JP2006012767A - Electrode structure of electronic circuit and its manufacturing method - Google Patents

Electrode structure of electronic circuit and its manufacturing method Download PDF

Info

Publication number
JP2006012767A
JP2006012767A JP2004375539A JP2004375539A JP2006012767A JP 2006012767 A JP2006012767 A JP 2006012767A JP 2004375539 A JP2004375539 A JP 2004375539A JP 2004375539 A JP2004375539 A JP 2004375539A JP 2006012767 A JP2006012767 A JP 2006012767A
Authority
JP
Japan
Prior art keywords
electrode
conductive particles
electrode pattern
compound
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004375539A
Other languages
Japanese (ja)
Other versions
JP4128565B2 (en
Inventor
Shoshu Lee
詳 秀 李
Shunkei Kim
俊 ▲景▼ 金
Min Park
▲民▼ 朴
Keishin Park
恵 眞 朴
Sokyoku U
相 旭 禹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Institute of Science and Technology KIST
Original Assignee
Korea Institute of Science and Technology KIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Institute of Science and Technology KIST filed Critical Korea Institute of Science and Technology KIST
Publication of JP2006012767A publication Critical patent/JP2006012767A/en
Application granted granted Critical
Publication of JP4128565B2 publication Critical patent/JP4128565B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/208

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode structure of an electronic circuit capable of solving a short circuit problem between electrode patterns adjacent to each other even by an electrode circuit board having a high integration degree, and of improving electric conductivity between electronic circuits or an insulation property between electrode patterns adjacent to each other; and to provide its manufacturing method. <P>SOLUTION: This electrode structure of an electronic circuit is composed by including: an electrode pattern 1 formed on a board; a coating layer formed on the electrode pattern 1 by having a functional group with chemical bonding force to a metal and by being chemically bonded to it through the functional group; and conductive particles 3 chemically bonded to the coating layer through the functional group 4. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子回路の電極構造及びその製造方法に関し、詳しくは、導電粒子が電極パターン表面上に選択的自己組織化した電極構造により、電極パターンを含む電子回路基板などで互いの電子回路間の電気伝導性または隣接電極パターン間の絶縁性を向上させ、且つ、電子回路間の接続接触信頼性を向上させた電子回路の電極構造及びその製造方法に関する。   The present invention relates to an electrode structure of an electronic circuit and a method for manufacturing the same, and more particularly, an electrode structure in which conductive particles are selectively self-organized on the surface of the electrode pattern, so In particular, the present invention relates to an electrode structure of an electronic circuit and a method of manufacturing the same, in which the electrical conductivity of the semiconductor device or the insulation between adjacent electrode patterns is improved and the connection contact reliability between the electronic circuits is improved.

互いに対置する回路、例えば、上部回路パターンと下部回路パターンとを電気的に接続すると共に接着固定するために、回路接触用の異方導電性接着フィルム(Anisotropic Conductive Film;以下、ACFと称する)が使用される。異方導電性接着フィルムにおいて電気伝導は導電粒子により行われる。電子回路の集積度が増加するほど、電極パターン間のピッチは次第に微細化し、電極パターン数は大量化し、これにより、ACF中に含有される導電粒子のサイズを小さくする必要があり、且つ、電気伝導性を向上させるために導電粒子の配合量を増加させる必要がある。   Circuits facing each other, for example, an anisotropic conductive film (hereinafter referred to as ACF) for contacting a circuit to electrically connect and fix the upper circuit pattern and the lower circuit pattern together. used. In the anisotropic conductive adhesive film, electric conduction is performed by conductive particles. As the degree of integration of the electronic circuit increases, the pitch between the electrode patterns becomes finer and the number of electrode patterns becomes larger. Accordingly, it is necessary to reduce the size of the conductive particles contained in the ACF, and In order to improve conductivity, it is necessary to increase the amount of conductive particles.

しかしながら、導電粒子のサイズを小さくすると、2次凝集により接続不良や隣接電極パターン間の短絡が問題となり、且つ、配合量の増加も、電極パターン間の短絡を起こす虞れがあり問題となる。   However, if the size of the conductive particles is reduced, connection failure or short circuit between adjacent electrode patterns becomes a problem due to secondary aggregation, and an increase in the blending amount may cause short circuit between electrode patterns.

このような問題の解決策として、導電粒子の表面を絶縁層で被覆した絶縁被覆導電粒子をACFの導電粒子として使用する試みがなされている(例えば、特許文献1〜3参照)。特許文献1,2には、熱溶融性接着剤に分散させる導電粒子を、接着剤に不溶な絶縁樹脂で被覆する方法が提示されており、特許文献3には、微細カプセル化方法により、導電性粒子を絶縁樹脂の被覆殻の中に封じ込めてマイクロカプセル化する方法が提示されている。
米国特許第6,632,532号明細書 特開昭62-40183号公報 特開平08-335407号公報
As a solution to such a problem, attempts have been made to use insulating coated conductive particles obtained by coating the surfaces of conductive particles with an insulating layer as ACF conductive particles (see, for example, Patent Documents 1 to 3). Patent Documents 1 and 2 propose a method in which conductive particles dispersed in a hot-melt adhesive are coated with an insulating resin that is insoluble in the adhesive. A method of encapsulating a conductive particle in an insulating resin coating shell and microencapsulating it is proposed.
US Pat. No. 6,632,532 JP 62-40183 A Japanese Patent Laid-Open No. 08-335407

しかしながら、このような絶縁被覆導電粒子を使用する場合、低温、低圧のACF実装工程においては、導電粒子表面の絶縁層の破壊や溶融が十分でないため、残留した絶縁樹脂による互いの回路電極間の接触抵抗が大きく、電極パターンと導電粒子の接触が不完全であるため、互いの回路電極間の接続信頼性が悪化する。一方、温度及び圧力が高い場合は、導電粒子表面の絶縁樹脂が溶解し易いため、隣接する導電粒子が接触して隣接する電極パターン間の短絡が問題となり、溶解した絶縁樹脂がフィルム層樹脂の熱的、機械的性質を低下させ得る。   However, when such insulating coated conductive particles are used, the insulation layer on the surface of the conductive particles is not sufficiently broken or melted in the low temperature, low pressure ACF mounting process. Since the contact resistance is large and the contact between the electrode pattern and the conductive particles is incomplete, the connection reliability between the circuit electrodes is deteriorated. On the other hand, when the temperature and pressure are high, the insulating resin on the surface of the conductive particles easily dissolves, so that the adjacent conductive particles come into contact with each other and a short circuit between adjacent electrode patterns becomes a problem. Thermal and mechanical properties can be reduced.

尚、これを克服するために、米国特許公開公報第2001/0008169号には、フィルム層樹脂に導電粒子を選択的に分散させて隣接する導電粒子を接触させない方法が記載されているが、この方法は工程が複雑であるだけでなく非経済的であるという欠点がある。   In order to overcome this problem, US Patent Publication No. 2001/0008169 describes a method in which conductive particles are selectively dispersed in a film layer resin so that adjacent conductive particles do not come into contact with each other. The method has the disadvantage that it is not only complicated but also uneconomical.

本発明の目的は、互いに結合される二つの回路の結合が電気伝導性及び接着性において信頼性があり、製造工程が経済的な電子回路の電極構造を提供することにある。   An object of the present invention is to provide an electrode structure of an electronic circuit in which the connection of two circuits connected to each other is reliable in terms of electrical conductivity and adhesion, and the manufacturing process is economical.

また、本発明は、回路基板の電極パターン上に導電粒子を選択的に吸着させ自己組織化させ得る電子回路の電極製造方法を提供することを他の目的とする。   Another object of the present invention is to provide an electrode manufacturing method for an electronic circuit capable of selectively adsorbing conductive particles on an electrode pattern of a circuit board to cause self-organization.

その他、本発明の他の目的及び特徴は、以下の詳細な説明及び特許請求の範囲で更に具体的に提示されるはずである。   Other objects and features of the invention will be more particularly presented in the following detailed description and claims.

このような目的を達成するために、本発明の電子回路の電極構造は、基板上に形成された電極パターンと、金属と化学的結合力を有する官能基を有し、前記電極パターン上にコーティングされ前記官能基を介して化学的に結合されたコーティング層と、前記官能基を介して前記コーティング層に化学的に結合された導電粒子とを含んで構成した。   In order to achieve such an object, an electrode structure of an electronic circuit according to the present invention has an electrode pattern formed on a substrate and a functional group having a chemical bonding force with a metal, and is coated on the electrode pattern. And a coating layer chemically bonded via the functional group and conductive particles chemically bonded to the coating layer via the functional group.

かかる構成では、コーティング層が、電極パターンに金属と化学的結合力を有する官能基を介して化学的に結合し、導電粒子がコーティング層に金属と化学的結合力を有する官能基を介して化学的に結合する。これにより、電極パターンのみに選択的自己組織化した導電粒子層を形成することができるようになる。   In such a configuration, the coating layer is chemically bonded to the electrode pattern via a functional group having a chemical bonding force with the metal, and the conductive particles are chemically bonded to the coating layer via a functional group having a chemical bonding force with the metal. Join. As a result, a conductive particle layer that is selectively self-organized only in the electrode pattern can be formed.

前記導電粒子は、請求項2のように、金属単独粒子、及び、有機或いは有機/無機複合粒子の表面に金属がコーティングされた粒子の何れか一方とした。   The conductive particles are any one of metal single particles and particles having organic or organic / inorganic composite particles coated with metal as in claim 2.

前記コーティング層は、請求項3のように、芳香族有機化合物内に、又は、脂肪族有機化合物の両末端又は主鎖内に、金属に対し親和力を有する前記官能基が一つの分子当たり二つ以上存在して、前記電極パターン及び導電粒子の表面に対し化学的結合力を有する二官能性化合物とするとよい。   The coating layer has two functional groups having affinity for a metal per molecule in an aromatic organic compound or in both ends or main chain of an aliphatic organic compound, as in claim 3. A bifunctional compound that exists as described above and has a chemical binding force to the surface of the electrode pattern and the conductive particles may be used.

前記官能基は、請求項4のように、チオール基、カルボキシル基及びこれらの誘導体、ヒドロキシル基、アミン基及びこれらの誘導体、金属の酸、塩基官能基及びイオン結合が可能な官能基から選択される何れか一つとした。   The functional group is selected from thiol group, carboxyl group and derivatives thereof, hydroxyl group, amine group and derivatives thereof, metal acid, base functional group and functional group capable of ionic bonding. Any one of them.

本発明の電子回路の電極製造方法は、電極パターンが形成された基板に、金属と化学的結合力を有する官能基を含む化合物をコーティングして、前記電極パターンの表面に前記化合物を化学的に結合させる段階と、前記基板を洗浄して前記電極パターン以外の基板部分の前記化合物を除去する段階と、前記基板に導電粒子をコーティングして、前記電極パターンの表面に結合されている前記化合物と前記導電粒子とを化学的に結合させる段階と、前記基板を洗浄して前記電極パターン以外の基板部分の前記導電粒子を除去する段階と、を含むことを特徴とする。   In the method for producing an electrode of an electronic circuit according to the present invention, a substrate on which an electrode pattern is formed is coated with a compound containing a functional group having a chemical bonding force with a metal, and the compound is chemically applied to the surface of the electrode pattern. Bonding, cleaning the substrate to remove the compound on a portion of the substrate other than the electrode pattern, coating the substrate with conductive particles, and bonding the compound to the surface of the electrode pattern; The method includes a step of chemically bonding the conductive particles, and a step of cleaning the substrate to remove the conductive particles on a substrate portion other than the electrode pattern.

前記化合物は、請求項6のように、芳香族有機化合物内に、又は、脂肪族有機化合物の両末端又は主鎖内に、金属に対し親和力を有する官能基が一つの分子当たり二つ以上存在して、前記電極パターン及び導電粒子の表面に対して化学的結合力を有する二官能性化合物である。   In the compound according to claim 6, two or more functional groups having an affinity for metal exist in an aromatic organic compound or in both ends or main chain of an aliphatic organic compound per molecule. Thus, it is a bifunctional compound having a chemical binding force to the electrode pattern and the surface of the conductive particles.

本発明によれば、基板に形成した電極パターンの表面のみに選択的に自己組織化した導電粒子層が形成されるので、隣接する導電粒子間の接触による隣接する電極パターン間の短絡問題を解決し、且つ、互いの電子回路の電気伝導性を向上させると共に、接触信頼性を向上させることができる。   According to the present invention, a conductive particle layer that is selectively self-organized is formed only on the surface of the electrode pattern formed on the substrate, thus solving the problem of short circuit between adjacent electrode patterns due to contact between adjacent conductive particles. In addition, the electrical conductivity of each electronic circuit can be improved and the contact reliability can be improved.

また、本発明の電極製造方法によれば、金属と化学的結合力を有する官能基を含む化合物を電極パターンにコーティングした後に化合物を除去するために洗浄し、その後、コーティングした化合物に導電粒子をコーティングした後に導電粒子を除去するために洗浄するだけでよいので、製造工程が極めて簡単で経済的である。   According to the electrode manufacturing method of the present invention, the electrode pattern is coated with a compound containing a functional group having a chemical bonding force with a metal, and then washed to remove the compound, and then the conductive particles are applied to the coated compound. The manufacturing process is very simple and economical since it only needs to be washed to remove the conductive particles after coating.

図1は、本発明による自己組織化した導電粒子が形成されている電極パターンによる電極構造を含む電子回路基板の模式的構造を示す。   FIG. 1 shows a schematic structure of an electronic circuit board including an electrode structure having an electrode pattern in which self-organized conductive particles according to the present invention are formed.

図において、下部回路基板と上部回路基板とは、接着フィルム2を介して図の矢印方向に互いに結合される。下部回路基板の表面上に形成された電極パターン1には、金属と化学的結合力を有する官能基を有する化合物である例えば二官能性化合物からなるコーティング層(図示せず)がコーティングされている。前記化合物の官能基(図示せず)の一部が電極パターン1の表面に化学的に結合され、他の一つの官能基4には、導電粒子3が化学的に結合される。これにより、導電粒子3は、電極パターン1の表面のみに吸着して選択的に自己組織化する。   In the figure, the lower circuit board and the upper circuit board are coupled to each other in the direction of the arrow in the figure via the adhesive film 2. The electrode pattern 1 formed on the surface of the lower circuit board is coated with a coating layer (not shown) made of, for example, a bifunctional compound which is a compound having a functional group having a chemical bonding force with a metal. . A part of the functional group (not shown) of the compound is chemically bonded to the surface of the electrode pattern 1, and the conductive particle 3 is chemically bonded to the other functional group 4. As a result, the conductive particles 3 are adsorbed only on the surface of the electrode pattern 1 and selectively self-assembled.

このように、導電粒子3の金属成分と自発的に結合できる化合物として二官能性化合物を電子回路の電極パターンの表面にコーティング処理し、その上に直接導電粒子を吸着させることにより、二官能性化合物の二つの官能基のうち、一つの官能基は電極パターンと結合され、他の一つの官能基は金属導電粒子と結合され、簡便に導電粒子を電極パターンの表面のみに選択的に整列させて自己組織化した導電層を形成することができる。   In this way, the bifunctional compound is coated on the surface of the electrode pattern of the electronic circuit as a compound that can spontaneously bind to the metal component of the conductive particles 3, and the conductive particles are directly adsorbed on the surface of the electrode pattern. Of the two functional groups of the compound, one functional group is bonded to the electrode pattern, and the other functional group is bonded to the metal conductive particles, so that the conductive particles can be selectively aligned only on the surface of the electrode pattern. Thus, a self-assembled conductive layer can be formed.

かかる構成によれば、電極パターンの相互方向のみに電流が通り、電極パターンと直角方向の絶縁特性が維持され、隣接する導電粒子間の接触による電極パターン間の短絡問題なしに電子回路の高集積化に対応できると共に、電子回路間の接触信頼性を向上できる。また、電極製造工程が簡単であり経済的である。   According to such a configuration, the current passes only in the mutual direction of the electrode pattern, the insulation characteristic in the direction perpendicular to the electrode pattern is maintained, and the high integration of the electronic circuit without the short circuit problem between the electrode patterns due to the contact between the adjacent conductive particles. The contact reliability between electronic circuits can be improved. In addition, the electrode manufacturing process is simple and economical.

以下、実施例を通して本発明をより具体的に説明する。

二官能性化合物と金属導電粒子

後述する本発明の一実施例においては、二官能性化合物として、金属に対し強い親和力を有するチオール基を両末端に有しているプロパンジチオールを使用した。しかしながら、本発明は、これに限定されるのでなく、例えば炭素数が2〜1000個の芳香族有機化合物、又は、脂肪族有機化合物の両末端又は主鎖内に、金属に対し親和力を有する官能基が一つの分子当たり二つ以上存在するものであればよく、このような官能基の例として、チオール基、カルボキシル基及びこれらの誘導体、ヒドロキシル基、アミン基及びこれらの誘導体、金属の酸、塩基官能基及びイオン結合が可能な官能基の何れも使用することができる。このような有機化合物の代表的な例としては、エタンジチオール、プロパンジチオール、ブタンジチオール、ペンタンジチオール、ヘキサンジチオール、ヘプタンジチオール、オクタンジチオール、デカンジチオール、エタンジオール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、デカンジオール、エタンジカルボン酸、プロパンジカルボン酸、ブタンジカルボン酸、ペンタンジカルボン酸、ヘキサンジカルボン酸、ヘプタンジカルボン酸、オクタンジカルボン酸、デカンジカルボン酸、ジアミノエタン、ジアミノプロパン、ジアミノブタンジオール、ジアミノペンタン、ジアミノヘキサン、ジアミノヘプタン、ジアミノオクタン、ジアミノデカン、エタン二リン酸(ethanediphosphoric acid)、プロパン二リン酸、ブタン二リン酸、ペンタン二リン酸、ヘキサン二リン酸、ヘプタン二リン酸、オクタン二リン酸及びデカン二リン酸などが含まれ、更に、これらの酸塩基反応による誘導体、並びに、金属との着物の形成などによる有機金属化合物などが含まれる。
Hereinafter, the present invention will be described more specifically through examples.

Bifunctional compounds and metal conductive particles

In one example of the present invention described later, propanedithiol having thiol groups having strong affinity for metal at both ends was used as the bifunctional compound. However, the present invention is not limited to this, for example, an aromatic organic compound having 2 to 1000 carbon atoms, or a functional group having affinity for a metal in both ends or main chain of an aliphatic organic compound. As long as there are two or more groups per molecule, examples of such functional groups include thiol groups, carboxyl groups and derivatives thereof, hydroxyl groups, amine groups and derivatives thereof, metal acids, Either a basic functional group or a functional group capable of ionic bonding can be used. Representative examples of such organic compounds include ethanedithiol, propanedithiol, butanedithiol, pentanedithiol, hexanedithiol, heptanedithiol, octanedithiol, decanedithiol, ethanediol, propanediol, butanediol, pentanediol, hexane. Diol, heptanediol, octanediol, decanediol, ethanedicarboxylic acid, propanedicarboxylic acid, butanedicarboxylic acid, pentanedicarboxylic acid, hexanedicarboxylic acid, heptanedicarboxylic acid, octanedicarboxylic acid, decanedicarboxylic acid, diaminoethane, diaminopropane, diamino Butanediol, diaminopentane, diaminohexane, diaminoheptane, diaminooctane, diaminodecane, ethane diphosphate (eth anediphosphoric acid), propane diphosphate, butane diphosphate, pentane diphosphate, hexane diphosphate, heptane diphosphate, octane diphosphate and decane diphosphate, and these acid-base reactions. And organometallic compounds resulting from the formation of kimonos with metals.

また、金属導電粒子としては、本発明の一実施形態においては、直径5μmの金でコーティングされたポリスチレン粒子を使用した。しかしながら、本発明は、これに限定されるのでなく、前記の官能基を有する有機化合物の何れに対しても親和力を有する金属でコーティングされた有機又は有機/無機複合粒子や、金属のみからなる粒子の何れも使用することができる。金属成分としては、前述の金の他、銀、銅及びニッケル等を含む伝導性金属を使用することができる。

電極パターンと二つの官能基を有する化合物との反応

銅を電極パターンに使用した基板を24時間の間、例えば基板上にプロパンジチオール溶液を噴霧したり、プロパンジチオール溶液内に浸漬する等の方法により、プロパンジチオール溶液で処理して、プロパンジチオール両末端の官能基のうち、一つのチオール基が、基板のマスクされていない電極パターンと反応して結合されるようにした。このとき、他の一つのチオール基は、反応せずに残っている。
Further, as the metal conductive particles, in one embodiment of the present invention, polystyrene particles coated with gold having a diameter of 5 μm were used. However, the present invention is not limited to this, and organic or organic / inorganic composite particles coated with a metal having an affinity for any of the above organic compounds having a functional group, or particles made of only a metal. Any of these can be used. As the metal component, conductive metals including silver, copper, nickel and the like can be used in addition to the above-described gold.

Reaction of electrode pattern with compound having two functional groups

A substrate using copper as an electrode pattern is treated with a propanedithiol solution for 24 hours, for example, by spraying a propanedithiol solution on the substrate or dipping in a propanedithiol solution. Of these functional groups, one thiol group was bonded to react with an unmasked electrode pattern of the substrate. At this time, the other one thiol group remains without reacting.

その後、エタノールで前記基板を3〜5回洗浄して、電極パターン以外の基板部分に物理的に吸着したプロパンジチオールを除去した。このとき、洗浄回数は、電極パターン以外の基板部分に物理的に吸着したプロパンジチオールを十分に除去できる回数であればよい。

金属導電粒子の選択的自己組織化

前記の銅電極パターンに結合されているプロパンジチオールの未反応のチオール基と金属導電粒子をエタノール溶液内で24時間、室温で反応させた。反応後、エタノールで3〜5回洗浄して、電極パターン以外の基板部分に物理的に吸着した金属導電粒子を除去した。このとき、洗浄回数は、電極パターン以外の基板部分に物理的に吸着したプロパンジチオールを十分に除去できる回数であればよい。このような方法で得られた基板から電子顕微鏡を用いて図2(a)の結果を確認した。図2(a)から金属電極パターン(図の棒状部分)上のみに選択的に導電粒子(図の微細円形粒子)が吸着していることが分かる。
Then, the said board | substrate was wash | cleaned 3-5 times with ethanol, and the propane dithiol physically adsorb | sucked to board | substrate parts other than an electrode pattern was removed. At this time, the number of washings may be any number that can sufficiently remove propanedithiol physically adsorbed on the substrate portion other than the electrode pattern.

Selective self-organization of metal conductive particles

Unreacted thiol groups of propanedithiol bonded to the copper electrode pattern and metal conductive particles were reacted in an ethanol solution for 24 hours at room temperature. After the reaction, it was washed 3 to 5 times with ethanol to remove the metal conductive particles physically adsorbed on the substrate portion other than the electrode pattern. At this time, the number of washings may be any number that can sufficiently remove propanedithiol physically adsorbed on the substrate portion other than the electrode pattern. The result of Fig.2 (a) was confirmed using the electron microscope from the board | substrate obtained by such a method. From FIG. 2A, it can be seen that the conductive particles (fine circular particles in the figure) are selectively adsorbed only on the metal electrode pattern (rod-like portion in the figure).

これと比較するために、プロパンジチオールと反応させていない電極パターンと金属導電粒子をエタノール溶液内で24時間、室温で反応させた。このような方法で得られた基板から電子顕微鏡を用いて図2(b)の結果を確認した。図2(b)から金属電極パターン(図の棒状部分)上のみに選択的に導電粒子が吸着することなく、隣接する電極パターン間の絶縁部(電極パターン以外の部分)にも共に存在することが分かる。且つ、このようなプロパンジチオールと反応させていない電極パターン表面の導電粒子は、物理的結合力が脆弱であるため大部分洗浄過程で除去されて、電極パターンの表面上に導電粒子層を形成することができなかった。   For comparison, the electrode pattern not reacted with propanedithiol and the metal conductive particles were reacted in an ethanol solution for 24 hours at room temperature. The result of FIG.2 (b) was confirmed using the electron microscope from the board | substrate obtained by such a method. As shown in FIG. 2B, the conductive particles are not selectively adsorbed only on the metal electrode pattern (the bar-shaped portion in the figure) and are also present in the insulating portion (the portion other than the electrode pattern) between the adjacent electrode patterns. I understand. In addition, since the conductive particles on the surface of the electrode pattern not reacted with propanedithiol have a weak physical bonding force, they are mostly removed in the cleaning process to form a conductive particle layer on the surface of the electrode pattern. I couldn't.

本発明に係る電子回路の電極構造の一実施形態を示す電子回路基板の模式的構造を示す図The figure which shows the typical structure of the electronic circuit board which shows one Embodiment of the electrode structure of the electronic circuit which concerns on this invention 電子回路基板の電極パターンの電子顕微鏡写真であり、(a)は金属に対し親和力を有する官能基を含む化合物がコーティングされた電極パターンの電子顕微鏡写真、(b)は金属に対し親和力を有する官能基を含む化合物がコーティングされていない電極パターンの電子顕微鏡写真It is an electron micrograph of an electrode pattern of an electronic circuit board, (a) is an electron micrograph of an electrode pattern coated with a compound containing a functional group having an affinity for metal, and (b) is a functional having an affinity for metal. Electron micrograph of an electrode pattern not coated with a group-containing compound

符号の説明Explanation of symbols

1 電極パターン
2 接着フィルム
3 導電粒子
4 官能基
1 Electrode Pattern 2 Adhesive Film 3 Conductive Particle 4 Functional Group

Claims (6)

基板上に形成された電極パターンと、
金属と化学的結合力を有する官能基を有し、前記電極パターン上にコーティングされ前記官能基を介して化学的に結合されたコーティング層と、
前記官能基を介して前記コーティング層に化学的に結合された導電粒子と、
を含んで構成されることを特徴とする電子回路の電極構造。
An electrode pattern formed on the substrate;
A coating layer having a functional group having a chemical bonding force with a metal, coated on the electrode pattern and chemically bonded via the functional group;
Conductive particles chemically bonded to the coating layer via the functional groups;
An electrode structure for an electronic circuit, comprising:
前記導電粒子は、金属単独粒子、及び、有機或いは有機/無機複合粒子の表面に金属がコーティングされた粒子の何れか一方であることを特徴とする請求項1に記載の電子回路の電極構造。   2. The electrode structure of an electronic circuit according to claim 1, wherein the conductive particles are any one of metal single particles and particles in which metal is coated on the surface of organic or organic / inorganic composite particles. 前記コーティング層は、芳香族有機化合物内に、又は、脂肪族有機化合物の両末端又は主鎖内に、金属に対し親和力を有する前記官能基が一つの分子当たり二つ以上存在して、前記電極パターン及び導電粒子の表面に対し化学的結合力を有する二官能性化合物であることを特徴とする請求項1又は2に記載の電子回路の電極構造。   In the coating layer, two or more functional groups having an affinity for a metal are present per molecule in the aromatic organic compound or in both ends or main chain of the aliphatic organic compound, and the electrode 3. The electrode structure for an electronic circuit according to claim 1, wherein the electrode structure is a bifunctional compound having a chemical bonding force to the surface of the pattern and the conductive particles. 前記官能基は、チオール基、カルボキシル基及びこれらの誘導体、ヒドロキシル基、アミン基及びこれらの誘導体、金属の酸、塩基官能基及びイオン結合が可能な官能基から選択される何れか一つであることを特徴とする請求項1〜3のいずれか1つに記載の電子回路の電極構造。   The functional group is any one selected from thiol group, carboxyl group and derivatives thereof, hydroxyl group, amine group and derivatives thereof, metal acid, base functional group and functional group capable of ionic bonding. The electrode structure for an electronic circuit according to any one of claims 1 to 3, wherein 電極パターンが形成された基板に、金属と化学的結合力を有する官能基を含む化合物をコーティングして、前記電極パターンの表面に前記化合物を化学的に結合させる段階と、
前記基板を洗浄して前記電極パターン以外の基板部分の前記化合物を除去する段階と、
前記基板に導電粒子をコーティングして、前記電極パターンの表面に結合されている前記化合物と前記導電粒子とを化学的に結合させる段階と、
前記基板を洗浄して前記電極パターン以外の基板部分の前記導電粒子を除去する段階と、
を含むことを特徴とする電子回路の電極製造方法。
Coating the substrate on which the electrode pattern is formed with a compound containing a functional group having a chemical bonding force with a metal, and chemically bonding the compound to the surface of the electrode pattern;
Cleaning the substrate to remove the compound on the substrate portion other than the electrode pattern;
Coating the conductive particles on the substrate to chemically bond the conductive particles to the compound bonded to the surface of the electrode pattern;
Cleaning the substrate to remove the conductive particles on the substrate portion other than the electrode pattern;
An electrode manufacturing method for an electronic circuit, comprising:
前記化合物は、芳香族有機化合物内に、又は、脂肪族有機化合物の両末端又は主鎖内に、金属に対し親和力を有する官能基が一つの分子当たり二つ以上存在して、前記電極パターン及び導電粒子の表面に対して化学的結合力を有する二官能性化合物であることを特徴とする請求項5に記載の電子回路の電極製造方法。   In the compound, two or more functional groups having an affinity for metal exist in an aromatic organic compound or in both ends or main chain of the aliphatic organic compound, and the electrode pattern and 6. The method of manufacturing an electrode for an electronic circuit according to claim 5, wherein the electrode is a bifunctional compound having a chemical bonding force to the surface of the conductive particles.
JP2004375539A 2004-06-28 2004-12-27 Electrode structure of electronic circuit and manufacturing method thereof Expired - Fee Related JP4128565B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040049129A KR100582715B1 (en) 2004-06-28 2004-06-28 Electrode pattern with selectively self-assembled conductive particle thereon and fabrication method thereof

Publications (2)

Publication Number Publication Date
JP2006012767A true JP2006012767A (en) 2006-01-12
JP4128565B2 JP4128565B2 (en) 2008-07-30

Family

ID=35779745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004375539A Expired - Fee Related JP4128565B2 (en) 2004-06-28 2004-12-27 Electrode structure of electronic circuit and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP4128565B2 (en)
KR (1) KR100582715B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220884A (en) * 2006-02-16 2007-08-30 Kagawa Univ Electrode and its manufacturing method, lead wiring using the same and its connecting method, and electronic parts and electronic apparatus using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101213731B1 (en) 2009-02-20 2012-12-18 주식회사 엘지화학 Stripper composition for photoresist

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3597507B2 (en) * 2001-01-24 2004-12-08 松下電器産業株式会社 Fine particle array, method for producing the same, and device using the same
KR100443256B1 (en) * 2002-05-16 2004-08-04 한국화학연구원 Molecular electronic devices using gold nanoparticle and preparation thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220884A (en) * 2006-02-16 2007-08-30 Kagawa Univ Electrode and its manufacturing method, lead wiring using the same and its connecting method, and electronic parts and electronic apparatus using the same

Also Published As

Publication number Publication date
JP4128565B2 (en) 2008-07-30
KR20060000323A (en) 2006-01-06
KR100582715B1 (en) 2006-05-23

Similar Documents

Publication Publication Date Title
TWI375231B (en)
TW201214472A (en) Conductive particle, method for producing the same, and anisotropic conductive film, joined structure and connecting method
US20180036769A1 (en) METHOD FOR MODIFYING SURFACE OF NON-CONDUCTIVE SUBSTRATE AND SIDEWALL OF MICRO/NANO HOLE WITH rGO AND CONDITIONER EMPLOYED THEREIN
JP2007036236A (en) Method of forming self-assembled electrical contact structure, self-assembled electrical contact structure, and electrical contact structure
JP2007026776A (en) Conductive fine particle and adhesive using the same
US20140076618A1 (en) Method of forming gold thin film and printed circuit board
JP4482945B2 (en) Electronic component module
JP2007317563A (en) Circuit connecting adhesive
TWI228309B (en) Semiconductor device
JP4128565B2 (en) Electrode structure of electronic circuit and manufacturing method thereof
US6521144B2 (en) Conductive adhesive and connection structure using the same
JP2010129472A (en) Conductive particle, anisotropic conductive adhesive, and manufacturing method of conductive particle
JP4792203B2 (en) Method for forming metal thin film layer on conductive ITO film, and metal thin film layer on conductive ITO film by the method
JP2007237271A (en) Solder adhesive, and electronic component mounting structure using the same
JP2011054444A (en) Conductive material, electronic device using the material, and method for manufacturing the device
KR20090121680A (en) Method for forming metal line pattern by using selective electroless plating on flexible substrate
Zhang et al. Enhanced Electrical Properties of Anisotropic Conductive Adhesive With $\pi $-Conjugated Self-Assembled Molecular Wire Junctions
JP2001354942A (en) Conductive adhesive, mounted structure and its production method
US8110904B2 (en) Lead frame for semiconductor device and method of manufacturing of the same
JP4293030B2 (en) Electronic device mounting structure and manufacturing method thereof
JP2002025339A (en) Mounting structure and manufacturing method of the same
JP2001254067A (en) Electroconductive adhesive and connecting structure therewith
JP2002100501A (en) Electronic component and its packaging body
JP6572793B2 (en) Electrical components and electronic devices
JP2001119130A (en) Method for bonding electrical contact

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees