JP2006010228A - Solenoid expansion valve - Google Patents

Solenoid expansion valve Download PDF

Info

Publication number
JP2006010228A
JP2006010228A JP2004189036A JP2004189036A JP2006010228A JP 2006010228 A JP2006010228 A JP 2006010228A JP 2004189036 A JP2004189036 A JP 2004189036A JP 2004189036 A JP2004189036 A JP 2004189036A JP 2006010228 A JP2006010228 A JP 2006010228A
Authority
JP
Japan
Prior art keywords
valve
passage
pressure
hole
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004189036A
Other languages
Japanese (ja)
Other versions
JP4319100B2 (en
Inventor
Kenichi Mochizuki
健一 望月
Hitoshi Umezawa
仁志 梅澤
Toshiki Okii
俊樹 沖井
Takeshi Kamio
猛 神尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2004189036A priority Critical patent/JP4319100B2/en
Publication of JP2006010228A publication Critical patent/JP2006010228A/en
Application granted granted Critical
Publication of JP4319100B2 publication Critical patent/JP4319100B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube

Landscapes

  • Safety Valves (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solenoid expansion valve capable of quickly and accurately controlling the air-conditioning temperature. <P>SOLUTION: A main valve element 36 has a valve head part 38 contacting with and separating form a valve seat hole 32 of a valve seat 31 arranged in a communicating hole 30, and a valve rod part 37 extending from this valve head part 38 and slidably supported by a valve rod holder 34. A block body is provided with a bypass passage 22 for communicating a space with a second passage 21 for equalizing pressure of the space for projecting the valve rod part 37 from the valve rod holder 34 to the second passage 21. The cross-sectional area of the valve rod part 36 is substantially equalized to the opening area of the valve seat hole 32. Thus, influence on valve opening by a pressure variation on the second passage side can be minimized. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電磁式膨張弁に関し、更に詳しくは、電磁リニア式膨張弁に関する。   The present invention relates to an electromagnetic expansion valve, and more particularly to an electromagnetic linear expansion valve.

空調装置等に用いられる冷媒サイクルに電気式膨張弁として、例えば、特許文献1に示すような電動弁を用いた場合、冷媒流量の制御は弁体の開度をパルスモータ駆動によって行うため、その開閉に迅速性が要求される場合には、採用し難いという不都合が生ずる場合があった。
特開2004−93022号公報
For example, when an electric valve as shown in Patent Document 1 is used as an electric expansion valve in a refrigerant cycle used in an air conditioner or the like, the flow rate of the refrigerant is controlled by a pulse motor drive, When quick opening / closing is required, there is a case where it is difficult to adopt the opening / closing.
JP 2004-93022 A

したがって、本発明の課題は上記従来技術の問題点を解消することにあり、電磁式膨張弁において、電磁弁の操作に応じて流体の流量を迅速に増減できる、即ち、例えば、空調における室内温度の制御を迅速に行い得ると共に、上記電磁弁と冷媒圧に所定以上の高圧が発生した場合の流体逃し弁として逆止弁を1つのブロック本体に組み込んだ電磁式膨張弁を提供することにある。   Accordingly, an object of the present invention is to eliminate the above-mentioned problems of the prior art, and in an electromagnetic expansion valve, the flow rate of fluid can be increased or decreased rapidly according to the operation of the electromagnetic valve. It is possible to provide a solenoid expansion valve in which a check valve is incorporated in one block body as a fluid relief valve when a high pressure exceeding a predetermined pressure is generated in the solenoid valve and the refrigerant pressure. .

上記課題を解決すべく、請求項1記載の電磁式膨張弁は、ブロック本体に、流体が双方向に流動可能な第1出入口及び第2出入口と、上記第1出入口に連通する第1通路と、上記第2出入口に連通する第2通路と、これら第1通路と第2通路とを連通する連通孔と、この連通孔を開閉する主弁体を含む電磁弁とが備わっており、上記主弁体は、上記連通孔に設けてある弁シートの弁シート孔に接離する弁頭部と、この弁頭部から延伸し弁棒ホルダによって摺動自在に支持される弁棒部とを有し、上記ブロック本体には、上記弁棒部が上記弁棒ホルダから突出する空間の圧力を上記第2通路と等しくすべく上記空間と上記第2通路とを連通するバイパス通路が設けてあり、上記第1通路にオリフィスが形成される第1逆止弁と上記第2通路にオリフィスが形成される第2逆止弁とが上記ブロック本体に設けてあることを特徴とする。   In order to solve the above-mentioned problem, the electromagnetic expansion valve according to claim 1 includes a block main body, a first inlet and a second inlet / outlet through which fluid can flow bidirectionally, and a first passage communicating with the first inlet / outlet. A second passage communicating with the second entrance, a communication hole communicating the first passage and the second passage, and an electromagnetic valve including a main valve body for opening and closing the communication hole. The valve body has a valve head that contacts and separates from the valve seat hole of the valve seat provided in the communication hole, and a valve stem portion that extends from the valve head and is slidably supported by a valve stem holder. The block body is provided with a bypass passage that connects the space and the second passage so that the pressure in the space in which the valve stem portion protrudes from the valve stem holder is equal to the second passage. The first check valve in which an orifice is formed in the first passage and the second passage in the first passage. A second check valve office is formed, characterized in that the is provided in the block body.

そして、請求項2記載の電磁式膨張弁は、上記手段に加えて、上記第1及び第2の逆止弁は、それぞれ流体圧を開方向に受圧する弁体が、受圧面積の小さい小弁体と受圧面積の大きい大弁体とから構成してあることとを特徴とする。   In addition to the above means, the electromagnetic expansion valve according to claim 2 is characterized in that each of the first and second check valves is a small valve having a small pressure receiving area, each of which receives a fluid pressure in the opening direction. And a large valve body having a large pressure receiving area.

本発明は以上のように構成されていることから、主弁体の開閉が正確で円滑に行なわれるとともにその流体の方向が双方向となるため、極めて使い勝手のよい電磁式膨張弁を実現できる。しかも、冷媒をいずれの方向に流しても所定圧力以上となったとき第1逆止弁と第2逆止弁の内、高圧側の逆止弁が開となり、該逆止弁により冷凍サイクル内の冷媒圧力の異常上昇を防止させることができる。
また、逆止弁は、小弁体が「開」となったあと、高圧冷媒の作用は大弁体全体に作用することになって、急激に「開」となり、高圧冷媒を急速に流出させることができる。
Since the present invention is configured as described above, the main valve body can be opened and closed accurately and smoothly, and the direction of the fluid is bidirectional. Therefore, an extremely easy to use electromagnetic expansion valve can be realized. In addition, when the refrigerant reaches a predetermined pressure or higher regardless of which direction is flowed, the high pressure side check valve of the first check valve and the second check valve is opened, and the check valve opens the refrigeration cycle. It is possible to prevent an abnormal increase in the refrigerant pressure.
In addition, the check valve, after the small valve body is "open", the action of the high-pressure refrigerant acts on the entire large valve body, suddenly "open", causing the high-pressure refrigerant to flow out rapidly be able to.

以下、本発明の実施の形態について図面を参照して説明する。図1は本発明に係る電磁式膨張弁の縦断面図、図2は、逆止弁の弁本体の平面図(A)及び同平面図のB−B線断面図である。なお、以下、図面に従って説明するが、上・下・左・右という表現は、図面の記載に伴うものであり、実際の位置関係とは、必ずしも一致するものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of an electromagnetic expansion valve according to the present invention, and FIG. 2 is a plan view (A) of a valve body of the check valve and a sectional view taken along line BB of the plan view. In addition, although it demonstrates according to drawing below, the expression of upper, lower, left, and right is accompanying description of drawing, and does not necessarily correspond with actual positional relationship.

(ブロック本体100)
本実施形態にかかる電磁式膨張弁は、空調機等の冷凍サイクルに用いられるものであって、略直方体の、例えばアルミニウム合金等の金属製のブロック本体100と、同ブロック本体100内の主弁体36を開閉する電磁弁60とからなる。ブロック本体100には、図1に示すように、その右側面101に冷媒通路が連結される第1の出入口10が形成され、第1の出入口10に連続して上記右側面101に向かい合うブロック本体100の左側面102に向かって第1通路11が形成されている。そして、この第1通路11の中途部には第1オリフィス12が形成される。
(Block body 100)
The electromagnetic expansion valve according to the present embodiment is used in a refrigeration cycle such as an air conditioner, and is a substantially rectangular parallelepiped metal block main body 100 such as an aluminum alloy, and a main valve in the block main body 100. It consists of an electromagnetic valve 60 that opens and closes the body 36. As shown in FIG. 1, the block main body 100 is formed with a first entrance / exit 10 to which a refrigerant passage is connected to the right side surface 101, and the block main body 100 faces the right side surface 101 continuously to the first entrance / exit 10. A first passage 11 is formed toward the left side surface 102 of 100. A first orifice 12 is formed in the middle of the first passage 11.

また、ブロック本体100の左側面102には、冷媒通路が連結される第2の出入口20が形成され、該第2の出入口20に連続して第2通路21が右側面に向けて水平に形成されている。そして、その中途部にはブロック本体100の上方に向けてバイパス通路22が形成されると共に、このバイパス通路22と並行して流体連通孔30が形成され、該流体連通孔30の上端部は、第1通路11に連通しており、第1通路11、第2通路21及び流体連通孔30により流体通路を形成している。   Further, the left side surface 102 of the block body 100 is formed with a second entrance / exit 20 to which the refrigerant passage is connected, and a second passage 21 is formed horizontally toward the right side surface continuously to the second entrance / exit 20. Has been. In addition, a bypass passage 22 is formed in the middle of the block main body 100 and a fluid communication hole 30 is formed in parallel with the bypass passage 22. An upper end portion of the fluid communication hole 30 is The first passage 11 communicates with the first passage 11, and the first passage 11, the second passage 21 and the fluid communication hole 30 form a fluid passage.

また、流体連通孔30の上端縁部には、弁シート31が設けられ、該弁シート31には弁シート孔32が形成されている。弁シート孔32は流体連通孔30に連通している。前記第2通路21には、更に第2オリフィス23が形成されると共に、第2通路21の右端部は第1逆止弁40の第1の孔41(後述)に連通している。
更に、ブロック本体100の上部には、一定深さの電磁弁取付孔35が形成され、その中央底部には弁棒孔33が形成され、該弁棒孔33は第1通路11と連通している。上記弁棒孔33には弁棒ホルダ34が装着・結合される。
A valve seat 31 is provided at the upper edge of the fluid communication hole 30, and a valve seat hole 32 is formed in the valve seat 31. The valve seat hole 32 communicates with the fluid communication hole 30. A second orifice 23 is further formed in the second passage 21, and a right end portion of the second passage 21 communicates with a first hole 41 (described later) of the first check valve 40.
Further, an electromagnetic valve mounting hole 35 having a certain depth is formed in the upper part of the block body 100, and a valve rod hole 33 is formed in the center bottom thereof, and the valve rod hole 33 communicates with the first passage 11. Yes. A valve stem holder 34 is mounted and coupled to the valve stem hole 33.

(電磁弁60)
次に、電磁弁取付孔35に装着される電磁弁60について説明する。
電磁弁60を構成するソレノイド部63は、ソレノイドハウジング62内に収納され、該ソレノイドハウジング62の下部にはねじ部が形成されて、電磁弁取付孔35にシール材、例えばガスケット(図示せず)を介して螺合・固定される。前記ソレノイドハウジング62の下部には円筒状のスリーブ61が設けられると共に、その上部には吸引子67が一体的に固定される。
前記吸引子67は全体として筒状に形成され、スリーブ61と同一外径で、その下部には押棒69が上下動可能に挿通されている。また、押棒69の上端部に設けられた押棒側バネ受け69aと吸引子67の上端部に上下調節自在に螺合された調整ねじ70に配置されている調整側バネ受け71との間にバネ72が介装されている。該バネ72は、押棒69、プランジャ68及び弁棒部37を介して主弁体36下部の弁頭部38を下方(閉方向)に付勢している。
(Solenoid valve 60)
Next, the electromagnetic valve 60 mounted in the electromagnetic valve mounting hole 35 will be described.
A solenoid part 63 constituting the solenoid valve 60 is housed in a solenoid housing 62, and a screw part is formed in the lower part of the solenoid housing 62, and a sealing material such as a gasket (not shown) is formed in the solenoid valve mounting hole 35. It is screwed and fixed via. A cylindrical sleeve 61 is provided at the lower part of the solenoid housing 62, and a suction element 67 is integrally fixed to the upper part thereof.
The suction element 67 is formed in a cylindrical shape as a whole, has the same outer diameter as the sleeve 61, and a push bar 69 is inserted in the lower part thereof so as to be movable up and down. Further, a spring is provided between a push rod side spring receiver 69a provided at the upper end portion of the push rod 69 and an adjustment side spring receiver 71 disposed on an adjustment screw 70 screwed to the upper end portion of the suction element 67 so as to be vertically adjustable. 72 is interposed. The spring 72 urges the valve head 38 below the main valve body 36 downward (in the closing direction) via the push rod 69, the plunger 68 and the valve rod portion 37.

即ち、押棒69の下端部には、プランジャ68がスリーブ61に案内されて上下動可能に設けられ、さらに、プランジャ68の中心部に形成された弁棒孔68bに弁棒部37が固定されている。また、プランジャ68の一側部には均圧孔68aが穿設されている。更に、弁棒部37の下端部には主弁体36が形成され、弁シート31に対して離接自在となっている。また、この弁棒部37の中間部は弁棒ホルダ34に摺動可能に支持されている。   That is, the plunger 68 is provided at the lower end portion of the push rod 69 so as to be movable up and down by being guided by the sleeve 61, and the valve rod portion 37 is fixed to the valve rod hole 68 b formed in the center portion of the plunger 68. Yes. In addition, a pressure equalizing hole 68 a is formed in one side portion of the plunger 68. Further, a main valve body 36 is formed at the lower end portion of the valve stem portion 37 so as to be detachable from the valve seat 31. An intermediate portion of the valve stem portion 37 is slidably supported by the valve stem holder 34.

なお、上記吸引子67の下部は、全周にわたって円錐台形状で凹状に後退させて形成されるとともに、相対するプランジャ68の上端部側は円錐台形状で凸状に形成されている。この構成により、電磁弁60に対する電流量の大小により、プランジャ68に連動する主弁体36の上下動を賂リニア状態に調整が可能である。
また、調整ねじ70は、ソレノイドハウジング62上部のプレート76の上方に装着されたコネクト一体型のコイルアセンブリ75のドライバ部75aより調整される。また、吸引子67と調整ねじ70との係合部は防水リング74により水密状に連結される。また、コイルアセンブリ75は、防水用のO−リング73を介してソレノイドハウジング62に装着される。なお、コイル64はボビン65に巻装されている。
The lower portion of the suction element 67 is formed to be recessed in a truncated cone shape over the entire circumference, and the upper end side of the opposed plunger 68 is formed in a truncated cone shape. With this configuration, the vertical movement of the main valve body 36 interlocked with the plunger 68 can be adjusted to a linear state by the magnitude of the current amount with respect to the electromagnetic valve 60.
The adjustment screw 70 is adjusted by a driver portion 75 a of a connect-integrated coil assembly 75 that is mounted above the plate 76 above the solenoid housing 62. The engaging portion between the suction element 67 and the adjusting screw 70 is connected in a watertight manner by a waterproof ring 74. The coil assembly 75 is attached to the solenoid housing 62 via a waterproof O-ring 73. The coil 64 is wound around the bobbin 65.

(第1逆止弁40)
次に、上記第1の通路11に形成される第1オリフィス12を用いて形成される第1逆止弁40について説明する。第1逆止弁40は、ブロック本体100に形成された第1の孔41内に設けられ、内径の相違する2つの部分から成っている。前記第1オリフィス12の下部肩部を弁座として、第1弁体42が第1バネ43により所定バネ圧で閉方向に弾圧されている。即ち、第1バネ43の下部には第1バネ押え45が配置され、該第1バネ押え45に形成された第1ネジ受部46と第1弁体42の間に第1バネ43が配置されている。また、第1の孔41の下部には密栓44がシール材、例えばガスケット(図示せず)を介して螺合されている。
(First check valve 40)
Next, the first check valve 40 formed using the first orifice 12 formed in the first passage 11 will be described. The first check valve 40 is provided in a first hole 41 formed in the block main body 100, and includes two parts having different inner diameters. With the lower shoulder of the first orifice 12 as a valve seat, the first valve body 42 is elastically pressed in the closing direction by a first spring 43 with a predetermined spring pressure. That is, a first spring retainer 45 is disposed below the first spring 43, and the first spring 43 is disposed between the first screw receiving portion 46 formed on the first spring retainer 45 and the first valve body 42. Has been. Further, a sealing plug 44 is screwed to the lower portion of the first hole 41 via a sealing material, for example, a gasket (not shown).

第1弁体42は、図2(A),(B)に示すように、小径部からなる第1小弁体42aと大径部からなる第1大弁体42bとから形成され、第1小弁体42aが第1オリフィス12の下部肩部(弁座)に押圧され、また、第1大弁体42bの外周部が第1の孔41の小径部に当接している。
第1逆止弁40は、上記構成により、第1オリフィス12に対する冷媒圧が所定値以下の時には第1バネ43により「閉」となっているが、冷媒圧が所定値以上になると第1オリフィス12に作用する冷媒圧により「開」となる。
第1小弁体42aが「開」となったあと、高圧冷媒の作用は第1大弁体42b全体に作用することになって、急激に第1逆止弁40は「開」となり、第1通路11の高圧冷媒は、急速に第2通路21に流れ込み、第2の出入口20から流出することになる。このように、第1逆止弁40は第1の出入口10から高圧冷媒が流れ込んで第2の出入口20から低圧冷媒となって流出するときのバイパス作用をするものである。
As shown in FIGS. 2A and 2B, the first valve body 42 is formed of a first small valve body 42a made of a small diameter portion and a first large valve body 42b made of a large diameter portion. The small valve body 42 a is pressed against the lower shoulder (valve seat) of the first orifice 12, and the outer peripheral portion of the first large valve body 42 b is in contact with the small diameter portion of the first hole 41.
With the above configuration, the first check valve 40 is “closed” by the first spring 43 when the refrigerant pressure with respect to the first orifice 12 is equal to or lower than a predetermined value. The refrigerant pressure acting on 12 is “open”.
After the first small valve body 42a is "opened", the action of the high-pressure refrigerant acts on the entire first large valve body 42b, and the first check valve 40 is suddenly "opened" The high-pressure refrigerant in the first passage 11 quickly flows into the second passage 21 and flows out from the second inlet / outlet 20. Thus, the first check valve 40 performs a bypass action when the high-pressure refrigerant flows from the first inlet / outlet 10 and flows out as the low-pressure refrigerant from the second inlet / outlet 20.

(第2逆止弁50)
第2逆止弁50は、第2の通路21に形成される前記第2オリフィス23を用いて形成されるもので、その構成は第1逆止弁40と同一である。ただし、第2バネ53を支持する第2バネ押え55は電磁弁取付孔35の底部に装着されるもので密栓は不要である。そして、第2逆止弁50は、第1の孔41と同一形状で形成される第2の孔51、第1弁体42と同一形状に形成される第2弁体52、第1小弁体42aと同一形状に形成される第2小弁体52a、第1大弁体42bと同一形状に形成される第2大弁体52b、第1バネ43と同一形状に形成される第2バネ53、及び、第1ネジ受部46と同一形状に形成される第2ネジ受部56と、からなる。
(Second check valve 50)
The second check valve 50 is formed using the second orifice 23 formed in the second passage 21, and the configuration thereof is the same as that of the first check valve 40. However, the second spring retainer 55 that supports the second spring 53 is attached to the bottom of the electromagnetic valve mounting hole 35 and does not require a sealing plug. The second check valve 50 includes a second hole 51 formed in the same shape as the first hole 41, a second valve body 52 formed in the same shape as the first valve body 42, and a first small valve. A second small valve body 52a formed in the same shape as the body 42a, a second large valve body 52b formed in the same shape as the first large valve body 42b, and a second spring formed in the same shape as the first spring 43. 53 and a second screw receiving portion 56 formed in the same shape as the first screw receiving portion 46.

この第2逆止弁50は、第2の出入口20側に高圧冷媒が作用し、第1の出入口10側に流れるときに異常な高圧冷媒のバイパス通路として形成されるもので、作用的には第1逆止弁40と同じである。   The second check valve 50 is formed as an abnormal high-pressure refrigerant bypass passage when high-pressure refrigerant acts on the second inlet / outlet 20 side and flows toward the first inlet / outlet 10 side. The same as the first check valve 40.

(冷媒圧影響手段)
また、冷媒が第1の出入口10から第2の出入口20へ、或いは、第2の出入口20から第1の出入口10へ、どちらの方向に流れるにしても、第2通路21に連通するバイパス通路22内の冷媒は、弁棒ホルダ34とプランジャ68の隙間、均圧孔68a、押棒69とプランジャ68の隙間等を通って弁棒孔68bに至り、弁棒部37の上端部に第2通路21内の冷媒圧と略同一の圧力を作用することになる。
即ち、弁シート孔32の断面積と弁棒孔68bの断面積とが同一に形成され、主弁体36にはその下部からと上部からの冷媒圧は同一となるように構成されている。したがって、主弁体36に作用する荷重を略零とすることができる。
その結果、電磁弁60に電流を流した時、吸引子67は電流量に応じて磁化し、プランジャ68は磁気吸引されて、磁気量に応じて上動するが冷媒圧の作用が影響しないことから、正確に上下動することになる。
(Refrigerant pressure influence means)
Further, a bypass passage that communicates with the second passage 21 regardless of which direction the refrigerant flows from the first entrance 10 to the second entrance 20 or from the second entrance 20 to the first entrance 10. The refrigerant in the valve 22 passes through the gap between the valve stem holder 34 and the plunger 68, the pressure equalizing hole 68a, the gap between the push rod 69 and the plunger 68, etc., and reaches the valve stem hole 68b. The pressure substantially the same as the refrigerant pressure in 21 is applied.
That is, the sectional area of the valve seat hole 32 and the sectional area of the valve stem hole 68b are formed to be the same, and the refrigerant pressure from the lower part and the upper part of the main valve body 36 is the same. Therefore, the load acting on the main valve body 36 can be made substantially zero.
As a result, when a current is passed through the electromagnetic valve 60, the attractor 67 is magnetized according to the amount of current, and the plunger 68 is magnetically attracted and moves up according to the amount of magnetism, but the effect of the refrigerant pressure is not affected. Therefore, it will move up and down accurately.

以上の実施の形態では逆止弁を2個用いる場合について述べたが、本発明はこれに限らず、例えば、第1の出入口10から第2の出入口20にのみ流れる一方向流れの場合には、逆止弁は第1逆止弁40のみを設ければよいのは勿論である。   In the above embodiment, the case where two check valves are used has been described. However, the present invention is not limited to this. For example, in the case of a one-way flow that flows only from the first entrance 10 to the second entrance 20. Of course, only the first check valve 40 may be provided as the check valve.

(使用態様)
次にかかる構成による実施形態の動作について説明する。本実施の形態の電磁式膨張弁は、図3に示すように、空調機の冷凍サイクルに用いており、公知の冷凍サイクル同様に室外熱交換器3と室内熱交換器5との間の管路6に配置されるもので、冷房サイクル又は暖房サイクルの冷媒のいずれの流れ方向においても機能するものである。
冷房サイクルにおいては、管路6を流れる冷媒は圧縮機1、四方弁2、室外熱交換器3,膨張弁4、室内熱交換器5、四方弁2、圧縮機1と循環する。この流れにおいては、冷媒は、膨張弁4の第1の出入口10から流入し、第2の出入口20から流出する。
(Usage mode)
Next, the operation of the embodiment having such a configuration will be described. As shown in FIG. 3, the electromagnetic expansion valve according to the present embodiment is used in a refrigeration cycle of an air conditioner, and a pipe between an outdoor heat exchanger 3 and an indoor heat exchanger 5 as in a known refrigeration cycle. It is arrange | positioned at the path | route 6, and functions in any flow direction of the refrigerant | coolant of a cooling cycle or a heating cycle.
In the cooling cycle, the refrigerant flowing through the pipeline 6 circulates with the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the expansion valve 4, the indoor heat exchanger 5, the four-way valve 2, and the compressor 1. In this flow, the refrigerant flows in from the first port 10 of the expansion valve 4 and flows out from the second port 20.

圧縮機1がオン(起動状態)となり、室外熱交換器3から第1の出入口10に流入した高圧冷媒は、電磁弁60への通電により弁シート孔32を介して減圧されて流体連通孔30を経て第2の出入口20から流出し、室内熱交換器5に送出される。この際、電磁弁60の主弁体36の上部と下部(弁頭部38)には同一の冷媒圧が作用しているので、電磁弁60への通電量によって弁シート孔32と主弁体36との間の弁開度を正確に、しかも迅速に設定できることとなり、第2の出入口20に流出する冷媒量を正確に制御できる。   The high-pressure refrigerant flowing into the first inlet / outlet 10 from the outdoor heat exchanger 3 is turned on (activated) and the pressure is reduced through the valve seat hole 32 by energization of the electromagnetic valve 60, and the fluid communication hole 30. Then, it flows out from the second entrance / exit 20 and is sent to the indoor heat exchanger 5. At this time, since the same refrigerant pressure is applied to the upper part and the lower part (valve head part 38) of the main valve body 36 of the electromagnetic valve 60, the valve seat hole 32 and the main valve body are changed depending on the energization amount to the electromagnetic valve 60. Thus, the valve opening degree with respect to 36 can be set accurately and quickly, and the amount of refrigerant flowing out to the second inlet / outlet 20 can be accurately controlled.

しかも、第1の出入口10に流入する高圧冷媒が所定の圧力以上であると、第1逆止弁40が迅速に開状態となり、第2通路21を経て第2の出入口20より流出するので、冷媒をバイパスさせることができ、冷凍サイクル内の冷媒圧力の異常上昇を防止することができるのである。
また、暖房サイクルにおいては、管路6を流れる冷媒は、圧縮機1、四方弁2、室内熱交換器5(暖房作用)、膨張弁4、室外熱交換器3,四方弁2、圧縮機1と循環する。この暖房サイクルにおいては、冷媒は膨張弁4の第2の出入口20から流入し、第1の出入口10から流出し、冷房サイクルと同様の動作を行なう。
In addition, when the high-pressure refrigerant flowing into the first entrance / exit 10 is equal to or higher than a predetermined pressure, the first check valve 40 is quickly opened and flows out from the second entrance / exit 20 via the second passage 21. The refrigerant can be bypassed, and an abnormal increase in the refrigerant pressure in the refrigeration cycle can be prevented.
In the heating cycle, the refrigerant flowing through the pipeline 6 is the compressor 1, the four-way valve 2, the indoor heat exchanger 5 (heating action), the expansion valve 4, the outdoor heat exchanger 3, the four-way valve 2, and the compressor 1. And circulate. In this heating cycle, the refrigerant flows in from the second inlet / outlet 20 of the expansion valve 4, flows out of the first inlet / outlet 10, and performs the same operation as in the cooling cycle.

即ち、圧縮機1がオン(起動状態)となり、室内熱交換器5より第2の出入口20に流入した高圧冷媒は、電磁弁60への通電により弁シート孔32を介して減圧されて流体連通孔30を経て第1の出入口10から流出し、室外熱交換器3に送出される。この際、電磁弁60の主弁体36の上部と下部には同一の冷媒圧が作用しているので、電磁弁60への通電量によって弁シート孔32と主弁体36との間の弁開度を正確にしかも迅速に設定できることとなり、第1の出入口10に流出する冷媒量を正確に制御できる。
しかも、第2の出入口20に流入する高圧冷媒が所定の圧力以上であると、第2逆止弁50が迅速に開状態となり、第1通路11を経て第1の出入口10より流出するので、冷媒をバイパスさせることができ、冷房サイクルと同じく冷凍サイクル内の冷媒圧力の異常上昇を防止することができる。
That is, the compressor 1 is turned on (started up), and the high-pressure refrigerant flowing into the second inlet / outlet 20 from the indoor heat exchanger 5 is depressurized through the valve seat hole 32 by energization of the electromagnetic valve 60 and is in fluid communication. It flows out from the 1st entrance / exit 10 through the hole 30, and is sent to the outdoor heat exchanger 3. FIG. At this time, since the same refrigerant pressure acts on the upper and lower portions of the main valve body 36 of the electromagnetic valve 60, the valve between the valve seat hole 32 and the main valve body 36 depends on the energization amount to the electromagnetic valve 60. The opening can be accurately and quickly set, and the amount of refrigerant flowing out to the first entrance / exit 10 can be accurately controlled.
Moreover, if the high-pressure refrigerant flowing into the second inlet / outlet 20 is equal to or higher than a predetermined pressure, the second check valve 50 is quickly opened and flows out from the first inlet / outlet 10 via the first passage 11. The refrigerant can be bypassed, and an abnormal rise in the refrigerant pressure in the refrigeration cycle can be prevented as in the cooling cycle.

以上のように、弁シート31の流路の径(弁開方向受圧面積)と主弁体36の上部(弁棒部37を支持する弁棒孔68bの内径(弁閉方向受圧面積))を同じにすることで、主弁体36の下部にかかる冷媒圧と、主弁体36の上部にかかる流体圧とを等値にしたために、主弁体36に作用する荷重を略ゼロとすることができるので、ソレノイド部への電流制御量に順応して応答する電磁式膨張弁を実現できる。その結果、冷媒流量を迅速に増減できる(即ち、空調(室内温度の制御)を迅速に行い得る)。また、設定圧力以上の冷媒圧に対しては、冷媒をパイパスさせて、冷凍サイクル内の冷媒圧力の異常上昇を防止させることができる。   As described above, the flow path diameter (valve opening direction pressure receiving area) of the valve seat 31 and the upper part of the main valve body 36 (inner diameter of the valve stem hole 68b that supports the valve stem portion 37 (valve closing direction pressure receiving area)). By making the same, the refrigerant pressure applied to the lower part of the main valve element 36 and the fluid pressure applied to the upper part of the main valve element 36 are made equal, so that the load acting on the main valve element 36 is made substantially zero. Therefore, it is possible to realize an electromagnetic expansion valve that responds according to the amount of current control to the solenoid unit. As a result, the refrigerant flow rate can be increased or decreased quickly (that is, air conditioning (indoor temperature control) can be performed quickly). Further, for the refrigerant pressure equal to or higher than the set pressure, the refrigerant can be bypassed to prevent an abnormal increase in the refrigerant pressure in the refrigeration cycle.

本発明に係る電磁式膨張弁の縦断面図。The longitudinal section of the electromagnetic expansion valve concerning the present invention. 同電磁式膨張弁に用いる逆止弁の弁本体の平面図(A)及び図2(A)のB−B線断面図(B)。The top view (A) of the valve main body of the non-return valve used for the same electromagnetic expansion valve, and the BB sectional drawing (B) of FIG. 2 (A). 本実施形態を適用する空調機の冷凍サイクル説明図。Explanatory drawing of the refrigerating cycle of the air conditioner to which this embodiment is applied.

符号の説明Explanation of symbols

1・・圧縮機、2・・四方弁、3・・室外熱交換器、4・・膨張弁、
5・・室内熱交換器、6・・管路、10・・第1の出入口、11・・第1通路、
12・・第1オリフィス、20・・第2の出入口、21・・第2通路、
22・・バイパス通路、23・・第2オリフィス、30・・流体連通孔、
31・・弁シート、32・・弁シート孔、33・・弁棒孔、34・・弁棒ホルダ、
35・・電磁弁取付孔、36・・主弁体、37・・弁棒部、38・・弁頭部、
1 ・ ・ Compressor, 2 ・ ・ 4-way valve, 3 ・ ・ Outdoor heat exchanger, 4 ・ ・ Expansion valve,
5 .. Indoor heat exchanger, 6 .. Pipe line, 10 .. First entrance, 11 .. First passage,
12 .... first orifice, 20 .... second inlet / outlet, 21 ... second passage,
22 .. Bypass passage, 23 .. Second orifice, 30 .. Fluid communication hole,
31 ... Valve seat, 32 ... Valve seat hole, 33 ... Valve rod hole, 34 ... Valve rod holder,
35 ... Solenoid valve mounting hole, 36 ... Main valve element, 37 ... Valve stem, 38 ... Valve head,

40・・第1逆止弁、41・・第1の孔、42・・第1弁体、
42a・・第1小弁体、42b・・第1大弁体、43・・第1バネ、
44・・密栓、45・・第1バネ押え、46・・第1ネジ受部、
50・・第2逆止弁、51・・第2の孔、52・・第2弁体、
52a・・第2小弁体、52b・・第2大弁体、53・・第2バネ、
55・・第2バネ押え、56・・第2ネジ受部、60・・電磁弁、
40..First check valve, 41..First hole, 42..First valve body,
42a ... first small valve body, 42b ... first large valve body, 43 ... first spring,
44..Seal plug, 45..First spring presser, 46..First screw receiving portion,
50 .. Second check valve 51.. Second hole 52. Second valve body
52a ... second small valve body, 52b ... second large valve body, 53 ... second spring,
55 .. Second spring presser, 56 .. Second screw receiving part, 60 .. Solenoid valve,

61・・スリーブ、62・・ソレノイドハウジング、63・・ソレノイド部、
64・・コイル、65・・ボビン、67・・吸引子、68・・プランジャ、
68a・・均圧孔、68b・・弁棒孔、69・・押棒、
69a・・押棒側バネ受け、70・・調整ねじ、71・・調整側バネ受け、
72・・バネ、73・・O−リング、74・・防水リング、
75・・コイルアセンブリ、75a・・ドライバ部、76・・プレート、
100・・ブロック本体、101・・(ブロック本体の)右側面、
102・・(ブロック本体の)左側面
61 .. Sleeve, 62 .. Solenoid housing, 63 .. Solenoid part,
64 .. Coil, 65 .. Bobbin, 67 .. Suction element, 68 .. Plunger,
68a ... equal pressure hole, 68b ... valve stem hole, 69 ... push rod,
69a..Push bar side spring support, 70..Adjustment screw, 71..Adjustment side spring support,
72 ... Spring, 73 ... O-ring, 74 ... Waterproof ring,
75 .. Coil assembly, 75a .. Driver part, 76 .. Plate,
100 .. Block body, 101 .. Right side of block body,
102 .. Left side of block body

Claims (2)

ブロック本体に、流体が双方向に流動可能な第1出入口及び第2出入口と、上記第1出入口に連通する第1通路と、上記第2出入口に連通する第2通路と、これら第1通路と第2通路とを連通する連通孔と、この連通孔を開閉する主弁体を含む電磁弁とが備わっており、
上記主弁体は、上記連通孔に設けてある弁シートの弁シート孔に接離する弁頭部と、この弁頭部から延伸し弁棒ホルダによって摺動自在に支持される弁棒部とを有し、
上記ブロック本体には、上記弁棒部が上記弁棒ホルダから突出する空間の圧力を上記第2通路と等しくすべく上記空間と上記第2通路とを連通するバイパス通路が設けてあり、上記第1通路にオリフィスが形成される第1逆止弁と上記第2通路にオリフィスが形成される第2逆止弁とが上記ブロック本体に設けてあることを特徴とする電磁式膨張弁。
A first main inlet and a second inlet / outlet through which fluid can flow bidirectionally, a first passage communicating with the first inlet, a second passage communicating with the second outlet, and the first passage; A communication hole that communicates with the second passage, and an electromagnetic valve that includes a main valve body that opens and closes the communication hole;
The main valve body includes a valve head that contacts and separates from a valve seat hole of a valve seat provided in the communication hole, and a valve stem portion that extends from the valve head and is slidably supported by a valve stem holder. Have
The block body is provided with a bypass passage that connects the space and the second passage so that the pressure of the space in which the valve stem portion protrudes from the valve stem holder is equal to the second passage. An electromagnetic expansion valve characterized in that a first check valve having an orifice formed in one passage and a second check valve having an orifice formed in the second passage are provided in the block body.
上記第1及び第2の逆止弁は、それぞれ流体圧を開方向に受圧する弁体が、受圧面積の小さい小弁体と受圧面積の大きい大弁体とから構成してあることとを特徴とする請求項1に記載の電磁式膨張弁。
In each of the first and second check valves, the valve body that receives the fluid pressure in the opening direction is composed of a small valve body having a small pressure receiving area and a large valve body having a large pressure receiving area. The electromagnetic expansion valve according to claim 1.
JP2004189036A 2004-06-25 2004-06-25 Solenoid expansion valve Expired - Fee Related JP4319100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004189036A JP4319100B2 (en) 2004-06-25 2004-06-25 Solenoid expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004189036A JP4319100B2 (en) 2004-06-25 2004-06-25 Solenoid expansion valve

Publications (2)

Publication Number Publication Date
JP2006010228A true JP2006010228A (en) 2006-01-12
JP4319100B2 JP4319100B2 (en) 2009-08-26

Family

ID=35777674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004189036A Expired - Fee Related JP4319100B2 (en) 2004-06-25 2004-06-25 Solenoid expansion valve

Country Status (1)

Country Link
JP (1) JP4319100B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152850A (en) * 2013-02-07 2014-08-25 Tgk Co Ltd Electromagnetic valve
WO2021181995A1 (en) * 2020-03-13 2021-09-16 浜名湖電装株式会社 Electromagnetic valve and fluid system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104019271B (en) * 2014-05-27 2016-03-23 成都来宝石油设备有限公司 The improved structure of pressure regulator valve

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152850A (en) * 2013-02-07 2014-08-25 Tgk Co Ltd Electromagnetic valve
WO2021181995A1 (en) * 2020-03-13 2021-09-16 浜名湖電装株式会社 Electromagnetic valve and fluid system
JP7385125B2 (en) 2020-03-13 2023-11-22 浜名湖電装株式会社 solenoid valve
US11953116B2 (en) 2020-03-13 2024-04-09 Hamanakodenso Co., Ltd. Electromagnetic valve and fluid system

Also Published As

Publication number Publication date
JP4319100B2 (en) 2009-08-26

Similar Documents

Publication Publication Date Title
JP2013241958A (en) Electrically operated valve
JP5572330B2 (en) Motorized valve
JP5019862B2 (en) Pilot type control valve
KR102139095B1 (en) Electronic expansion valve
KR20080013701A (en) Pilot type control valve
EP2910874A1 (en) Pilot operated electromagnetic valve
JP5620833B2 (en) 3-way solenoid valve
US20120211683A1 (en) Valve apparatus
JP6321358B2 (en) Four-way selector valve
JP4056378B2 (en) Differential pressure valve
EP1600841B1 (en) Flow rate control valve
JP2006242502A (en) Combination valve, heat pump type air conditioner and its control method
JP4319100B2 (en) Solenoid expansion valve
JP4235515B2 (en) Constant differential pressure valve
JP2010249247A (en) Motor-operated valve and refrigeration cycle using the same
JP5921821B2 (en) Motorized valve
JP2005055034A (en) Electric expansion valve
JP4053846B2 (en) Electric expansion valve
JP2012002282A (en) Three-way solenoid valve
JP4562075B2 (en) Electric expansion valve
JP4346538B2 (en) Refrigeration cycle and accumulator
JP4153277B2 (en) Electric expansion valve
JP4596830B2 (en) Four-way valve
JP4057379B2 (en) Electric expansion valve
CN111396599B (en) Flow control valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090527

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4319100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees