JP2006013049A - Sample grounding mechanism, sample grounding method, and electron beam exposure system - Google Patents

Sample grounding mechanism, sample grounding method, and electron beam exposure system Download PDF

Info

Publication number
JP2006013049A
JP2006013049A JP2004186511A JP2004186511A JP2006013049A JP 2006013049 A JP2006013049 A JP 2006013049A JP 2004186511 A JP2004186511 A JP 2004186511A JP 2004186511 A JP2004186511 A JP 2004186511A JP 2006013049 A JP2006013049 A JP 2006013049A
Authority
JP
Japan
Prior art keywords
sample
ground electrode
electron beam
mask
grounding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004186511A
Other languages
Japanese (ja)
Other versions
JP2006013049A5 (en
Inventor
Yoshiaki Yanagi
良明 柳
Satoshi Kikuchi
菊地  聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2004186511A priority Critical patent/JP2006013049A/en
Publication of JP2006013049A publication Critical patent/JP2006013049A/en
Publication of JP2006013049A5 publication Critical patent/JP2006013049A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress an occurrence of particles when a sample is grounded, while reducing a contact resistance between the sample and a ground electrode. <P>SOLUTION: A sample grounding mechanism comprises ground electrodes 37, 38 coming into contact with the surface of a sample 30 to ground the sample 30, ground electrodes 47, 48 coming into contact with the surface of a sample 40 to ground the sample 40, a power supply 61 which flows a surface activating current between the ground electrodes 37, 38 and the sample 30 to reduce a contact resistance between the ground electrodes 37, 38 and the sample 30, and a power supply 71 which flows the surface activating current between the ground electrodes 47, 48 and the sample 40 to reduce the contact resistance between the ground electrodes 47, 48 and the sample 40. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、試料を接地するための試料接地機構に関し、特に、電子線露光装置に使用されるマスクやウエハを接地する試料接地機構に関する。   The present invention relates to a sample grounding mechanism for grounding a sample, and more particularly to a sample grounding mechanism for grounding a mask or wafer used in an electron beam exposure apparatus.

近年、半導体集積回路の高集積化のニーズに伴い、回路パターンの一層の微細化が要望されている。現在、微細化の限界を規定しているのは主として露光装置であり、電子ビーム直接描画装置やX線露光装置などの新しい方式の露光装置が開発されている。   In recent years, with the need for higher integration of semiconductor integrated circuits, further miniaturization of circuit patterns has been demanded. At present, the limits of miniaturization are mainly limited to exposure apparatuses, and new exposure apparatuses such as an electron beam direct writing apparatus and an X-ray exposure apparatus have been developed.

最近では新しい方式の露光装置として、量産レベルで超微細加工用に使用可能な電子線近接露光装置が開示されている(例えば特許文献1、およびこれに対応する日本国特許出願の特許文献2)。   Recently, an electron beam proximity exposure apparatus that can be used for ultrafine processing at a mass production level has been disclosed as a new type of exposure apparatus (for example, Patent Document 1 and Patent Document 2 corresponding to Japanese Patent Application). .

図1は、特許文献1に開示された電子線近接露光装置の基本構成を示す図である。この図を参照して電子線近接露光装置について説明する。図示するように、電子線近接露光装置1は、その内部が高い真空状態に保たれた電子光学鏡筒(カラム)10と試料室(チャンバ)8とを備える。
そして、カラム10内には、電子ビーム15を発生する電子線源14と整形アパチャ18と電子ビーム15を平行ビームにする照射レンズ16とを有する電子銃12、対となる主偏向器21、22と、対となる副偏向器51、52とを含み、電子ビームを光軸に平行に走査する走査手段13が備えられる。
FIG. 1 is a diagram showing a basic configuration of an electron beam proximity exposure apparatus disclosed in Patent Document 1. As shown in FIG. The electron beam proximity exposure apparatus will be described with reference to this figure. As shown in the figure, the electron beam proximity exposure apparatus 1 includes an electron optical column (column) 10 and a sample chamber (chamber) 8 whose interior is kept in a high vacuum state.
In the column 10, an electron gun 12 having an electron beam source 14 that generates an electron beam 15, a shaping aperture 18, and an irradiation lens 16 that makes the electron beam 15 a parallel beam, a pair of main deflectors 21 and 22. And scanning means 13 for scanning the electron beam parallel to the optical axis.

一方、チャンバ8内には、露光するパターンに対応する開口を有するマスク30と、静電チャック44と、XYステージ46とが備えられる。試料(半導体ウエハ)40は、表面にレジスト層42が形成され、静電チャック44上に保持されている。   On the other hand, in the chamber 8, a mask 30 having an opening corresponding to a pattern to be exposed, an electrostatic chuck 44, and an XY stage 46 are provided. A sample (semiconductor wafer) 40 has a resist layer 42 formed on the surface thereof and is held on an electrostatic chuck 44.

マスク30は、厚い外縁部の中央部に、開口が形成された薄膜部を有しており、ウエハ40は表面がマスク30に近接するように(例えば、マスク30とウエハ40との間隔が50μmとなるように)配置される。この状態で、マスク30に垂直に電子ビーム15を照射すると、マスク30の開口を通過した電子ビーム15がウエハ40の表面のレジスト層42に照射される。   The mask 30 has a thin film portion in which an opening is formed at the center of the thick outer edge portion, and the wafer 40 has a surface close to the mask 30 (for example, the distance between the mask 30 and the wafer 40 is 50 μm). To be arranged). In this state, when the electron beam 15 is irradiated perpendicularly to the mask 30, the electron beam 15 that has passed through the opening of the mask 30 is irradiated to the resist layer 42 on the surface of the wafer 40.

走査手段13に含まれる主偏向器21及び22は、図2に示すように、電子ビーム15を、その光軸を電子銃12の光軸19に平行に保ったままマスク30の薄膜部全面で走査するように偏向制御する。このように電子ビーム15が薄膜部を全面走査することよりマスク30のマスクパターンがウエハ40上のレジスト層42に等倍転写される。   As shown in FIG. 2, the main deflectors 21 and 22 included in the scanning unit 13 are arranged so that the electron beam 15 is kept on the entire surface of the thin film portion of the mask 30 while keeping its optical axis parallel to the optical axis 19 of the electron gun 12. The deflection is controlled so as to scan. Thus, the electron beam 15 scans the entire surface of the thin film portion, whereby the mask pattern of the mask 30 is transferred to the resist layer 42 on the wafer 40 at the same magnification.

XYステージ46は、載置するウエハ40を水平の直交2軸方向(XY方向)に移動させるもので、マスクパターンの等倍転写が終了する毎にウエハ40を所定量移動させ、これにより1枚のウエハ40に複数のマスクパターンを転写できるようにしている。なおXYステージ46は、垂直方向(Z方向)を回転軸にして、ウエハ40を回転させることも可能である。   The XY stage 46 moves the wafer 40 to be placed in the horizontal orthogonal two-axis direction (XY direction), and moves the wafer 40 by a predetermined amount every time when the mask pattern is transferred at an equal magnification. A plurality of mask patterns can be transferred to the wafer 40. The XY stage 46 can also rotate the wafer 40 with the vertical direction (Z direction) as the rotation axis.

走査手段13に含まれる副偏向器51、52は、マスク歪みを補正するように電子ビームのマスクパターンへの入射角度を制御(傾き補正)する。図3に示すように、電子ビーム15のマスク30への入射角度をα、露光用のマスク30とウエハ40との間隔をGとすると、入射角度αによるマスクパターンの転写位置のずれ量δは、次式、
δ=G・tanα
で表され、マスクパターンは、ずれ量δだけ正規の位置からずれた位置に転写される。したがって、露光用のマスク30にマスク歪みがあっても、電子ビーム走査位置におけるマスク歪みに応じて電子ビームの傾き制御を行うことにより、このマスク歪みを補正することが可能である。
The sub deflectors 51 and 52 included in the scanning unit 13 control (tilt correction) the incident angle of the electron beam to the mask pattern so as to correct the mask distortion. As shown in FIG. 3, when the incident angle of the electron beam 15 on the mask 30 is α and the distance between the exposure mask 30 and the wafer 40 is G, the shift amount δ of the transfer position of the mask pattern due to the incident angle α is ,
δ = G ・ tanα
The mask pattern is transferred to a position shifted from the normal position by a shift amount δ. Therefore, even if the exposure mask 30 has a mask distortion, the mask distortion can be corrected by controlling the tilt of the electron beam in accordance with the mask distortion at the electron beam scanning position.

マスク30及びウエハ40は絶えず電子ビーム15の照射に曝される。上述のようにマスク30とウエハ40との間隔が小さい電子線近接露光装置では、マスク30やウエハ40が帯電すると両者の間に作用するクーロン力により、マスク30の厚さ約0.6μm程度の薄膜部が破壊される可能性がある。
また、電子線近接露光装置では電子ビームの加速電圧が2kV程度と低く、ビーム電流が20μA程度と大きいため、マスク30やウエハ40が帯電すると帯電により生じる電界が電子ビーム15の軌道へ悪影響を生じ転写精度(露光精度)を悪化させる。
The mask 30 and the wafer 40 are constantly exposed to the electron beam 15 irradiation. In the electron beam proximity exposure apparatus in which the distance between the mask 30 and the wafer 40 is small as described above, the thickness of the mask 30 is about 0.6 μm due to the Coulomb force acting between the mask 30 and the wafer 40 when they are charged. The thin film portion may be destroyed.
Further, in the electron beam proximity exposure apparatus, the acceleration voltage of the electron beam is as low as about 2 kV and the beam current is as large as about 20 μA. Therefore, when the mask 30 or the wafer 40 is charged, the electric field generated by charging adversely affects the trajectory of the electron beam 15 Transfer accuracy (exposure accuracy) is deteriorated.

このようなマスク30及びウエハ40の帯電による悪影響をするため、従来の電子線露光装置では、マスク30を接地するための接地電極(触針)38及びウエハ40を接地するための接地電極(触針)48を設けて、マスク30及びウエハ40を接地させ、電子ビーム15の電子による帯電を防止している。   In order to adversely affect the charging of the mask 30 and the wafer 40 as described above, in the conventional electron beam exposure apparatus, a ground electrode (stylus) 38 for grounding the mask 30 and a ground electrode (contact) for grounding the wafer 40 are used. Needle) 48 is provided to ground the mask 30 and the wafer 40 to prevent the electron beam 15 from being charged by electrons.

下記特許文献3、4及び5には、半導体ウエハを保持する静電吸着装置が開示されている。   Patent Documents 3, 4 and 5 below disclose electrostatic chucking devices that hold a semiconductor wafer.

米国特許第5,831,272号明細書U.S. Pat.No. 5,831,272 日本特許第2951947号公報Japanese Patent No. 2951947 日本特許第3123956号公報Japanese Patent No. 3123956 日本特許第3373762号公報Japanese Patent No. 3337762 特公平7-62691号公報Japanese Patent Publication No.7-62691

接地電極38または接地電極48による帯電防止効果を十分に奏するためには、マスク30と接地電極38との間の接触抵抗は2MΩ以下であることが望ましく、ウエハ40と接地電極48との間の接触抵抗は20MΩ以下であることが望ましい。
しかし、マスク30やウエハ40の表面に酸化膜やコンタミネーションなどの絶縁膜が生じると、マスク30と接地電極38との間、またはウエハ40と接地電極48との間で高い接触抵抗が生じ、接地電極38または接地電極48による帯電防止効果が十分に奏されない。
In order to sufficiently exhibit the antistatic effect by the ground electrode 38 or the ground electrode 48, the contact resistance between the mask 30 and the ground electrode 38 is desirably 2 MΩ or less, and between the wafer 40 and the ground electrode 48. The contact resistance is desirably 20 MΩ or less.
However, when an insulating film such as an oxide film or contamination is generated on the surface of the mask 30 or the wafer 40, a high contact resistance is generated between the mask 30 and the ground electrode 38 or between the wafer 40 and the ground electrode 48. The antistatic effect by the ground electrode 38 or the ground electrode 48 is not sufficiently exhibited.

これら絶縁膜を破壊して接触抵抗を下げるために、触針である接地電極38、48をダイヤモンド針で構成してマスク30やウエハ40の表面の絶縁膜を削る方法も考えられる。しかし、絶縁膜を削れば必ずパーティクルが発生してしまい、このパーティクルが微細な回路パターンに対応した開口を有するマスク30に悪影響を及ぼすことになる。   In order to destroy these insulating films and lower the contact resistance, a method of cutting the insulating film on the surface of the mask 30 or the wafer 40 by forming the ground electrodes 38 and 48, which are styluses, with diamond needles may be considered. However, if the insulating film is removed, particles are always generated, which adversely affects the mask 30 having openings corresponding to fine circuit patterns.

上記問題点を鑑みて、本発明はパーティクルの発生を抑えつつ、試料と接地電極の接触抵抗を低減することを目的とする。   In view of the above problems, an object of the present invention is to reduce the contact resistance between a sample and a ground electrode while suppressing generation of particles.

本発明者らは、接地電極と試料との間に一定電流の電流(表面活性化電流)を流すことにより、接地電極と試料との間の接触抵抗が減少することを発見した。下記表1に、各サンプル1〜3に100mAの表面活性化電流を流したときの、電流印加前の接触抵抗値、電流印加後の接触抵抗値、及び電流印加時の印加電圧値の実験値を示す。ここにサンプル1〜2は、それぞれシート抵抗が0.01〜0.02Ωcm、0.6〜1.2Ωcmのマスク材のサンプルであり、サンプル3はベアウエハである。   The present inventors have found that the contact resistance between the ground electrode and the sample is reduced by passing a constant current (surface activation current) between the ground electrode and the sample. Table 1 shows experimental values of contact resistance value before applying current, contact resistance value after applying current, and applied voltage value when applying current when a surface activation current of 100 mA is passed through each sample 1 to 3. Indicates. Here, Samples 1 and 2 are mask material samples having sheet resistances of 0.01 to 0.02 Ωcm and 0.6 to 1.2 Ωcm, respectively, and Sample 3 is a bare wafer.

Figure 2006013049
Figure 2006013049

表1の実験データから分かるように、どのサンプルについても表面活性化電流印加後の接触抵抗値は大幅に(約3桁程度)減少している。この理由としては、表面活性化電流が流れる際に接地電極と試料表面との間でスパークが発生し、試料表面の絶縁層のうち接地電極との接触部分が清浄化(パージ)されることが考えられる。   As can be seen from the experimental data in Table 1, the contact resistance value after application of the surface activation current is greatly reduced (about three orders of magnitude) for any sample. The reason for this is that when a surface activation current flows, a spark occurs between the ground electrode and the sample surface, and the contact portion of the insulating layer on the sample surface with the ground electrode is cleaned (purged). Conceivable.

本発明は、これら知見に基づいてなされたものであり、本発明の第1形態に係る試料接地機構は、試料の表面に接触して試料を接地する接地電極と、接地電極と試料との間に表面活性化電流を流して接地電極と試料との間の接触抵抗を低減する電源と、を備える。   The present invention has been made based on these findings, and the sample grounding mechanism according to the first embodiment of the present invention includes a ground electrode that contacts the surface of the sample and grounds the sample, and between the ground electrode and the sample. And a power source for reducing the contact resistance between the ground electrode and the sample by supplying a surface activation current to the electrode.

本発明の第2形態に係る試料接地方法は、接地電極と試料との間に表面活性化電流を流して、接地電極と試料との間の接触抵抗を低減する。   In the sample grounding method according to the second embodiment of the present invention, a surface activation current is passed between the ground electrode and the sample to reduce the contact resistance between the ground electrode and the sample.

接地電極は、選択的に、前記表面活性化電流を流すための電流源、及び前記接地電極と前記試料との間の接触抵抗を測定するための抵抗測定器に接続し、並びに接地することとしてよい。試料接地機構はそのための切換器を備えることとしてよい。
そして、接地電極への表面活性化電流の印加と接地電極と試料との間の接触抵抗の測定を交互に行いながら、接触抵抗の測定値が所定の閾値以下となるまで電源の出力を増大させることとしてもよい。
The ground electrode is selectively connected to a current source for flowing the surface activation current, and a resistance measuring instrument for measuring a contact resistance between the ground electrode and the sample, and grounded. Good. The sample grounding mechanism may include a switch for that purpose.
Then, while alternately applying the surface activation current to the ground electrode and measuring the contact resistance between the ground electrode and the sample, the output of the power supply is increased until the measured value of the contact resistance becomes a predetermined threshold value or less. It is good as well.

試料が静電チャックを有する試料保持手段で保持されるときには、表面活性化電流は、試料を保持する静電チャックに印加される電圧と逆の極性で流されることとしてもよい。   When the sample is held by the sample holding means having the electrostatic chuck, the surface activation current may be passed with a polarity opposite to the voltage applied to the electrostatic chuck holding the sample.

本発明の第3形態に係る電子線露光装置は、前記第1形態に係る試料接地機構を備え、この試料接地機構によりウエハを接地する。電子線露光装置は、上述の電子線近接露光装置であってよく、前記試料接地機構は、ウエハに加えて露光マスクを接地することとしてよい。   An electron beam exposure apparatus according to a third embodiment of the present invention includes the sample grounding mechanism according to the first embodiment, and grounds the wafer by the sample grounding mechanism. The electron beam exposure apparatus may be the above-described electron beam proximity exposure apparatus, and the sample grounding mechanism may ground the exposure mask in addition to the wafer.

本発明により、パーティクルを発生させずに試料と接地電極の接触抵抗を低減することが可能となる。試料表面を傷つけてパーティクルを発生することがないように、この接地電極が試料と接触する先端部分は、例えば面取り処理などにより丸められ(鈍くされ)、鋭利でないことが好ましい。   According to the present invention, it is possible to reduce the contact resistance between the sample and the ground electrode without generating particles. In order not to damage the sample surface and generate particles, the tip portion where the ground electrode comes into contact with the sample is preferably rounded (dulled) by, for example, a chamfering process and is not sharp.

また、表面活性化前の接触抵抗の大きい試料ほど、表面活性化のために強い表面活性化電流を流す必要があることが考えられる。したがって、表面活性化電流の印加と接触抵抗の測定を交互に行いながら電源の出力を増大させることにより、必要な表面活性化電流の印加を短時間で行うことが可能となる。   In addition, it is considered that a sample having a higher contact resistance before surface activation needs to pass a stronger surface activation current for surface activation. Therefore, by increasing the output of the power supply while alternately applying the surface activation current and measuring the contact resistance, it becomes possible to apply the necessary surface activation current in a short time.

表面活性化電流を、試料を保持する静電チャックに印加される電圧と逆の極性で流すことにより、表面活性化電流の印加により静電チャックの吸着力が低下することが防止される。   By causing the surface activation current to flow with a polarity opposite to the voltage applied to the electrostatic chuck holding the sample, it is possible to prevent the adsorption force of the electrostatic chuck from being reduced by the application of the surface activation current.

以下、添付する図面を参照して本発明の実施例を説明する。図4は、本発明の実施例に係る試料接地機構を備える電子線露光装置の概略構成図である。以下の説明では、電子線露光装置1として近接露光方式の電子線近接露光装置1を例示するが、本発明の電子線露光装置は、電子線近接露光装置だけでなく、電子ビームでウエハに露光パターンを露光する電子線露光装置であれば、電子線直接描画装置など他の方式の電子線露光装置にも利用可能である。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 4 is a schematic block diagram of an electron beam exposure apparatus including a sample grounding mechanism according to an embodiment of the present invention. In the following description, an electron beam proximity exposure apparatus 1 of a proximity exposure system is exemplified as the electron beam exposure apparatus 1, but the electron beam exposure apparatus of the present invention exposes a wafer with an electron beam as well as an electron beam proximity exposure apparatus. Any electron beam exposure apparatus that exposes a pattern can be used for other types of electron beam exposure apparatuses such as an electron beam direct drawing apparatus.

なお、以下の図においては、同一の構成の要素が複数設けられている場合には、同一の参照番号にアルファベットを付して表し、各要素の説明においては参照番号のみで表す場合がある。また、電子ビーム近接露光装置の基本構成は、図1に示した構成及び上記の文献1に開示された構成に類似した構成を有している。よって、図1と同一の機能部分には同一の参照番号を付して表し、詳しい説明は省略する。   In the following drawings, when a plurality of elements having the same configuration are provided, the same reference numbers may be indicated with alphabets, and in the description of each element, only the reference numbers may be used. The basic configuration of the electron beam proximity exposure apparatus has a configuration similar to the configuration shown in FIG. 1 and the configuration disclosed in Document 1 above. Therefore, the same functional parts as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

図4に示すように電子線近接露光装置1はカラム10及びチャンバ8を備え、カラム10及びチャンバ8の内部は真空ポンプ9により高度な真空状態(10−5Pa台)に保たれている。カラム10内に、電子ビーム15を発生する電子ビーム源14と電子ビーム15を平行ビームにする照射レンズ16と整形アパチャ18とを有する電子銃12、主偏向器20と副偏向器50を含み電子ビーム15を光軸19に平行に走査するように前記電子ビーム15を偏向する走査手段13を備える。なお、図4では、主偏向器20と副偏向器50は、それぞれ1つの偏向器として示しているが、実際には図1に示したようにそれぞれ2段構成になっている。 As shown in FIG. 4, the electron beam proximity exposure apparatus 1 includes a column 10 and a chamber 8, and the inside of the column 10 and the chamber 8 is maintained in a high vacuum state (10 −5 Pa level) by a vacuum pump 9. The column 10 includes an electron beam source 14 that generates an electron beam 15, an electron gun 12 having an irradiation lens 16 that makes the electron beam 15 a parallel beam, and a shaping aperture 18, a main deflector 20, and a sub deflector 50. Scanning means 13 for deflecting the electron beam 15 so as to scan the beam 15 parallel to the optical axis 19 is provided. In FIG. 4, each of the main deflector 20 and the sub deflector 50 is shown as a single deflector, but actually has a two-stage configuration as shown in FIG.

一方、電子線近接露光装置1は、チャンバ内8に、露光するパターンに対応する開口を有するマスク30、マスク30を保持して少なくとも水平の直交2軸方向(XY方向に)に移動させるマスクステージ31を備える。ここでマスクステージ31は静電チャックを備えており、誘電体で形成された筐体の内部に埋め込まれた内部電極33に、マスクチャック用電源35から電圧を印加することにより、マスク30と誘電体筐体間に静電力を発生させてマスクを保持する。   On the other hand, the electron beam proximity exposure apparatus 1 holds a mask 30 having an opening corresponding to a pattern to be exposed in a chamber 8 and a mask stage that holds the mask 30 and moves it at least in the horizontal orthogonal biaxial direction (XY direction). 31 is provided. Here, the mask stage 31 includes an electrostatic chuck, and a voltage is applied from the mask chuck power source 35 to the internal electrode 33 embedded in the housing formed of a dielectric material, whereby the mask stage 31 and the dielectric layer 33 are electrically connected. An electrostatic force is generated between the body cases to hold the mask.

チャンバ内8には、ウエハ40を支持する静電チャック44とXYステージ46とを備える。静電チャック44は、誘電体で形成された筐体の内部に埋め込まれた内部電極43に、ウエハチャック用電源45から電圧を印加することにより、ウエハ40と誘電体筐体間に静電力を発生させてマスクを保持する。   The chamber 8 includes an electrostatic chuck 44 that supports the wafer 40 and an XY stage 46. The electrostatic chuck 44 applies an electrostatic force between the wafer 40 and the dielectric casing by applying a voltage from the wafer chuck power supply 45 to the internal electrode 43 embedded in the casing formed of a dielectric. Generate and hold the mask.

さらに、電子線近接露光装置1は、マスク30の表面に接触する接地電極37と、接地電極37とマスク30との間に所定強度の電流である表面活性化電流を供給する電流源61と、電流源61による印加電流を制御する電源コントローラ62と、接地電極37とマスク30との間の接触抵抗を図るための抵抗測定器であるディジタルマルチメータ(以下、DMMと記す)63と、切替器64とを備える。また、マスク30の表面に接触してマスク30を接地する他の接地電極38も備えている。   Further, the electron beam proximity exposure apparatus 1 includes a ground electrode 37 that contacts the surface of the mask 30, a current source 61 that supplies a surface activation current that is a current of a predetermined intensity between the ground electrode 37 and the mask 30, A power supply controller 62 that controls the current applied by the current source 61, a digital multimeter (hereinafter referred to as DMM) 63 that is a resistance measuring instrument for measuring the contact resistance between the ground electrode 37 and the mask 30, and a switch 64. Further, another ground electrode 38 that contacts the surface of the mask 30 and grounds the mask 30 is also provided.

電源コントローラ62は、表面活性化電流を印加する強度、印加時間及び印加波形(パターン)を制御する。
一方、DMM63は、接地電極37とマスク30との間の接触抵抗、接地電極37との接触位置から接地電極38との接触位置までのマスク30自身の電気抵抗及びマスク30と接地電極38との間の接触抵抗の直列抵抗を測定する。
さらに切替器64は、接地電極37を、選択的に、電流源61及びDMM63に接続し、並びに接地する。なお、電流源61により接地電極37に流される電流は、マスクチャック用電源35により内部電極33に印加される電圧の極性と逆の極性で印加される。これにより電流源61に電流を印加されてマスク30の電位が高まり、静電チャックの吸着力が低下することを防止する。
The power supply controller 62 controls the intensity at which the surface activation current is applied, the application time, and the applied waveform (pattern).
On the other hand, the DMM 63 has a contact resistance between the ground electrode 37 and the mask 30, an electric resistance of the mask 30 itself from a contact position with the ground electrode 37 to a contact position with the ground electrode 38, and the mask 30 and the ground electrode 38. Measure the series resistance of the contact resistance between.
Further, the switch 64 selectively connects the ground electrode 37 to the current source 61 and the DMM 63, and grounds it. It should be noted that the current passed through the ground electrode 37 by the current source 61 is applied with a polarity opposite to the polarity of the voltage applied to the internal electrode 33 by the mask chuck power source 35. As a result, a current is applied to the current source 61 to increase the potential of the mask 30 and prevent the suction force of the electrostatic chuck from decreasing.

同様に、電子線近接露光装置1は、ウエハ40の表面に接触する接地電極47と、接地電極47とウエハ40との間に表面活性化電流を供給する電流源71と、電流源71による印加電流を制御する電源コントローラ72と、接地電極47とウエハ40との間の接触抵抗を図るための抵抗測定器であるディジタルマルチメータ(以下、DMMと記す)73と、切替器74とを備える。また、ウエハ40の表面に接触してウエハ40を接地する他の接地電極48も備えている。   Similarly, the electron beam proximity exposure apparatus 1 includes a ground electrode 47 that contacts the surface of the wafer 40, a current source 71 that supplies a surface activation current between the ground electrode 47 and the wafer 40, and an application by the current source 71. A power supply controller 72 that controls current, a digital multimeter (hereinafter referred to as DMM) 73 that is a resistance measuring device for measuring contact resistance between the ground electrode 47 and the wafer 40, and a switch 74 are provided. In addition, another ground electrode 48 that contacts the surface of the wafer 40 and grounds the wafer 40 is also provided.

電源コントローラ72は、表面活性化電流を印加する強度、印加時間及び印加波形(パターン)を制御する。
一方、DMM73は、接地電極47とウエハ40との間の接触抵抗、接地電極47との接触位置から接地電極48との接触位置までのウエハ40自身の電気抵抗及びウエハ40と接地電極48との間の接触抵抗の直列抵抗を測定する。
さらに切替器74は、接地電極47を、選択的に、電流源71及びDMM73に接続し、並びに接地する。なお、電流源71により接地電極47に流される電流は、ウエハチャック用電源45により内部電極43に印加される電圧の極性と逆の極性で印加される。
The power supply controller 72 controls the intensity at which the surface activation current is applied, the application time, and the applied waveform (pattern).
On the other hand, the DMM 73 is configured such that the contact resistance between the ground electrode 47 and the wafer 40, the electrical resistance of the wafer 40 itself from the contact position with the ground electrode 47 to the contact position with the ground electrode 48, and the contact between the wafer 40 and the ground electrode 48. Measure the series resistance of the contact resistance between.
Further, the switch 74 selectively connects the ground electrode 47 to the current source 71 and the DMM 73, and grounds it. It should be noted that the current flowing from the current source 71 to the ground electrode 47 is applied with a polarity opposite to the polarity of the voltage applied to the internal electrode 43 by the wafer chuck power supply 45.

なお、接地電極37、38がマスク30と、接地電極47、48がウエハ40とそれぞれ接触する先端部分は、例えば面取り処理などにより丸められ(鈍くされ)、鋭利でないことが好ましい。
さらにまた、電子線近接露光装置1は、切替器64、74の切り替え制御、DMM63の測定値に基づく電流源61の印加強度、印加時間及び印加パターンの制御、並びにDMM73の測定値に基づく電流源71の印加強度、印加時間及び印加パターンの制御を行うコントローラ81を備える。
また、接地電極37とマスク30との接触位置から接地電極38とマスク30との接触位置までのマスク30自身の電気抵抗と、接地電極47とウエハ40との接触位置から接地電極48とウエハ40との接触位置までのウエハ40自身の電気抵抗とは、予め実験により、又はマスク30やウエハ40の製品仕様から計算により求められ、コントローラ81に利用できるように記憶手段(図示せず)に記憶される。
The tip portions where the ground electrodes 37 and 38 are in contact with the mask 30 and the ground electrodes 47 and 48 are in contact with the wafer 40 are preferably rounded (blunted) by, for example, a chamfering process and not sharp.
Furthermore, the electron beam proximity exposure apparatus 1 includes switching control of the switches 64 and 74, application intensity, application time and application pattern control of the current source 61 based on the measured value of the DMM 63, and current source based on the measured value of the DMM 73. 71 is provided with a controller 81 for controlling application intensity 71, application time, and application pattern.
Further, the electrical resistance of the mask 30 itself from the contact position between the ground electrode 37 and the mask 30 to the contact position between the ground electrode 38 and the mask 30, and the ground electrode 48 and the wafer 40 from the contact position between the ground electrode 47 and the wafer 40. The electrical resistance of the wafer 40 itself up to the contact position is obtained in advance by experiments or by calculation from the product specifications of the mask 30 and the wafer 40 and stored in a storage means (not shown) so that it can be used by the controller 81. Is done.

図5は、本発明の実施例に係る試料接地方法のフローチャートである。以下マスク30の接地方法について説明する。
ステップS91において、マスク30をチャンバ8内に搬送し、ステップS92において、マスクステージ31にセットする。マスクチャック用電源35によりマスクステージ31の静電チャックの内蔵電極33にチャック電圧が印加され、マスク30はマスクステージ31に吸着される。そして、ステップS93においてマスク裏面(上面)に接地電極37及び38を接触させる。
FIG. 5 is a flowchart of the sample grounding method according to the embodiment of the present invention. Hereinafter, a method for grounding the mask 30 will be described.
In step S91, the mask 30 is transferred into the chamber 8, and in step S92, the mask 30 is set on the mask stage 31. A chuck voltage is applied to the built-in electrode 33 of the electrostatic chuck of the mask stage 31 by the mask chuck power source 35, and the mask 30 is attracted to the mask stage 31. In step S93, the ground electrodes 37 and 38 are brought into contact with the back surface (upper surface) of the mask.

ステップS94において、コントローラ81は接地電極47が電流源61に接続するよう切換器64を切り替える。そして、電流源61は所定の強度で接地電極47に一定の表面活性化電流を印加する。これにより表面活性化電流は、電流源61、接地電極47、マスク30、接地電極48及びGNDの経路で流れる。このとき電流源61は、マスクステージ31の静電チャックの吸着力が低下しないよう、静電チャックの内蔵電極33に印加される電圧と逆の極性の電圧を接地電極47に印加する。   In step S94, the controller 81 switches the switch 64 so that the ground electrode 47 is connected to the current source 61. The current source 61 applies a constant surface activation current to the ground electrode 47 with a predetermined intensity. As a result, the surface activation current flows through the path of the current source 61, the ground electrode 47, the mask 30, the ground electrode 48, and GND. At this time, the current source 61 applies a voltage having a polarity opposite to the voltage applied to the built-in electrode 33 of the electrostatic chuck to the ground electrode 47 so that the suction force of the electrostatic chuck of the mask stage 31 does not decrease.

ステップS95において、コントローラ81は接地電極47がDMM63に接続するよう切換器64を切り替え、DMM63は接地電極37とマスク30との間の接触抵抗、接地電極37との接触位置から接地電極38との接触位置までのマスク30自身の電気抵抗及びマスク30と接地電極38との間の接触抵抗の直列抵抗値を測定する。
DMM63は測定値をコントローラ81に送信し、コントローラ81は受信した測定値から、接地電極37との接触位置から接地電極38との接触位置までのマスク30自身の既知の電気抵抗を差し引き、接地電極37とマスク30との間の接触抵抗及びマスク30と接地電極38との間の接触抵抗の直列抵抗値を求める。
In step S95, the controller 81 switches the switch 64 so that the ground electrode 47 is connected to the DMM 63. The DMM 63 determines the contact resistance between the ground electrode 37 and the mask 30 and the contact position between the ground electrode 37 and the ground electrode 38. The electrical resistance of the mask 30 itself up to the contact position and the series resistance value of the contact resistance between the mask 30 and the ground electrode 38 are measured.
The DMM 63 transmits the measurement value to the controller 81, and the controller 81 subtracts the known electrical resistance of the mask 30 itself from the contact position with the ground electrode 37 to the contact position with the ground electrode 38 from the received measurement value. The series resistance values of the contact resistance between the mask 37 and the mask 30 and the contact resistance between the mask 30 and the ground electrode 38 are obtained.

ステップS96において、コントローラ81は求めた直列抵抗値が、所定の閾値(例えば2MΩ)以下であるか否かを判定し、求めた直列抵抗値が所定の閾値以下でなければ、ステップS97においてコントローラ81は電流源61の印加強度を強めるよう電源コントローラ62に指令して、ステップS94〜S97を繰り返す。
なお、ステップS97でコントローラ81は、電流源61の印加強度を強めるよう電源コントローラ62に指令する代わりに、電流源61の印加時間を長くする、又は電流源61の印加パターンを変更する(例えば、直流電流からノコギリ波や方形波へ、ノコギリ波から方形波や直流電流に変更するなど)ことを電源コントローラ62に指令することとしてもよい。
In step S96, the controller 81 determines whether or not the obtained series resistance value is less than or equal to a predetermined threshold (for example, 2 MΩ). If the obtained series resistance value is not less than or equal to the predetermined threshold, the controller 81 in step S97. Instructs the power supply controller 62 to increase the applied intensity of the current source 61 and repeats steps S94 to S97.
In step S97, the controller 81 increases the application time of the current source 61 or changes the application pattern of the current source 61 instead of instructing the power supply controller 62 to increase the application intensity of the current source 61 (for example, The power supply controller 62 may be instructed to change from a direct current to a sawtooth wave or a square wave, or from a sawtooth wave to a square wave or a direct current.

ステップS95で求めた直列抵抗値がステップS96で、所定の閾値以下であると判定されると、ステップS98において、コントローラ81は切換器64を切り替えて接地電極47を接地する。   If it is determined in step S96 that the series resistance value obtained in step S95 is equal to or less than a predetermined threshold value, the controller 81 switches the switch 64 to ground the ground electrode 47 in step S98.

ウエハ40も図5に示すフローチャートと同様の試料接地方法で接地される。上記の図5を参照したマスク30の接地方法の説明において、マスク30をウエハ40へ、マスクステージ31の静電チャックを静電チャック44へ、内蔵電極33を内蔵電極43へ、接地電極37を接地電極47へ、接地電極38を接地電極48へ、電流源61を電流源71へ、電源コントローラ62を電源コントローラ72へ、DMM63をDMM73へ、切換器64を切換器74へ、それぞれ読み替えることにより理解が容易となる。   The wafer 40 is also grounded by a sample grounding method similar to the flowchart shown in FIG. In the description of the grounding method of the mask 30 with reference to FIG. 5 above, the mask 30 is attached to the wafer 40, the electrostatic chuck of the mask stage 31 is attached to the electrostatic chuck 44, the built-in electrode 33 is placed on the built-in electrode 43, and the ground electrode 37 is placed By replacing the ground electrode 47, the ground electrode 38 with the ground electrode 48, the current source 61 with the current source 71, the power controller 62 with the power controller 72, the DMM 63 with the DMM 73, and the switch 64 with the switch 74, respectively. Easy to understand.

本発明は、電子ビームを試料に照射する電子線露光装置に利用可能である。   The present invention is applicable to an electron beam exposure apparatus that irradiates a sample with an electron beam.

電子線近接露光装置の基本構成図である。It is a basic block diagram of an electron beam proximity exposure apparatus. 電子ビーム走査の説明図である。It is explanatory drawing of electron beam scanning. 電子ビームの傾き補正の説明図である。It is explanatory drawing of inclination correction | amendment of an electron beam. 本発明の実施例に係る試料接地機構を備える電子線近接露光装置の基本構成図である。1 is a basic configuration diagram of an electron beam proximity exposure apparatus including a sample grounding mechanism according to an embodiment of the present invention. 本発明の実施例に係る試料接地方法のフローチャートである。It is a flowchart of the sample grounding method which concerns on the Example of this invention.

符号の説明Explanation of symbols

1…電子線近接露光装置
8…チャンバ
30…マスク
31…マスクステージ
33、43…内蔵電極
35、45…静電チャック用電源
37、38、47、48…接地電極
40…ウエハ、
44…静電チャック
61、71…電流源
63、73…ディジタルマルチメータ
64、74…切換器
DESCRIPTION OF SYMBOLS 1 ... Electron beam proximity exposure apparatus 8 ... Chamber 30 ... Mask 31 ... Mask stage 33, 43 ... Built-in electrode 35, 45 ... Electrostatic chuck power supply 37, 38, 47, 48 ... Ground electrode 40 ... Wafer,
44 ... Electrostatic chucks 61, 71 ... Current sources 63, 73 ... Digital multimeters 64, 74 ... Switching devices

Claims (11)

試料の表面に接触して前記試料を接地する接地電極と、該接地電極と前記試料との間に表面活性化電流を流して前記接地電極と前記試料との間の接触抵抗を低減する電源と、を備えることを特徴とする試料接地機構。   A ground electrode that contacts the surface of the sample and grounds the sample; and a power source that reduces a contact resistance between the ground electrode and the sample by causing a surface activation current to flow between the ground electrode and the sample. A sample grounding mechanism comprising: 前記接地電極を、選択的に、前記電源に接続し及び接地する切換器を備えることを特徴とする請求項1に記載の試料接地機構。   The sample grounding mechanism according to claim 1, further comprising a switch that selectively connects and grounds the ground electrode to the power source. 前記接地電極と前記試料との間の接触抵抗を測定するための抵抗測定器と、
前記接地電極を、選択的に、前記電源及び前記抵抗測定器に接続し、並びに接地する切換器を備えることを特徴とする請求項1に記載の試料接地機構。
A resistance measuring instrument for measuring a contact resistance between the ground electrode and the sample;
The sample grounding mechanism according to claim 1, further comprising a switch for selectively connecting the ground electrode to the power source and the resistance measuring device and grounding the ground electrode.
静電チャックを有し前記試料を保持する試料保持手段を備え、
前記電源は、前記表面活性化電流を前記静電チャックに印加される電圧と逆の極性で流すことを特徴とする請求項1に記載の試料接地機構。
A sample holding means for holding the sample having an electrostatic chuck;
The sample grounding mechanism according to claim 1, wherein the power supply causes the surface activation current to flow with a polarity opposite to a voltage applied to the electrostatic chuck.
請求項1〜4のいずれか一項に記載の試料接地機構を備え、該試料接地機構によりウエハを接地することを特徴とする電子線露光装置。   An electron beam exposure apparatus comprising the sample grounding mechanism according to claim 1, wherein the wafer is grounded by the sample grounding mechanism. 請求項1〜4のいずれか一項に記載の試料接地機構と、
電子ビームを発生する電子銃と、
前記電子ビームの経路中に設けられ、露光パターンに対応する開口を有するマスクと、
を備え、前記開口を通過した前記電子ビームでウエハの表面に前記露光パターンを露光する電子線露光装置であって、
該試料接地機構により前記ウエハ及び/又は前記マスクを接地することを特徴とする電子線露光装置。
The sample grounding mechanism according to any one of claims 1 to 4,
An electron gun that generates an electron beam;
A mask provided in a path of the electron beam and having an opening corresponding to an exposure pattern;
An electron beam exposure apparatus that exposes the exposure pattern on the surface of a wafer with the electron beam that has passed through the opening,
An electron beam exposure apparatus wherein the wafer and / or the mask are grounded by the sample grounding mechanism.
試料の表面に接触して前記試料を接地する接地電極と前記試料との間に表面活性化電流を流して、前記接地電極と前記試料との間の接触抵抗を低減することを特徴とする試料接地方法。   A sample characterized by reducing a contact resistance between the ground electrode and the sample by passing a surface activation current between the sample and a ground electrode that contacts the surface of the sample and grounds the sample. Grounding method. 前記接地電極を、選択的に、前記表面活性化電流を流すための電源に接続し及び接地することを特徴とする請求項7に記載の試料接地方法。   The sample grounding method according to claim 7, wherein the ground electrode is selectively connected to and grounded to a power source for allowing the surface activation current to flow. 前記接地電極を、選択的に、前記表面活性化電流を流すための電源、及び前記接地電極と前記試料との間の接触抵抗を測定するための抵抗測定器に接続し、並びに接地することを特徴とする請求項7に記載の試料接地方法。   Selectively connecting the ground electrode to a power source for flowing the surface activation current and a resistance measuring instrument for measuring a contact resistance between the ground electrode and the sample, and grounding the ground electrode; The sample grounding method according to claim 7, wherein: 前記接地電極への前記表面活性化電流の印加と前記接地電極と前記試料との間の接触抵抗の測定を交互に行いながら、接触抵抗の測定値が所定の閾値以下となるまで前記電源の出力を増大させることを特徴とする請求項9に記載の試料接地方法。   While alternately applying the surface activation current to the ground electrode and measuring the contact resistance between the ground electrode and the sample, the output of the power supply until the measured value of the contact resistance becomes a predetermined threshold value or less. The sample grounding method according to claim 9, wherein the sample is grounded. 前記表面活性化電流を、前記試料を保持する静電チャックに印加される電圧と逆の極性で流すことを特徴とする請求項7に記載の試料接地方法。   The sample grounding method according to claim 7, wherein the surface activation current is caused to flow with a polarity opposite to a voltage applied to an electrostatic chuck holding the sample.
JP2004186511A 2004-06-24 2004-06-24 Sample grounding mechanism, sample grounding method, and electron beam exposure system Pending JP2006013049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004186511A JP2006013049A (en) 2004-06-24 2004-06-24 Sample grounding mechanism, sample grounding method, and electron beam exposure system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004186511A JP2006013049A (en) 2004-06-24 2004-06-24 Sample grounding mechanism, sample grounding method, and electron beam exposure system

Publications (2)

Publication Number Publication Date
JP2006013049A true JP2006013049A (en) 2006-01-12
JP2006013049A5 JP2006013049A5 (en) 2007-07-12

Family

ID=35779933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004186511A Pending JP2006013049A (en) 2004-06-24 2004-06-24 Sample grounding mechanism, sample grounding method, and electron beam exposure system

Country Status (1)

Country Link
JP (1) JP2006013049A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256572A (en) * 2007-04-06 2008-10-23 Hitachi High-Technologies Corp Semiconductor wafer inspection device
JP2010523374A (en) * 2007-04-13 2010-07-15 カーハーエス・アクチエンゲゼルシヤフト Container manufacturing apparatus and container manufacturing method
WO2010097858A1 (en) * 2009-02-27 2010-09-02 株式会社 日立ハイテクノロジーズ Electron microscope, and specimen holding method
JP2010267757A (en) * 2009-05-14 2010-11-25 Nuflare Technology Inc Substrate transfer method of charged particle beam drawing apparatus, and charged particle beam drawing apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256572A (en) * 2007-04-06 2008-10-23 Hitachi High-Technologies Corp Semiconductor wafer inspection device
US7633303B2 (en) 2007-04-06 2009-12-15 Hitachi High-Technologies Corporation Semiconductor wafer inspection apparatus
JP2010523374A (en) * 2007-04-13 2010-07-15 カーハーエス・アクチエンゲゼルシヤフト Container manufacturing apparatus and container manufacturing method
US9056146B2 (en) 2007-04-13 2015-06-16 Khs Gmbh Method of treating the inside surfaces of a clean room and treating a rotary beverage bottle blow-molding arrangement and blow-molding beverage bottles from preforms and an arrangement for performing the method
WO2010097858A1 (en) * 2009-02-27 2010-09-02 株式会社 日立ハイテクノロジーズ Electron microscope, and specimen holding method
JP5417428B2 (en) * 2009-02-27 2014-02-12 株式会社日立ハイテクノロジーズ Electron microscope and sample holding method
US8680466B2 (en) 2009-02-27 2014-03-25 Hitachi High-Technologies Coporation Electron microscope, and specimen holding method
JP2010267757A (en) * 2009-05-14 2010-11-25 Nuflare Technology Inc Substrate transfer method of charged particle beam drawing apparatus, and charged particle beam drawing apparatus

Similar Documents

Publication Publication Date Title
US7408760B2 (en) Charged particle beam application system
US7372050B2 (en) Method of preventing charging, and apparatus for charged particle beam using the same
US7209055B1 (en) Electrostatic particle beam deflector
JP2001513258A (en) SEM equipped with electrostatic objective lens and electric scanning device
JP7362741B2 (en) object table
JP2006013049A (en) Sample grounding mechanism, sample grounding method, and electron beam exposure system
WO2012012548A2 (en) Methods, devices, and systems for manipulating charged particle streams
GB1585729A (en) Electron beam column generator for the fabrication of semiconductor devices
JP4435987B2 (en) Method and apparatus for exposing a substrate
JPH09134869A (en) Method and device for charged particle beam exposure
JP2006139958A (en) Charged beam device
JP4597952B2 (en) Particle beam system manufacturing method and manufacturing apparatus
US9557658B2 (en) Low energy electron beam lithography
JP2002289517A (en) Electron beam proximity exposure system and method
JP7124216B2 (en) Charged particle beam device
JP2002100317A (en) Electric charge beam device, electron beam device and electron beam drawing device
JP2004128284A (en) Deflector, method of manufacturing deflector, and charged particle beam exposure device
US6613482B1 (en) Member used for charged beam processing apparatus, and mask
JP2016139530A (en) Charged particle beam device
JP3469404B2 (en) Field emission type charged particle gun and charged particle beam irradiation device
JP2005277046A (en) Electron beam blanking device and blanking method
JP3254048B2 (en) Metal pattern film forming method
JP4195632B2 (en) Electrostatic adsorption device and charged particle application device using the same
JP2001257158A (en) Electron beam lithography system
JPH07142359A (en) Apparatus and method for exposure with charged particle beam

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070524

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302