JP4525273B2 - Pressure wave generator - Google Patents

Pressure wave generator Download PDF

Info

Publication number
JP4525273B2
JP4525273B2 JP2004280414A JP2004280414A JP4525273B2 JP 4525273 B2 JP4525273 B2 JP 4525273B2 JP 2004280414 A JP2004280414 A JP 2004280414A JP 2004280414 A JP2004280414 A JP 2004280414A JP 4525273 B2 JP4525273 B2 JP 4525273B2
Authority
JP
Japan
Prior art keywords
pressure wave
heating element
wave generating
generating element
element layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004280414A
Other languages
Japanese (ja)
Other versions
JP2006094398A (en
Inventor
祥文 渡部
由明 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2004280414A priority Critical patent/JP4525273B2/en
Publication of JP2006094398A publication Critical patent/JP2006094398A/en
Application granted granted Critical
Publication of JP4525273B2 publication Critical patent/JP4525273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transducers For Ultrasonic Waves (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Description

本発明は、例えば、スピーカを対象とした音波や、超音波や単パルス的な粗密波などの圧力波を発生する圧力波発生装置に関するものである。   The present invention relates to a pressure wave generator that generates a pressure wave such as a sound wave targeting a speaker, an ultrasonic wave, or a monopulse density wave.

従来から、圧電効果による機械的振動を利用した超音波発生装置が広く知られている。この種の超音波発生装置としては、例えば、チタン酸バリウムのような圧電材料からなる結晶の両面に電極を設けた構成のものが知られており、この超音波発生装置では、両電極間に電気エネルギを与えて機械的振動を発生させることにより、空気などの媒体を振動させて超音波を発生させることができる。   2. Description of the Related Art Conventionally, an ultrasonic generator using mechanical vibration due to a piezoelectric effect is widely known. As this type of ultrasonic generator, for example, one having a structure in which electrodes are provided on both sides of a crystal made of a piezoelectric material such as barium titanate is known. By applying mechanical energy to generate electrical vibration, a medium such as air can be vibrated to generate ultrasonic waves.

上述のような機械的振動を利用した超音波発生装置は、固有の共振周波数をもつので周波数帯域が狭い、外部の振動や外気圧の変動の影響を受けやすい、などの問題があった。   The ultrasonic generator using the mechanical vibration as described above has a problem that the frequency band is narrow because it has a specific resonance frequency, and it is easily influenced by external vibrations and fluctuations in external pressure.

一方、近年、機械的振動を伴わずに超音波を発生させることができる装置として、媒体に熱を与える熱励起により空気の粗密を形成する方法を利用した圧力波発生装置が提案されている(例えば、特許文献1)。   On the other hand, in recent years, a pressure wave generator using a method of forming air density by thermal excitation that applies heat to a medium has been proposed as an apparatus that can generate ultrasonic waves without mechanical vibration ( For example, Patent Document 1).

この種の圧力波発生装置は、図5に示すように、単結晶のシリコン基板からなる半導体基板1と、半導体基板1の厚み方向の一表面から所定深さまで形成された多孔質シリコン層からなり半導体基板1に比べて熱伝導率および熱容量が十分に小さな熱絶縁層2と、熱絶縁層2上に形成されたアルミニウム薄膜からなる発熱体層3とを備え、発熱体層3への交流電流の通電に伴う発熱体層3と媒体(例えば、空気)との熱交換により圧力波を発生するものである。   As shown in FIG. 5, this type of pressure wave generator comprises a semiconductor substrate 1 made of a single crystal silicon substrate and a porous silicon layer formed from one surface in the thickness direction of the semiconductor substrate 1 to a predetermined depth. A heat insulating layer 2 having a sufficiently small thermal conductivity and heat capacity compared to the semiconductor substrate 1 and a heat generating layer 3 made of an aluminum thin film formed on the heat insulating layer 2, and an alternating current to the heat generating layer 3 The pressure wave is generated by heat exchange between the heating element layer 3 and the medium (for example, air) accompanying energization.

ところで、上述の圧力波発生装置では、発熱体層3の膜厚が30nm程度に設定されており、発熱体層3への通電を行うためには、図6に示すように、発熱体層3の両端部それぞれに接する一対のパッド4,4を設け、各パッド4,4へ金属細線(ボンディングワイヤ)をワイヤボンディングすればよい。   In the pressure wave generator described above, the thickness of the heating element layer 3 is set to about 30 nm. In order to energize the heating element layer 3, as shown in FIG. A pair of pads 4, 4 that are in contact with both ends of each of the two pads 4, 4 may be provided, and a fine metal wire (bonding wire) may be wire-bonded to each pad 4, 4.

なお、図6に示した構成を有する圧力波発生装置は、発熱体層3に印加する交流電圧(駆動電圧)の周波数を調整することにより、発生する圧力波の周波数を広範囲にわたって変化させることができ、例えば、超音波音源やスピーカの音源として期待されている。
特開平11−300274号公報
The pressure wave generator having the configuration shown in FIG. 6 can change the frequency of the generated pressure wave over a wide range by adjusting the frequency of the alternating voltage (drive voltage) applied to the heating element layer 3. For example, it is expected as an ultrasonic sound source or a sound source of a speaker.
Japanese Patent Laid-Open No. 11-3000274

しかしながら、本願発明者らは鋭意研究の結果、上述の圧力波発生装置を強力な超音波(高出力の超音波)が必要な用途に用いる場合には、発熱体層3への通電時に発熱体層3の温度が1000℃を超える非常に高い温度になるという知見を得た。その知見の一例を図7に示す。図7のグラフの横軸は、周波数が60kHzの正弦波電圧を一対のパッド4,4間に印加するにあたって正弦波電圧のピーク値を種々変化させた場合の入力電力の最大値、左側の縦軸は、発熱体層3の表面から30cmだけ離れた位置で測定した出力音圧、右側の縦軸は、発熱体層3の表面の温度となっており、図7中の「イ」が音圧、「ロ」が温度を示している。   However, as a result of intensive studies, the inventors of the present application have found that when the pressure wave generator described above is used for an application that requires strong ultrasonic waves (high output ultrasonic waves), the heating element is energized when the heating element layer 3 is energized. The knowledge that the temperature of the layer 3 becomes a very high temperature exceeding 1000 ° C. was obtained. An example of the findings is shown in FIG. The horizontal axis of the graph of FIG. 7 shows the maximum value of the input power when the peak value of the sine wave voltage is changed variously when the sine wave voltage having a frequency of 60 kHz is applied between the pair of pads 4, 4. The axis is the output sound pressure measured at a position 30 cm away from the surface of the heating element layer 3, and the vertical axis on the right side is the temperature of the surface of the heating element layer 3. The pressure, “B”, indicates the temperature.

そこで、本願発明者らは、発熱体層3の材料としてタングステンなどの高融点金属を採用した圧力波発生装置について検討したが、上述の圧力波発生装置を強力な超音波が必要な用途に用いる場合には、タングステンを構成材料とする発熱体層3とアルミニウムを構成材料とするパッド4とが反応して部分的な凝集による欠落部が発生したり高抵抗部が発生したりして、電流集中により発熱体層3が断線してしまう問題があるという知見を得た。さらに、発熱体層3と反応したパッド4の材料が熱絶縁層2と反応して熱絶縁層2の一部が破壊されやすくなるという知見を得た。   Accordingly, the inventors of the present application have examined a pressure wave generator that employs a refractory metal such as tungsten as the material of the heating element layer 3. However, the pressure wave generator described above is used for applications that require strong ultrasonic waves. In this case, the heating element layer 3 made of tungsten and the pad 4 made of aluminum react with each other to cause a missing portion due to partial aggregation or a high resistance portion, It has been found that there is a problem that the heating element layer 3 is disconnected due to concentration. Furthermore, it has been found that the material of the pad 4 that reacts with the heating element layer 3 reacts with the thermal insulating layer 2 and part of the thermal insulating layer 2 is easily destroyed.

本発明は上記事由に鑑みて為されたものであり、その目的は、発熱体層の温度上昇に起因した発熱体層の断線を防止でき長期間にわたって超音波域の圧力波を安定して発生可能な圧力波発生装置を提供することにある。   The present invention has been made in view of the above-mentioned reasons, and its purpose is to stably prevent generation of pressure waves in the ultrasonic region over a long period of time by preventing disconnection of the heating element layer due to temperature rise of the heating element layer. It is an object of the present invention to provide a possible pressure wave generator.

請求項1の発明は、支持基板と、支持基板の一表面側に形成された発熱体層と、支持基板の前記一表面側で支持基板と発熱体層との間に介在する熱絶縁層と、支持基板の前記一表面側で発熱体層に接する形で形成された一対のパッドとを具備した圧力波発生素子チップを備え、一対のパッドを介した発熱体層への通電に伴う発熱体層と媒体との熱交換により圧力波を発生する圧力波発生装置であって、各パッドそれぞれの熱を圧力波発生素子チップの外部へ放熱させる放熱手段として各パッドそれぞれに熱的に結合され且つ電気的に接続された一対の導電性コンタクトを備え、該導電性コンタクトは、前記圧力波発生素子チップの厚み方向において前記発熱体層の端部上の前記パッドに重複して設けられてなることを特徴とする。 The invention of claim 1 includes a support substrate, a heating element layer formed on one surface side of the support substrate, and a heat insulating layer interposed between the support substrate and the heating element layer on the one surface side of the support substrate. And a pressure wave generating element chip having a pair of pads formed in contact with the heating element layer on the one surface side of the support substrate, and a heating element associated with energization of the heating element layer via the pair of pads A pressure wave generator that generates a pressure wave by heat exchange between the layer and the medium, and is thermally coupled to each pad as a heat radiating means for radiating the heat of each pad to the outside of the pressure wave generating element chip; e Bei a pair of electrically conductive contact electrically connected to the conductive contact is thus provided overlap in the thickness direction of the pressure wave generating device chip to the pads on the ends of the heating element layer It is characterized by that.

この発明によれば、各パッドそれぞれの熱を圧力波発生素子チップの外部へ放熱させる放熱手段として各パッドそれぞれに熱的に結合され且つ電気的に接続された一対の導電性コンタクトを備え、該導電性コンタクトは、前記圧力波発生素子チップの厚み方向において前記発熱体層の端部上の前記パッドに重複して設けられているので、発熱体層への通電時において発熱体層と各パッドとの境界付近の温度上昇を抑制することができ、発熱体層への通電時に発熱体層と各パッドとが反応することなく各パッドの熱を導電性コンタクトを通して圧力波発生素子チップの外部へ放熱させることができるから、発熱体層の温度上昇に起因した発熱体層の断線を防止でき長期間にわたって超音波域の圧力波を安定して発生可能となり、長寿命化を図ることができるとともに、通電時に発熱体層へ与える電力を増加させることによる圧力波の振幅の増大を図れる。 According to the present invention, Bei example a pair of conductive contacts are thermally coupled with and electrically connected to the respective pads as a radiator means for radiating the respective pads heat to the pressure wave generating device chip external, Since the conductive contact is provided so as to overlap the pad on the end of the heating element layer in the thickness direction of the pressure wave generating element chip, when the heating element layer is energized, The temperature rise near the boundary with the pad can be suppressed, and the heat of the heating element layer and each pad does not react when the heating element layer is energized, and the heat of each pad is passed through the conductive contact to the outside of the pressure wave generating element chip. The heat generation layer can be prevented from being disconnected due to the temperature rise of the heat generation layer, and pressure waves in the ultrasonic range can be stably generated over a long period of time. Preparative it is, thereby an increase in the amplitude of the pressure wave by increasing the power applied to the heating element layer when energized.

請求項2の発明は、請求項1の発明において、前記導電性コンタクトは、前記圧力波発生素子チップに厚み方向が一致し且つ一端部が前記圧力波発生素子チップの厚み方向において前記パッドに重複する形で前記パッドに電気的に接続され他端部が前記圧力波発生素子チップの側方に位置する導電板からなることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the present invention, the conductive contact has a thickness direction that coincides with the pressure wave generating element chip, and one end thereof overlaps the pad in the thickness direction of the pressure wave generating element chip. In this manner, the conductive plate is electrically connected to the pad and has the other end portion located on the side of the pressure wave generating element chip.

この発明によれば、前記導電性コンタクトの表面積を大きくして放熱性を向上させることができる。   According to this invention, the surface area of the conductive contact can be increased to improve heat dissipation.

請求項3の発明は、請求項1の発明において、前記圧力波発生素子チップにおける前記発熱体層の表面を露出させた形で前記圧力波発生素子チップを覆う合成樹脂製のモールド部と、モールド部の中で前記各パッドそれぞれに各一端部が電気的に接続され各他端部がモールド部の外部に露出する一対のリード端子とを備え、各リード端子それぞれが前記導電性コンタクトを兼ねていることを特徴とする。   According to a third aspect of the present invention, in the first aspect of the invention, a synthetic resin mold part that covers the pressure wave generating element chip in a form in which the surface of the heating element layer in the pressure wave generating element chip is exposed, and a mold Each of the pads has a pair of lead terminals electrically connected to each pad and the other end exposed to the outside of the mold part, and each lead terminal also serves as the conductive contact It is characterized by being.

この発明によれば、モールド部が前記圧力波発生素子チップにおける前記発熱体層の表面を露出させた形で前記圧力波発生素子チップを覆うように形成されているので、圧力波発生素子チップから発生する圧力波を妨げることなく前記圧力波発生素子チップを外部環境から保護することができて外部環境による前記圧力波発生素子チップの劣化を防止することができ、しかも、前記各パッドの熱が電気入力用のリード端子を通して外部へ放熱される。   According to this invention, since the mold portion is formed so as to cover the pressure wave generating element chip in a form in which the surface of the heating element layer in the pressure wave generating element chip is exposed, the pressure wave generating element chip The pressure wave generating element chip can be protected from the external environment without interfering with the generated pressure wave, the deterioration of the pressure wave generating element chip due to the external environment can be prevented, and the heat of each pad can be prevented. Heat is radiated to the outside through lead terminals for electrical input.

請求項4の発明は、請求項1の発明において、前記圧力波発生素子チップの前記発熱体層に対応する部位に圧力波取出し用の窓孔が形成され前記圧力波発生素子チップがフェースダウンで実装されたプリント基板を備え、プリント基板の厚み方向において前記各パッドそれぞれに一部が重複した一対の導体パターンそれぞれが前記導電性コンタクトを兼ねていることを特徴とする。   According to a fourth aspect of the present invention, in the first aspect of the invention, a pressure wave extraction window hole is formed in a portion corresponding to the heating element layer of the pressure wave generating element chip, and the pressure wave generating element chip is face down. A pair of conductor patterns each including a printed circuit board mounted and partially overlapping each of the pads in the thickness direction of the printed circuit board also serve as the conductive contact.

この発明によれば、前記圧力波発生素子チップの前記発熱体層に対応する部位に圧力波取出し用の窓孔が形成されたプリント基板に前記圧力波発生素子チップがフェースダウンで実装され、プリント基板の厚み方向において前記各パッドそれぞれに一部が重複した一対の導体パターンそれぞれが前記導電性コンタクトを兼ねているので、前記圧力波発生素子チップから発生する圧力波を妨げることなく前記各パッドの熱を放熱させることができる。   According to the present invention, the pressure wave generating element chip is mounted face down on a printed circuit board in which a pressure wave extracting window hole is formed in a portion corresponding to the heating element layer of the pressure wave generating element chip. Since each of the pair of conductor patterns partially overlapping each of the pads in the thickness direction of the substrate also serves as the conductive contact, each of the pads without interfering with the pressure wave generated from the pressure wave generating element chip. Heat can be dissipated.

請求項1の発明では、発熱体層の温度上昇に起因した発熱体層の断線を防止でき長期間にわたって超音波域の圧力波を安定して発生可能になるという効果がある。   In the invention of claim 1, there is an effect that it is possible to prevent disconnection of the heating element layer due to the temperature rise of the heating element layer and to stably generate pressure waves in the ultrasonic region over a long period of time.

(実施形態1)
本実施形態の圧力波発生装置は、図1(a),(b)に示すように、半導体基板1と、半導体基板1の一表面(図1(b)における上面)側に形成された熱絶縁層2と、熱絶縁層2上に形成された発熱体層3と、半導体基板1の上記一表面側で発熱体層3の両端部(図1(b)における左右両端部)それぞれと接する形で形成された一対のパッド4,4とを具備した圧力波発生素子チップを備え、各パッド4,4それぞれの熱を圧力波発生素子チップの外部へ放熱させる放熱手段として各パッド4,4それぞれに熱的に結合され且つ電気的に接続された一対の導電性コンタクト5,5を備えている。本実施形態では、半導体基板1が支持基板を構成している。なお、半導体基板1、熱絶縁層2、発熱体層3それぞれの外周形状は矩形状としてあり、各パッド4,4の外周形状は、両パッド4,4の並設方向(図1(b)における左右方向)に直交する方向を長手方向とする細長の矩形状としてある。
(Embodiment 1)
As shown in FIGS. 1A and 1B, the pressure wave generator of this embodiment includes a semiconductor substrate 1 and heat formed on one surface (the upper surface in FIG. 1B) of the semiconductor substrate 1. The insulating layer 2, the heating element layer 3 formed on the thermal insulating layer 2, and both ends of the heating element layer 3 on the one surface side of the semiconductor substrate 1 (left and right ends in FIG. 1B) are in contact with each other. Each of the pads 4 and 4 is provided as a heat radiating means for dissipating the heat of each of the pads 4 and 4 to the outside of the pressure wave generating element chip. A pair of conductive contacts 5 and 5 are provided that are thermally coupled and electrically connected to each other. In the present embodiment, the semiconductor substrate 1 constitutes a support substrate. The outer peripheral shape of each of the semiconductor substrate 1, the heat insulating layer 2, and the heating element layer 3 is a rectangular shape, and the outer peripheral shape of each pad 4, 4 is the direction in which the pads 4, 4 are arranged side by side (FIG. 1B). The shape is an elongated rectangular shape with the direction perpendicular to the horizontal direction as the longitudinal direction.

ここにおいて、圧力波発生素子チップは、発熱体層3への通電(電気エネルギの供給)に伴う発熱体層3と媒体(例えば、空気)との熱交換により圧力波(例えば、超音波など)を発生する。例えば、交流電源から一対のパッド4,4を介して発熱体層3へ正弦波状の交流電圧を印加した場合には、発熱体層3の温度がジュール熱の発生によって変化し、発熱体層3の温度変化に伴って圧力波(音波)が発生する。   Here, the pressure wave generating element chip is a pressure wave (for example, an ultrasonic wave) by heat exchange between the heating element layer 3 and a medium (for example, air) accompanying energization (supply of electric energy) to the heating element layer 3. Is generated. For example, when a sinusoidal AC voltage is applied from the AC power source to the heating element layer 3 via the pair of pads 4 and 4, the temperature of the heating element layer 3 changes due to the generation of Joule heat, and the heating element layer 3. A pressure wave (sound wave) is generated along with the temperature change.

本実施形態における圧力波発生素子チップでは、半導体基板1としてp形のシリコン基板を用いており、熱絶縁層2を多孔質シリコン層により構成している。ここで、熱絶縁層2を構成する多孔質シリコン層は、半導体基板1としてのp形シリコン基板の一部を電解液中で陽極酸化処理することにより形成されており、陽極酸化処理の条件を適宜変化させることにより、多孔度を変化させることができる。多孔質シリコン層は、多孔度が高くなるにつれて熱伝導率および熱容量が小さくなり、多孔度を適宜設定することにより熱伝導率を単結晶シリコンに比べて十分に小さくすることができる。上記特許文献1には、熱伝導率が168W/(m・K)、熱容量が1.67×10J/(m・K)の単結晶のシリコン基板を陽極酸化処理して形成される多孔度が60%の多孔質シリコン層は、熱伝導率が1W/(m・K)、熱容量が0.7×10J/(m・K)となることが報告されている。なお、熱絶縁層2は、多孔質シリコン層に限らず、例えば、SiO膜やSi膜などにより構成してもよい。 In the pressure wave generating element chip in the present embodiment, a p-type silicon substrate is used as the semiconductor substrate 1, and the thermal insulating layer 2 is formed of a porous silicon layer. Here, the porous silicon layer constituting the heat insulating layer 2 is formed by anodizing a part of a p-type silicon substrate as the semiconductor substrate 1 in an electrolytic solution. By changing appropriately, the porosity can be changed. The porous silicon layer has a smaller thermal conductivity and heat capacity as the porosity increases, and the thermal conductivity can be made sufficiently smaller than that of single crystal silicon by appropriately setting the porosity. In Patent Document 1, a single crystal silicon substrate having a thermal conductivity of 168 W / (m · K) and a heat capacity of 1.67 × 10 6 J / (m 3 · K) is formed by anodizing. It has been reported that a porous silicon layer having a porosity of 60% has a thermal conductivity of 1 W / (m · K) and a heat capacity of 0.7 × 10 6 J / (m 3 · K). Note that the thermal insulating layer 2 is not limited to the porous silicon layer, and may be formed of, for example, a SiO 2 film or a Si 3 N 4 film.

ここに、半導体基板1は単結晶のp形シリコン基板に限らず、多結晶あるいはアモルファスのp形シリコン基板でもよいし、また、p形に限らず、n形あるいはノンドープであってもよく、半導体基板1の種類に応じて陽極酸化処理の条件を適宜変更すればよい。したがって、熱絶縁層2を構成する多孔質半導体層も多孔質シリコン層に限らず、例えば、多結晶シリコンを陽極酸化処理することにより形成した多孔質多結晶シリコン層や、シリコン以外の半導体材料からなる多孔質半導体層でもよい。   Here, the semiconductor substrate 1 is not limited to a single-crystal p-type silicon substrate, but may be a polycrystalline or amorphous p-type silicon substrate, and is not limited to a p-type, and may be n-type or non-doped. What is necessary is just to change the conditions of an anodizing process suitably according to the kind of board | substrate 1. FIG. Therefore, the porous semiconductor layer constituting the heat insulating layer 2 is not limited to the porous silicon layer. For example, a porous polycrystalline silicon layer formed by anodizing polycrystalline silicon or a semiconductor material other than silicon is used. It may be a porous semiconductor layer.

また、発熱体層3の材料としては、高融点金属の一種であるタングステンを採用しているが、発熱体層3の材料は、タングステンに限らず、融点が1000℃よりも比較的高い高融点の金属であればよく、例えば、タンタル、モリブデンなどの高融点金属や、イリジウムなどの貴金属を採用してもよい。   In addition, tungsten, which is a kind of high melting point metal, is used as the material of the heating element layer 3, but the material of the heating element layer 3 is not limited to tungsten, and the melting point is relatively higher than 1000 ° C. For example, a refractory metal such as tantalum or molybdenum or a noble metal such as iridium may be employed.

また、各パッド4,4は、発熱体層3の端部上と半導体基板1の上記一表面上とに跨るように形成されている。ここに、各パッド4の材料としては、Alを採用している。   Each pad 4, 4 is formed so as to straddle the end of the heating element layer 3 and the one surface of the semiconductor substrate 1. Here, Al is adopted as the material of each pad 4.

なお、本実施形態における圧力波発生素子チップでは、熱絶縁層2の厚さを10μm、発熱体層3の厚さを50nm、パッド4の厚さを1μmとしてあるが、これらの厚さは一例であって特に限定するものではない。   In the pressure wave generating element chip in this embodiment, the thickness of the thermal insulating layer 2 is 10 μm, the thickness of the heating element layer 3 is 50 nm, and the thickness of the pad 4 is 1 μm. However, there is no particular limitation.

以下、圧力波発生素子チップの製造方法について簡単に説明するが、説明の便宜上、特に断らない限り半導体基板1はウェハを意味しているものとして説明する。   Hereinafter, a method for manufacturing a pressure wave generating element chip will be briefly described. However, for convenience of description, the semiconductor substrate 1 will be described as meaning a wafer unless otherwise specified.

まず、単結晶のp形シリコン基板からなる半導体基板1の他表面(図1(b)における下面)側に陽極酸化処理時に用いる通電用電極(図示せず)を形成した後、図2に示すような陽極酸化処理装置にて陽極酸化処理を行うことで多孔質シリコン層からなる熱絶縁層2を形成する。ここにおいて、陽極酸化処理の工程が熱絶縁層形成工程となっており、陽極酸化処理にあたっては、図2に示すように、半導体基板1を主構成とする被処理物Cを処理槽Aに入れられた電解液(例えば、55wt%のフッ化水素水溶液とエタノールとを1:1で混合した混合液)Bに浸漬し、その後、電流源20のマイナス側に配線を介して接続された白金電極21を電解液B中において半導体基板1の上記一表面側に対向するように配置する。続いて、通電用電極を陽極、白金電極21を陰極として、電流源20から陽極と陰極との間に所定の電流密度(ここでは、20mA/cm)の電流を所定時間(ここでは、8分)だけ流す陽極酸化処理を行うことにより半導体基板1の上記一表面側の所定部位に所定厚さ(ここでは、10μm)の熱絶縁層2を形成する。なお、陽極酸化処理時の条件は特に限定するものではなく、電流密度は例えば1〜500mA/cm程度の範囲内で適宜設定すればよいし、上記所定時間も熱絶縁層2の上記所定厚さに応じて適宜設定すればよい。 First, a current-carrying electrode (not shown) used for anodizing is formed on the other surface (the lower surface in FIG. 1B) of the semiconductor substrate 1 made of a single crystal p-type silicon substrate, and then shown in FIG. The thermal insulation layer 2 made of a porous silicon layer is formed by anodizing with such an anodizing apparatus. Here, the anodizing process is a thermal insulating layer forming process, and in the anodizing process, as shown in FIG. A platinum electrode immersed in the resulting electrolyte (for example, a mixture of 55 wt% aqueous hydrogen fluoride and ethanol mixed 1: 1) B, and then connected to the negative side of the current source 20 via a wiring 21 is arranged in the electrolytic solution B so as to face the one surface side of the semiconductor substrate 1. Subsequently, the current-carrying electrode is an anode, the platinum electrode 21 as a cathode, a predetermined current density (in this case, 20 mA / cm 2) between the current source 20 between the anode and the negative pole current at a predetermined time (here, the The thermal insulating layer 2 having a predetermined thickness (here, 10 μm) is formed at a predetermined portion on the one surface side of the semiconductor substrate 1 by performing an anodic oxidation process for 8 minutes. The conditions during the anodic oxidation treatment are not particularly limited, and the current density may be appropriately set within a range of, for example, about 1 to 500 mA / cm 2 , and the predetermined thickness of the thermal insulating layer 2 may be set for the predetermined time. What is necessary is just to set suitably according to it.

上述の熱絶縁層形成工程の後、発熱体層3を形成する発熱体層形成工程、パッド4,4を形成するパッド形成工程を順次行ってから、ダイシング工程を行うことによって、圧力波発生素子チップが完成する。なお、発熱体層形成工程およびパッド形成工程では、例えば、各種のスパッタ法、各種の蒸着法、各種のCVD法などによって膜形成を行えばよい。   After the heat insulating layer forming step, the heat generating layer forming step for forming the heat generating layer 3 and the pad forming step for forming the pads 4 and 4 are sequentially performed, and then the dicing step is performed. The chip is completed. In the heating element layer forming step and the pad forming step, for example, the film may be formed by various sputtering methods, various vapor deposition methods, various CVD methods, and the like.

ところで、本実施形態の圧力波発生装置は、上述のように、各パッド4,4それぞれの熱を圧力波発生素子チップの外部へ放熱させる放熱手段として各パッド4,4それぞれに熱的に結合され且つ電気的に接続された一対の導電性コンタクト5,5を備えている。ここで、導電性コンタクト5,5は、圧力波発生素子チップに厚み方向が一致し且つ一端部が圧力波発生素子チップの厚み方向においてパッド4,4に重複する形でパッド4,4に電気的に接続され他端部が圧力波発生素子チップの側方に位置する矩形板状の導電板により構成してある。なお、導電性コンタクト5,5を構成する導電板は、リン青銅の板に金メッキを施すことにより形成してあり、導電性ペーストにより各パッド4,4それぞれに固着してある。   By the way, as described above, the pressure wave generating device of the present embodiment is thermally coupled to each of the pads 4 and 4 as heat radiating means for radiating the heat of each of the pads 4 and 4 to the outside of the pressure wave generating element chip. And a pair of electrically conductive contacts 5 and 5 which are electrically connected. Here, the conductive contacts 5 and 5 are electrically connected to the pads 4 and 4 in such a manner that the thickness direction coincides with the pressure wave generating element chip and one end thereof overlaps the pads 4 and 4 in the thickness direction of the pressure wave generating element chip. And the other end is formed of a rectangular plate-like conductive plate positioned on the side of the pressure wave generating element chip. The conductive plates constituting the conductive contacts 5 and 5 are formed by applying gold plating to a phosphor bronze plate, and are fixed to the pads 4 and 4 with a conductive paste.

以上説明した本実施形態の圧力波発生装置では、各パッド4,4それぞれの熱を圧力波発生素子チップの外部へ放熱させる放熱手段として各パッド4,4それぞれに熱的に結合され且つ電気的に接続された一対の導電性コンタクト5,5を備えているので、発熱体層3への通電時において発熱体層3と各パッド4,4との境界付近の温度上昇を抑制することができ、発熱体層3への通電時に発熱体層3と各パッド4,4とが反応することなく各パッド4,4の熱を導電性コンタクト5,5を通して圧力波発生素子チップの外部へ放熱させることができるから、発熱体層3の温度上昇に起因した発熱体層3の断線を防止でき長期間にわたって超音波域の圧力波を高出力で安定して発生可能となり、長寿命化を図ることができるとともに、通電時に発熱体層3へ与える電力を増加させることによる圧力波の振幅の増大を図れる。したがって、発熱体層3の温度が1000℃を超える温度まで上昇するような場合であっても発熱体層3の断線を防止することが可能となる。また、導電性コンタクト5,5が上述の導電板により構成されていることにより、導電性コンタクト5,5の表面積を大きくして放熱性を向上させることができる。   In the pressure wave generator of the present embodiment described above, each pad 4, 4 is thermally coupled to each pad 4, 4 as a heat radiating means for radiating the heat of each pad 4, 4 to the outside of the pressure wave generating element chip. Since the pair of conductive contacts 5 and 5 connected to each other is provided, the temperature rise near the boundary between the heating element layer 3 and each of the pads 4 and 4 can be suppressed when the heating element layer 3 is energized. The heat generating layer 3 and the pads 4 and 4 do not react when the heat generating layer 3 is energized, and the heat of the pads 4 and 4 is radiated to the outside of the pressure wave generating element chip through the conductive contacts 5 and 5. Therefore, disconnection of the heating element layer 3 due to the temperature rise of the heating element layer 3 can be prevented, and pressure waves in the ultrasonic range can be stably generated with high output over a long period of time, thereby extending the life. At the same time An increase in the amplitude of the pressure wave by increasing the power applied to the heating layer 3 improved. Therefore, even when the temperature of the heating element layer 3 rises to a temperature exceeding 1000 ° C., it is possible to prevent the heating element layer 3 from being disconnected. Further, since the conductive contacts 5 and 5 are formed of the above-described conductive plate, the surface area of the conductive contacts 5 and 5 can be increased to improve heat dissipation.

(実施形態2)
以下、本実施形態の圧力波発生装置について図3(a),(b)を参照しながら説明する。
(Embodiment 2)
Hereinafter, the pressure wave generator of the present embodiment will be described with reference to FIGS. 3 (a) and 3 (b).

本実施形態の圧力波発生装置は、実施形態1にて説明した半導体基板1と熱絶縁層2と発熱体層3と一対のパッド4,4とを具備した圧力波発生素子チップと、当該圧力波発生素子チップにおける発熱体層3の表面を露出させた形で圧力波発生素子チップを覆う合成樹脂(例えば、ICなどで一般的に封止材として用いられている樹脂)製のモールド部6と、モールド部6の中で各パッド4,4それぞれに各一端部が電気的に接続され各他端部がモールド部6の外部に露出する一対のリード端子7,7とを備えている。   The pressure wave generating device of this embodiment includes a pressure wave generating element chip including the semiconductor substrate 1, the thermal insulating layer 2, the heating element layer 3, and the pair of pads 4 and 4 described in the first embodiment, and the pressure Mold part 6 made of a synthetic resin (for example, a resin generally used as a sealing material in an IC or the like) that covers the pressure wave generating element chip with the surface of the heating element layer 3 in the wave generating element chip exposed. And a pair of lead terminals 7 and 7 each having one end electrically connected to each of the pads 4 and 4 in the mold portion 6 and the other end exposed to the outside of the mold portion 6.

モールド部6は、圧力波発生素子チップにおける発熱体層3の表面側に圧力波取出し用の窓孔6aが形成されている。ここに、窓孔6aは、発熱体層3の表面の大部分を露出させる矩形状に形成されている。したがって、圧力波発生素子チップから発生する圧力波は窓孔6aを通して出力される。   The mold part 6 is formed with a pressure wave extraction window hole 6a on the surface side of the heating element layer 3 in the pressure wave generating element chip. Here, the window hole 6 a is formed in a rectangular shape that exposes most of the surface of the heating element layer 3. Therefore, the pressure wave generated from the pressure wave generating element chip is output through the window hole 6a.

また、各リード端子7,7は断面L字状に形成されており、圧力波発生素子チップと厚み方向が一致するように埋設された横片と、圧力波発生素子チップの厚み方向に沿って配設され一部がモールド部6の背面から突出した縦片とが連続一体に形成されている。言い換えれば、各リード端子7,7の横片は圧力波発生素子チップの上記一表面に平行な面に沿って配設され、縦片は圧力波発生素子チップの側面に平行な面に沿って配設されている。   Each of the lead terminals 7 and 7 is formed in an L-shaped cross section, and is arranged along a horizontal piece embedded so that the thickness direction of the pressure wave generating element chip coincides with the thickness direction of the pressure wave generating element chip. A vertical piece that is disposed and partially protrudes from the back surface of the mold portion 6 is formed continuously and integrally. In other words, the horizontal piece of each lead terminal 7 is arranged along a plane parallel to the one surface of the pressure wave generating element chip, and the vertical piece is arranged along a plane parallel to the side surface of the pressure wave generating element chip. It is arranged.

なお、本実施形態では、各リード端子7,7それぞれが、各パッド4,4それぞれに熱的に結合され且つ電気的に接続された一対の導電性コンタクトからなる放熱手段を兼ねている。ここに、各リード端子7,7は、一般的なリードフレームと同様の材料(例えば、ニッケル系合金、銅系合金など)により形成すればよい。   In the present embodiment, each of the lead terminals 7 and 7 also serves as a heat dissipation means including a pair of conductive contacts that are thermally coupled to and electrically connected to the pads 4 and 4, respectively. Here, the lead terminals 7 and 7 may be formed of the same material as a general lead frame (for example, a nickel-based alloy, a copper-based alloy, etc.).

しかして、本実施形態の圧力波発生装置では、モールド部6が圧力波発生素子チップにおける発熱体層3の表面を露出させた形で圧力波発生素子チップを覆うように形成されているので、圧力波発生素子チップから発生する圧力波を妨げることなく圧力波発生素子チップを外部環境から保護することができて外部環境による圧力波発生素子チップの劣化を防止することができ、しかも、発熱体層3への通電時に各パッド4,4の熱が電気入力用のリード端子7,7を通して外部へ放熱されることにより、発熱体層3の温度上昇に起因した発熱体層3の断線を防止でき長期間にわたって超音波域の圧力波を高出力で安定して発生可能となり、長寿命化を図ることができるとともに、通電時に発熱体層3へ与える電力を増加させることによる圧力波の振幅の増大を図れる。したがって、発熱体層3の温度が1000℃を超える温度まで上昇するような場合であっても発熱体層3の断線を防止することが可能となる。   Therefore, in the pressure wave generating device of the present embodiment, the mold portion 6 is formed so as to cover the pressure wave generating element chip in a form in which the surface of the heating element layer 3 in the pressure wave generating element chip is exposed. The pressure wave generating element chip can be protected from the external environment without interfering with the pressure wave generated from the pressure wave generating element chip, the deterioration of the pressure wave generating element chip due to the external environment can be prevented, and the heating element The heat of each pad 4, 4 is radiated to the outside through the lead terminals 7, 7 for electric input when the layer 3 is energized, thereby preventing the heating element layer 3 from being disconnected due to the temperature rise of the heating element layer 3. The pressure wave in the ultrasonic region can be stably generated at a high output over a long period of time, the life can be extended, and the pressure by increasing the power applied to the heating element layer 3 when energized Attained of an increase in the amplitude. Therefore, even when the temperature of the heating element layer 3 rises to a temperature exceeding 1000 ° C., it is possible to prevent the heating element layer 3 from being disconnected.

(実施形態3)
以下、本実施形態の圧力波発生装置について図4(a),(b)を参照しながら説明する。
(Embodiment 3)
Hereinafter, the pressure wave generator of this embodiment will be described with reference to FIGS. 4 (a) and 4 (b).

本実施形態の圧力波発生装置は、実施形態1にて説明した半導体基板1と熱絶縁層2と発熱体層3と一対のパッド4,4とを具備した圧力波発生素子チップと、当該圧力波発生素子チップの発熱体層3に対応する部位に圧力波取出し用の窓孔8aが形成され圧力波発生素子チップがフェースダウンで実装されたプリント基板8とを備えている。ここにおいて、圧力波発生素子チップの各パッド4,4は、プリント基板8における圧力波発生素子チップとの対向面に形成された導体パターン9,9と導電性ダイボンドペーストにより固着されている。   The pressure wave generating device of this embodiment includes a pressure wave generating element chip including the semiconductor substrate 1, the thermal insulating layer 2, the heating element layer 3, and the pair of pads 4 and 4 described in the first embodiment, and the pressure There is provided a printed circuit board 8 in which a pressure wave extraction window hole 8a is formed at a portion corresponding to the heating element layer 3 of the wave generating element chip and the pressure wave generating element chip is mounted face down. Here, the pads 4 and 4 of the pressure wave generating element chip are fixed to the conductive patterns 9 and 9 formed on the surface of the printed circuit board 8 facing the pressure wave generating element chip by a conductive die bond paste.

プリント基板8の基材は特に限定しないが、本実施形態では、プリント基板8の厚み方向において各パッド4,4それぞれに一部が重複した一対の導体パターン9,9それぞれが、各パッド4,4それぞれに熱的に結合され且つ電気的に接続された一対の導電性コンタクトからなる放熱手段を兼ねているので、放熱性の観点からプリント基板8の基材としては高熱伝導性のセラミック基板が特に好ましく、導体パターン9,9の厚みが厚い方が好ましい。   Although the base material of the printed circuit board 8 is not particularly limited, in the present embodiment, a pair of conductor patterns 9 and 9 each partially overlapping each of the pads 4 and 4 in the thickness direction of the printed circuit board 8 are respectively connected to the pads 4 and 4. 4 also serves as a heat dissipation means composed of a pair of conductive contacts that are thermally coupled and electrically connected to each of them. From the viewpoint of heat dissipation, a high thermal conductivity ceramic substrate is used as the base material of the printed circuit board 8. It is particularly preferable that the conductor patterns 9, 9 are thicker.

しかして、本実施形態の圧力波発生装置では、圧力波発生素子チップの発熱体層3に対応する部位に圧力波取出し用の窓孔8aが形成されたプリント基板8に圧力波発生素子チップがフェースダウンで実装され、プリント基板8の厚み方向において各パッド4,4それぞれに一部が重複した一対の導体パターン9,9それぞれが導電性コンタクトを兼ねているので、圧力波発生素子チップから発生する圧力波を妨げることなく各パッド4,4の熱が外部へ放熱されるから、発熱体層3の温度上昇に起因した発熱体層3の断線を防止でき長期間にわたって超音波域の圧力波を高出力で安定して発生可能となり、長寿命化を図ることができるとともに、通電時に発熱体層3へ与える電力を増加させることによる圧力波の振幅の増大を図れる。したがって、発熱体層3の温度が1000℃を超える温度まで上昇するような場合であっても発熱体層3の断線を防止することが可能となる。   Thus, in the pressure wave generating device of the present embodiment, the pressure wave generating element chip is formed on the printed circuit board 8 in which the pressure wave extracting window hole 8a is formed at a portion corresponding to the heating element layer 3 of the pressure wave generating element chip. A pair of conductor patterns 9 and 9 which are mounted face down and partially overlap each of the pads 4 and 4 in the thickness direction of the printed circuit board 8 also serve as conductive contacts. Since the heat of the pads 4 and 4 is radiated to the outside without interfering with the pressure wave to be generated, disconnection of the heating element layer 3 due to the temperature rise of the heating element layer 3 can be prevented, and the pressure wave in the ultrasonic range over a long period of time Can be stably generated at a high output, the life can be extended, and the amplitude of the pressure wave can be increased by increasing the power applied to the heating element layer 3 during energization. Therefore, even when the temperature of the heating element layer 3 rises to a temperature exceeding 1000 ° C., it is possible to prevent the heating element layer 3 from being disconnected.

実施形態1を示し、(a)は概略平面図、(b)は(a)のD−D’断面図である。Embodiment 1 is shown, (a) is a schematic plan view, and (b) is a sectional view taken along the line D-D ′ of (a). 同上の製造方法の説明図である。It is explanatory drawing of a manufacturing method same as the above. 実施形態2を示し、(a)は概略平面図、(b)は(a)のD−D’断面図である。Embodiment 2 is shown, (a) is a schematic plan view, (b) is a D-D 'cross-sectional view of (a). 実施形態3を示し、(a)は概略平面図、(b)は(a)のD−D’断面図である。Embodiment 3 is shown, (a) is a schematic plan view, (b) is a D-D 'cross-sectional view of (a). 従来例を示し、(a)は概略平面図、(b)は(a)のD−D’断面図である。A prior art example is shown, (a) is a schematic plan view, and (b) is a sectional view taken along the line D-D 'of (a). 他の従来例を示し、(a)は概略平面図、(b)は(a)のD−D’断面図である。Another example is shown, (a) is a schematic plan view, (b) is a D-D 'cross-sectional view of (a). 同上の特性説明図である。It is characteristic explanatory drawing same as the above.

符号の説明Explanation of symbols

1 半導体基板
2 熱絶縁層
3 発熱体層
4 パッド
5 導電性コンタクト
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 Thermal insulation layer 3 Heat generating body layer 4 Pad 5 Conductive contact

Claims (4)

支持基板と、支持基板の一表面側に形成された発熱体層と、支持基板の前記一表面側で支持基板と発熱体層との間に介在する熱絶縁層と、支持基板の前記一表面側で発熱体層に接する形で形成された一対のパッドとを具備した圧力波発生素子チップを備え、一対のパッドを介した発熱体層への通電に伴う発熱体層と媒体との熱交換により圧力波を発生する圧力波発生装置であって、各パッドそれぞれの熱を圧力波発生素子チップの外部へ放熱させる放熱手段として各パッドそれぞれに熱的に結合され且つ電気的に接続された一対の導電性コンタクトを備え、該導電性コンタクトは、前記圧力波発生素子チップの厚み方向において前記発熱体層の端部上の前記パッドに重複して設けられてなることを特徴とする圧力波発生装置。 A support substrate, a heating element layer formed on one surface side of the support substrate, a heat insulating layer interposed between the support substrate and the heating element layer on the one surface side of the support substrate, and the one surface of the support substrate A pressure wave generating element chip having a pair of pads formed in contact with the heating element layer on the side, and heat exchange between the heating element layer and the medium accompanying energization of the heating element layer via the pair of pads A pressure wave generating device that generates a pressure wave by means of a pair of heat pads that are thermally coupled to and electrically connected to each pad as heat radiating means for radiating the heat of each pad to the outside of the pressure wave generating element chip. e Bei the conductive contact, the conductive contact, the pressure wave, characterized in that thus provided overlap in the thickness direction of the pressure wave generating device chip to the pads on the ends of the heating element layer Generator. 前記導電性コンタクトは、前記圧力波発生素子チップに厚み方向が一致し且つ一端部が前記圧力波発生素子チップの厚み方向において前記パッドに重複する形で前記パッドに電気的に接続され他端部が前記圧力波発生素子チップの側方に位置する導電板からなることを特徴とする請求項1記載の圧力波発生装置。   The conductive contact is electrically connected to the pad such that the thickness direction coincides with the pressure wave generating element chip and one end overlaps the pad in the thickness direction of the pressure wave generating element chip. 2. The pressure wave generator according to claim 1, comprising a conductive plate located on a side of the pressure wave generating element chip. 前記圧力波発生素子チップにおける前記発熱体層の表面を露出させた形で前記圧力波発生素子チップを覆う合成樹脂製のモールド部と、モールド部の中で前記各パッドそれぞれに各一端部が電気的に接続され各他端部がモールド部の外部に露出する一対のリード端子とを備え、各リード端子それぞれが前記導電性コンタクトを兼ねていることを特徴とする請求項1記載の圧力波発生装置。   A synthetic resin mold part covering the pressure wave generating element chip with the surface of the heating element layer in the pressure wave generating element chip exposed, and one end portion of each of the pads in the mold part being electrically connected 2. The pressure wave generation according to claim 1, further comprising a pair of lead terminals that are connected to each other and the other end portions are exposed to the outside of the mold portion, and each lead terminal also serves as the conductive contact. apparatus. 前記圧力波発生素子チップの前記発熱体層に対応する部位に圧力波取出し用の窓孔が形成され前記圧力波発生素子チップがフェースダウンで実装されたプリント基板を備え、プリント基板の厚み方向において前記各パッドそれぞれに一部が重複した一対の導体パターンそれぞれが前記導電性コンタクトを兼ねていることを特徴とする請求項1記載の圧力波発生装置。   The pressure wave generating element chip includes a printed circuit board in which a pressure wave extraction window hole is formed at a portion corresponding to the heating element layer and the pressure wave generating element chip is mounted face down, in the thickness direction of the printed circuit board. 2. The pressure wave generator according to claim 1, wherein each of the pair of conductor patterns partially overlapping each of the pads also serves as the conductive contact.
JP2004280414A 2004-09-27 2004-09-27 Pressure wave generator Expired - Fee Related JP4525273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004280414A JP4525273B2 (en) 2004-09-27 2004-09-27 Pressure wave generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004280414A JP4525273B2 (en) 2004-09-27 2004-09-27 Pressure wave generator

Publications (2)

Publication Number Publication Date
JP2006094398A JP2006094398A (en) 2006-04-06
JP4525273B2 true JP4525273B2 (en) 2010-08-18

Family

ID=36234903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004280414A Expired - Fee Related JP4525273B2 (en) 2004-09-27 2004-09-27 Pressure wave generator

Country Status (1)

Country Link
JP (1) JP4525273B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004001674B4 (en) 2003-01-29 2019-01-24 Ajinomoto Co., Inc. Process for the preparation of L-lysine using methanol-utilizing bacteria

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017149380A (en) * 2016-02-26 2017-08-31 イビデン株式会社 Resin rear window and resin window

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03136356A (en) * 1989-10-23 1991-06-11 Fujitsu Ltd Semiconductor device
JPH0377453U (en) * 1989-11-29 1991-08-05
JPH06252339A (en) * 1993-03-02 1994-09-09 Matsushita Electric Ind Co Ltd Integrated circuit device
JP2000150759A (en) * 1998-11-04 2000-05-30 Denso Corp Resin sealed semiconductor device
JP2002100723A (en) * 2000-09-21 2002-04-05 Nec Kansai Ltd Semiconductor device
JP2004216360A (en) * 2002-11-20 2004-08-05 Yamatake Corp Pressure wave producing device and method of producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03136356A (en) * 1989-10-23 1991-06-11 Fujitsu Ltd Semiconductor device
JPH0377453U (en) * 1989-11-29 1991-08-05
JPH06252339A (en) * 1993-03-02 1994-09-09 Matsushita Electric Ind Co Ltd Integrated circuit device
JP2000150759A (en) * 1998-11-04 2000-05-30 Denso Corp Resin sealed semiconductor device
JP2002100723A (en) * 2000-09-21 2002-04-05 Nec Kansai Ltd Semiconductor device
JP2004216360A (en) * 2002-11-20 2004-08-05 Yamatake Corp Pressure wave producing device and method of producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004001674B4 (en) 2003-01-29 2019-01-24 Ajinomoto Co., Inc. Process for the preparation of L-lysine using methanol-utilizing bacteria

Also Published As

Publication number Publication date
JP2006094398A (en) 2006-04-06

Similar Documents

Publication Publication Date Title
JP4505672B2 (en) Pressure wave generator and manufacturing method thereof
JP5523299B2 (en) Power module
US9035453B2 (en) Semiconductor device
US20090140414A1 (en) Semiconductor device
JP4513546B2 (en) Pressure wave generating element and manufacturing method thereof
JP2006217059A (en) Pressure wave generator
JP2008085169A (en) Power semiconductor module
US20200013703A1 (en) Semiconductor device
JPWO2019087920A1 (en) Power semiconductor device and method of manufacturing power semiconductor device
JP7273055B2 (en) semiconductor equipment
JP2007110002A (en) Semiconductor device
JP4525273B2 (en) Pressure wave generator
JP2004228286A (en) Power semiconductor device
JPWO2017017901A1 (en) Semiconductor device
JP4617803B2 (en) Pressure wave generator
JP2008034707A (en) Semiconductor device
JP2008161820A (en) Pressure wave producing apparatus
JP4466231B2 (en) Pressure wave generating element and manufacturing method thereof
JP2009147062A (en) Semiconductor module
JP4682573B2 (en) Pressure wave generator
JP4974672B2 (en) Pressure wave generator
JP2004216360A (en) Pressure wave producing device and method of producing the same
JP2006024933A (en) Electrical device with resistive thermogenesis element
JP4396513B2 (en) Pressure wave generator
RU2582302C1 (en) Semiconductor laser based on epitaxial heterostructure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees