JP2006010128A - Gas cooler water supply temperature control unit in heat pump - Google Patents

Gas cooler water supply temperature control unit in heat pump Download PDF

Info

Publication number
JP2006010128A
JP2006010128A JP2004184783A JP2004184783A JP2006010128A JP 2006010128 A JP2006010128 A JP 2006010128A JP 2004184783 A JP2004184783 A JP 2004184783A JP 2004184783 A JP2004184783 A JP 2004184783A JP 2006010128 A JP2006010128 A JP 2006010128A
Authority
JP
Japan
Prior art keywords
gas cooler
cooler
water
feed water
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004184783A
Other languages
Japanese (ja)
Other versions
JP4279208B2 (en
Inventor
Shinjiro Akaboshi
信次郎 赤星
Tokuyuki Arata
徳幸 荒田
Hirokazu Yoneda
弘和 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2004184783A priority Critical patent/JP4279208B2/en
Publication of JP2006010128A publication Critical patent/JP2006010128A/en
Application granted granted Critical
Publication of JP4279208B2 publication Critical patent/JP4279208B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump system that can be operated in a wide range of conditions by executing heat exchange via an antifreeze solution and controlling the temperature of water fed to a gas cooler by the fresh air and cooling water when the water supply temperature rises as a method for lowering the temperature of cooling water supplied to the gas cooler. <P>SOLUTION: A heat pump composes a refrigeration cycle by equipping a compressor 2, the gas cooler 3, an expansion valve 4, and an air heat exchanger (evaporator) 5, and supplies cooling water to the gas cooler 3 for cooling the refrigerant. In the heat pump, water supply piping (cooling water line) (q) for supplying water to the gas cooler 3 has a water supply cooler 9 that indirectly exchanges heat with an antifreeze solution with the antifreeze solution as a refrigerant and cools supplied water (w), integrally provides an antifreeze solution cooler 10 for cooling the antifreeze solution with the air heat exchanger 5, thus adjusting the amount of heat exchange between the supplied water (w) and the antifreeze solution. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、たとえば圧縮機、ガスクーラ、膨張弁、蒸発器よりなり、ガスクーラと熱交換する給湯ラインを備えた、超臨界状態となるCO冷媒ヒートポンプシステム等において、ガスクーラに供給する給水の温度を制御してCO冷媒の圧縮機吐出側の圧力上昇及び温度上昇を抑制することができるヒートポンプのガスクーラ給水温度制御装置に関する。 The present invention provides, for example, a temperature of feed water supplied to a gas cooler in a supercritical CO 2 refrigerant heat pump system including a compressor, a gas cooler, an expansion valve, and an evaporator and having a hot water supply line that exchanges heat with the gas cooler. The present invention relates to a gas cooler feed water temperature control device for a heat pump that can be controlled to suppress pressure rise and temperature rise on the compressor discharge side of CO 2 refrigerant.

CO超臨界冷凍サイクルは、大気環境汚染防止の見地より脱フロン対策の一環として広く使用されてきている。同冷凍サイクルは、一般に圧縮機、ガスクーラ、膨張弁、蒸発器よりなり、圧縮工程で臨界圧力を超えた超臨界圧まで圧縮され、この領域で高温度になったCO冷媒をガスクーラで冷却し、液化しているが、ガスクーラに供給される給水の温度が上昇した際に、冷媒比容積の上昇及び蒸発器内の乾き度の上昇によって、圧縮機吐出圧力・温度が上昇するため、35℃以上の高い給水温度での運転が困難である。 The CO 2 supercritical refrigeration cycle has been widely used as part of countermeasures against chlorofluorocarbons from the viewpoint of preventing air pollution. The refrigeration cycle is generally composed of a compressor, gas cooler, expansion valve, and evaporator, and is compressed to a supercritical pressure that exceeds the critical pressure in the compression process, and the high temperature CO 2 refrigerant in this region is cooled by the gas cooler. However, when the temperature of the feed water supplied to the gas cooler rises, the compressor discharge pressure / temperature rises due to an increase in the refrigerant specific volume and an increase in the dryness in the evaporator. It is difficult to operate at the above high water supply temperature.

この対策として、特許文献1(特開2003−269813号公報)には、ガスクーラに供給する水温をコントロールすることにより、広範囲の条件で運転可能なヒートポンプシステムが開示されている。このヒートポンプシステムは、給湯タンクから給湯用熱交換器(ガスクーラ)に送水される配管部分に分岐配管を持ち、分岐配管は空気熱交換器(蒸発器)を経由した後、前記配管部分の分岐部分と給湯用熱交換器との間に合流し、かつ分岐配管に流量調整弁を設け、前記合流部と給湯用熱交換器との間に温度検出器を設けることにより、分岐配管を経由して空気側熱交換器に送水する水量のコントロールができるようにしたものであり、これによって、給水温度が上昇した場合でもCOPを高く維持することができ、ヒートポンプ部を停止する必要がなくなるという利点がある。   As a countermeasure, Patent Document 1 (Japanese Patent Laid-Open No. 2003-269813) discloses a heat pump system that can be operated under a wide range of conditions by controlling the temperature of water supplied to the gas cooler. This heat pump system has a branch pipe in a pipe part that is fed from a hot water tank to a hot water heat exchanger (gas cooler), and the branch pipe passes through an air heat exchanger (evaporator) and then a branch part of the pipe part. And a heat exchanger for hot water supply, and a flow control valve is provided in the branch pipe, and a temperature detector is provided between the junction and the heat exchanger for hot water supply, so that The amount of water sent to the air-side heat exchanger can be controlled, so that even when the feed water temperature rises, the COP can be kept high and there is no need to stop the heat pump unit. is there.

特開2003−269813号公報JP 2003-269813 A

しかるに特許文献1に開示された手段では、流体が水であるために、外気温度が下がった場合に、空気熱交換器を含む分岐配管部分が凍結し、運転不能となるおそれや、装置破損のおそれがあるとともに、依然として、ガスクーラに供給される給水温度のコントロールを精度良く行なうことができず、運転条件に制約がある。   However, in the means disclosed in Patent Document 1, since the fluid is water, when the outside air temperature is lowered, the branch pipe portion including the air heat exchanger may be frozen, and the operation may be disabled. In addition, there is a possibility that the control of the temperature of the feed water supplied to the gas cooler cannot be performed with high accuracy, and the operating conditions are limited.

本発明は、かかる従来技術の課題に鑑み、ガスクーラに供給する冷却水の温度を下げる方法として、不凍液を介した熱交換を実施するとともに、給水温度が上昇した際に外気又は冷却水によってガスクーラに送水する水温を精密にコントロールすることにより、広範囲な運転条件で運転可能なヒートポンプのガスクーラ給水温度制御装置を提供することを目的とする。   In view of the problems of the prior art, the present invention implements heat exchange via antifreeze as a method for lowering the temperature of the cooling water supplied to the gas cooler, and also supplies the gas cooler with the outside air or the cooling water when the feed water temperature rises. An object of the present invention is to provide a gas cooler feed water temperature control device for a heat pump that can be operated under a wide range of operating conditions by precisely controlling the temperature of water to be fed.

本発明は、かかる目的を達成するもので、圧縮機、ガスクーラ、膨張弁及び蒸発器を備えて冷凍サイクルを構成し、前記ガスクーラに冷却水を供給して冷媒を冷却するようにしたヒートポンプにおいて、前記ガスクーラに給水する給水配管に、不凍液を冷媒とし前記給水を同不凍液と間接熱交換して同給水を冷却する給水冷却器を設けるとともに、同不凍液を冷却する不凍液冷却器を前記ヒートポンプの内部又は外部に設け、前記給水と同不凍液との熱交換量を調整可能に構成したことを特徴とする。   The present invention achieves such an object, and comprises a compressor, a gas cooler, an expansion valve, and an evaporator to constitute a refrigeration cycle, and supplies cooling water to the gas cooler to cool the refrigerant. A water supply pipe for supplying water to the gas cooler is provided with a water supply cooler for cooling the water supply by using the antifreeze liquid as a refrigerant and indirect heat exchange of the water supply with the antifreeze liquid, and an antifreeze liquid cooler for cooling the antifreeze liquid inside the heat pump or It is provided outside and is configured to be capable of adjusting the amount of heat exchange between the water supply and the antifreeze.

本発明においては、不凍液を冷媒とし給水を同不凍液と間接熱交換して同給水を冷却する冷却器を設けて、不凍液によって予め給水を冷却する。また不凍液は別途ヒートポンプの内部又は外部に設けられた不凍液冷却器で冷却される。
また給水が同不凍液によって吸収される熱量を調整可能に構成することにより、ガスクーラに供給される給水の温度を調整可能とし、給水温度の上昇を防ぐようにする。
In the present invention, a cooler is provided that cools the feed water by indirectly heat-exchanging the feed water with the antifreeze liquid and cooling the feed water with the antifreeze liquid. Further, the antifreeze liquid is cooled by an antifreeze liquid cooler separately provided inside or outside the heat pump.
Further, by configuring such that the amount of heat absorbed by the antifreeze liquid can be adjusted, the temperature of the water supplied to the gas cooler can be adjusted to prevent an increase in the water supply temperature.

不凍液冷却器は、たとえば外気と熱交換する空冷型か、又はさらに散水による冷却機能を付加したもの、あるいは水道水と熱交換する水冷型を使用することができる。
また好ましくは、不凍液冷却器をヒートポンプ内の蒸発器と一体に設け、蒸発器の蒸発潜熱により冷やされた空気により冷却されるようにする。
As the antifreeze liquid cooler, for example, an air-cooled type that exchanges heat with the outside air, or a cooling function that further adds a cooling function by watering, or a water-cooled type that exchanges heat with tap water can be used.
Preferably, the antifreeze liquid cooler is provided integrally with the evaporator in the heat pump, and is cooled by air cooled by the latent heat of vaporization of the evaporator.

また好ましくは、ガスクーラに供給する水の温度を検出し、同検出値に基づいて、圧縮機の吐出側から膨張弁の入口側までの高圧の冷媒圧力を制御するか、又は圧縮機の吐出側からガスクーラの入口側までの高温の冷媒温度を制御する。   Preferably, the temperature of water supplied to the gas cooler is detected, and based on the detected value, the high-pressure refrigerant pressure from the discharge side of the compressor to the inlet side of the expansion valve is controlled, or the discharge side of the compressor To control the high temperature of the refrigerant from the inlet side of the gas cooler.

また好ましくは、不凍液を冷却水冷却器及び不凍液冷却器の間を循環させる不凍液循環ポンプを設け、圧縮機の吐出側から膨張弁の入口側までの高圧の冷媒圧力、又は圧縮機の吐出側からガスクーラの入口側までの高温の冷媒温度の設定条件に基づいて、あるいはこれに付加して、さらに給水冷却器の入口側の給水温度を検出し、同検出値に基づいて、不凍液循環ポンプの出力を制御し、ガスクーラに供給する水の温度を制御する。   Preferably, an antifreeze circulating pump for circulating the antifreeze between the cooling water cooler and the antifreeze cooler is provided, and the high pressure refrigerant pressure from the discharge side of the compressor to the inlet side of the expansion valve, or from the discharge side of the compressor Based on or in addition to the setting condition of the high-temperature refrigerant temperature up to the inlet side of the gas cooler, the feed water temperature at the inlet side of the feed water cooler is further detected, and the output of the antifreeze liquid circulation pump is based on the detected value. To control the temperature of the water supplied to the gas cooler.

本発明において使用可能な不凍液は、使用温度範囲において固化しないことを条件とし、たとえばエチレングリコール水溶液等が使用可能である。また冷媒は、主としてCO冷媒が使用可能である。 The antifreeze that can be used in the present invention can be used, for example, an aqueous ethylene glycol solution, provided that it does not solidify within the operating temperature range. As the refrigerant, CO 2 refrigerant can be mainly used.

本発明によれば、ガスクーラに給水する給水配管に、不凍液を冷媒とし給水を不凍液と間接熱交換して給水を冷却する給水冷却器を設けるとともに、不凍液を冷却する不凍液冷却器をヒートポンプの内部又は外部に設け、給水が不凍液によって吸収される熱量を調整可能に構成したことにより、不凍液によって予め給水を冷却するため、ガスクーラに供給される給水の温度上昇を防止できるとともに、不凍液を使用しているため、外気温度が下がった場合でも、空気熱交換器を含む分岐配管部分が凍結し、運転不能となるおそれや、装置破損のおそれがない。
また給水と不凍液との熱交換量を調整可能に構成することにより、ガスクーラに供給される給水の温度を調整可能とし、広範囲の条件で運転可能となる。
According to the present invention, the water supply pipe for supplying water to the gas cooler is provided with the water supply cooler for cooling the water supply by indirectly heat-exchanged the water supply with the antifreeze liquid using the antifreeze liquid, and the antifreeze liquid cooler for cooling the antifreeze liquid is provided inside the heat pump or Since it is provided outside and the amount of heat absorbed by the antifreeze liquid can be adjusted, the water supply is cooled in advance by the antifreeze liquid, so that the temperature rise of the water supplied to the gas cooler can be prevented and the antifreeze liquid is used. Therefore, even when the outside air temperature is lowered, the branch pipe portion including the air heat exchanger is frozen, and there is no possibility that the operation becomes impossible and the apparatus is not damaged.
Further, by configuring the heat exchange amount between the water supply and the antifreeze liquid so as to be adjustable, the temperature of the water supplied to the gas cooler can be adjusted, and the operation can be performed under a wide range of conditions.

また好ましくは、ガスクーラに供給する水の温度を検出し、同検出値に基づいて、圧縮機の吐出側から膨張弁の入口側までの高圧の冷媒圧力を制御するか、又は圧縮機の吐出側からガスクーラの入口側までの高温の冷媒温度を制御することにより、ガスクーラに供給する水の温度がある程度高温であっても、運転可能となる。   Preferably, the temperature of water supplied to the gas cooler is detected, and based on the detected value, the high-pressure refrigerant pressure from the discharge side of the compressor to the inlet side of the expansion valve is controlled, or the discharge side of the compressor By controlling the high-temperature refrigerant temperature from the gas cooler to the inlet side of the gas cooler, it is possible to operate even if the temperature of the water supplied to the gas cooler is high to some extent.

また好ましくは、不凍液を給水冷却器及び不凍液冷却器の間を循環させる不凍液循環ポンプを設け、圧縮機の吐出側から膨張弁の入口側までの冷媒圧力、又は圧縮機の吐出側からガスクーラの入口側までの冷媒温度の設定条件に基づいて、あるいはこれに付加して、さらに給水冷却器の入口側の給水温度を検出し、同検出値に基づいて、不凍液循環ポンプの出力を制御し、ガスクーラに供給する水の温度を制御することにより、給水冷却器入口側の給水温度に大きなバラツキがあっても、ガスクーラに供給する水の温度を運転可能な温度に精度良く制御することができ、運転許容条件を格段に広げることができる。   Preferably, an antifreeze circulating pump for circulating the antifreeze between the feed water cooler and the antifreeze cooler is provided, the refrigerant pressure from the compressor discharge side to the expansion valve inlet side, or the compressor discharge side to the gas cooler inlet Based on or in addition to the setting condition of the refrigerant temperature up to the side, the feed water temperature at the inlet side of the feed water cooler is further detected, and based on the detected value, the output of the antifreeze liquid circulation pump is controlled, and the gas cooler By controlling the temperature of the water supplied to the water cooler, the temperature of the water supplied to the gas cooler can be accurately controlled to an operable temperature even if there is a large variation in the feed water temperature on the inlet side of the feed water cooler. Allowable conditions can be greatly expanded.

以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。
図1は、本発明の第1実施例に係るヒートポンプシステムの系統図である。
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this example are not intended to limit the scope of the present invention only to specific examples unless otherwise specified. Only.
FIG. 1 is a system diagram of a heat pump system according to a first embodiment of the present invention.

図1は、第1実施例に係る、超臨界状態となるCO冷媒を用いた、給湯システムを備えたヒートポンプシステムを示し、1は、本実施例のヒートポンプシステムを収納するケースであり、ケース1内に、CO冷媒循環ラインcが配設され、同ラインcに、CO冷媒を圧縮して超臨界状態とする圧縮機2、圧縮機2で圧縮されて超臨界状態となったCO冷媒を冷却するガスクーラ3、冷却されたCO冷媒を膨張させる膨張弁4、ケース内に導入された外気a1から蒸発潜熱を吸収してCO冷媒を蒸発させる空気熱交換器5、及び蒸発したCO冷媒を一旦貯留するアキュムレータ6が介装されたヒートポンプシステムが内蔵されている。 FIG. 1 shows a heat pump system including a hot water supply system using a CO 2 refrigerant in a supercritical state according to the first embodiment. Reference numeral 1 denotes a case for housing the heat pump system of the present embodiment. 1, a CO 2 refrigerant circulation line c is disposed in the compressor 2, which compresses the CO 2 refrigerant into a supercritical state, and is compressed in the supercritical state by the compressor 2. gas cooler 3 for cooling the second coolant, an expansion valve 4 for expanding the cooled CO 2 refrigerant, the air heat exchanger 5 absorbs latent heat of vaporization from the outside air a1 which has been introduced into the case to evaporate the CO 2 refrigerant, and evaporating A heat pump system in which an accumulator 6 for temporarily storing the CO 2 refrigerant is interposed is incorporated.

また7は、ケース1内に外気a1を吸引するとともに、空気熱交換器5で熱を奪われて冷却された空気a2を冷房用等の冷熱源として供する吸引ファンである。8は、本ヒートポンプシステムに付設された給湯システムであり、本給湯システム8は、超臨界状態となったCO冷媒をガスクーラ3で冷却するために、冷却水ラインqから冷却水を供給する給水冷却器9、空気熱交換器5と一体となって配置され、空気熱交換器5の蒸発潜熱で不凍液を冷却する不凍液冷却器10、給水冷却器9及び不凍液冷却器10間を連絡する不凍液循環ラインu、不凍液循環ラインuに介装された不凍液循環ポンプ11から構成される。 Reference numeral 7 denotes a suction fan that sucks the outside air a1 into the case 1 and also uses the air a2 cooled by taking heat away from the air heat exchanger 5 as a cooling source for cooling or the like. 8 is a hot water supply system attached to the heat pump system. The hot water supply system 8 supplies water for cooling from the cooling water line q in order to cool the supercritical CO 2 refrigerant by the gas cooler 3. The antifreeze liquid circulation which is disposed integrally with the cooler 9 and the air heat exchanger 5 and communicates between the antifreeze liquid cooler 10, the feed water cooler 9 and the antifreeze liquid cooler 10 which cools the antifreeze liquid by the latent heat of vaporization of the air heat exchanger 5. The line u includes an antifreeze circulation pump 11 interposed in the antifreeze circulation line u.

なお12は、冷却水ラインqの冷却水温度を検出して、その検出値に基づいて不凍液循環ポンプ11の出力を制御する温度検出器(T1)、13は、圧縮機2吐出側のCO冷媒温度を検出する温度センサ(T2)、14は、給水冷却器9の入口側の給水wの温度を検出し、同検出値に基づいて不凍液循環ポンプ11の出力を制御する温度検出器(T3)、15は、圧縮機2吐出側のCO冷媒圧力を検出する圧力センサ(P1)である。 Reference numeral 12 denotes a temperature detector (T1) that detects the cooling water temperature of the cooling water line q and controls the output of the antifreeze circulating pump 11 based on the detected value, and 13 denotes CO 2 on the discharge side of the compressor 2. A temperature sensor (T2) 14 for detecting the refrigerant temperature detects the temperature of the feed water w on the inlet side of the feed water cooler 9, and controls the output of the antifreeze circulating pump 11 based on the detected value (T3). ), 15 is a pressure sensor (P1) for detecting the CO 2 refrigerant pressure on the discharge side of the compressor 2.

かかる第1実施例において、ケース1内においては、CO冷媒による超臨界冷凍サイクル運転が行なわれ、一方給湯システム8においては、給水wを給水冷却器9において、空気熱交換器5で冷媒蒸発潜熱分の熱で冷却された外気によって冷やされた不凍液を不凍液循環ラインuから給水冷却器9に供給し、給水wと熱交換させることによって給水wを冷却し、冷却された給水をガスクーラ3に供給することによって、超臨界状態とされたCO冷媒を冷却し、液化する。
一方冷却水はCO冷媒の熱を吸収して温水となって(出湯h)、他設備の熱源として供される。
In the first embodiment, a supercritical refrigeration cycle operation using CO 2 refrigerant is performed in the case 1, while in the hot water supply system 8, the refrigerant is evaporated in the feed water cooler 9 and in the air heat exchanger 5. The antifreeze cooled by the outside air cooled by the heat of the latent heat is supplied from the antifreeze circulation line u to the feed water cooler 9, the feed water w is cooled by exchanging heat with the feed water w, and the cooled feed water is supplied to the gas cooler 3. By supplying, the supercritical CO 2 refrigerant is cooled and liquefied.
On the other hand, the cooling water absorbs the heat of the CO 2 refrigerant to become warm water (hot water h) and is used as a heat source for other equipment.

なお本実施例では、圧縮機2の吐出側に設けられたCO冷媒の温度及び圧力を温度センサ(T2)13及び圧力センサ(P1)15で検出し、これらの検出値に基づき、ガスクーラ3に供給する冷却水の温度を調節する。その調節方法は、冷却水ラインqの冷却水温度を温度検出器(T1)12で検出し、その検出値に基づいて、不凍液循環ポンプ11の出力を調節して、給水冷却器9を通る不凍液の流量を変更したり、あるいは給水冷却器9の入口側の給水wの温度を温度検出器(T3)14で検出し、その検出値に基づいて不凍液ポンプ11の出力を変更するものである。 In this embodiment, the temperature and pressure of the CO 2 refrigerant provided on the discharge side of the compressor 2 are detected by the temperature sensor (T2) 13 and the pressure sensor (P1) 15, and based on these detected values, the gas cooler 3 Adjust the temperature of the cooling water supplied to the. In the adjustment method, the temperature of the cooling water line q is detected by the temperature detector (T1) 12, and the output of the antifreeze circulating pump 11 is adjusted based on the detected value, and the antifreeze liquid passing through the feed water cooler 9 is adjusted. Or the temperature of the feed water w on the inlet side of the feed water cooler 9 is detected by the temperature detector (T3) 14, and the output of the antifreeze liquid pump 11 is changed based on the detected value.

たとえば温度検出器(T3)14の検出値が35℃になったら、不凍液循環ポンプ11を稼動させ、冷却水ラインqの冷却水の温度を下げる。また一方温度検出器(T1)12の検出値が20℃になったら、不凍液循環ポンプ11を停止する。   For example, when the detected value of the temperature detector (T3) 14 reaches 35 ° C., the antifreeze circulating pump 11 is operated to lower the temperature of the cooling water in the cooling water line q. On the other hand, when the detected value of the temperature detector (T1) 12 reaches 20 ° C., the antifreeze circulating pump 11 is stopped.

従って本実施例によれば、ガスクーラ3に供給させる給水を予め不凍液によって冷却するため、ガスクーラ3に供給される給水の温度上昇を防止できるとともに、不凍液を使用しているため、外気温度が下がった場合でも、空気熱交換器5を含む不凍液循環ラインuが凍結し、運転不能となるおそれや、装置破損のおそれがない。
また給水が不凍液によって吸収される熱量を調整可能に構成して、ガスクーラ3に供給される給水の温度を調整可能であるため、広範囲の条件で運転可能となる。
Therefore, according to the present embodiment, the feed water to be supplied to the gas cooler 3 is cooled by the antifreeze liquid in advance, so that the temperature rise of the feed water supplied to the gas cooler 3 can be prevented and the use of the antifreeze liquid has lowered the outside air temperature. Even in this case, the antifreeze circulation line u including the air heat exchanger 5 is frozen, and there is no possibility that the operation becomes impossible or the apparatus is damaged.
In addition, since the amount of heat absorbed by the antifreeze liquid can be adjusted and the temperature of the water supplied to the gas cooler 3 can be adjusted, the operation can be performed under a wide range of conditions.

またガスクーラ3に供給する水の温度を温度検出器(T1)12により検出し、同検出値に基づいて、圧縮機2の吐出側の冷媒圧力及び冷媒温度を制御しており、これによってガスクーラ3に供給する水の温度がある程度高温であっても、運転可能となる。   Further, the temperature of the water supplied to the gas cooler 3 is detected by a temperature detector (T1) 12, and the refrigerant pressure and refrigerant temperature on the discharge side of the compressor 2 are controlled based on the detected value, whereby the gas cooler 3 Even if the temperature of the water supplied to the water is high to some extent, the operation becomes possible.

また不凍液を給水冷却器9及び不凍液冷却器10の間を循環させる不凍液循環ポンプ11を設け、圧縮機2の吐出側の冷媒圧力及び冷媒温度の設定条件に基づいて、かつこれに付加して、さらに給水冷却器9の入口側の給水温度を検出し、同検出値に基づいて、不凍液循環ポンプ11の出力を制御し、ガスクーラ3に供給する水の温度を制御しているため、給水冷却器9入口側の給水温度に大きなバラツキがあっても、ガスクーラ3に供給する水の温度を運転可能な温度に精度良く制御することができ、運転許容条件を格段に広げることができる。   In addition, an antifreeze circulating pump 11 for circulating the antifreeze between the feed water cooler 9 and the antifreeze cooler 10 is provided, and based on the setting conditions of the refrigerant pressure and the refrigerant temperature on the discharge side of the compressor 2, and added thereto, Further, the feed water cooler 9 detects the feed water temperature on the inlet side of the feed water cooler 9, controls the output of the antifreeze circulating pump 11 based on the detected value, and controls the temperature of the water supplied to the gas cooler 3. Even if there is a large variation in the water supply temperature on the 9 inlet side, the temperature of the water supplied to the gas cooler 3 can be accurately controlled to an operable temperature, and the operation permissible conditions can be greatly expanded.

本発明によれば、たとえば圧縮機、ガスクーラ、膨張弁、蒸発器よりなり、ガス冷却器と熱交換する給湯ラインを備えた、超臨界状態となるCO冷媒ヒートポンプシステム等において、ガスクーラに供給する給水の温度を制御してCO冷媒の圧力上昇及び温度上昇を抑制することができるとともに、ガスクーラに供給する水の温度を運転可能な温度に制御することができ、運転許容条件を格段に広げることができるヒートポンプのガスクーラ給水温度制御装置を提供することができる。 According to the present invention, for example, in a supercritical CO 2 refrigerant heat pump system including a compressor, a gas cooler, an expansion valve, and an evaporator and having a hot water supply line for exchanging heat with the gas cooler, the gas cooler is supplied. The temperature of the feed water can be controlled to suppress the pressure rise and temperature rise of the CO 2 refrigerant, and the temperature of the water supplied to the gas cooler can be controlled to an operable temperature, thereby greatly extending the operation permissible conditions. It is possible to provide a gas cooler feed water temperature control device for a heat pump.

本発明の第1実施例に係るヒートポンプシステムの系統図である。1 is a system diagram of a heat pump system according to a first embodiment of the present invention.

符号の説明Explanation of symbols

1 ヒートポンプシステム収納ケース
2 圧縮機
3 ガスクーラ
4 膨張弁
5 空気熱交換器
6 アキュムレータ
7 ファン
8 給湯システム
9 給水冷却器
10 不凍液冷却器
11 不凍液循環ポンプ
12、14 温度検出器
13 温度センサ
15 圧力センサ
a1 外気
a2 冷却空気
c C0冷媒循環ライン
h 出湯
q 冷却水ライン
u 不凍液循環ライン
w 給水
DESCRIPTION OF SYMBOLS 1 Heat pump system storage case 2 Compressor 3 Gas cooler 4 Expansion valve 5 Air heat exchanger 6 Accumulator 7 Fan 8 Hot water supply system 9 Water supply cooler 10 Antifreeze liquid cooler 11 Antifreeze liquid circulation pump 12, 14 Temperature detector 13 Temperature sensor 15 Pressure sensor a1 Outside air a2 Cooling air c C0 2 Refrigerant circulation line h Hot water q Cooling water line u Antifreeze circulation line w Water supply

Claims (9)

圧縮機、ガスクーラ、膨張弁及び蒸発器を備えて冷凍サイクルを構成し、前記ガスクーラに冷却水を供給して冷媒を冷却するようにしたヒートポンプにおいて、前記ガスクーラに給水する給水配管に、不凍液を冷媒とし前記給水を同不凍液と間接熱交換して同給水を冷却する給水冷却器を設けるとともに、同不凍液を冷却する不凍液冷却器を前記ヒートポンプの内部又は外部に設け、前記給水と同不凍液との熱交換量を調整可能に構成したことを特徴とするヒートポンプのガスクーラ給水温度制御装置。   In a heat pump that includes a compressor, a gas cooler, an expansion valve, and an evaporator to form a refrigeration cycle and supplies the cooling water to the gas cooler to cool the refrigerant, the antifreeze liquid is supplied to the water supply pipe that supplies the gas cooler. A feed water cooler that cools the feed water by indirect heat exchange of the feed water with the antifreeze liquid, and an antifreeze cooler that cools the antifreeze liquid is provided inside or outside the heat pump, and heat of the feed water and the antifreeze liquid is provided. A gas cooler feed water temperature control device for a heat pump, characterized in that the exchange amount can be adjusted. 前記不凍液冷却器が外気と熱交換する空冷型であることを特徴とする請求項1記載のヒートポンプのガスクーラ給水温度制御装置。   2. The gas cooler feed water temperature control device for a heat pump according to claim 1, wherein the antifreeze liquid cooler is of an air cooling type for exchanging heat with outside air. 前記不凍液冷却器が散水による冷却機能を付加したことを特徴とする請求項2記載のヒートポンプのガスクーラ給水温度制御装置。   3. The gas cooler feed water temperature control device for a heat pump according to claim 2, wherein the antifreeze liquid cooler is added with a water cooling function. 前記不凍液冷却器が水道水と熱交換する水冷型であることを特徴とする請求項1記載のヒートポンプのガスクーラ給水温度制御装置。   2. The gas cooler feed water temperature control device for a heat pump according to claim 1, wherein the antifreeze liquid cooler is of a water cooling type for exchanging heat with tap water. 前記不凍液冷却器を前記ヒートポンプ内の蒸発器と一体に設けたことを特徴とする請求項1記載のヒートポンプのガスクーラ給水温度制御装置。   2. The gas cooler feed water temperature control device for a heat pump according to claim 1, wherein the antifreeze liquid cooler is provided integrally with an evaporator in the heat pump. 前記ガスクーラに供給する水の温度を検出し、同検出値に基づいて前記圧縮機の吐出側から前記膨張弁の入口側までの冷媒圧力を制御することを特徴とする請求項1記載のヒートポンプのガスクーラ給水温度制御装置。   The temperature of water supplied to the gas cooler is detected, and the refrigerant pressure from the discharge side of the compressor to the inlet side of the expansion valve is controlled based on the detected value. Gas cooler feed water temperature control device. 前記ガスクーラに供給する水の温度を検出し、同検出値に基づいて前記圧縮機の吐出側から前記ガスクーラの入口側までの冷媒温度を制御することを特徴とする請求項1記載のヒートポンプのガスクーラ給水温度制御装置。   The temperature of water supplied to the gas cooler is detected, and the refrigerant temperature from the discharge side of the compressor to the inlet side of the gas cooler is controlled based on the detected value. Feed water temperature control device. 前記不凍液を前記給水冷却器及び前記不凍液冷却器の間を循環させる不凍液循環ポンプを設け、前記圧縮機の吐出側から前記膨張弁の入口側までの冷媒圧力、又は前記圧縮機の吐出側から前記ガスクーラの入口側までの冷媒温度の設定条件に基づいて、前記不凍液循環ポンプの出力を制御し、前記ガスクーラに供給する水の温度を制御することを特徴とする請求項1記載のヒートポンプのガスクーラ給水温度制御装置。   An antifreeze liquid circulation pump for circulating the antifreeze liquid between the feed water cooler and the antifreeze liquid cooler is provided, the refrigerant pressure from the discharge side of the compressor to the inlet side of the expansion valve, or the discharge side of the compressor from the discharge side 2. The gas cooler water supply of the heat pump according to claim 1, wherein the temperature of water supplied to the gas cooler is controlled by controlling an output of the antifreeze liquid circulation pump based on a setting condition of a refrigerant temperature up to an inlet side of the gas cooler. Temperature control device. 前記給水冷却器の入口側の給水温度を検出し、同検出値に基づいて前記不凍液循環ポンプを制御することを特徴とする請求項8記載のヒートポンプのガスクーラ給水温度制御装置。   9. The gas cooler feed water temperature control device for a heat pump according to claim 8, wherein the feed water temperature on the inlet side of the feed water cooler is detected and the antifreeze circulation pump is controlled based on the detected value.
JP2004184783A 2004-06-23 2004-06-23 CO2 refrigerant heat pump gas cooler feed water temperature control device Expired - Fee Related JP4279208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004184783A JP4279208B2 (en) 2004-06-23 2004-06-23 CO2 refrigerant heat pump gas cooler feed water temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004184783A JP4279208B2 (en) 2004-06-23 2004-06-23 CO2 refrigerant heat pump gas cooler feed water temperature control device

Publications (2)

Publication Number Publication Date
JP2006010128A true JP2006010128A (en) 2006-01-12
JP4279208B2 JP4279208B2 (en) 2009-06-17

Family

ID=35777576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004184783A Expired - Fee Related JP4279208B2 (en) 2004-06-23 2004-06-23 CO2 refrigerant heat pump gas cooler feed water temperature control device

Country Status (1)

Country Link
JP (1) JP4279208B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157481A (en) * 2006-12-20 2008-07-10 Mayekawa Mfg Co Ltd Cooling equipment and its remodeling method
CN101672499B (en) * 2009-07-31 2012-09-26 王全龄 Novel air source heat pump air conditioner
CN102778082A (en) * 2012-07-28 2012-11-14 合肥天鹅制冷科技有限公司 Low-temperature exhaust air source spray heat capturing efficient water source heat pump fresh air system
KR101268055B1 (en) * 2013-01-08 2013-05-28 이명수 Chiller
CN112856854A (en) * 2021-01-18 2021-05-28 滨州新拓自然能电力工程有限公司 Gas cooler for carbon dioxide heat pump

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102003836B (en) * 2010-12-27 2012-09-19 堃霖冷冻机械(上海)有限公司 Low-temperature water source heat pump unit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157481A (en) * 2006-12-20 2008-07-10 Mayekawa Mfg Co Ltd Cooling equipment and its remodeling method
CN101672499B (en) * 2009-07-31 2012-09-26 王全龄 Novel air source heat pump air conditioner
CN102778082A (en) * 2012-07-28 2012-11-14 合肥天鹅制冷科技有限公司 Low-temperature exhaust air source spray heat capturing efficient water source heat pump fresh air system
KR101268055B1 (en) * 2013-01-08 2013-05-28 이명수 Chiller
CN112856854A (en) * 2021-01-18 2021-05-28 滨州新拓自然能电力工程有限公司 Gas cooler for carbon dioxide heat pump

Also Published As

Publication number Publication date
JP4279208B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
JP6111157B2 (en) Gas vaporizer with cold energy recovery function and cold energy recovery device
KR20170112781A (en) Chiller for semiconductor process using thermoelement
JP2006517643A (en) Supercritical pressure regulation of vapor compression system
JP2008128809A (en) Temperature adjustment device for testing
JP4904128B2 (en) Natural refrigerant cooling system
JP6884387B2 (en) Liquid temperature control device and temperature control method using it
JP4279208B2 (en) CO2 refrigerant heat pump gas cooler feed water temperature control device
WO2002090843A1 (en) Refrigerating device
JP2006234238A (en) Refrigerating device and its control method
JP2006266596A (en) Hot water storage type water heater
JP2008075948A (en) Water cooling type air conditioner
JP2007155315A (en) Natural refrigerant cooling system
JP4786599B2 (en) Cooling system
JP4928357B2 (en) Cooling system
JP2006077998A (en) Refrigerating cycle device, and control method
JP2013100930A (en) Temperature adjusting device
JP5280835B2 (en) Compression type heat pump equipped with latent heat storage device
JP2007218457A (en) Cooling liquid circulating device
JP4658866B2 (en) Cooling system
JP2006194537A (en) Heat pump device
JP2003329355A (en) Cooling device
JP2002022300A (en) Refrigeration apparatus
JP5338758B2 (en) Hot water supply apparatus and hot water control method thereof
JP6704505B2 (en) Heat pump water heater
JP2008107057A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090311

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees