxidant layer 5.

また、酸化防止層5の材料として上述の炭化物、窒化物、ホウ化物、シリサイドのいずれかを採用することにより、酸化防止層5を、スパッタ法、蒸着法、CVD法などの半導体製造プロセスで利用される一般的な薄膜形成法により形成することができる。   Further, by adopting any of the above-mentioned carbides, nitrides, borides, and silicides as the material of the antioxidant layer 5, the antioxidant layer 5 can be used in semiconductor manufacturing processes such as sputtering, vapor deposition, and CVD. It can be formed by a general thin film forming method.

実施形態を示し、(a)は概略平面図、(b)は概略断面図である。Embodiment is shown, (a) is a schematic plan view, (b) is a schematic sectional drawing. 同上の比較例の特性説明図である。It is characteristic explanatory drawing of a comparative example same as the above. 従来例を示す概略断面図である。It is a schematic sectional drawing which shows a prior art example.

符号の説明Explanation of symbols

1 支持基板
2 断熱層
3 発熱体層
4 パッド
5 酸化防止層
DESCRIPTION OF SYMBOLS 1 Support substrate 2 Heat insulation layer 3 Heat generating body layer 4 Pad 5 Antioxidation layer

Claims (3)

シリコン基板と当該シリコン基板の一表面側に設けられる発熱体層との間に多孔質シリコン層からなる断熱層が設けられ、発熱体層へ与える電気的な入力の波形に応じた発熱体層の温度変化に伴って発熱体層と空気との熱交換により圧力波を発生する圧力波発生素子であって、発熱体層と断熱層との間に断熱層の酸化を防止する酸化防止層を介在させてなることを特徴とする圧力波発生素子。   A heat insulating layer made of a porous silicon layer is provided between the silicon substrate and the heating element layer provided on one surface side of the silicon substrate, and the heating element layer corresponding to the waveform of the electrical input applied to the heating element layer is provided. A pressure wave generating element that generates a pressure wave by heat exchange between the heating element layer and air in accordance with a temperature change, and an anti-oxidation layer is provided between the heating element layer and the heat insulation layer to prevent oxidation of the heat insulation layer. A pressure wave generating element characterized by being made. 前記発熱体層は、シリコンよりも高融点の金属により形成され、前記酸化防止層は、シリコンよりも高融点の材料により形成され且つ厚さが熱伝導率と熱容量と前記波形とで決まる熱拡散長以下であることを特徴とする請求項1記載の圧力波発生素子。   The heating element layer is formed of a metal having a melting point higher than that of silicon, the antioxidant layer is formed of a material having a melting point higher than that of silicon, and the thickness is determined by the thermal conductivity, the heat capacity, and the waveform. The pressure wave generating element according to claim 1, wherein the pressure wave generating element is not longer than the length. 前記酸化防止層は、炭化物、窒化物、ホウ化物、シリサイドの群から選択される材料により形成されてなることを特徴とする請求項1または請求項2記載の圧力波発生素子。   3. The pressure wave generating element according to claim 1, wherein the antioxidant layer is formed of a material selected from the group consisting of carbide, nitride, boride, and silicide.
JP2004188790A 2004-04-28 2004-06-25 Pressure wave generator Expired - Fee Related JP4534625B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004188790A JP4534625B2 (en) 2004-06-25 2004-06-25 Pressure wave generator
PCT/JP2005/008252 WO2005107318A1 (en) 2004-04-28 2005-04-28 Pressure wave generator and method for fabricating the same
KR1020067025008A KR100855788B1 (en) 2004-04-28 2005-04-28 Pressure wave generator and method for fabricating the same
EP05737154A EP1761105A4 (en) 2004-04-28 2005-04-28 Pressure wave generator and method for fabricating the same
CN2005800158353A CN1954640B (en) 2004-04-28 2005-04-28 Pressure wave generator and method for fabricating the same
US11/568,419 US7474590B2 (en) 2004-04-28 2005-04-28 Pressure wave generator and process for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004188790A JP4534625B2 (en) 2004-06-25 2004-06-25 Pressure wave generator

Publications (2)

Publication Number Publication Date
JP2006013962A true JP2006013962A (en) 2006-01-12
JP4534625B2 JP4534625B2 (en) 2010-09-01

Family

ID=35780648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004188790A Expired - Fee Related JP4534625B2 (en) 2004-04-28 2004-06-25 Pressure wave generator

Country Status (1)

Country Link
JP (1) JP4534625B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03266646A (en) * 1990-03-15 1991-11-27 Nec Corp Ink jet recording method and ink jet head using that
JPH05177836A (en) * 1991-07-11 1993-07-20 Canon Inc Head and production thereof
JP2003100637A (en) * 2001-07-16 2003-04-04 Seiko Epson Corp Method for crystallizing semiconductor film, method for manufacturing thin-film transistor, electro-optical device and electronic device
WO2004077881A1 (en) * 2003-02-28 2004-09-10 Tokyo University Of Agriculture And Technology Tlo Co., Ltd. Thermally excited sound wave generating device
JP2006013961A (en) * 2004-06-25 2006-01-12 Matsushita Electric Works Ltd Pressure wave generator and method for fabricating the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03266646A (en) * 1990-03-15 1991-11-27 Nec Corp Ink jet recording method and ink jet head using that
JPH05177836A (en) * 1991-07-11 1993-07-20 Canon Inc Head and production thereof
JP2003100637A (en) * 2001-07-16 2003-04-04 Seiko Epson Corp Method for crystallizing semiconductor film, method for manufacturing thin-film transistor, electro-optical device and electronic device
WO2004077881A1 (en) * 2003-02-28 2004-09-10 Tokyo University Of Agriculture And Technology Tlo Co., Ltd. Thermally excited sound wave generating device
JP2006013961A (en) * 2004-06-25 2006-01-12 Matsushita Electric Works Ltd Pressure wave generator and method for fabricating the same

Also Published As

Publication number Publication date
JP4534625B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
KR100855788B1 (en) Pressure wave generator and method for fabricating the same
JP3808493B2 (en) Thermally excited sound wave generator
JP4505672B2 (en) Pressure wave generator and manufacturing method thereof
TWI253139B (en) Manufacturing method for sintered body with buried metallic member
JP2007054831A (en) Ultrasonic sound source and ultrasonic sensor
JP4513546B2 (en) Pressure wave generating element and manufacturing method thereof
TW200527580A (en) Heating device
JP3845077B2 (en) Method for manufacturing sound wave generator
JP3865736B2 (en) Ultrasonic sound source and ultrasonic sensor
JP4649889B2 (en) Pressure wave generator
JP4534625B2 (en) Pressure wave generator
TW201946206A (en) Wafer support pedestal
JPH11312570A (en) Ceramic heater
JP4649929B2 (en) Pressure wave generator
JP4466231B2 (en) Pressure wave generating element and manufacturing method thereof
JP4617803B2 (en) Pressure wave generator
JP4974672B2 (en) Pressure wave generator
JP4682573B2 (en) Pressure wave generator
JP4396513B2 (en) Pressure wave generator
JP4617710B2 (en) Pressure wave generator
JP7318714B2 (en) Pressure wave generating element and manufacturing method thereof
JP4525273B2 (en) Pressure wave generator
JP2006012459A (en) Infrared ray emitting element
JP4385990B2 (en) Pressure wave generator and manufacturing method thereof
TW200914278A (en) Heating element structure of ink jet printhead

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees