JP2006010442A - Method for removing glass - Google Patents

Method for removing glass Download PDF

Info

Publication number
JP2006010442A
JP2006010442A JP2004186384A JP2004186384A JP2006010442A JP 2006010442 A JP2006010442 A JP 2006010442A JP 2004186384 A JP2004186384 A JP 2004186384A JP 2004186384 A JP2004186384 A JP 2004186384A JP 2006010442 A JP2006010442 A JP 2006010442A
Authority
JP
Japan
Prior art keywords
glass
brick
solidified
adhering
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004186384A
Other languages
Japanese (ja)
Other versions
JP4228226B2 (en
Inventor
Takayuki Aosawa
隆之 青澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2004186384A priority Critical patent/JP4228226B2/en
Publication of JP2006010442A publication Critical patent/JP2006010442A/en
Application granted granted Critical
Publication of JP4228226B2 publication Critical patent/JP4228226B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for removing glass which makes it possible to easily separate the glass for vitrifying a radioactive liquid waste adhering to a brick's surface from it. <P>SOLUTION: The direct irradiation of the brick's surface to which the glass adheres with laser light causes the thermal expansion of only the glass for vitrifying the radioactive liquid waste, and the glass is removed from the brick's surface by crashing the glass through its brittle fracture. The irradiation intensity, spot diameter and scanning speed of laser light is set so properly that thermal expansion distortion can be imparted especially to only the glass for vitrifying the radioactive liquid waste. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えばガラス溶融炉の内壁面を構成するレンガの表面に付着したガラスを上記レンガから分離して高レベル放射性廃棄物として処分するに好適なガラス除去方法に関する。   The present invention relates to a glass removal method suitable for separating, for example, glass adhering to a brick surface constituting an inner wall surface of a glass melting furnace from the brick and disposing it as high-level radioactive waste.

使用済核燃料の再処理に伴って発生する高レベル放射性廃液の処分は、例えばホウ珪酸ガラスを用いて上記高レベル放射性廃液をガラス固化した後、そのガラス固化体をオーバーパックと称される厚肉円筒形の炭素鋼製処分容器に密封収納した上で地中に埋設して行われる。
ところで上記高レベル放射性廃液のガラス固化処理に用いられるガラス溶融炉の寿命は比較的短い。これ故、一定期間に亘って使用したガラス溶融炉については、これを解体して廃棄することが必要となる。この際、ガラス溶融炉の内壁面を構成するレンガ(耐火レンガ)の表面に付着したガラスが高レベル放射性物質を含むので、前述したガラス固化体と同様に放射線漏洩対策を施した上で廃棄処分することが必要となる。
Disposal of the high-level radioactive liquid waste that accompanies the reprocessing of the spent nuclear fuel, for example, after vitrifying the high-level radioactive liquid waste using borosilicate glass, the vitrified material is referred to as an overpack. It is carried out by being buried in the ground after being sealed and stored in a cylindrical carbon steel disposal container.
By the way, the lifetime of the glass melting furnace used for the vitrification treatment of the high-level radioactive liquid waste is relatively short. Therefore, it is necessary to disassemble and discard the glass melting furnace used for a certain period. At this time, since the glass adhering to the surface of the brick (refractory brick) that constitutes the inner wall surface of the glass melting furnace contains high-level radioactive material, it is disposed of after taking measures against radiation leakage in the same manner as the above-mentioned glass solidified body. It is necessary to do.

そこで従来、ガラス溶融炉を解体して得られるレンガブロック体に対して、例えば図1に示すようにレンガ1のガラス付着面と平行にレーザ光Lを照射することで該レンガ1の表面に付着したガラス層2を含む表面層を所定厚み(例えば15mm程度)に亘って切断し、このガラス層2を含む表面層だけを上記レンガ1から分離させた放射性廃棄物として処分することが考えられている。   Therefore, conventionally, a brick block body obtained by dismantling a glass melting furnace is attached to the surface of the brick 1 by irradiating laser light L parallel to the glass attachment surface of the brick 1 as shown in FIG. It is considered that the surface layer including the glass layer 2 is cut over a predetermined thickness (for example, about 15 mm) and only the surface layer including the glass layer 2 is disposed as radioactive waste separated from the brick 1. Yes.

尚、放射性物質により汚染されたコンクリート等の無機物質表層を除染する技術として、この無機物質表層にレーザ光を照射することで該無機物質表層をガラス化剥離し、或いは爆裂剥離することが提唱されている(例えば特許文献1を参照)。また原子炉における炉容器や伝熱管等の内面に付着した金属酸化膜等の汚染物質を除去するべく、レーザ光を照射して上記汚染物質を剥離することも提唱されている(例えば特許文献2,3を参照)。更には無機物表層の汚染部分にレーザ光を照射して上記汚染部分を溶融させ、この溶融層に高圧ガスを吹き付けることで汚染物質粉とした後、この汚染物質粉を回収することも提唱されている(例えば特許文献4を参照)。
特開2000−346991号公報 特開2001−59892号公報 特開平9−281296号公報 特開2001−116892号公報
As a technique for decontaminating the surface of inorganic materials such as concrete contaminated with radioactive materials, it is proposed to irradiate the surface of the inorganic material with laser light to vitrify or exfoliate the surface of the inorganic material. (See, for example, Patent Document 1). In addition, in order to remove contaminants such as a metal oxide film attached to the inner surface of a reactor vessel, a heat transfer tube, etc. in a nuclear reactor, it is also proposed to remove the contaminants by irradiating a laser beam (for example, Patent Document 2). , 3). Furthermore, it has also been proposed that the contaminated portion of the inorganic surface layer is irradiated with laser light to melt the contaminated portion, and the high-pressure gas is blown onto the molten layer to form the pollutant powder, and then the pollutant powder is recovered. (For example, refer to Patent Document 4).
JP 2000-346991 A JP 2001-59892 A JP-A-9-281296 JP 2001-116892 A

しかしながら図1に示したように、レンガ1のガラス付着面と平行にレーザ光Lを照射してガラス層2を含む表面層を所定厚みに亘って切断した場合、厚さ1〜2mm程度のガラス層2と共に相当量のレンガも切り出されるので、放射性廃棄物の量が増えることが否めない。しかもその処分対象が、高レベル放射性物質を含むガラスが表面に付着したレンガ1であり、前述した特許文献1に示されるような、表面が放射性物質により汚染されたコンクリート等の無機物質表層ではないので、この無機物質表層をガラス化剥離したり、或いは爆裂剥離するには無理がある。また特許文献2,3に示されるような、炉容器等の金属物の内面に付着した金属酸化膜等の汚染物質でもないので、レーザ光を照射してもレンガ1に付着したガラス層2が金属酸化物のように剥離することもない。   However, as shown in FIG. 1, when the surface layer including the glass layer 2 is cut over a predetermined thickness by irradiating the laser beam L parallel to the glass adhesion surface of the brick 1, the glass having a thickness of about 1 to 2 mm. Since a considerable amount of bricks are cut out together with the layer 2, it cannot be denied that the amount of radioactive waste increases. And the disposal object is the brick 1 which the glass containing a high level radioactive substance adhered to the surface, and as shown in patent document 1 mentioned above, the surface is not an inorganic substance surface layer, such as concrete contaminated with the radioactive substance. Therefore, it is impossible to vitrify or peel off the surface layer of this inorganic substance. Moreover, since it is not contaminants, such as a metal oxide film adhering to the inner surface of metal objects, such as a furnace vessel, as shown in Patent Documents 2 and 3, the glass layer 2 adhering to the brick 1 is formed even when irradiated with laser light. It does not peel off like metal oxides.

本発明はこのような事情を考慮してなされたもので、その目的は、レンガの表面に付着した高レベル放射性を含むガラスを上記レンガから分離して、上記ガラスを高レベル放射性廃棄物として処分するに好適なガラス除去方法を提供することにある。   The present invention has been made in view of such circumstances, and its purpose is to separate the glass containing high-level radioactive material attached to the brick surface from the brick and dispose of the glass as high-level radioactive waste. It is another object of the present invention to provide a glass removal method suitable for this purpose.

上述した目的を達成するべく本発明に係るガラス除去方法は、レンガの表面に付着した放射性廃液固化ガラスを分離するに際して、前記レンガのガラス付着面にレーザ光を照射することで上記放射性廃液固化ガラスを熱膨張させ、上記ガラスの脆性破壊により破砕し、これによってレンガの表面から除去することを特徴としている。
即ち、本発明は、レンガの表面に付着した放射性廃液固化ガラスが非晶質であり、その熱伝達率が小さいこと、そしてガラスを溶融させることなく熱膨張させると、その応力歪みに起因して脆性破壊が生じることに着目している。そこで本発明においては、レンガの表面に付着した放射性廃液固化ガラスに対して直接レーザ光を照射することで上記放射性廃液固化ガラスに熱膨張歪みを与え、脆性破壊による固化ガラスの粉砕(破砕)を生起することによって、前記レンガの表面から放射性廃液固化ガラスを除去するようにしたことを特徴としている。
In order to achieve the above-described object, the glass removal method according to the present invention is configured to irradiate laser light to the glass adhesion surface of the brick when separating the radioactive waste liquid solidified glass adhering to the surface of the brick. The glass is thermally expanded and crushed by brittle fracture of the glass, thereby being removed from the brick surface.
That is, in the present invention, the radioactive liquid waste solidified glass adhering to the surface of the brick is amorphous, its heat transfer coefficient is small, and when the glass is thermally expanded without melting, it is caused by the stress strain. We focus on the occurrence of brittle fracture. Therefore, in the present invention, by directly irradiating the radioactive waste liquid solidified glass adhering to the brick surface with laser light, the radioactive waste liquid solidified glass is subjected to thermal expansion distortion, and the solidified glass is crushed (crushed) by brittle fracture. It is characterized in that the radioactive waste liquid-solidified glass is removed from the surface of the brick by the occurrence.

好ましくは請求項2に記載するように前記レーザ光として、一定出力(例えば0.5kW程度)のYAGレーザを用い、上記YAGレーザを出力するレーザ加工ヘッドと前記レンガのガラス付着面との距離を一定に保つことで一定のスポット径のレーザ光を上記ガラス付着面に照射しながら、その照射位置を前記ガラス付着面の全域に亘って走査し、これによって前記レンガの表面に付着した放射性廃液固化ガラスを粉砕して分離することが望ましい。   Preferably, as the laser beam, a YAG laser having a constant output (for example, about 0.5 kW) is used as the laser beam, and a distance between the laser processing head that outputs the YAG laser and the glass adhesion surface of the brick is set. While irradiating the glass adhering surface with laser light having a constant spot diameter by keeping it constant, the irradiation position is scanned over the entire area of the glass adhering surface, thereby solidifying radioactive waste liquid adhering to the brick surface. It is desirable to crush and separate the glass.

また請求項3に記載するように前記レンガが、高レベル放射性廃液をガラス固化するガラス溶融炉の内壁面を構成する場合、例えばレーザ加工ヘッドを支持したマニピュレータを上記ガラス溶融炉内に設置し、上記マニピュレータを遠隔操作して前記ガラス溶融炉の内壁面を構成するレンガのガラス付着面を順次破砕することが望ましい。   When the brick constitutes an inner wall surface of a glass melting furnace for vitrifying high-level radioactive liquid waste as described in claim 3, for example, a manipulator supporting a laser processing head is installed in the glass melting furnace, It is desirable that the manipulator is remotely operated to sequentially crush the glass adhering surface of the brick constituting the inner wall surface of the glass melting furnace.

本発明によれば、固化ガラスが溶融することのない熱を、レンガの表面に付着した放射性廃液固化ガラスにだけ局部的に急激に加えることで該ガラスに熱応力を生起し、これによって固化ガラスに脆性破壊を生じさせて破砕して上記レンガから分離することができるので、ガラス層を含むレンガの表面層を切断して廃棄処分する場合に比較して高レベル放射性廃棄物の量を大幅に低減することができる。特にレーザ光の照射により、レンガの表面に付着した放射性廃液固化ガラスだけに熱エネルギを加え、その熱膨張による応力に起因する脆性破壊により放射性廃液固化ガラスを破砕するので、レンガ表面からの上記放射性廃液固化ガラスの除去を確実なものとすることができる。   According to the present invention, heat that does not melt the solidified glass is locally and suddenly applied only to the radioactive waste liquid solidified glass adhering to the brick surface, thereby generating thermal stress in the glass, thereby causing the solidified glass. Can cause brittle fracture to be crushed and separated from the above bricks, greatly increasing the amount of high-level radioactive waste compared to cutting and disposing of the brick surface layer including the glass layer. Can be reduced. In particular, by applying thermal energy only to the radioactive liquid waste solidified glass adhering to the brick surface by laser light irradiation, the radioactive liquid waste solidified glass is crushed by brittle fracture caused by the stress due to thermal expansion. The removal of the waste liquid solidified glass can be ensured.

また比較的大出力を得ることの容易なYAGレーザを用い、レーザ加工ヘッドとレンガのガラス付着面との距離を一定に保ちながら、一定スポット径のレーザ光の照射位置を前記ガラス付着面の全域に亘って走査するだけ、上記レーザ光の照射位置における放射性廃液固化ガラスを順次粉砕していくことができるので、レンガにより構成されるガラス溶融炉の内壁面の全体からその表面に付着した放射性廃液固化ガラスを効率的に粉砕除去することができ、廃棄物の量も低減し得る等の実用上多大なる効果が奏せられる。   In addition, using a YAG laser, which is relatively easy to obtain a large output, while maintaining a constant distance between the laser processing head and the glass adhesion surface of the brick, the irradiation position of the laser beam with a constant spot diameter is set to the entire area of the glass adhesion surface. Since the radioactive liquid waste solidified glass at the laser light irradiation position can be crushed sequentially only by scanning over the surface, the radioactive liquid waste adhering to the surface from the entire inner wall surface of the glass melting furnace composed of bricks The solidified glass can be efficiently pulverized and removed, and the practical effects such as reduction of the amount of waste can be achieved.

以下、図面を参照して本発明の一実施形態に係るガラス除去方法について、使用済核燃料の再処理に伴って発生する高レベル放射性廃液のガラス固化処理に用いられるガラス溶融炉を解体するに際し、上記ガラス溶融炉の内壁面を構成するレンガの表面に付着する放射性廃液固化ガラスを、上記レンガから除去して高レベル放射性廃棄物として処分する場合を例に説明する。   Hereinafter, with respect to the glass removal method according to an embodiment of the present invention with reference to the drawings, when disassembling a glass melting furnace used for vitrification treatment of high-level radioactive liquid waste generated along with reprocessing of spent nuclear fuel, The case where the radioactive waste liquid solidified glass adhering to the surface of the brick which comprises the inner wall face of the said glass melting furnace is removed from the said brick and it disposes as a high level radioactive waste is demonstrated to an example.

本発明に係るガラス除去方法は、基本的には図2に示すように表面に放射性廃液固化ガラス2が付着したレンガ1に対して、そのガラス付着面(放射性廃液固化ガラス)に直接レーザ光Lを照射することで上記放射性廃液固化ガラス2を粉砕し、これによってレンガ1から放射性廃液固化ガラス2だけを除去することを特徴としている。具体的には、例えばそのガラス付着面と直角な方向から前記レンガ1のガラス付着面に向けてレーザ光Lを照射すると共に、そのレーザ光Lの照射位置を前記レンガ1のガラス付着面の全域に亘って走査することで、レンガ1の表面に付着したガラス層2を順次破砕して除去することを特徴としている。   The glass removing method according to the present invention basically uses a laser beam L directly on a glass adhering surface (radioactive waste liquid-solidified glass) on a brick 1 having a radioactive waste liquid-solidified glass 2 adhered to the surface as shown in FIG. The radioactive waste liquid solidified glass 2 is pulverized by irradiating the glass, and thereby only the radioactive waste liquid solidified glass 2 is removed from the brick 1. Specifically, for example, the laser light L is irradiated from the direction perpendicular to the glass adhesion surface toward the glass adhesion surface of the brick 1, and the irradiation position of the laser light L is set to the entire area of the glass adhesion surface of the brick 1. The glass layer 2 adhering to the surface of the brick 1 is sequentially crushed and removed by scanning over a distance.

特にガラス付着面に対するレーザ光Lの照射条件を一定に保って固化ガラス2だけを加熱するべく、一定出力のレーザ光Lを照射するレーザ加工ヘッド3とレンガ1のガラス付着面との対向距離を一定に保つことでレーザ光Lの照射スポット径Dを一定化し、つまりレーザ光Lの照射強度を一定化する。そしてこの状態でレンガ1のガラス付着面に対するレーザ光Lの照射位置を一定速度で移動しながら、ガラス付着面の全域に亘って走査する。具体的には出力が0.5kWのYAGレーザ光を用い、例えば図3に示すようにレーザ光Lの照射スポット径Dを10mmに保ちながらガラス付着面に照射し、その照射位置を左右に一定速度で走査する。更に上記レーザ光Lの走査ラインを6mmのピッチ幅pで上記走査方向と直交する方向に変位させることでガラス付着面の全域を走査するようにすれば良い。   In particular, in order to heat only the solidified glass 2 while keeping the irradiation condition of the laser beam L on the glass adhering surface constant, the facing distance between the laser processing head 3 that irradiates the laser beam L with a constant output and the glass adhering surface of the brick 1 is set. By keeping constant, the irradiation spot diameter D of the laser light L is made constant, that is, the irradiation intensity of the laser light L is made constant. In this state, the entire surface of the glass adhesion surface is scanned while moving the irradiation position of the laser light L on the glass adhesion surface of the brick 1 at a constant speed. Specifically, a YAG laser beam with an output of 0.5 kW is used, for example, as shown in FIG. 3, while irradiating the glass adhering surface while keeping the irradiation spot diameter D of the laser beam L at 10 mm, the irradiation position is fixed to the left and right. Scan at speed. Further, the entire area of the glass adhering surface may be scanned by displacing the scanning line of the laser light L in a direction perpendicular to the scanning direction with a pitch width p of 6 mm.

このようにしてレーザ光Lをレンガ1のガラス付着面に直接照射すれば、レンガ1の表面に付着した放射性廃液固化ガラス2は、レーザ光Lによる光エネルギを受けて熱膨張する。この際、放射性廃液固化ガラス2自体は非晶質でありその熱伝導率が低いので、レーザ光Lを照射した固化ガラス2だけを加熱することが可能となる。換言すればレンガ1までが加熱されることがないように、レーザ光Lの出力(照射強度)を予め設定しておく。すると大きなブロック体であるレンガ1の表面に付着した厚み1〜2mm程度の固化ガラス2だけがレーザ光Lの照射により加熱されて熱膨張を生じるので、熱膨張することのないレンガ1との間に歪み応力が生じる。そして固化ガラス2は、その熱膨張により脆性破壊を生じて破砕し、上記レンガ1の表面から剥がれ、破砕した固化ガラス2(破砕片または破砕粉)はレンガ1の表面から分離することになる。   If the laser beam L is directly irradiated onto the glass adhesion surface of the brick 1 in this way, the radioactive waste liquid solidified glass 2 adhered to the surface of the brick 1 receives the light energy from the laser beam L and thermally expands. At this time, since the radioactive waste liquid solidified glass 2 itself is amorphous and its thermal conductivity is low, only the solidified glass 2 irradiated with the laser light L can be heated. In other words, the output (irradiation intensity) of the laser beam L is set in advance so that the brick 1 is not heated. Then, since only the solidified glass 2 having a thickness of about 1 to 2 mm attached to the surface of the brick 1 which is a large block body is heated by the irradiation of the laser light L and causes thermal expansion, between the brick 1 which does not thermally expand. Strain stress occurs. The solidified glass 2 is crushed by causing brittle fracture due to its thermal expansion, and is peeled off from the surface of the brick 1, and the crushed solidified glass 2 (crushed pieces or crushed powder) is separated from the surface of the brick 1.

即ち、固化ガラス2に直接レーザ光Lを照射すれば、これによって固化ガラス2だけが局部的に加熱されることになり、固化ガラス2はその熱膨張による脆性破壊を生じて破砕してレンガ1の表面から分離する。従ってレーザ光Lの照射位置を走査しながら固化ガラス2を順次破砕して行くことで、レンガ1の表面に付着した固化ガラス2を破砕しながら該レンガ1の表面から除去していくことが可能となる。従ってレンガ1の表面に付着した固化ガラス2だけを上記レンガ1から除去することが可能となるので、高レベル放射性廃棄物としての量を低減することが可能となる等の効果が奏せられる。具体的にはレンガ1の表面に付着した固化ガラス2を2mm程度の厚さに亘って除去するだけで良いので、レーザ光にて上記レンガ1の表面を厚さ15mm程度に切断する場合に比較して、その廃棄物の量を大幅に削減することができる。   That is, if the solidified glass 2 is directly irradiated with the laser beam L, only the solidified glass 2 is locally heated thereby, and the solidified glass 2 is crushed by brittle fracture due to its thermal expansion. Separate from the surface. Therefore, by sequentially crushing the solidified glass 2 while scanning the irradiation position of the laser beam L, it is possible to remove the solidified glass 2 adhering to the surface of the brick 1 from the surface of the brick 1 while crushing. It becomes. Accordingly, only the solidified glass 2 attached to the surface of the brick 1 can be removed from the brick 1, so that the amount of high-level radioactive waste can be reduced. Specifically, it is only necessary to remove the solidified glass 2 attached to the surface of the brick 1 over a thickness of about 2 mm. Compared to the case where the surface of the brick 1 is cut to a thickness of about 15 mm with a laser beam. Thus, the amount of waste can be greatly reduced.

次表は出力0.5kWのYAGレーザ光Lを用た場合において、その制御パラメータである走査速度とスポット径とを変えたとき照射エネルギ量(相対値)を熱解析したものである。   The following table shows the thermal analysis of the irradiation energy amount (relative value) when the YAG laser beam L with an output of 0.5 kW is used and the scanning speed and spot diameter, which are the control parameters, are changed.

そして本発明者等はこの熱解析結果に基づいて、或る程度ガラス2を分離できそうなレーザ光Lの照射条件を表1中、網掛け領域として示すように抽出し、これらの各条件について実験してみたところ次のような結果を得た。
(1) スポット径Dを1mmとした場合、固化ガラス2は溶融して亀裂を生じることがない。
(2) スポット径Dを4mmとしても、固化ガラス2が溶融し、亀裂は殆ど生じない。
(3) スポット径Dを10mmとした場合、走査速度が速いとガラス付着面に殆ど変化が生じないが、その走査速度を遅くするとガラス付着面に亀裂が生じる。またガラス2の溶融も生じない。
(4) スポット径Dを20mmとした場合には、更に走査速度を遅くすることによりガラス付着面に亀裂が生じる。
Based on the thermal analysis results, the present inventors extracted the irradiation conditions of the laser beam L that are likely to separate the glass 2 to some extent as shown as shaded areas in Table 1, and for each of these conditions The experiment gave the following results.
(1) When the spot diameter D is 1 mm, the solidified glass 2 does not melt and cause cracks.
(2) Even if the spot diameter D is set to 4 mm, the solidified glass 2 melts and cracks hardly occur.
(3) When the spot diameter D is 10 mm, the glass adhesion surface hardly changes when the scanning speed is high, but when the scanning speed is slow, the glass adhesion surface cracks. Further, the glass 2 does not melt.
(4) When the spot diameter D is set to 20 mm, the glass adhesion surface is cracked by further reducing the scanning speed.

この実験結果から、レーザ光Lの照射スポット径を小さくすると、レーザ光Lの照射領域のエネルギ密度が高くなり、これによって過剰な熱エネルギが加えられて固化ガラス2が溶融するものと考えられる。またレーザ光Lの照射スポット径を或る程度大きくした場合、これによってレーザ光Lの照射領域のエネルギ密度が高くなるが、その走査速度が速いと固化ガラス2を熱膨張させるに十分な熱エネルギを付与することができないと考えられる。   From this experimental result, it is considered that when the irradiation spot diameter of the laser beam L is reduced, the energy density of the irradiation region of the laser beam L is increased, thereby adding excessive heat energy and melting the solidified glass 2. In addition, when the irradiation spot diameter of the laser beam L is increased to some extent, this increases the energy density of the irradiation region of the laser beam L. However, if the scanning speed is fast, sufficient thermal energy is obtained to thermally expand the solidified glass 2. It is thought that cannot be granted.

従って上述した実験結果からは、例えば厚さが1〜2mm程度の放射性廃液固化ガラス2をレンガ1の表面から除去するには、好ましくはレーザ光Lの照射スポット径Dを10mmとし、その走査速度を200〜300mm/分に設定すれば、レンガ1の表面に付着した固化ガラス2を溶融させることなく、そのガラス付着面を厚さ1〜2mm程度に亘って粉砕してレンガ1の表面から除去し得ることが確認できた。   Therefore, from the above experimental results, for example, in order to remove the radioactive liquid waste solidified glass 2 having a thickness of about 1 to 2 mm from the surface of the brick 1, the irradiation spot diameter D of the laser beam L is preferably set to 10 mm, and the scanning speed thereof. Is set to 200 to 300 mm / min, the glass adhering surface is crushed to a thickness of about 1 to 2 mm and removed from the surface of the brick 1 without melting the solidified glass 2 adhering to the surface of the brick 1. We were able to confirm that

図4(a)(b)は表面に放射性廃液固化ガラス2が付着したレンガ1のガラス付着面の状態(レーザ光Lの照射前)と、上記レンガ1のガラス付着面に上述した条件にてレーザ光Lを照射してガラス2を粉砕した後の状態とを対比して示す写真である。これらの写真を対比すれば明らかなようにレーザ光Lの照射領域においてはレンガ1の地肌が露出しており(図4(b)を参照)、レンガ1の表面に付着していた固化ガラス2が破砕されて消失している(除去されている)ことが理解できる。   4 (a) and 4 (b) show the state of the glass adhering surface of the brick 1 with radioactive waste liquid solidified glass 2 adhering to the surface (before irradiation with the laser beam L) and the above-mentioned conditions on the glass adhering surface of the brick 1 described above. It is the photograph which contrasts and shows the state after irradiating the laser beam L and grind | pulverizing the glass 2. FIG. As apparent from the comparison of these photographs, the ground of the brick 1 is exposed in the irradiation region of the laser beam L (see FIG. 4B), and the solidified glass 2 attached to the surface of the brick 1 is exposed. It can be understood that crushed and disappeared (removed).

故にレンガ1の表面に付着した固化ガラス2だけを破砕する場合には、固化ガラス2が溶融しない程度の強度のレーザ光Lを用い、しかも或る程度の範囲において熱膨張が効率的に生じるようにレーザ光Lの照射スポット径Dを設定すれば、これによって固化ガラス2に多くの亀裂が生じてガラス2の脆性破壊によりその破砕が生じる。そしてレーザ光Lの走査により上述した固化ガラス2の破砕領域を順次拡大して行くことで、レンガ1の表面に付着していた固化ガラス2を効率的に除去し得ることが明らかとなった。   Therefore, when only the solidified glass 2 adhering to the surface of the brick 1 is crushed, the laser light L having such an intensity that the solidified glass 2 is not melted is used, and thermal expansion occurs efficiently within a certain range. If the irradiation spot diameter D of the laser beam L is set to, many cracks are generated in the solidified glass 2 and the glass 2 is crushed by brittle fracture. And it became clear that the solidified glass 2 adhering to the surface of the brick 1 can be efficiently removed by sequentially enlarging the crushing area | region of the solidified glass 2 mentioned above by the scanning of the laser beam L.

尚、レーザ光Lを走査するに際しては、その走査ピッチpを亀裂の幅(大きさ)に応じて定めるようにすれば良い。またガラス溶融炉内において、その内壁面を構成するレンガ1の表面から付着ガラス2を除去するには、例えばガラス溶融炉内に設けられてレーザ加工ヘッド3を支持するマニピュレータ(図示せず)を遠隔操作して、上記レーザ加工ヘッド3がレンガ1のガラス付着面に対峙する位置を順次変えるようにすれば良い。このようにしてガラス溶融炉を解体するに先立ち、ガラス溶融炉を構築したレンガ1の内壁面から放射性廃液固化ガラス2を除去すれば、ガラス溶融炉の内壁面から剥がした上記放射性廃液固化ガラス2を、予め高レベル放射性廃棄物として廃棄処分しておくことが可能となるので、上記ガラス溶融炉の解体作業を容易に進めることが可能となるので好都合である。またガラス付着面に対するレーザ光Lの照射によるガラス2の除去作業については、例えばレンガ1の地肌が露出するまでその走査を複数回繰り返して実行するようにし、放射性廃棄物除去の確実化を図ることが好ましい。   In scanning the laser beam L, the scanning pitch p may be determined according to the width (size) of the crack. Further, in order to remove the adhered glass 2 from the surface of the brick 1 constituting the inner wall surface in the glass melting furnace, for example, a manipulator (not shown) provided in the glass melting furnace and supporting the laser processing head 3 is provided. The position where the laser processing head 3 faces the glass adhering surface of the brick 1 may be sequentially changed by remote control. Prior to dismantling the glass melting furnace in this way, if the radioactive waste liquid-solidified glass 2 is removed from the inner wall surface of the brick 1 that has constructed the glass melting furnace, the radioactive waste liquid-solidified glass 2 peeled off from the inner wall surface of the glass melting furnace is provided. Can be disposed of as high-level radioactive waste in advance, which facilitates the dismantling of the glass melting furnace. Moreover, about the removal operation | work of the glass 2 by irradiation of the laser beam L with respect to the glass adhesion surface, for example, the scanning may be repeatedly performed several times until the background of the brick 1 is exposed, and the radioactive waste removal is assured. Is preferred.

その他、レーザ光Lの出力等については、レンガ1の表面に付着したガラス2の厚み等に応じて定めれば良いものであり、その要旨を逸脱しない範囲で種々変形して実施することができる。   In addition, the output of the laser beam L may be determined according to the thickness of the glass 2 attached to the surface of the brick 1 and can be implemented with various modifications without departing from the gist thereof. .

従来考えられているレンガ表面に付着したガラスの除去方法を示す概念図。The conceptual diagram which shows the removal method of the glass adhering to the brick surface considered conventionally. 本発明に係るガラス除去方法の処理概念を示す図。The figure which shows the processing concept of the glass removal method which concerns on this invention. レンガのガラス付着面に対するレーザ光の照射位置の走査例を示す図。The figure which shows the scanning example of the irradiation position of the laser beam with respect to the glass adhesion surface of a brick. レンガのガラス付着面の状態と、レーザ光の照射によりガラスを除去したレンガの表面の状態とを対比して示す写真。The photograph which contrasts the state of the glass adhesion surface of a brick, and the state of the surface of the brick which removed glass by irradiation of the laser beam.

符号の説明Explanation of symbols

1 レンガ
2 放射性廃液固化ガラス
3 レーザ加工ヘッド
L レーザ光
1 Bricks 2 Radioactive Waste Solidified Glass 3 Laser Processing Head L Laser Light

Claims (3)

レンガの表面に付着した放射性廃液固化ガラスを分離するに際し、
前記レンガのガラス付着面にレーザ光を照射して上記放射性廃液固化ガラスを熱膨張させ、上記ガラスの脆性破壊により破砕して除去することを特徴とするガラス除去方法。
When separating the radioactive liquid waste solidified glass adhering to the brick surface,
A glass removing method comprising irradiating a glass adhering surface of the brick with a laser beam to thermally expand the radioactive waste liquid-solidified glass and crushing and removing the glass by brittle fracture.
前記レーザ光は一定出力のYAGレーザであって、
上記YAGレーザを出力するレーザ加工ヘッドと前記レンガのガラス付着面との距離を一定に保ち、一定のスポット径のレーザ光を上記ガラス付着面に照射しながら、その照射位置を前記ガラス付着面の全域に亘って走査して、前記レンガの表面に付着した放射性廃液固化ガラスを粉砕して分離するものである請求項1に記載のガラス除去方法。
The laser beam is a constant output YAG laser,
The distance between the laser processing head that outputs the YAG laser and the glass adhesion surface of the brick is kept constant, and the irradiation position of the glass adhesion surface is irradiated while irradiating the glass adhesion surface with laser light having a constant spot diameter. The glass removal method according to claim 1, wherein the radioactive waste liquid-solidified glass adhering to the surface of the brick is crushed and separated by scanning over the entire area.
前記レンガは、高レベル放射性廃液をガラス固化するガラス溶融炉の内壁面を構成するものであって、
レーザ加工ヘッドを支持したマニピュレータを上記ガラス溶融炉内に設置し、上記マニピュレータを遠隔操作して前記ガラス溶融炉の内壁面を構成するレンガのガラス付着面を破砕することを特徴とする請求項1に記載のガラス除去方法。
The brick constitutes the inner wall surface of a glass melting furnace that vitrifies high-level radioactive liquid waste,
2. A manipulator supporting a laser processing head is installed in the glass melting furnace, and the manipulator is remotely operated to crush the glass adhesion surface of a brick constituting the inner wall surface of the glass melting furnace. The glass removing method according to 1.
JP2004186384A 2004-06-24 2004-06-24 Glass removal method Expired - Fee Related JP4228226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004186384A JP4228226B2 (en) 2004-06-24 2004-06-24 Glass removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004186384A JP4228226B2 (en) 2004-06-24 2004-06-24 Glass removal method

Publications (2)

Publication Number Publication Date
JP2006010442A true JP2006010442A (en) 2006-01-12
JP4228226B2 JP4228226B2 (en) 2009-02-25

Family

ID=35777870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004186384A Expired - Fee Related JP4228226B2 (en) 2004-06-24 2004-06-24 Glass removal method

Country Status (1)

Country Link
JP (1) JP4228226B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021518A (en) * 2005-07-14 2007-02-01 Nippon Steel Corp Laser beam working method, laser beam working apparatus and structural member manufactured with laser beam working method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021518A (en) * 2005-07-14 2007-02-01 Nippon Steel Corp Laser beam working method, laser beam working apparatus and structural member manufactured with laser beam working method

Also Published As

Publication number Publication date
JP4228226B2 (en) 2009-02-25

Similar Documents

Publication Publication Date Title
US20100269851A1 (en) Nuclear decontamination device and a method of decontaminating radioactive materials
JP3530961B2 (en) Surface treatment method
US20120085376A1 (en) Apparatus for decontaminating radioisotope-contaminated surace vicinity region by use of nonthermal laser peeling
US20070208208A1 (en) Methods for melting of materials to be treated
JP4228226B2 (en) Glass removal method
Anthofer et al. Development and testing of a laser-based decontamination system
EP1542827B1 (en) Cutting of cementitious materials
JP4348460B2 (en) Melting method and apparatus
JP2001116892A (en) Method for decontaminating surface layer of inorganic layer by use of laser beam and high-pressure gas and apparatus for use therein
Hirabayashi et al. Application of a laser to decontamination and decommissioning of nuclear facilities at JAERI
JP4528936B2 (en) Method for preventing stress corrosion cracking of stainless steel surface using ultrashort pulse laser beam
Sobolev et al. High temperature treatment of intermediate-level radioactive wastes-sia radon experience
JP3198301B2 (en) Decontamination method of contaminated inorganic substance surface layer
JP2000346991A (en) Laser decontamination system applied to contaminated inorganic substance surface layer
JPS58140699A (en) Removal of radioactive material
Nomura et al. ICONE23-1600 development of fuel debris cutting technique by laser gouging
JP2957818B2 (en) High temperature incinerator and high temperature incineration method
JP2005030981A (en) Processing method of waste refractory material
JP2008107094A (en) Waste blast material treating method
RU2075126C1 (en) Disassembled radioactively contaminated equipment reprocessing method and scheme for it realizing
Lawrence et al. Determination of the absorption length of CO2, Nd: YAG and high power diode laser radiation for a selected grouting material
EP1547098B1 (en) Surface treatment of concrete
GB2374198A (en) Method and apparatus for decontamination
Vatry et al. Removal of in vessel Tokamak dust by laser techniques
Ojovan et al. Thermochemical processing of radioactive waste using powder metal fuels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees