JP2006009863A - Tripod type constant velocity universal joint - Google Patents

Tripod type constant velocity universal joint Download PDF

Info

Publication number
JP2006009863A
JP2006009863A JP2004185101A JP2004185101A JP2006009863A JP 2006009863 A JP2006009863 A JP 2006009863A JP 2004185101 A JP2004185101 A JP 2004185101A JP 2004185101 A JP2004185101 A JP 2004185101A JP 2006009863 A JP2006009863 A JP 2006009863A
Authority
JP
Japan
Prior art keywords
roller
ring
universal joint
constant velocity
leg shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004185101A
Other languages
Japanese (ja)
Inventor
Takashi Nozaki
孝志 野▲崎▼
Yoshihiko Hayama
佳彦 葉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2004185101A priority Critical patent/JP2006009863A/en
Publication of JP2006009863A publication Critical patent/JP2006009863A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/202Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints
    • F16D3/205Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part
    • F16D3/2055Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part having three pins, i.e. true tripod joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/202Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints
    • F16D2003/2026Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints with trunnion rings, i.e. with tripod joints having rollers supported by a ring on the trunnion

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the lifespan of a joint from being decreased by the advancement of wear due to the contact of the same part of the outer diameter route surface of a ring with balls since the ring of a roller assembly fitted onto the leg shaft of a tripod member is less liable to be rotated relative to the leg shaft. <P>SOLUTION: This tripod type constant velocity universal joint is formed so that the outer diameter cross section of the leg shaft 22 is brought into contact with the inner peripheral surface of the ring 32 at two points or more when the torque is applied thereto. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明はトリポード型等速自在継手に関する。
一般に、等速自在継手は駆動側と従動側の2軸を連結して2軸間に角度があっても等速で回転力を伝達することのできるユニバーサルジョイントの一種である。等速自在継手は固定式と摺動式があり、摺動式のものは継手のプランジングによって2軸間の相対的軸方向変位を可能にする。摺動式の一種にトリポード型があり、このトリポード型は半径方向に突出した3本の脚軸を備えたトリポード部材を一方の軸に結合する。また、軸方向に延びる3つのトラック溝を備えた中空円筒状の外方継手部材を他方の軸に結合する。そして外方継手部材のトラック溝内にトリポード部材の脚軸を係合させてトルクの伝達を行う。
The present invention relates to a tripod type constant velocity universal joint.
In general, a constant velocity universal joint is a kind of universal joint that connects two shafts on the driving side and the driven side and can transmit a rotational force at a constant speed even if there is an angle between the two shafts. The constant velocity universal joint includes a fixed type and a sliding type, and the sliding type allows relative axial displacement between two axes by plunging the joint. One type of sliding type is a tripod type, which connects a tripod member having three leg shafts protruding in the radial direction to one shaft. Further, a hollow cylindrical outer joint member having three track grooves extending in the axial direction is coupled to the other shaft. Then, the torque is transmitted by engaging the leg shaft of the tripod member in the track groove of the outer joint member.

非特許文献1には最も基本的なトリポード型等速自在継手が示される。トリポード型等速自在継手は、外側継手部材とトリポード部材とからなり、連結すべき二軸の一方が外側継手部材と接続され、他方がトリポード部材と接続される。外側継手部材は有底筒状で、内周に軸方向に延びる三本のトラック溝を有する。各トラック溝の円周方向で向かい合った側壁に円筒状のローラ案内面が形成される。トリポード部材は半径方向に突出した三本の脚軸を有し、各脚軸にニードルローラとリングが担持される。このリングが外側継手部材のトラック溝内に収容される。   Non-Patent Document 1 shows the most basic tripod type constant velocity universal joint. The tripod type constant velocity universal joint includes an outer joint member and a tripod member, and one of the two shafts to be coupled is connected to the outer joint member and the other is connected to the tripod member. The outer joint member has a bottomed cylindrical shape and has three track grooves extending in the axial direction on the inner periphery. Cylindrical roller guide surfaces are formed on the side walls facing each other in the circumferential direction of each track groove. The tripod member has three leg shafts protruding in the radial direction, and a needle roller and a ring are carried on each leg shaft. This ring is received in the track groove of the outer joint member.

脚軸の外周面は、リングが脚軸に沿ってスライド可能なように、長軸が継手の軸線に直交する楕円形状又は円であり、縦断面では脚軸の軸線と平行なストレート形状である。脚軸に外嵌したリングは、内周面が円筒状であり、外周は球面の一部すなわち部分球面である。リングと脚軸間には複数のニードルローラが組み込まれる。
また、トリポード型等速自在継手には、図7に示すような型式もある。すなわち、外側継手部材とトリポード部材とからなり、連結すべき二軸の一方が外側継手部材と接続され、他方がトリポード部材と接続される。外側継手部材10は有底筒状で、内周に軸方向に延びる三本のトラック溝12を有する。各トラック溝12の円周方向で向かい合った側壁に円筒状のローラ案内面14が形成される。トリポード部材20は半径方向に突出した三本の脚軸22を有し、各脚軸22にローラ・アセンブリ(32,34,36)が担持される。このローラ・アセンブリが外側継手部材10のトラック溝12内に収容される。
The outer peripheral surface of the leg shaft is an elliptical shape or a circle whose major axis is orthogonal to the axis of the joint so that the ring can slide along the leg shaft, and is a straight shape parallel to the axis of the leg shaft in the longitudinal section. . The ring externally fitted on the leg shaft has a cylindrical inner peripheral surface, and the outer periphery is a part of a spherical surface, that is, a partial spherical surface. A plurality of needle rollers are incorporated between the ring and the leg shaft.
Further, the tripod type constant velocity universal joint includes a type as shown in FIG. That is, it consists of an outer joint member and a tripod member, and one of the two shafts to be connected is connected to the outer joint member, and the other is connected to the tripod member. The outer joint member 10 has a bottomed cylindrical shape and has three track grooves 12 extending in the axial direction on the inner periphery. Cylindrical roller guide surfaces 14 are formed on the side walls of each track groove 12 facing each other in the circumferential direction. The tripod member 20 has three leg shafts 22 projecting in the radial direction, and a roller assembly (32, 34, 36) is carried on each leg shaft 22. This roller assembly is received in the track groove 12 of the outer joint member 10.

脚軸22の外周面は、脚軸22がローラ・アセンブリ(32,34,36)に対し図7紙面に垂直方向に揺動可能なように、長軸が継手の軸線に直交する楕円形状であり、縦断面では脚軸の軸線と平行なストレート形状である。
ローラ・アセンブリはリング32とローラ34とボール36を含んでいる。脚軸22に外嵌したリング32は、内周面の縦断面が凸円弧形状となった円環状で、外周に二段の内側軌道面33a,33bを備える。ローラ34はここでは二分割構造で、軸線に垂直な面で接した一対のローラ部分34a,34bで構成される。各ローラ部分34a,34bの外周面は、軸線から半径方向に離れた位置にある点を曲率中心とする球面の一部すなわち部分球面である。各ローラ部分34a,34bは内周に二段の外側軌道面35a,35bを備える。リング32とローラ34とは複数のボール36を介してユニット化され、相対回転可能なローラ・アセンブリを構成する。すなわち、リング32の外周の内側軌道面33a,33bと、ローラ34の内周の外側軌道面35a,35bとの間に複列のボール36a,36bが転動自在に介在する。ボール36は、できるだけ多くのボールを入れた、保持器のない、いわゆる総玉状態で組み込まれる。
The outer peripheral surface of the leg shaft 22 has an elliptical shape in which the long axis is perpendicular to the joint axis so that the leg shaft 22 can swing with respect to the roller assembly (32, 34, 36) in the direction perpendicular to the plane of FIG. Yes, in the longitudinal section, it is a straight shape parallel to the axis of the leg shaft.
The roller assembly includes a ring 32, a roller 34 and a ball 36. The ring 32 externally fitted to the leg shaft 22 has an annular shape in which the longitudinal section of the inner peripheral surface is a convex arc shape, and includes two inner track surfaces 33a and 33b on the outer periphery. Here, the roller 34 has a two-part structure and is composed of a pair of roller portions 34a and 34b that are in contact with each other at a plane perpendicular to the axis. The outer peripheral surface of each roller part 34a, 34b is a part of a spherical surface having a center of curvature, that is, a partial spherical surface, at a point located in a radial direction away from the axis. Each of the roller portions 34a and 34b includes two outer raceway surfaces 35a and 35b on the inner periphery. The ring 32 and the roller 34 are unitized via a plurality of balls 36 to constitute a roller assembly that can rotate relative to each other. That is, the double-row balls 36a and 36b are movably interposed between the inner raceway surfaces 33a and 33b on the outer periphery of the ring 32 and the outer raceway surfaces 35a and 35b on the inner periphery of the roller 34. The balls 36 are assembled in a so-called full ball state in which as many balls as possible are placed and there is no cage.

ローラ34の外周面と接する外側継手部材10のローラ案内面14は、ローラ34の外周面と適合する断面形状を有する。ここではローラ案内面14の断面形状はゴシック・アーチ形状であって、これにより、ローラ34とローラ案内面14とがアンギュラ・コンタクトをなす。図示は省略したが、球面状のローラ外周面に対してローラ案内面14の断面形状をテーパ形状としても両者のアンギュラ・コンタクトが実現する。このようにローラ34とローラ案内面14とがアンギュラ・コンタクトをなす構成を採用することによって、ローラ34が振れにくくなるため姿勢が安定する。なお、アンギュラ・コンタクトを採用しない場合には、たとえば、ローラ案内面14を軸線が外側継手部材10の軸線と平行な円筒面の一部で構成し、その断面形状をローラ34の外周面の母線に対応する円弧とすることもできる。   The roller guide surface 14 of the outer joint member 10 that contacts the outer peripheral surface of the roller 34 has a cross-sectional shape that matches the outer peripheral surface of the roller 34. Here, the cross-sectional shape of the roller guide surface 14 is a Gothic arch shape, whereby the roller 34 and the roller guide surface 14 form an angular contact. Although not shown, even if the roller guide surface 14 has a tapered cross section with respect to the outer peripheral surface of the spherical roller, the angular contact between them can be realized. By adopting such a configuration in which the roller 34 and the roller guide surface 14 form an angular contact, the posture of the roller 34 is stabilized because the roller 34 is less likely to shake. When the angular contact is not employed, for example, the roller guide surface 14 is constituted by a part of a cylindrical surface whose axis is parallel to the axis of the outer joint member 10, and the cross-sectional shape thereof is a generatrix of the outer peripheral surface of the roller 34. It can also be an arc corresponding to.

従来のスライド式トリポード型等速自在継手には、転動体に図示例のようにボールを使用したものの他に、総ころタイプの針状ころを使用したものがある。針状ころは、回転中のころのスキュー等により、転動体面にエッジロードなど偏荷重が作用しやすい。さらには内部のすきまや精度の関係によって接触状態が安定せず、球面ローラが傾いたりしてもエッジロードが作用する。また、構造上球面ローラの端部と脚軸や針状ころ抜止め用の止め輪との間で相対滑りも発生する。   As a conventional sliding tripod type constant velocity universal joint, there is a type using a full-roller type needle roller in addition to a rolling element using a ball as shown in the illustrated example. In the needle roller, an eccentric load such as an edge load is likely to act on the rolling element surface due to a skew of the rotating roller or the like. Furthermore, the contact state is not stable due to the internal clearance and accuracy, and the edge load acts even if the spherical roller is tilted. In addition, relative slippage also occurs between the end of the spherical roller and the leg shaft and the retaining ring for preventing the needle rollers from being structurally structured.

なお、非特許文献1のローラ・アセンブリでは、ローラを支持するためニードル軸受や滑り軸受が使用される。
特開2000−227124 特開2001−295855 特開2000−257643 特開2000−346088 特開2002−323060 Universal Joint and Driveshaft Design Manual Section 3.2.6“Tripot Universal Joint (End Motion Type)"
In the roller assembly of Non-Patent Document 1, a needle bearing or a sliding bearing is used to support the roller.
JP 2000-227124 A JP 2001-295855 A JP 2000-257463 A JP2000-346088 JP 2002-323060 A Universal Joint and Driveshaft Design Manual Section 3.2.6 “Tripot Universal Joint (End Motion Type)”

トリポード部材の3本の脚軸の外径は円柱状をなし、この脚軸にローラ・アセンブリの玉軸受の内輪となるリングが外嵌され、ローラが脚軸周りにのみ回転自在とされる。脚軸とリング内径との接触によって発生する摩擦は、玉軸受軌道面の摩擦に比べると非常に大きい。この摩擦のため、リングは脚軸の周りを自由に相対回転することができない。したがって、リングの軌道面は、等速自在継手のトルク作用により、常に同じ場所に転動体からの力が作用し、特にトルクが大きい条件下では、リングの軌道面の磨耗が促進され、寿命が低下する。特に図8、図9および図10に示されるような、脚軸断面の場合は、リング外径面の軌道面が激しく磨耗し、寿命が低下することが実験により分かっている。   The outer diameter of the three leg shafts of the tripod member has a cylindrical shape, and a ring serving as an inner ring of a ball bearing of the roller assembly is fitted on the leg shaft so that the roller can rotate only around the leg shaft. The friction generated by the contact between the leg shaft and the inner diameter of the ring is very large compared to the friction of the ball bearing raceway surface. Due to this friction, the ring cannot rotate freely around the leg axis. Therefore, due to the torque action of the constant velocity universal joint, the force from the rolling element always acts on the raceway surface of the ring, and especially under the condition where the torque is large, the wear of the raceway surface of the ring is promoted and the service life is shortened. descend. In particular, in the case of the leg shaft cross-section as shown in FIGS. 8, 9, and 10, it has been experimentally found that the raceway surface of the outer surface of the ring is severely worn and the life is shortened.

本発明は、トルク伝達時に当接する脚軸とリング内径部の接触箇所を、従来の1点から複数点に増やしたことを特徴とする。なお、脚軸とリングとの嵌め合いはすきま嵌めとし、リングが脚軸回りを回転可能とする。複数の接触点は、脚軸の輪郭における4つ以上の凸状円弧または凸状曲線で作られる。これら凸状円弧または凸状曲線がリング内径に当接して接触点となる。脚軸の具体的外径形状は、例えば4つまたは5つの円を部分的に重ねつつ円周方向に一つずつ配置した形状や、2つの楕円を互いの長軸を平行にして完全に離間させるかあるいは一部を重ね合わせた形状とする。   The present invention is characterized in that the number of contact points between the leg shaft and the inner diameter portion of the ring that are in contact with each other during torque transmission is increased from one point to a plurality of points. The fitting between the leg shaft and the ring is a clearance fit so that the ring can rotate around the leg shaft. The plurality of contact points are made of four or more convex arcs or convex curves in the contour of the leg axis. These convex arcs or convex curves abut on the inner diameter of the ring to form contact points. The specific shape of the outer diameter of the leg shaft is, for example, a shape in which four or five circles are partially overlapped one by one in the circumferential direction, or two ellipses are completely separated with their long axes parallel to each other Or have a partially overlapped shape.

このような断面形状を持つ脚軸に対して、ローラ・アセンブリの軸受内輪を構成するリングを外嵌すると、等速自在継手の駆動力伝達時にリングの内径に対する脚軸の複数(少なくとも2点)の接触点に作用するの摩擦力の合力によって、リングの回転方向にモーメントが作用し、脚軸とリングとの相対回転が促進される。   When a ring constituting the inner ring of the roller assembly is fitted onto the leg shaft having such a cross-sectional shape, a plurality of (at least two) leg shafts with respect to the inner diameter of the ring when the driving force of the constant velocity universal joint is transmitted. By the resultant force of the frictional force acting on the contact point, a moment acts in the rotation direction of the ring, and the relative rotation between the leg shaft and the ring is promoted.

本発明は前述のように、脚軸の外径輪郭を継手の軸線と直角な外径中心線に関して非対称にすると共に、前記脚軸の外径断面と前記リングの内周面とが2点以上で接触し、本継手に回転トルクが作用する時、これらの接点に作用する摩擦力の合力(ベクトル和)によって回転モーメントが発生する。この回転モーメントによって脚軸に対してリングが相対回転し、リングの外径軌道面の磨耗の問題が緩和され、等速自在継手の寿命が向上する。   In the present invention, as described above, the outer diameter contour of the leg shaft is asymmetric with respect to the outer diameter center line perpendicular to the joint axis, and the outer diameter cross section of the leg shaft and the inner peripheral surface of the ring are two or more points. When a rotational torque acts on the joint, the rotational moment is generated by the resultant force (vector sum) of the frictional forces acting on these contact points. This rotational moment causes the ring to rotate relative to the leg shaft, alleviating the problem of wear on the outer diameter raceway surface of the ring, and improving the life of the constant velocity universal joint.

図1は、ローラ・アセンブリに単列の深溝玉軸受を使用した本発明に係るトリポード型等速自在継手の断面である。本発明はこのような単列深溝玉軸受だけでなく、これに代えて、アンギュラ接触単列玉軸受、複列深溝玉軸受、DB(背面合わせ)型複列アンギュラ玉軸受、ニードル軸受を使用したものでもよい。
この等速自在継手の脚軸22の外径輪郭は、脚軸22に外嵌するリング32の円筒状内径面に図示上4点以上で当接する形状とされる。図2〜図4に、脚軸22の外径輪郭の代表的な3つの実施形態を示す。図2〜図4では脚軸22の外径がリング32の内径に4点ないし5点で当接した状態を示すが、実際は脚軸22の外径がリング32の内径にすきま嵌めされるのであり、従って回転トルクの負荷時、図2〜図4で脚軸22の外径はリング32の内径に2点ないし3点で当接することになる。図2では脚軸22の外径に4つ(偶数個)の円弧R1,R2,R3,R4を形成する。4つの円弧の半径は、R1とR3が等しく、R2とR4が等しい。各円弧R1,R2,R3,R4の中心は、中心軸をX軸、Y軸とした場合、各象限内に一つずつ存在する。
FIG. 1 is a cross section of a tripod constant velocity universal joint according to the present invention using a single row deep groove ball bearing in a roller assembly. The present invention uses not only such a single row deep groove ball bearing but also an angular contact single row ball bearing, a double row deep groove ball bearing, a DB (back-to-back) type double row angular ball bearing, and a needle bearing. It may be a thing.
The outer diameter contour of the leg shaft 22 of the constant velocity universal joint is a shape that abuts on the cylindrical inner diameter surface of the ring 32 fitted on the leg shaft 22 at four or more points in the drawing. 2 to 4 show three typical embodiments of the outer diameter contour of the leg shaft 22. 2 to 4 show a state in which the outer diameter of the leg shaft 22 is in contact with the inner diameter of the ring 32 at four or five points. However, since the outer diameter of the leg shaft 22 is actually fitted to the inner diameter of the ring 32, FIG. Therefore, when the rotational torque is applied, the outer diameter of the leg shaft 22 is in contact with the inner diameter of the ring 32 at two or three points in FIGS. In FIG. 2, four (even number) arcs R 1 , R 2 , R 3 , R 4 are formed on the outer diameter of the leg shaft 22. The radius of the four arcs is equal to R 1 and R 3 and equal to R 2 and R 4 . One center of each arc R 1 , R 2 , R 3 , R 4 exists in each quadrant when the central axis is the X axis and the Y axis.

脚軸22の外径輪郭は、図2に示すように、トリポード型等速自在継手の軸線と直交する中心線(図2のX軸)に関して上下対称である。これに対して、トリポード型等速自在継手の軸線と平行な中心線(Y軸)に関する脚軸22の外径輪郭は、左右非対称である。   As shown in FIG. 2, the outer diameter contour of the leg shaft 22 is vertically symmetric with respect to a center line (X axis in FIG. 2) orthogonal to the axis of the tripod constant velocity universal joint. On the other hand, the outer diameter contour of the leg shaft 22 with respect to the center line (Y axis) parallel to the axis of the tripod type constant velocity universal joint is left-right asymmetric.

すなわち、等速自在継手を機能の面から考えると、外側継手部材10(トラニオン軸)とトリポードに接続される駆動軸で形成される平面(図2〜4で脚軸22の中心を通る水平な中心線つまりX軸)に関しては、トルク伝達(駆動・被駆動)の関係より上下対称であることが望ましい。上下対称形であると、図2でθ1=θ3、θ2=θ4、R1=R3、R2=R4である。しかし、外側継手部材10(トラニオン軸)を含み、トリポードに接続される駆動軸に垂直な平面方向(図2〜4で脚軸22の中心を通る垂直な中心線つまりY軸)に関しては、対称である必要はない。 That is, when considering the constant velocity universal joint from the viewpoint of function, a plane formed by the outer joint member 10 (the trunnion shaft) and the drive shaft connected to the tripod (a horizontal path passing through the center of the leg shaft 22 in FIGS. 2 to 4). It is desirable that the center line, that is, the X axis) is vertically symmetric because of the torque transmission (drive / driven) relationship. In the case of the vertically symmetrical shape, θ 1 = θ 3 , θ 2 = θ 4 , R 1 = R 3 , R 2 = R 4 in FIG. However, the outer joint member 10 (the trunnion shaft) is included and is symmetrical with respect to the plane direction perpendicular to the drive shaft connected to the tripod (the vertical center line passing through the center of the leg shaft 22 in FIGS. 2 to 4). Need not be.

図3では脚軸22の外径に5つ(奇数個)の円弧R1,R2,R3,R4,R5を形成する。各円弧R1,R2,R3,R4の中心は、各象限内に一つずつ存在する。円弧R5の中心はX軸上にある。このような円弧の奇数個配置でも、図3から1つの円弧R5を省略した図2とトルク伝達作用ではまったく同じである。円弧R5はトルク伝達方向と平行な接線を有する関係で、この円弧R5の接触部にはトルクが作用しないためである。脚軸22の外径輪郭のXに関する対称形、Y軸に関する非対称形は、図2の場合と同様である。 In FIG. 3, five (odd number) arcs R 1 , R 2 , R 3 , R 4 , R 5 are formed on the outer diameter of the leg shaft 22. The center of each arc R 1 , R 2 , R 3 , R 4 exists in each quadrant. The center of the arc R 5 is on the X axis. Even with such an odd number of arcs arranged, the torque transmission action is exactly the same as in FIG. 2 in which one arc R 5 is omitted from FIG. This is because the arc R 5 has a tangent parallel to the torque transmission direction, and no torque acts on the contact portion of the arc R 5 . The symmetrical shape with respect to X of the outer diameter contour of the leg shaft 22 and the asymmetric shape with respect to the Y axis are the same as in the case of FIG.

図4では脚軸22の外径に4つの角部を形成する。4つの角部は鋭角でも鈍角でもなく、一部を破線で示す楕円の長軸端近傍の凸状曲線で構成される。各角部は各象限内に一つずつ分かれて存在する。なお、長径a1の楕円の短径は「b1」で示す。長径a2の楕円の短径は「b2」で示す。脚軸22の外径輪郭のXに関する対称形、Y軸に関する非対称形は、図2の場合と同様である。 In FIG. 4, four corners are formed on the outer diameter of the leg shaft 22. The four corners are neither acute nor obtuse, but are composed of convex curves in the vicinity of the major axis end of the ellipse, some of which are indicated by broken lines. Each corner exists separately in each quadrant. The minor axis of the ellipse having the major axis a 1 is indicated by “b 1 ”. The minor axis of the ellipse having the major axis a 2 is indicated by “b 2 ”. The symmetrical shape with respect to X of the outer diameter contour of the leg shaft 22 and the asymmetric shape with respect to the Y axis are the same as in the case of FIG.

なお、脚軸22の断面形は図5のようにリング32との接触に関与しない部分は直線37とすることができる。曲線は加工工程が複雑なため、直線化により加工コストを低減するためである。なお、接触に関係ない部分は潤滑剤の溜まり部としての機能を有するため、リング32との間で十分なすきまを確保することが望ましい。   Note that the cross-sectional shape of the leg shaft 22 can be a straight line 37 at a portion not involved in contact with the ring 32 as shown in FIG. This is because a curved line has a complicated machining process, so that the machining cost is reduced by linearization. It should be noted that a portion not related to contact has a function as a reservoir for the lubricant, and therefore it is desirable to ensure a sufficient clearance with the ring 32.

以上、脚軸外径輪郭の3つの実施形態について説明したが、本発明の重要なポイントは、動力学的な観点から摩擦を取り扱ったことにある。等速ジョイントがトルクを伝達しながら回転すると、脚軸22とリング32は2箇所で線接触する。この嵌め合いがすきま嵌めであるとき接触部は移動し、この移動によって接触部には摩擦力が作用する。2箇所の線接触の接触力は、伝達トルクおよび等速自在継手の角度(作動角)によって変動する。この変動により、各接触点での摩擦力も変動する。これらの変動する摩擦力の合力によって生じる回転モーメントによって、脚軸22とリング32との間で相対回転が起きる。   Although the three embodiments of the outer diameter contour of the leg shaft have been described above, the important point of the present invention is that the friction is handled from the dynamic viewpoint. When the constant velocity joint rotates while transmitting torque, the leg shaft 22 and the ring 32 are in line contact at two locations. When this fit is a clearance fit, the contact portion moves, and a frictional force acts on the contact portion by this movement. The contact force of the two line contacts varies depending on the transmission torque and the angle (operating angle) of the constant velocity universal joint. Due to this variation, the frictional force at each contact point also varies. Relative rotation occurs between the leg shaft 22 and the ring 32 due to the rotational moment generated by the resultant force of these varying frictional forces.

図8、図9および図10のような脚軸22の形状でも前述の回転モーメントは発生するが、この形状は1点での線接触であり、モーメントの大きさは非常に小さく、リングを積極的に回転させるまでには至らないと考えられる。実際に行った実験でも、リングの外径軌道面に対するボールの接触部のほとんどで移動が確認できず、したがって軸受軌道面が磨耗することを確認した。一方、図2のように接触部を2箇所に増やして行なった実験では、脚軸22とリング32との相対回転が確認され、軸受軌道面での磨耗も見られなかった。以上の現象は解析でも確認しており、脚軸22とリング32との接触部を複数に増やすと、脚軸22とリング32との相対回転が促進されることが確認されている。   The above-mentioned rotational moment is generated even in the shape of the leg shaft 22 as shown in FIGS. 8, 9 and 10, but this shape is a line contact at one point, the magnitude of the moment is very small, and the ring is positive. It is thought that it does not reach to rotate it. Even in the actual experiment, it was confirmed that the movement of the ball contact portion with respect to the outer diameter raceway surface of the ring could not be confirmed, and therefore the bearing raceway surface was worn. On the other hand, in an experiment performed with the contact portion increased to two as shown in FIG. 2, the relative rotation between the leg shaft 22 and the ring 32 was confirmed, and no wear on the bearing raceway surface was observed. The above phenomenon has also been confirmed by analysis, and it has been confirmed that when the contact portion between the leg shaft 22 and the ring 32 is increased to a plurality, the relative rotation between the leg shaft 22 and the ring 32 is promoted.

本発明は、深溝玉軸受を適用したトリポード型等速ジョイントのトリポード部材の脚軸22とリング32内径との接触点の数を特徴としているが、外側継手部材10のローラ案内面14とローラ外周面との接触形状は、図6(A)〜(D)に示されるようなものに適用可能である。すなわち、図6(A)は部分球面状のローラ34の外周面と外側継手部材のローラ案内面14とをサーキュラコンタクトさせたもの、(B)は部分球面状のローラ34の外周面と外側継手部材10のローラ案内面14とをアンギュラコンタクトさせたもの、(C)は部分球面状のローラ34の外周面と外側継手部材10のローラ案内面14とをサーキュラコンタクトさせたもの、(D)は部分球面状のローラ34の外周面と外側継手部材10のローラ案内面14とをアンギュラコンタクトさせたものである。   The present invention is characterized by the number of contact points between the leg shaft 22 of the tripod member of the tripod type constant velocity joint to which the deep groove ball bearing is applied and the inner diameter of the ring 32, but the roller guide surface 14 of the outer joint member 10 and the outer circumference of the roller The contact shape with the surface can be applied to the shape shown in FIGS. 6 (A) to 6 (D). 6A shows a circular contact between the outer peripheral surface of the partially spherical roller 34 and the roller guide surface 14 of the outer joint member, and FIG. 6B shows the outer peripheral surface of the partial spherical roller 34 and the outer joint. (C) is an angular contact between the roller guide surface 14 of the member 10 and (C) is a circular contact between the outer peripheral surface of the partially spherical roller 34 and the roller guide surface 14 of the outer joint member 10. The outer peripheral surface of the partially spherical roller 34 and the roller guide surface 14 of the outer joint member 10 are in angular contact.

ローラ・アセンブリに深溝玉軸受を用いたトリポード型等速自在継手の断面図。Sectional drawing of the tripod type constant velocity universal joint which used the deep groove ball bearing for the roller assembly. 本発明の第1実施形態に係るトリポード型等速自在継手のローラ・アセンブリの断面図。Sectional drawing of the roller assembly of the tripod type | mold constant velocity universal joint which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係るトリポード型等速自在継手のローラ・アセンブリの断面図。Sectional drawing of the roller assembly of the tripod type | mold constant velocity universal joint which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係るトリポード型等速自在継手のローラ・アセンブリの断面図。Sectional drawing of the roller assembly of the tripod type | mold constant velocity universal joint which concerns on 3rd Embodiment of this invention. 脚軸の外径輪郭の変形例を示す断面図。Sectional drawing which shows the modification of the outer diameter outline of a leg axis. ローラとローラ案内面との当接部位を示す断面図であって、(A)は部分球面状のローラの外周面と外側継手部材のローラ案内面とをサーキュラコンタクトさせた部分断面図、(B)は部分球面状のローラの外周面と外側継手部材のローラ案内面とをアンギュラコンタクトさせた部分断面図、(C)は部分球面状のローラの外周面と外側継手部材のローラ案内面とをサーキュラコンタクトさせた部分断面図、(D)は部分球面状のローラの外周面と外側継手部材のローラ案内面とをアンギュラコンタクトさせた部分断面図。It is sectional drawing which shows the contact part of a roller and a roller guide surface, Comprising: (A) is a fragmentary sectional view which made the circular contact of the outer peripheral surface of a partially spherical roller, and the roller guide surface of an outer joint member, (B ) Is a partial sectional view in which the outer peripheral surface of the partially spherical roller and the roller guide surface of the outer joint member are in angular contact, and (C) is the outer peripheral surface of the partial spherical roller and the roller guide surface of the outer joint member. FIG. 4D is a partial cross-sectional view in which circular contact is made, and FIG. 4D is a partial cross-sectional view in which an outer peripheral surface of a partially spherical roller and a roller guide surface of an outer joint member are in angular contact. 従来のトリポード型等速自在継手の断面図。Sectional drawing of the conventional tripod type constant velocity universal joint. 1つの円を外径輪郭とした脚軸を有するローラ・アセンブリの断面図。Sectional drawing of the roller assembly which has a leg axis | shaft which made one circle the outer diameter outline. 2つの円を重合させた形状を外径輪郭とした脚軸を有するローラ・アセンブリの断面図。Sectional drawing of the roller assembly which has a leg axis | shaft which made the external shape outline the shape which superposed | stacked two circles. 1つの楕円を外径輪郭とした脚軸を有するローラ・アセンブリの断面図。Sectional drawing of the roller assembly which has a leg axis | shaft which made the outer diameter outline of one ellipse.

符号の説明Explanation of symbols

10 外側継手部材
12 トラック溝
14 ローラ案内面
20 トリポード部材
22 脚軸
32 リング
34 ローラ
36 ボール
DESCRIPTION OF SYMBOLS 10 Outer joint member 12 Track groove 14 Roller guide surface 20 Tripod member 22 Leg shaft 32 Ring 34 Roller 36 Ball

Claims (6)

円周方向に向き合って配置された円筒状のローラ案内面を有する三つのトラック溝が形成された外側継手部材と、半径方向に突出した三つの脚軸を備えたトリポード部材と、前記トラック溝に挿入されたローラと、前記脚軸に外嵌して前記ローラを回転自在に支持するリングとを備え、前記ローラが前記ローラ案内面に沿って外側継手部材の軸方向に移動可能なトリポード型等速自在継手において、前記脚軸の外径輪郭を継手の軸線と直角な外径中心線に関して非対称にすると共に、トルク負荷時に前記脚軸の外径断面と前記リングの内周面とを2点以上で接触させたことを特徴とするトリポード型等速自在継手。 An outer joint member having three track grooves each having a cylindrical roller guide surface arranged in a circumferential direction, a tripod member having three leg shafts projecting in the radial direction, and the track grooves A tripod type that includes an inserted roller and a ring that is externally fitted to the leg shaft and rotatably supports the roller, and the roller is movable in the axial direction of the outer joint member along the roller guide surface. In the universal joint, the outer diameter contour of the leg shaft is asymmetric with respect to the outer diameter center line perpendicular to the axis of the joint, and the outer diameter cross section of the leg shaft and the inner peripheral surface of the ring are two points at the time of torque load. A tripod type constant velocity universal joint characterized by the above contact. 前記脚軸の外径断面の各接点を含む曲線を円弧としたことを特徴とする請求項1記載のトリポード型等速自在継手。 The tripod type constant velocity universal joint according to claim 1, wherein a curve including each contact point of the outer diameter cross section of the leg shaft is an arc. 前記脚軸の外径断面の各接点を含む曲線を、楕円の一部で構成したことを特徴とする請求項1記載のトリポード型等速自在継手。 The tripod type constant velocity universal joint according to claim 1, wherein a curve including each contact point on the outer diameter cross section of the leg shaft is formed of a part of an ellipse. 前記ローラの内周に形成した外側軌道面と、前記リングの外周に形成した内側軌道面との間に、複数のボールを深溝玉軸受またはアンギュラ玉軸受を構成するように介在させたことを特徴とする請求項1から3のいずれか記載のトリポード型等速自在継手。 A plurality of balls are interposed between the outer raceway surface formed on the inner periphery of the roller and the inner raceway surface formed on the outer periphery of the ring so as to form a deep groove ball bearing or an angular ball bearing. The tripod type constant velocity universal joint according to any one of claims 1 to 3. 前記ローラの内周に形成した外側軌道面と、前記リングの外周に形成した内側軌道面との間に、複数のころをニードル軸受を構成するように介在させたことを特徴とする請求項1から3のいずれか記載のトリポード型等速自在継手。 2. A plurality of rollers are interposed between the outer raceway surface formed on the inner circumference of the roller and the inner raceway surface formed on the outer circumference of the ring so as to constitute a needle bearing. The tripod type constant velocity universal joint according to any one of items 1 to 3. 前記ローラの外周面とローラ案内面とを、サーキュラ・コンタクトまたはアンギュラ・コンタクトさせたことを特徴とする請求項1から3のいずれか記載のトリポード型等速自在継手。 The tripod type constant velocity universal joint according to any one of claims 1 to 3, wherein the outer peripheral surface of the roller and the roller guide surface are in a circular contact or an angular contact.
JP2004185101A 2004-06-23 2004-06-23 Tripod type constant velocity universal joint Withdrawn JP2006009863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004185101A JP2006009863A (en) 2004-06-23 2004-06-23 Tripod type constant velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004185101A JP2006009863A (en) 2004-06-23 2004-06-23 Tripod type constant velocity universal joint

Publications (1)

Publication Number Publication Date
JP2006009863A true JP2006009863A (en) 2006-01-12

Family

ID=35777338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004185101A Withdrawn JP2006009863A (en) 2004-06-23 2004-06-23 Tripod type constant velocity universal joint

Country Status (1)

Country Link
JP (1) JP2006009863A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095854A (en) * 2006-10-12 2008-04-24 Pioneer Electronic Corp Fitting structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095854A (en) * 2006-10-12 2008-04-24 Pioneer Electronic Corp Fitting structure
JP4691485B2 (en) * 2006-10-12 2011-06-01 パイオニア株式会社 Mating structure

Similar Documents

Publication Publication Date Title
CN105782262B (en) Sliding type constant velocity joint
JP2001295855A (en) Uniform universal coupling
JP4681235B2 (en) Constant velocity joint
JP2005180640A (en) Constant velocity universal joint
JP6572754B2 (en) Rolling bearing
JP2006009863A (en) Tripod type constant velocity universal joint
JP2008286330A (en) Tripod-type constant velocity universal joint
CN107013569A (en) Rolling bearing
JP2010025191A (en) Self-aligning roller bearing
JP2020159498A (en) Cross roller bearing
JP2006138420A (en) Tripod type constant velocity universal joint
JP2008175371A (en) Sliding tripod type constant velocity joint
JP2006138421A (en) Tripod type constant velocity universal joint
WO2023170966A1 (en) Tripod-type constant-velocity universal joint
JP2005315336A (en) Tripod constant velocity universal joint
JP2008064252A (en) Tripod type constant velocity universal joint
JP7071854B2 (en) Constant velocity universal joint
JP2008051197A (en) Shaft coupling
JP2022150800A (en) Self-aligning roller bearing
JP2009014179A (en) Tripod-type constant velocity universal joint
JP6582564B2 (en) Toroidal continuously variable transmission
JP2008025800A (en) Bipod universal joint
JP2006266328A (en) Constant velocity universal joint
JP4706960B2 (en) Toroidal continuously variable transmission
JP2010007707A (en) Sliding type tripod constant velocity joint

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904