JP2006009232A - Method for producing antibacterial/antifungal/antiviral fiber - Google Patents

Method for producing antibacterial/antifungal/antiviral fiber Download PDF

Info

Publication number
JP2006009232A
JP2006009232A JP2005006270A JP2005006270A JP2006009232A JP 2006009232 A JP2006009232 A JP 2006009232A JP 2005006270 A JP2005006270 A JP 2005006270A JP 2005006270 A JP2005006270 A JP 2005006270A JP 2006009232 A JP2006009232 A JP 2006009232A
Authority
JP
Japan
Prior art keywords
fiber
fibers
antibacterial
pyridine
antifungal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005006270A
Other languages
Japanese (ja)
Other versions
JP4125293B2 (en
Inventor
Yoshimitsu Takahashi
宜光 高橋
Osamu Goshi
修 合志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Kasei Co Ltd
Original Assignee
Osaka Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Kasei Co Ltd filed Critical Osaka Kasei Co Ltd
Priority to JP2005006270A priority Critical patent/JP4125293B2/en
Priority to CN2009101412578A priority patent/CN101619539B/en
Priority to CN 200510006253 priority patent/CN1651640B/en
Publication of JP2006009232A publication Critical patent/JP2006009232A/en
Application granted granted Critical
Publication of JP4125293B2 publication Critical patent/JP4125293B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anti-microbial fiber to which the adsorption force of an anti-microbial agent is strong, which has a high anti-microbial property, also after washed, and is safer than other fibers, and from which the elusion of the anti-microbial property is extremely little. <P>SOLUTION: This method for producing the antibacterial/antifungal/antiviral fibers comprises attaching an aqueous suspension containing a pyridine-based anti-microbial agent having an inorganic value/organic value of 1.4 to 3.3 in a state dispersed in a fine particle state to synthetic fibers, pressing the fine particulate pyridine-based anti-microbial agent in spaces among the synthetic fibers and then subjecting the fibers to a thermal permeation treatment. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、抗菌・防カビ・抗ウイルス性繊維の製造方法に関する。   The present invention relates to a method for producing antibacterial / antifungal / antiviral fibers.

従来から、抗菌性を付与した繊維構造物は各種衣料、寝装寝具、インテリア製品などに広く利用されている。特に近年、メチシリン耐性黄色ブドウ球菌(以下「MRSA」という。)による院内感染が問題となっており、白衣、カーテンなどに抗菌性を付与する抗菌性繊維の使用が増大している。   Conventionally, a fiber structure imparted with antibacterial properties has been widely used in various clothing, bedding, interior products, and the like. Particularly in recent years, hospital infection due to methicillin-resistant Staphylococcus aureus (hereinafter referred to as “MRSA”) has become a problem, and the use of antibacterial fibers that impart antibacterial properties to lab coats and curtains is increasing.

その中で近年、実使用場面に則した評価法での抗菌効力の付与、および繊維から肌への抗菌剤移動を考慮した安全性確保の問題から、菌転写法による低湿度条件下での抗菌力試験において、工業洗濯後でも高い抗菌活性を有し、さらに繊維からの抗菌剤の溶出が極めて少ない繊維構造物が必要とされている。またさらに、衛生を強化するために、抗菌性だけではなく防カビ性を有する繊維も必要とされている。加えて、SARS(重症急性呼吸器症候群)ウイルス、鳥インフルエンザウイルス・人インフルエンザウイルス等、ウイルスの問題が大きくなっており、抗ウイルス性繊維が必要とされている。   In recent years, antibacterial efficacy under low humidity conditions by the bacterial transfer method has been introduced due to the problem of securing antibacterial efficacy in an evaluation method according to actual use scenes and ensuring safety considering the transfer of antibacterial agents from fibers to the skin. In the force test, there is a need for a fiber structure that has high antibacterial activity even after industrial washing and that has very little elution of the antibacterial agent from the fiber. Furthermore, in order to enhance hygiene, there is a need for fibers having not only antibacterial but also antifungal properties. In addition, virus problems such as SARS (Severe Acute Respiratory Syndrome) virus, avian influenza virus and human influenza virus are growing, and antiviral fibers are required.

例えば、分子量200〜700、無機性値/有機性値=0.3〜1.4、平均粒径が2μm以下であるピリジン系抗菌剤を含む抗菌性繊維構造物が、工業洗濯耐久性に優れた制菌活性を有していることが、特許文献1に記載されている。   For example, an antibacterial fiber structure containing a pyridine antibacterial agent having a molecular weight of 200 to 700, an inorganic value / organic value = 0.3 to 1.4, and an average particle size of 2 μm or less is excellent in industrial washing durability. It is described in Patent Document 1 that it has antibacterial activity.

更に、特許文献2や特許文献3に、ピリチオン亜鉛をポリエステル繊維に処理したものは、洗濯後でも良好な抗菌繊維となることが記載されている。   Furthermore, Patent Document 2 and Patent Document 3 describe that a material obtained by treating pyrithione zinc with polyester fiber is a good antibacterial fiber even after washing.

特開2000−8275号公報JP 2000-8275 A 特開昭61−239082号公報JP-A-61-239082 特開2000−119960号公報JP 2000-1119960 A

しかしながら、上記の各文献においては、必要とする抗菌性や防カビ性、耐洗濯性等を兼ね備えたものは得られていない。すなわち、特許文献1に記載の方法は、無機性値/有機性値が1.4を越えると、ポリエステル等の合成繊維への抗菌剤の吸着が悪く、抗菌効力も悪いと記載されている。また、特許文献2及び3に記載の方法で抗菌剤を付着させた合成繊維は、低湿度状態での菌転写法による抗菌力や防カビ性が十分であるとはいえなかった。また、繊維で抗ウイルス効果のあるものは、これまで知られていなかった。   However, in each of the above-mentioned documents, those having the required antibacterial property, antifungal property, washing resistance and the like have not been obtained. That is, the method described in Patent Document 1 describes that when the inorganic value / organic value exceeds 1.4, the antibacterial agent is poorly adsorbed on synthetic fibers such as polyester and the antibacterial efficacy is also poor. Moreover, it cannot be said that the synthetic fiber to which the antibacterial agent is attached by the methods described in Patent Documents 2 and 3 has sufficient antibacterial activity and antifungal properties by the bacteria transfer method in a low humidity state. Further, fibers having an antiviral effect have not been known so far.

そこでこの発明は、抗菌剤の繊維への吸着力が強固で、洗濯後でも抗菌性が高く、さらに、抗菌剤の合成繊維からの溶出が極めて少なく、より安全な抗菌・防カビ・抗ウイルス性繊維の提供を目的とする。   Therefore, the present invention has strong antibacterial agent adsorptive power to fibers, high antibacterial properties even after washing, and very little antibacterial agent elution from synthetic fibers, thus providing safer antibacterial / antifungal / antiviral properties. The purpose is to provide fibers.

この発明は、無機性値/有機性値が1.4を越え、3.3以下であるピリジン系抗菌剤が微粒子の状態で分散された水性懸濁液を合成繊維に付着させるとともに、又は付着させた後、機械的圧力をかけて上記微粒子状のピリジン系抗菌剤を上記合成繊維同士の隙間に押し込み、その後熱浸透処理する、抗菌・防カビ・抗ウイルス性繊維の製造方法により上記の課題を解決したのである。   In the present invention, an aqueous suspension in which a pyridine-based antibacterial agent having an inorganic value / organic value of more than 1.4 and less than 3.3 is dispersed in a fine particle state is attached to or attached to a synthetic fiber. Then, by applying mechanical pressure to push the particulate pyridine antibacterial agent into the gap between the synthetic fibers, and then heat osmosis treatment, the above problem by the method of manufacturing antibacterial / antifungal / antiviral fibers It was solved.

無機性値/有機性値が1.4を越えることで、適度な親水性を有するため、低湿度状態でも高い抗菌効果を得ることができる。一方で、無機性値/有機性値が3.3以下であることで、適度な疎水性を有するため、繊維からの溶出は抑制することができ、洗濯後も抗菌性を保持できる。   When the inorganic value / organic value exceeds 1.4, since it has moderate hydrophilicity, a high antibacterial effect can be obtained even in a low humidity state. On the other hand, when the inorganic value / organic value is 3.3 or less, it has moderate hydrophobicity, so that elution from the fiber can be suppressed and antibacterial properties can be maintained even after washing.

以下、この発明について詳細に説明する。
この発明は、無機性値/有機性値が1.4を越え、3.3以下であるピリジン系抗菌剤が微粒子の状態で分散された水性懸濁液を合成繊維に付着させ、機械的圧力をかけて上記微粒子状のピリジン系抗菌剤を上記合成繊維同士の隙間に押し込み、その後熱浸透処理する、抗菌・防カビ・抗ウイルス性繊維の製造方法である。
Hereinafter, the present invention will be described in detail.
In this invention, an aqueous suspension in which a pyridine-based antibacterial agent having an inorganic value / organic value of more than 1.4 and less than or equal to 3.3 is dispersed in a fine particle state is attached to a synthetic fiber, and mechanical pressure is increased. The antibacterial / antifungal / antiviral fiber is produced by pressing the fine pyridine antibacterial agent into the gaps between the synthetic fibers and then heat osmosis.

上記の「無機性値」及び「有機性値」とは、藤田稔氏が考案した各種有機化合物の極性を有機概念的に取り扱った値であり[改編 化学実験学−有機化学篇−河合書房(1971)]、その後、甲田善生氏[有機概念図−基礎と応用−三共出版(1984)参照]らが体系的にまとめた値である。この「無機性値」はイオン結合性としての特性を表し、「有機性値」は共有結合性としての特性を表しており、一般的には、「無機性値」が高くなると親水性、「有機性値」が高くなると疎水性になる傾向となる。これらの値は、表1のように定められている。   The above “inorganic values” and “organic values” are values that treat the polarity of various organic compounds invented by Mr. Minoru Fujita in an organic concept [reform chemical chemistry-organic chemistry-Kawai Shobo ( 1971)], and then systematically compiled by Yoshio Koda [Organic Conceptual Diagram-Fundamentals and Applications-Sankyo Publishing (1984)]. This “inorganic value” represents a characteristic as an ionic bond, and “organic value” represents a characteristic as a covalent bond. Generally, as the “inorganic value” increases, hydrophilicity, When the “organic value” is high, it tends to be hydrophobic. These values are determined as shown in Table 1.

Figure 2006009232
Figure 2006009232

さらに、イオン結合性と共有結合性の中間的性質を有していると考えられるキレート化合物中の金属の無機性値は、配位の状態によって変わってくる。一般的に、銅などの重金属は共有結合性を強く帯びた結合をしているので[甲田善生著、有機概念図−基礎と応用−三共出版(1984)128ページ参照]、銅を含むキレート化合物の無機性値は、重金属の最低値400と考えられる。しかしながら、イオン結合性が増している場合も考えられるので、これをさらに上回る500という値も考えられる。ただし、一般的には無機物は、無機性値のみが特定の値をとる[上記有機概念図22ページ参照]が、重金属が化合物分子全体の有機無機バランスに影響しないと考えると、金属の無機性値が0という場合もあり得ると考えられる。この場合、キレート化合物中の金属の無機性値は、仮定上の最低値0となる。同様に、亜鉛も重金属であり、0〜500までの値が考えられる。なお、この発明において、「無機性値/有機性値」とは、上記で定められた値の「無機性値の和」と「有機性値の和」を求め、両者の比をとった値をいう。   Furthermore, the inorganic value of the metal in the chelate compound, which is considered to have an intermediate property between ionic bond and covalent bond, varies depending on the coordination state. In general, heavy metals such as copper have strong covalent bonds [see Yoshio Koda, Organic Conceptual Diagram-Fundamentals and Applications-Sankyo Publishing (1984), page 128], chelate compounds containing copper The inorganic value is considered to be the lowest value 400 for heavy metals. However, since the case where the ion binding property is increasing is also considered, the value of 500 further exceeding this is also considered. However, in general, only inorganic values of inorganic substances take a specific value [see the organic conceptual diagram on page 22]. However, considering that heavy metals do not affect the organic-inorganic balance of the entire compound molecule, the inorganic nature of the metal It is considered that the value may be 0. In this case, the inorganic value of the metal in the chelate compound is a hypothetical minimum value of 0. Similarly, zinc is also a heavy metal, and values from 0 to 500 are conceivable. In the present invention, the “inorganic value / organic value” is a value obtained by calculating “the sum of the inorganic values” and “the sum of the organic values” of the values defined above, and taking the ratio of the two. Say.

一般的に、抗菌剤を繊維に吸着させる場合、抗菌剤と繊維との無機性値/有機性値が近いほど親和性が良く、また、吸着性がよくなるとされる。例えば上記合成繊維として挙げられるポリエステル系繊維は0.7、ナイロン繊維は1.7となっており、この値に近い抗菌剤ほど、それぞれの繊維への親和性が良くなる傾向があるとされている。しかしながら、無機性値/有機性値が3.3以下であるピリジン系抗菌剤を用いると、上記の一般的な傾向にも関わらず、この発明にかかる方法によって、ポリエステル系繊維でも上記合成繊維への吸着が良好で、優れた抗菌・防カビ・抗ウイルス性を有する繊維を得ることが出来る。   In general, when an antibacterial agent is adsorbed to a fiber, the closer the inorganic value / organic value between the antibacterial agent and the fiber, the better the affinity and the better the adsorbability. For example, the polyester fiber mentioned as the synthetic fiber is 0.7 and the nylon fiber is 1.7, and the antibacterial agents closer to this value tend to have better affinity for each fiber. Yes. However, when a pyridine antibacterial agent having an inorganic value / organic value of 3.3 or less is used, the polyester fiber can be converted into the synthetic fiber by the method according to the present invention in spite of the general tendency. It is possible to obtain fibers having good antibacterial, antifungal and antiviral properties.

この発明にかかる方法に用いるピリジン系抗菌剤の無機性値/有機性値は、1.4を越え、3.3以下であることが必要である。1.4を越えるということは、例えば1.401以上であることをいう。さらに、1.46以上であり、3.25以下であると望ましく、1.8以上であり、2.9以下であるとより望ましい。   The inorganic value / organic value of the pyridine antibacterial agent used in the method according to the present invention needs to be more than 1.4 and 3.3 or less. To exceed 1.4 means to be 1.401 or more, for example. Furthermore, it is 1.46 or more, desirably 3.25 or less, desirably 1.8 or more, and more desirably 2.9 or less.

無機性値/有機性値が1.4以下であると、例えば無機性値/有機性値が0.7であるポリエステル系繊維に対し、繊維との親和性が良く、さらに疎水性が高いことから、水溶出も抑えられて、一般的には有利と考えられる。しかし、低湿度条件となる菌転写法での効力を検討すると、無機性値/有機性値が1.4以下であると疎水的になりすぎるため、効力が極端に落ちてしまう。さらに、親油性に傾きすぎるために、洗剤の影響を受けやすく、洗濯耐性が悪くなり好ましくない。したがって、無機性値/有機性値は1.4を越えることが必要である。一方で、無機性値/有機性値が3.3を越えると、親水性が高くなりすぎ、ポリエステル等の繊維への吸着が悪く、水で洗い流されるため洗濯耐性も落ち、更に繊維からの抗菌剤溶出も増加する方向になり、好ましくない。従って、無機性値/有機性値は3.3以下であることが必要である。   When the inorganic value / organic value is 1.4 or less, for example, the polyester fiber having an inorganic value / organic value of 0.7 has a good affinity with the fiber and has a high hydrophobicity. Therefore, water elution is also suppressed, and it is generally considered advantageous. However, when the efficacy in the bacteria transfer method under low humidity conditions is examined, if the inorganic value / organic value is 1.4 or less, it becomes too hydrophobic, and the effectiveness drops extremely. Furthermore, since it is too oleophilic, it is easily affected by detergents, and washing resistance is deteriorated, which is not preferable. Therefore, the inorganic value / organic value needs to exceed 1.4. On the other hand, if the inorganic value / organic value exceeds 3.3, the hydrophilicity becomes too high, the adsorption to the fiber such as polyester is poor, the washing resistance is lowered because it is washed away with water, and the antibacterial from the fiber. Agent elution also increases, which is not preferable. Therefore, the inorganic value / organic value needs to be 3.3 or less.

上記の条件を満たすピリジン系抗菌剤としては、例えば、下記化学式(1)のMがCuである2−ピリジンチオール銅−1−オキシド(以下、「ピリチオン銅」という。)、MがZnである2−ピリジンチオール亜鉛−1−オキシド(以下、「ピリチオン亜鉛」という。)が挙げられ、特にピリチオン亜鉛が最も望ましい。   As a pyridine type antibacterial agent satisfying the above conditions, for example, 2-pyridinethiol copper-1-oxide (hereinafter referred to as “pyrition copper”) in which M in the following chemical formula (1) is Cu, and M is Zn. 2-pyridinethiol zinc-1-oxide (hereinafter referred to as “pyrithione zinc”) is exemplified, and zinc pyrithione is particularly desirable.

Figure 2006009232
(式中MはCu又はZnを示す。)
Figure 2006009232
(In the formula, M represents Cu or Zn.)

上記のピリジン系抗菌剤がピリチオン亜鉛である場合、無機性値は表1より、「ピリチオンの化学式(2)に記載の結合:170×2=340」、「S結合:20×2=40」、「芳香環:15×2=30」となり、亜鉛に関しては上記のように0〜500の値をとりうる。したがって、無機性値の合計は410〜910の範囲となる。一方、有機性値は「C:20×10=200」、「S結合:40×2=80」で、合計280となる。従ってこの比をとると無機性値/有機性値=(410/280)〜(910/280)=1.46〜3.25となる。なお、亜鉛の無機性値を重金属の最低値400とすると、ピリチオン亜鉛の無機性値の合計は810となり、その際の無機性値/有機性値は2.9となる。これらの値は、上記のピリジン系抗菌剤がピリチオン銅である場合も同様である。   When the pyridine antibacterial agent is pyrithione zinc, the inorganic value is from Table 1, “bonds described in chemical formula (2) of pyrithione: 170 × 2 = 340”, “S bond: 20 × 2 = 40”. “Aromatic ring: 15 × 2 = 30”, and zinc can take a value of 0 to 500 as described above. Therefore, the sum of the inorganic values is in the range of 410-910. On the other hand, the organic value is “C: 20 × 10 = 200” and “S bond: 40 × 2 = 80”, which is 280 in total. Therefore, when this ratio is taken, the inorganic value / organic value = (410/280) to (910/280) = 1.46 to 3.25. If the inorganic value of zinc is the minimum value of 400 for heavy metals, the total inorganic value of pyrithione zinc is 810, and the inorganic value / organic value at that time is 2.9. These values are the same when the pyridine antibacterial agent is pyrithione copper.

Figure 2006009232
Figure 2006009232

したがって、上記ピリジン系抗菌剤の無機性値/有機性値は、1.46以上であり、3.25以下であることが望ましく、2.9以下であるとより望ましい。   Therefore, the inorganic value / organic value of the pyridine antibacterial agent is 1.46 or more, preferably 3.25 or less, and more preferably 2.9 or less.

これらピリジン系抗菌剤の無機性値/有機性値は、有機性が高いポリエステル系繊維の無機性値/有機性値=0.7からはやや離れている。それにも関わらず、これらピリジン系抗菌剤を水中でポリエステル系繊維に対して処理した場合、上記ピリジン系抗菌剤はポリエステル系繊維にも吸着されやすい。これは、上記無機性値/有機性値が3.3以下である微粒子の状態で分散されたピリジン系抗菌剤が水中で独立して存在するよりも、ポリエステル系繊維表面に吸着した方がより安定であるためと考えられる。   The inorganic value / organic value of these pyridine antibacterial agents is slightly different from the inorganic value / organic value = 0.7 of the polyester fiber having high organic property. Nevertheless, when these pyridine antibacterial agents are treated on polyester fibers in water, the pyridine antibacterial agents are easily adsorbed on the polyester fibers. This is because the pyridine antibacterial agent dispersed in the state of fine particles having an inorganic value / organic value of 3.3 or less is more adsorbed on the surface of the polyester fiber than when it exists independently in water. This is considered to be stable.

上記のピリジン系抗菌剤の水溶解度は0.01〜30ppmと低く、例えば、上記のピリジン系抗菌剤であるピリチオン亜鉛の25℃水溶解度は8ppmであり、ピリチオン銅の場合は1ppm以下であるが、これらは好適に有機性の高い合成繊維に吸着され、さらに、水等への溶出も少なく、好適に使用される。   The water solubility of the above pyridine antibacterial agent is as low as 0.01 to 30 ppm. For example, the pyrithione zinc which is the above pyridine antibacterial agent has a water solubility at 25 ° C. of 8 ppm, and in the case of pyrithione copper, it is 1 ppm or less. These are preferably adsorbed on synthetic fibers having a high organic property, and are also preferably used with little elution into water or the like.

さらに、上記ピリジン系抗菌剤の有機溶剤溶解度は、一般にn−オクタノール/水分配係数に用いられる有機溶剤であるn−オクタノールへの25℃における溶解度として、0.01〜100ppmであり、有機溶剤にも溶解しにくく、親和性が低い。このため、洗濯時の洗剤によって抗菌剤がミセル化されにくく、洗濯後でも抗菌力を高く維持することができる。   Furthermore, the organic solvent solubility of the pyridine antibacterial agent is 0.01 to 100 ppm as solubility at 25 ° C. in n-octanol, which is an organic solvent generally used for n-octanol / water partition coefficient. Is difficult to dissolve and has low affinity. For this reason, the antibacterial agent is not easily micelle by the detergent at the time of washing, and the antibacterial activity can be maintained high even after washing.

上記のピリジン系抗菌剤を、上記合成繊維に付着させる。その際には、上記ピリジン系抗菌剤を上記水性懸濁液にすることが必要である。   The pyridine antibacterial agent is attached to the synthetic fiber. In that case, it is necessary to make the pyridine antibacterial agent into the aqueous suspension.

上記の水性懸濁液とは、界面活性剤等の分散剤と水との存在下で、上記ピリジン系抗菌剤を攪拌及び/又は粉砕することにより得られる、上記ピリジン系抗菌剤が微粒子の状態で分散された懸濁液である。この水性懸濁液中における、上記ピリジン系抗菌剤の平均粒子径は0.1〜2μmが好ましく、0.1〜1μmであるとより好ましい。平均粒子径が2μmを超えると沈殿を起こしてしまい、処理剤として不安定になるおそれがあり、また、粒子径が大きすぎて加工処理時に繊維への付着が悪くなったり、付着ムラがおきたりしてしまうおそれがある。そのため、粒子径が2μm以上の上記ピリジン系抗菌剤は、上記ピリジン系抗菌剤の全重量に対して5重量%以下であるとよく、3重量%以下であると好ましく、1重量%以下であるとより好ましく、0.5重量%以下であるとさらに好ましい。   The aqueous suspension is obtained by stirring and / or pulverizing the pyridine antibacterial agent in the presence of a dispersant such as a surfactant and water, and the pyridine antibacterial agent is in a fine particle state. The suspension is dispersed in The average particle size of the pyridine antibacterial agent in this aqueous suspension is preferably 0.1 to 2 μm, and more preferably 0.1 to 1 μm. If the average particle size exceeds 2 μm, precipitation may occur, which may cause instability as a treatment agent. Also, the particle size is too large and adhesion to fibers during processing may be poor, or uneven adhesion may occur. There is a risk of it. Therefore, the pyridine antibacterial agent having a particle size of 2 μm or more is preferably 5% by weight or less, preferably 3% by weight or less, and preferably 1% by weight or less based on the total weight of the pyridine antibacterial agent. And more preferably 0.5% by weight or less.

なお、上記の水性懸濁液中における上記ピリジン系抗菌剤の粒子の平均粒子径は、JIS R 1629に準拠したレーザー回折粒度分布測定装置を用いて測定し、累積50%に相当するメジアン径として求めたものである。   In addition, the average particle diameter of the particles of the pyridine antibacterial agent in the aqueous suspension is measured using a laser diffraction particle size distribution measuring device based on JIS R 1629, and the median diameter corresponding to a cumulative 50% is obtained. It is what I have sought.

上記分散剤としては、特に制限はなく、例えばリグニンスルホン酸塩等のアニオン系界面活性剤、ポリオキシエチレン硬化ヒマシ油等の非イオン系界面活性剤、4級アンモニウム塩系のカチオン系界面活性剤、PVA等が挙げられる。これらの分散剤に、必要に応じて増粘剤、凍結防止剤、消泡剤を加えてスラリー状とし、必要に応じてボールミル、セラミックミルやパールミルを用いて懸濁液にして、上記水性懸濁液とする。   The dispersant is not particularly limited. For example, anionic surfactants such as lignin sulfonate, nonionic surfactants such as polyoxyethylene hydrogenated castor oil, and quaternary ammonium salt cationic surfactants. , PVA and the like. If necessary, a thickener, an antifreezing agent, and an antifoaming agent are added to these dispersants to form a slurry, and if necessary, a suspension is obtained using a ball mill, a ceramic mill or a pearl mill, and the above aqueous suspension is added. Use a suspension.

上記水性懸濁液中の上記分散剤の重量は、上記ピリジン系抗菌剤の重量の1/50〜1/1であることが好ましく、特に好ましくは1/25〜1/2である。上記分散剤がこれより多いと、分散剤が繊維に付着して、風合いが損なわれたり、他の染色補助剤等に悪影響を及ぼしたりするため、好ましくない。一方で、少なすぎると上記ピリジン系抗菌剤が沈降し、処理剤として安定せず、問題が残るおそれがある。   The weight of the dispersant in the aqueous suspension is preferably 1/50 to 1/1 of the weight of the pyridine antibacterial agent, particularly preferably 1/25 to 1/2. When the amount of the dispersant is larger than this, the dispersant adheres to the fiber, the texture is impaired, and other dyeing auxiliary agents are adversely affected. On the other hand, if the amount is too small, the pyridine-based antibacterial agent settles and is not stable as a treating agent, and there is a possibility that a problem remains.

上記の水性懸濁液は50〜99.99重量%の水分を含有している水溶液であることが望ましい。水分が50重量%以上あると、沈殿や凝集を起こしにくく、安定性に優れ、扱いやすくなる。   The aqueous suspension is preferably an aqueous solution containing 50 to 99.99% by weight of water. When the water content is 50% by weight or more, precipitation and aggregation are unlikely to occur, the stability is excellent, and handling becomes easy.

上記水性懸濁液のpHは、4〜9であることが望ましく、5.5〜8であるとより望ましい。pHが4未満であっても、9を超えても、どちらも上記ピリジン系抗菌剤の分解が起こり、抗菌性が保持されなくなってしまうためである。   The pH of the aqueous suspension is preferably 4 to 9, and more preferably 5.5 to 8. This is because the pyridine antibacterial agent is decomposed in both cases where the pH is less than 4 or exceeds 9, and the antibacterial property is not maintained.

上記の水性懸濁液を上記合成繊維に付着させる。付着させる方法としては、特に制限はなく、浴槽に入れた上記水性懸濁液に漬けて付着させるパディング法、スプレーで上記合成繊維に吹き付けて付着させるスプレー法等を用いてよい。   The aqueous suspension is attached to the synthetic fiber. The method of attaching is not particularly limited, and a padding method in which the solution is immersed in the aqueous suspension in a bathtub and attached, a spray method in which the synthetic fiber is attached by spraying, or the like may be used.

また、上記水性懸濁液を上記合成繊維に付着させる際には、上記ピリジン系抗菌剤の濃度は、水に対して0.01〜4重量%が好ましく、より好ましくは0.1〜1.5重量%である。0.01重量%以下では、繊維への上記ピリジン系抗菌剤の付着量が少なく、充分な抗菌力が発揮されない。一方で4重量%以上では、効力の割に、多量の上記ピリジン系抗菌剤を消費することになり、好ましくない。   Moreover, when making the said aqueous suspension adhere to the said synthetic fiber, the density | concentration of the said pyridine type antibacterial agent has preferable 0.01-4 weight% with respect to water, More preferably, 0.1-1. 5% by weight. If it is 0.01% by weight or less, the amount of the pyridine antibacterial agent attached to the fiber is small, and sufficient antibacterial power is not exhibited. On the other hand, if it is 4% by weight or more, a large amount of the pyridine antibacterial agent will be consumed for its efficacy, which is not preferable.

なお、上記水性懸濁液は、そのまま付着させてもよいし、上記水性懸濁液を水で希釈してから付着させても良いが、通常は、濃厚な懸濁液を作製しておき、使用時にそれを希釈して使用するのが好ましい。例えば、10〜30%の原液を作っておき、使用時に好ましい濃度に希釈して使用する。このようにすることによって、液を安定して長期間保存することができ、また、使用現場への輸送コストも安く抑えることができる。   The aqueous suspension may be attached as it is or may be attached after diluting the aqueous suspension with water, but usually a thick suspension is prepared, It is preferable to dilute and use it at the time of use. For example, a 10 to 30% stock solution is prepared and diluted to a preferred concentration at the time of use. By doing so, the liquid can be stably stored for a long time, and the transportation cost to the site of use can be reduced.

さらに、上記水性懸濁液を上記合成繊維に付着させる際に、その水溶液に、染色剤や染色補助剤を加えてもよい。例えば、一般に繊維に用いられている分散染料、酸性染料、カチオン染料、蛍光増白剤、撥水剤、防汚剤等である。さらに、必要に応じて、酸化亜鉛、酸化チタン等の抗菌剤、殺虫剤、防ダニ剤、防炎剤、酸化防止剤、フィックス剤等を加えてもかまわない。   Furthermore, when making the said aqueous suspension adhere to the said synthetic fiber, you may add a dyeing agent and a dyeing auxiliary agent to the aqueous solution. For example, disperse dyes, acid dyes, cationic dyes, fluorescent whitening agents, water repellents, antifouling agents and the like generally used for fibers. Furthermore, if necessary, antibacterial agents such as zinc oxide and titanium oxide, insecticides, acaricides, flameproofing agents, antioxidants, fixing agents and the like may be added.

上記水性懸濁液により上記ピリジン系抗菌剤を付着させる上記合成繊維としては、上記したポリエステル系繊維、アクリル繊維のほかに、ナイロン繊維なども挙げられる。なお、ポリエステル系繊維は、ポリエチレンテレフタレートのような石油由来の繊維だけでなく、ポリ乳酸のような天然材料に手を加えた繊維も含む。さらに、綿、羊毛、絹などの天然繊維や、レーヨン繊維などの半合成繊維を、上記の合成繊維と併用しても良い。これらの中でも、ポリエステル系繊維が、工業洗濯耐久性に優れていて特に望ましい。このように用いる上記合成繊維の形態としては、糸、織布、不織布など、特に限定されるものではない。   Examples of the synthetic fibers to which the pyridine antibacterial agent is attached by the aqueous suspension include nylon fibers in addition to the polyester fibers and acrylic fibers. The polyester fibers include not only petroleum-derived fibers such as polyethylene terephthalate but also fibers obtained by modifying natural materials such as polylactic acid. Furthermore, natural fibers such as cotton, wool, and silk, and semi-synthetic fibers such as rayon fibers may be used in combination with the above synthetic fibers. Among these, polyester fibers are particularly desirable because they are excellent in industrial washing durability. The form of the synthetic fiber used in this way is not particularly limited, such as yarn, woven fabric, and non-woven fabric.

上記水性懸濁液を含む水溶液を付着させた上記合成繊維に、機械的圧力をかけて上記ピリジン系抗菌剤を上記合成繊維同士の隙間へ押し込む。上記合成繊維同士の隙間とは、糸同士の隙間や糸を構成しているモノフィラメントの隙間などのことを示す。機械的圧力をかけるには、例えば、上記水性懸濁液を付着させた上記合成繊維を、接触したローラー間に通したり、上記合成繊維がかけられた2つの隣接していないローラー間にテンションをかけて布に圧力をかけたり、又は繊維を挟持したローラー上でエアーを吹き付けたりする等の操作をすることで、上記ピリジン系抗菌剤を繊維フィラメント間に押し込むといった方法がある。また、ローラーに上記水性懸濁液を付着させ、上記合成繊維をこのローラーに挟持させることで、上記合成繊維に水性懸濁液を付着させると同時に、上記ピリジン系抗菌剤を上記合成繊維の繊維フィラメント間に押し込む方法もある。   The pyridine antibacterial agent is pushed into the gap between the synthetic fibers by applying mechanical pressure to the synthetic fibers to which the aqueous solution containing the aqueous suspension is adhered. The gap between the synthetic fibers indicates a gap between yarns and a gap between monofilaments constituting the yarn. In order to apply mechanical pressure, for example, the synthetic fiber to which the aqueous suspension is attached is passed between contacted rollers, or tension is applied between two non-adjacent rollers to which the synthetic fiber is applied. There is a method in which the pyridine antibacterial agent is pushed in between the fiber filaments by performing an operation such as applying pressure to the cloth or blowing air on a roller holding the fiber. In addition, the aqueous suspension is attached to a roller, and the synthetic fiber is sandwiched between the rollers so that the aqueous suspension is attached to the synthetic fiber, and at the same time, the pyridine-based antibacterial agent is added to the fiber of the synthetic fiber. There is also a method of pushing between the filaments.

この押し込み操作により、上記水性懸濁液中の微粒子状である上記ピリジン系抗菌剤を繊維に押し込むことができ、単に浸漬しただけでは得られない強固な付着が得られると考えられる。しかも、上記ピリジン系抗菌剤は繊維フィラメント間に均一に付着されるため、その後の熱浸透処理で有効に効果が発揮される。このとき、上記ピリジン系抗菌剤を完全な溶液として用いるのではなく、上記ピリジン系抗菌剤が微粒子として存在する水性懸濁液として用いることで、上記押し込み操作を良好に行うことができる。また、上記ピリジン系抗菌剤の粒子径が上記の条件を満たすと、この押し込み操作においても望ましい。   This pushing operation can push the pyridine antibacterial agent, which is in the form of fine particles in the aqueous suspension, into the fiber, and it is considered that strong adhesion that cannot be obtained simply by dipping can be obtained. And since the said pyridine type antibacterial agent adheres uniformly between fiber filaments, an effect is exhibited effectively by subsequent heat osmosis processing. At this time, the pushing operation can be performed satisfactorily by using the pyridine antibacterial agent as an aqueous suspension in which the pyridine antibacterial agent is present as fine particles instead of using the pyridine antibacterial agent as a complete solution. Further, when the particle diameter of the pyridine antibacterial agent satisfies the above conditions, it is desirable also in this pushing operation.

このローラーの、上記合成繊維に圧力をかける接触部は、フラットな金属及び/又はゴムであるのが望ましい。この際に上記合成繊維にかける望ましい圧力は、繊維の種類や状態によって変化する。この圧力は0.2〜50kg/cmであることが望ましい。圧力が0.2kg/cm未満となると上記ピリジン系抗菌剤が十分に上記合成繊維同士の隙間に押し込まれず、50kg/cm以上になると上記合成繊維にかかる負担が大きくなりすぎてしまう。この圧力を、例えば、0.05〜7デニールの繊維を用いた場合において、圧力をかけて繊維に含まれる上記水性懸濁液が絞られた後の繊維重量に対する上記水性懸濁液の付着量の割合(以下、「%owf」と表示する。)で表すと、5〜100%owfとなる圧力であるとよく、30〜80%owfとなる圧力であると望ましく、40〜70%owfとなる圧力であるとより望ましい。上記水性懸濁液が5%owf未満となるほどの圧力は、この後に行う熱浸透処理を効率よく行うためには、ある程度の水分を含有していることが必要であるため、望ましくない。 The contact portion of the roller that applies pressure to the synthetic fiber is preferably a flat metal and / or rubber. At this time, the desirable pressure applied to the synthetic fiber varies depending on the type and state of the fiber. This pressure is desirably 0.2 to 50 kg / cm 2 . When the pressure is less than 0.2 kg / cm 2, the pyridine antibacterial agent is not sufficiently pushed into the gap between the synthetic fibers, and when the pressure is 50 kg / cm 2 or more, the burden on the synthetic fibers becomes too large. For example, in the case where 0.05 to 7 denier fibers are used, the amount of the aqueous suspension adhered to the fiber weight after the aqueous suspension contained in the fibers is squeezed by applying pressure. The pressure is preferably 5 to 100% owf, more preferably 30 to 80% owf, and 40 to 70% owf. Is more desirable. The pressure at which the aqueous suspension is less than 5% owf is not desirable because it needs to contain a certain amount of water in order to efficiently perform the subsequent heat osmosis treatment.

上記の押し込みを行った上記合成繊維に、熱浸透処理を行って、上記ピリジン系抗菌剤を上記合成繊維内に固着させる。   The synthetic fiber that has been pushed in is subjected to a heat osmosis treatment to fix the pyridine antibacterial agent in the synthetic fiber.

上記の熱浸透処理を行う適温とは、上記合成繊維を構成する合成樹脂のTg温度(ガラス転移温度)以上であって、かつ、その合成繊維自体が分解などの不都合な変質を起こさない温度範囲であることが必要である。なお、ここでいうTg温度はJIS K 7121に記載された方法で測定した値である。   The appropriate temperature at which the heat osmosis treatment is performed is a temperature range that is equal to or higher than the Tg temperature (glass transition temperature) of the synthetic resin that constitutes the synthetic fiber, and that the synthetic fiber itself does not cause undesirable alteration such as decomposition. It is necessary to be. In addition, Tg temperature here is the value measured by the method described in JISK7121.

一般に高分子からできている合成繊維は、分子の集まり方が規則的で密な部分(結晶部分)と不規則で疎な部分(非結晶部分)からなり、Tg温度以上になると非結晶部分の分子鎖がゆるみ流動性が増し、柔らかくなるので抗菌剤等の分子が入りやすくなる。そのため、上記ピリジン系抗菌剤と合成繊維とを熱処理する際に、Tg温度以上の適温で行うと、上記ピリジン系抗菌剤は繊維内に効率良く浸透していき、良好な固着状態となる。特にこの発明においては、上記の押し込みにより上記ピリジン系抗菌剤は上記繊維フィラメント間に強く押し込まれているため、上記の適温で処理することにより、上記合成繊維の非結晶部分に効率よく浸透し、良好に固着される。   In general, synthetic fibers made of a polymer are composed of regular and dense parts (crystal parts) and irregular and sparse parts (non-crystal parts), and the amorphous part is raised above the Tg temperature. Molecular chains are loosened, fluidity increases, and softening makes it easy for molecules such as antibacterial agents to enter. Therefore, when the pyridine antibacterial agent and the synthetic fiber are heat-treated at an appropriate temperature equal to or higher than the Tg temperature, the pyridine antibacterial agent efficiently penetrates into the fiber and is in a good fixing state. In particular, in the present invention, the pyridine antibacterial agent is strongly pressed between the fiber filaments by the above-mentioned indentation, so that it can efficiently penetrate into the non-crystalline part of the synthetic fiber by treating at the above-mentioned appropriate temperature, It adheres well.

上記合成繊維がポリエステル系繊維の場合は、適温として(Tg+80)〜(Tg+120)℃で熱浸透処理すると、最も効率的に上記ピリジン系抗菌剤を上記合成繊維に浸透させることができるので望ましい。具体的には、多くのポリエステル系繊維のTgは70〜80℃であるので、上記適温は150〜200℃であるのがよく、好ましくは160℃〜190℃である。上記熱浸透処理を行う時間は、20秒〜10分の範囲から適宜選択決定して行う。好ましくは30秒〜5分である。   When the synthetic fiber is a polyester fiber, heat osmosis treatment at an appropriate temperature of (Tg + 80) to (Tg + 120) ° C. is desirable because the pyridine antibacterial agent can be most efficiently penetrated into the synthetic fiber. Specifically, since Tg of many polyester fibers is 70 to 80 ° C., the appropriate temperature is preferably 150 to 200 ° C., and preferably 160 to 190 ° C. The time for performing the heat osmosis treatment is appropriately selected and determined from the range of 20 seconds to 10 minutes. Preferably, it is 30 seconds to 5 minutes.

上記合成繊維がナイロン繊維の場合は、上記適温として(Tg+40)〜(Tg+100)℃で熱処理すると、最も効率的に上記ピリジン系抗菌剤を上記合成繊維に浸透させることができるので望ましい。一般的なナイロン繊維のTg℃は40〜50℃であるので、上記適温は80〜150℃であるのがよく、好ましくは100〜130℃である。上記熱浸透処理を行う時間は、20秒〜3分の範囲から適宜選択決定して行う。好ましくは30秒〜3分である。また、上記合成繊維がアクリル繊維の場合は、Tg〜(Tg+60)℃が好ましく、アクリル繊維のTg℃が80〜90℃であるので、適温は80〜150℃である。   When the synthetic fiber is a nylon fiber, heat treatment at (Tg + 40) to (Tg + 100) ° C. as the appropriate temperature is desirable because the pyridine antibacterial agent can be most efficiently permeated into the synthetic fiber. Since Tg ° C of general nylon fibers is 40 to 50 ° C, the appropriate temperature is preferably 80 to 150 ° C, and preferably 100 to 130 ° C. The time for performing the heat osmosis treatment is appropriately selected and determined from the range of 20 seconds to 3 minutes. Preferably, it is 30 seconds to 3 minutes. Moreover, when the said synthetic fiber is an acrylic fiber, Tg- (Tg + 60) degreeC is preferable and since TgdegreeC of an acrylic fiber is 80-90 degreeC, suitable temperature is 80-150 degreeC.

上記熱浸透処理の方法としては、乾燥機内を通過させる方法、熱ローラーを通過させる方法、高温蒸気加熱処理法(パッド・スチーム法)等が挙げられ、特に限定されるものではない。   Examples of the heat osmosis treatment method include a method of passing through a dryer, a method of passing a hot roller, a high-temperature steam heat treatment method (pad / steam method), and the like, and are not particularly limited.

上記熱浸透処理による上記ピリジン系抗菌剤の上記合成繊維への固着には水分が必要であり、上記熱浸透処理を行う際に、上記合成繊維は少なくとも5%owfの水分を含有していると好ましい。これは、上記ピリジン系抗菌剤が上記合成繊維の柔らかくなった部分に浸透していく際に、何らかの形で水分の介在が必要であるからと考えられる。繊維に付着する水分が5%owf未満であると水分が少なすぎて、上記ピリジン系抗菌剤が上記合成繊維の柔らかくなった非結晶部分に浸透しにくく、最終的に得られる抗菌・防カビ・抗ウイルス性繊維の洗濯耐性が低下してしまうおそれがある。   Moisture is required for fixing the pyridine antibacterial agent to the synthetic fiber by the heat osmosis treatment, and when the heat osmosis treatment is performed, the synthetic fiber contains at least 5% owf of water. preferable. This is presumably because the pyridine antibacterial agent requires some form of moisture when it penetrates into the softened part of the synthetic fiber. When the moisture adhering to the fiber is less than 5% owf, the moisture is too little, and the pyridine antibacterial agent is difficult to penetrate into the soft non-crystalline part of the synthetic fiber. There is a possibility that the washing resistance of the antiviral fiber is lowered.

一方で、上記熱浸透処理を行う際に、上記合成繊維が含有する水分は、100%owf以下であることが望ましい。水分が100%owfを超えてしまうと、水の熱容量が大きいために、加熱しても上記合成繊維の温度が短時間で上昇せずに、繊維の非結晶部分が十分柔らかくならないので、浸透しきれない上記ピリジン系抗菌剤が繊維の表面で乾燥させられてしまい、最終的に得られる抗菌・防カビ・抗ウイルス性繊維の洗濯耐性が低下するおそれがある。また、それらの水分を最終的に乾燥させるための時間やコストも余計にかかってしまう。   On the other hand, when performing the said heat osmosis process, it is desirable that the water | moisture content which the said synthetic fiber contains is 100% owf or less. If the water content exceeds 100% owf, the heat capacity of water is large, so that even if heated, the temperature of the synthetic fiber does not rise in a short time, and the non-crystalline part of the fiber does not become sufficiently soft, so that it penetrates. The above-mentioned pyridine antibacterial agent that cannot be dried is dried on the surface of the fiber, and the washing resistance of the finally obtained antibacterial / antifungal / antiviral fiber may be lowered. Moreover, the time and cost for finally drying those water | moisture contents will also be excessive.

上記合成繊維がポリエステル系繊維の場合は、上記押し込みを行った上記合成繊維に対して、上記熱浸透処理を行う前に、予備乾燥処理を行っておくことで、上記熱浸透処理の際に上記合成繊維に含まれる水分を予め減らしておいてもよい。ただしその場合、5%owf未満にはならないことが望ましい。上記予備乾燥処理の方法は、熱浸透処理に用いられるのと同様の方法が用いられるが、加工温度は100〜140℃の温度で行うことが望ましい。   In the case where the synthetic fiber is a polyester-based fiber, the synthetic fiber that has been pushed in is subjected to a pre-drying treatment before the heat osmosis treatment, so that the heat osmosis treatment can be performed as described above. The moisture contained in the synthetic fiber may be reduced in advance. However, in that case, it is desirable that it is not less than 5% owf. The method for the preliminary drying treatment is the same as that used for the heat osmosis treatment, but the processing temperature is preferably 100 to 140 ° C.

なお、上記熱浸透処理後に、上記合成繊維上に残った余分な加工剤や不純物を取り除く為に、水又はアルカリ性液等で洗浄して乾燥してもよい。この場合も、上記ピリジン系抗菌剤が上記合成繊維内に固着しているので、洗浄しても抗菌性には影響しない。   In addition, after the said heat osmosis process, in order to remove the excess processing agent and impurity which remain | survived on the said synthetic fiber, you may wash | clean and dry with water or an alkaline liquid. Also in this case, since the pyridine antibacterial agent is fixed in the synthetic fiber, the antibacterial property is not affected even if it is washed.

上記の押し込み操作による、上記水性懸濁液の付着重量は、繊維重量に対して5重量%以上がよく、20重量%以上が好ましい。5重量%より少ないと、繊維に圧力がかかりすぎて、繊維を傷めてしまう傾向がある。一方、付着重量の上限は、100重量%がよい。100重量%より多いと、圧力が低くなるため、繊維内に十分抗菌剤を押し込みにくくなる傾向がある。   The attached weight of the aqueous suspension by the pushing operation is preferably 5% by weight or more, and preferably 20% by weight or more with respect to the fiber weight. If the amount is less than 5% by weight, the fiber is too pressured and tends to damage the fiber. On the other hand, the upper limit of the adhesion weight is preferably 100% by weight. When the amount is more than 100% by weight, the pressure becomes low, and thus there is a tendency that the antibacterial agent is not sufficiently pushed into the fiber.

この発明にかかる製造方法によって抗菌剤を付着された上記合成繊維は、抗菌剤の無機性値/有機性値が3.3以下であり、水溶解度が30ppm以下と低く、かつ押し込みと熱浸透処理によって抗菌剤が強く固着されているため、洗濯などの水処理をしても上記ピリジン系抗菌剤がほとんど溶出せずに、抗菌力が高く維持され、安全で優れた抗菌・防カビ・抗ウイルス性繊維となる。さらに、抗菌剤の無機性値/有機性値が1.4を越えて適度に親水性であるので、菌転写法での実験条件下のような低湿度の条件下でも効力が発揮され、抗菌効力が高い抗菌・防カビ・抗ウイルス性繊維となる。   The synthetic fiber to which the antibacterial agent is attached by the production method according to the present invention has an inorganic value / organic value of 3.3 or less of the antibacterial agent, a low water solubility of 30 ppm or less, and indentation and heat osmosis treatment. Because the antibacterial agent is firmly fixed by the water, the above pyridine antibacterial agent is hardly eluted even after water treatment such as washing, the antibacterial activity is kept high, and it is safe and excellent antibacterial / antifungal / antiviral It becomes the nature fiber. Furthermore, since the inorganic value / organic value of the antibacterial agent is moderately hydrophilic exceeding 1.4, the antibacterial agent is effective even under low humidity conditions such as experimental conditions in the bacterial transfer method, and antibacterial Antibacterial / antifungal / antiviral fiber with high efficacy.

さらに、SARSウイルス、ラッサ熱ウイルス、エボラ出血熱ウイルス、エイズウイルス、西ナイルウイルス、デング熱ウイルス、日本脳炎ウイルス、鳥・人インフルエンザ等のRNAウイルス、天然痘ウイルス、ヘルペスウイルス等のDNAウイルスにも効果がある抗ウイルス性を有する抗菌・防カビ・抗ウイルス性繊維ともなる。なお、この発明にかかる製造方法で得られた繊維に、抗ウイルス効果が発揮されるのは、ウイルスの外被タンパクへの抗菌剤の変性作用によるものと考えられ、この製造方法によって得られた抗菌・防カビ・抗ウイルス性繊維は、洗濯後でも抗菌剤が効率的に繊維に固着されている。   Furthermore, it is also effective for DNA viruses such as SARS virus, Lassa fever virus, Ebola hemorrhagic fever virus, AIDS virus, West Nile virus, Dengue virus, Japanese encephalitis virus, avian / human influenza virus, smallpox virus, herpes virus, etc. Antibacterial, antifungal and antiviral fibers with antiviral properties. In addition, it is considered that the antiviral effect is exerted on the fiber obtained by the production method according to the present invention due to the denaturing action of the antibacterial agent on the viral coat protein, and obtained by this production method. Antibacterial, antifungal, and antiviral fibers have antibacterial agents efficiently adhered to the fibers even after washing.

以下、実施例を挙げてこの発明をより具体的に説明する。なお、以下の文中で%とは重量%を示す。まず、それぞれの試験方法と洗濯方法について説明する。   Hereinafter, the present invention will be described more specifically with reference to examples. In the following text, “%” means “% by weight”. First, each test method and washing method will be described.

(繊維への吸着量測定方法)
繊維内に含まれる上記ピリジン系抗菌剤由来の金属量を測定することにより吸着量を測定した。すなわち、上記ピリジン系抗菌剤が浸透した繊維を灰化し、塩酸処理した後、原子吸光光度計を用いて残存物中の金属量を測定し、それからピリジン系抗菌剤の浸透量を逆算した。
(Method for measuring the amount adsorbed on fibers)
The amount of adsorption was measured by measuring the amount of metal derived from the pyridine antibacterial agent contained in the fiber. That is, the fiber infiltrated with the pyridine-based antibacterial agent was ashed and treated with hydrochloric acid, and then the amount of metal in the residue was measured using an atomic absorption photometer, and then the amount of penetration of the pyridine-based antibacterial agent was calculated backward.

(抗菌試験の供試菌及び評価方法)
黄色ブドウ球菌2種(Staphylococcus aureus、及びMRSA)、肺炎桿菌(Klebsiella pneumocniae)を用いて抗菌性の評価を行った。評価対象としては、洗濯前及び上記洗濯後の加工布を用いた。
(Test bacteria and evaluation methods for antibacterial tests)
Antibacterial properties were evaluated using two types of Staphylococcus aureus (Staphylococcus aureus and MRSA) and Klebsiella pneumocniae. As evaluation objects, processed fabrics before and after washing were used.

まず、第一の評価方法として、JIS L 1902(2002)に定められる繊維製品の抗菌性試験方法記載の菌転写法(表中「菌転写」と表記する。)を実施した。判定は、低湿度下での4時間培養後の菌数の減少を、各試験布の回収菌数によって比較し、比較対照である無処理布に比べて菌数対数値で0.5以上減少した場合を有効(○)、0.5未満の場合を無効(×)とした。   First, as a first evaluation method, a fungus transcription method (denoted as “bacteria transcription” in the table) described in an antibacterial test method for textiles defined in JIS L 1902 (2002) was performed. Judgment is made by comparing the decrease in the number of bacteria after 4 hours of culturing under low humidity by the number of bacteria recovered from each test cloth. The case where it was made effective ((circle)) and the case where it is less than 0.5 was made invalid (x).

また、第二の評価方法として、JIS L 1902(2002)に定められる菌液吸収法(表中「菌液」と表記する。)を実施した。判定は、各試験布の静菌活性値が2.2以上であった場合を有効(○)、2.2未満の場合を無効(×)とした。   Further, as a second evaluation method, a bacterial liquid absorption method (indicated as “bacterial liquid” in the table) defined in JIS L 1902 (2002) was carried out. The determination was made effective (◯) when the bacteriostatic activity value of each test cloth was 2.2 or more, and invalid (x) when less than 2.2.

(防カビ試験の供試菌及び評価方法)
真菌4種(Aspergillus niger、Penicillium citrinum、Chaetomium globosum、Myrothecium verrucaria)を用いて防カビ性の評価を行った。評価方法としては、抗菌試験と同じく洗濯前及び上記洗濯後の加工布を用いた。評価方法としては、JIS Z 2911(2000)に定められる湿式法を実施した。判定は防黴試験結果の表示方法0(試料又は試験片の接種した部分に菌糸の発育が認められない。)を有効(○)とし、1(試料又は試験片の接種した部分に認められる菌糸の発育部分の面積は全面積の1/3を超えない。)及び2(試料又は試験片の接種した部分に認められる菌糸の発育部分の面積は全面積の1/3を超える。)を無効(×)とした。
(Test fungus test method and evaluation method)
The antifungal property was evaluated using four types of fungi (Aspergillus niger, Penicillium citrinum, Chaetmium globosum, and Myrothecium verrucaria). As an evaluation method, the processed fabric before and after washing was used as in the antibacterial test. As an evaluation method, a wet method defined in JIS Z 2911 (2000) was performed. Judgment is effective (○) when the display method 0 of the antifungal test results (no growth of the hyphae is not observed in the inoculated part of the sample or test piece), and 1 (the hyphae recognized in the inoculated part of the sample or test piece) The area of the growth part is not more than 1/3 of the total area) and 2 (the area of the growth part of the mycelium found in the inoculated part of the sample or test piece is more than 1/3 of the total area) is invalid (X).

(抗ウイルス試験及び評価方法)
中華人民共和国疾病予防制御センターウイルス病予防制御所 ウイルス試験センターにて依頼して実施した。アフリカミドリザル腎継代細胞(VERO E6:ウイルス試験センター提供)培養系で、ウイルスCPE(cytopathogenic effect;細胞変性効果)法を用いて、工業洗濯50回後の加工布の体外におけるSARSウイルスに対する不活性化効果を観察し、ウイルス対照区と比較して、効果を判定した。
(Antiviral test and evaluation method)
The Center for Disease Control and Control of the People's Republic of China. Inactivation of SARS virus outside the body of the processed fabric after 50 times of industrial washing using a viral CPE (cytopathogenic effect) method in a culture system of African green monkey kidney passage cells (VERO E6: provided by Virus Test Center) The effect was evaluated by comparing with the virus control group.

具体的には以下の通りである。
<加工布とウイルスの前処理>
2株のSARSウイルス(SARS−COV−P5:コロナウイルス分離株、ウイルス資源センター提供(中華人民共和国薬品生物製品検定所検定 証号:SH200400011)、及び、SARS−COV−P11:コロナウイルス分離株、ウイルス資源センター提供(中華人民共和国薬品生物製品検定所検定 証号:SH200400017))を
ウイルス希釈濃度が100TCID50(TCID50=半数組織培養感染量)となるように純水で希釈し、このウイルス希釈液7mlを、工業洗濯50回後の加工布に注いで布に十分に浸透させた。これを、室温で、10,15,30,45分間と、1,2,3時間放置した後、無菌のピンセットで上記加工布内のウイルス希釈液を押しだし、溶液(以下、「処理液」と称する。)を得た。
Specifically, it is as follows.
<Process cloth and virus pretreatment>
Two strains of SARS virus (SARS-COV-P5: Coronavirus isolate, provided by the Virus Resource Center (Certificates of the People's Republic of China) Diluted with pure water so that the virus dilution concentration is 100 TCID50 (TCID50 = half the tissue culture infectious dose) provided by the Virus Resource Center (certified by the People's Republic of China Pharmaceuticals and Biological Products Examination Certificate: SH200400017). Was poured into a processed cloth after 50 times of industrial washing to fully infiltrate the cloth. This was left at room temperature for 10, 15, 30, 45 minutes, 1, 2, 3 hours, and then the virus diluted solution in the processed cloth was pushed out with aseptic tweezers to obtain a solution (hereinafter referred to as “treatment solution”). Obtained).

<VERO E6細胞培養系でのウイルスCPE法での不活化効果の確認>
VERO E6細胞を40万個/mlの濃度で、96穴培養プレート(北京宝芝林生物技術有限公司提供)に接種し、37℃で24〜48時間培養して細胞を単層化した。これに、各々の時間経過における上記処理液を、それぞれ4穴に100μlずつ入れた。これを5%COの環境下で6日間培養し、倒置顕微鏡でウイルスCPEを観察して結果を記録した。
<Confirmation of inactivation effect by viral CPE method in VERO E6 cell culture system>
VERO E6 cells were inoculated at a concentration of 400,000 cells / ml into 96-well culture plates (provided by Beijing Takashiba Forest Biotechnology Co., Ltd.) and cultured at 37 ° C. for 24-48 hours to monolayer the cells. To this, 100 μl of each of the above-mentioned treatment liquids in each time course was put in 4 holes. This was cultured in an environment of 5% CO 2 for 6 days, and the virus CPE was observed with an inverted microscope, and the result was recorded.

その際の基準は、以下の通りである。「−」はウイルス細胞CPEに変化が無く、100%ウイルスが不活性化されたことを示し、「+」は25%以下のCPE変化で75%のウイルスが不活性化、「++」は26〜50%のCPE変化で50%の不活性化、「+++」は51〜75%のCPE変化で25%の不活性化、「++++」は76〜100%のCPE変化で不活性化されなかったことを示す。   The criteria at that time are as follows. “-” Indicates no change in viral cell CPE and 100% virus was inactivated, “+” indicates 25% or less CPE change and 75% virus inactivated, “++” indicates 26 50% inactivation with ~ 50% CPE change, "++++" not inactivated with 51-75% CPE change, 25% inactivation, "++++" not inactivated with 76-100% CPE change It shows that.

(溶出試験方法)
洗濯前の加工布からの、水(表中(1))、20%エタノール水溶液(表中(2))、4%酢酸(表中(3))に溶出するピリジン系抗菌剤の量を測定した。具体的には、繊維1gに対し溶液20mlに40℃10日間浸漬させ、溶出液中の不純有機物は塩酸処理で分解し、残存した金属を原子吸光光度計で測定した。判定は繊維中のピリジン系抗菌剤の全量に対し、溶出したピリジン系抗菌剤が1%未満であるものを良好(○)とし、1%以上溶出したものを不良(×)とした。なお、繊維中のピリジン系抗菌剤の初期量は上記した繊維への吸着量測定方法にて測定した。
(Dissolution test method)
Measure the amount of pyridine antibacterial agent eluted from the processed fabric before washing into water ((1) in the table), 20% ethanol aqueous solution ((2) in the table), and 4% acetic acid ((3) in the table). did. Specifically, 20 g of the solution was immersed in 1 g of fiber in 20 ml of a solution at 40 ° C. for 10 days, the impure organic matter in the eluate was decomposed by hydrochloric acid treatment, and the remaining metal was measured with an atomic absorption photometer. The determination was good (◯) when the eluted pyridine antibacterial agent was less than 1% with respect to the total amount of pyridine antibacterial agent in the fiber, and poor (x) when it eluted 1% or more. The initial amount of the pyridine antibacterial agent in the fiber was measured by the method for measuring the amount of adsorption onto the fiber described above.

(洗濯方法)
工業洗濯は(社)繊維評価技術協議会(JTETC)の定める、JAFET標準配合洗剤を用いた厚生省令第13号に準拠した洗濯方法で実施した。具体的には、80℃条件下(工業洗濯)で50回実施した。また、家庭洗濯は、JIS L 0217の103に準拠した洗濯方法で実施した。具体的には、常温条件下で10回の洗濯を実施した。
(Washing method)
Industrial washing was carried out by a washing method compliant with Ordinance No. 13 of the Ministry of Health and Welfare using a JAFET standard combination detergent specified by the Japan Textile Evaluation Technology Council (JTETC). Specifically, it was carried out 50 times under the condition of 80 ° C. (industrial washing). Home washing was performed by a washing method based on 103 of JIS L 0217. Specifically, washing was performed 10 times under normal temperature conditions.

(水性懸濁液の製造)
次に、水生懸濁液の製造方法について説明する。
ピリジン系抗菌剤として、亜鉛及び銅の無機性値を400とした場合に無機性値/有機性値が2.9と計算されるピリチオン亜鉛(アーチケミカル社製、表中「ZPT」と略す。)及びピリチオン銅(アーチケミカル社製、表中「CuPT」と略す。)と、ナトリウムの無機性値を500とした場合に無機性値/有機性値が5.0と計算されるピリチオンナトリウム(アーチケミカル社製、表中「NaPT」と略す。)とを用いた。それぞれの物性は以下の通りである。
(ピリチオン亜鉛物性)
・無機性値/有機性値:2.9
・水溶解度:8ppm(25℃)
・有機溶剤溶解度(オクタノール):5ppm
・平均粒子径:0.5μm
・2μm以上の粒子の割合:0%
・pH:6.6
(ピリチオン銅物性)
・無機性値/有機性値:2.9
・水溶解度:0.5ppm(25℃)
・有機溶剤溶解度(オクタノール):0.3ppm
・平均粒子径:0.5μm
・2μm以上の粒子の割合:0.5%
・pH:7.1
(ピリチオンナトリウム物性)
・無機性値/有機性値:5.0(値の計算は表2に記載。表中「I/O値」と略す。)
・水溶解度:53%(25℃)
・有機溶剤溶解度(オクタノール):0.1ppm
・平均粒子径:水溶性(完全溶解)
・2μm以上の粒子の割合:水溶性(完全溶解)
・pH:8.3
(Production of aqueous suspension)
Next, the manufacturing method of aquatic suspension is demonstrated.
As a pyridine-based antibacterial agent, pyrithione zinc (manufactured by Arch Chemical Co., Ltd., abbreviated as “ZPT” in the table, where the inorganic value / organic value is calculated as 2.9 when the inorganic value of zinc and copper is 400). ) And pyrithione copper (manufactured by Arch Chemical Co., Ltd., abbreviated as “CuPT” in the table), and sodium pyrithione (calculated that the inorganic value / organic value is 5.0 when the inorganic value of sodium is 500) Manufactured by Arch Chemical Co., Ltd., abbreviated as “NaPT” in the table). Each physical property is as follows.
(Physical properties of zinc pyrithione)
Inorganic value / organic value: 2.9
・ Water solubility: 8ppm (25 ℃)
Organic solvent solubility (octanol): 5ppm
・ Average particle size: 0.5μm
-Ratio of particles of 2 μm or more: 0%
・ PH: 6.6
(Pyrithione copper properties)
Inorganic value / organic value: 2.9
・ Water solubility: 0.5ppm (25 ℃)
Organic solvent solubility (octanol): 0.3 ppm
・ Average particle size: 0.5μm
-Ratio of particles of 2 μm or more: 0.5%
-PH: 7.1
(Physiology of pyrithione sodium)
Inorganic value / organic value: 5.0 (value calculation is described in Table 2. In the table, “I / O value” is abbreviated.)
Water solubility: 53% (25 ° C)
Organic solvent solubility (octanol): 0.1 ppm
・ Average particle size: Water-soluble (complete dissolution)
-Ratio of particles of 2 μm or more: Water-soluble (complete dissolution)
-PH: 8.3

Figure 2006009232
Figure 2006009232

上記それぞれのピリジン系抗菌剤を以下の成分比で混合した。
・ピリチオン亜鉛、ピリチオン銅又はピリチオンナトリウム:20重量部
・ポリオキシエチレンアルキルエーテル硫酸エステル塩(分散剤 第一工業製薬(株)製:ハイテノール08E):3重量部
・グリセリン(凍結防止剤 和光純薬工業(株)製):2重量部
・精製水:75重量部
混合したものをペースト化した後、ピリチオン亜鉛、ピリチオン銅についてはセラミックミルで平均粒子径0.5μmの懸濁液とした。ピリチオンナトリウムは、攪拌して透明均一な液体とした。得られた水性微粒子懸濁液もしくは透明液を、それぞれのピリジン系抗菌剤が0.8%になる様に水で希釈して水性懸濁液(ピリチオンナトリウムについては水性透明液)とした。得られた水性懸濁液のpHはそれぞれ、ピリチオン亜鉛を用いたものが6.8、ピリチオン銅を用いたものが7.1、ピリチオンナトリウムを用いたものが7.4である。
The above pyridine antibacterial agents were mixed in the following component ratios.
-Pyrithione zinc, pyrithione copper or pyrithione sodium: 20 parts by weight-Polyoxyethylene alkyl ether sulfate ester salt (dispersing agent, manufactured by Daiichi Kogyo Seiyaku Co., Ltd .: Hightenol 08E): 3 parts by weight-Glycerin (freezing agent Wako Jun) Yaku Kogyo Co., Ltd.): 2 parts by weight and purified water: 75 parts by weight was mixed into a paste, and then pyrithione zinc and pyrithione copper were made into a suspension with an average particle size of 0.5 μm using a ceramic mill. Sodium pyrithione was stirred to form a transparent uniform liquid. The obtained aqueous fine particle suspension or transparent liquid was diluted with water so that the respective pyridine antibacterial agents would be 0.8% to obtain an aqueous suspension (aqueous transparent liquid for sodium pyrithione). The pH of the obtained aqueous suspension is 6.8 using pyrithione zinc, 7.1 using pyrithione copper, and 7.4 using sodium pyrithione, respectively.

(合成繊維)
合成繊維としては、ポリエステル系繊維(色染社試験用繊維トロピカル:東レ(株)製 150デニール×48フィラメント 表中「PET」と略す。)及び、ナイロン繊維(色染社試験用繊維ナイロンタフタ:70デニール×24フィラメント 表中「Nylon」と略す。)を用いた。
(Synthetic fibers)
Synthetic fibers include polyester fibers (Fiber Tropical for Color Dyeing Company: 150 denier x 48 filaments manufactured by Toray Industries, Inc., abbreviated as “PET” in the table) and nylon fibers (Fiber Nylon Taffeta for Color Dyeing Company Testing: 70 denier × 24 filaments (abbreviated as “Nylon” in the table).

(実施例1)
ピリチオン亜鉛による上記水性懸濁液を浴槽に入れ、この中に10gのポリエステル系繊維を浸した。次にそのポリエステル系繊維を60%owfになる様に圧力をかけたローラーに通した。その後190℃で2分間、常圧乾熱機にて熱浸透処理を行い、最後に常温の水で5分洗浄後、120℃で2分乾燥を行い、抗菌・防カビ・抗ウイルス性繊維である加工布を得た。この加工布についての吸着性、溶出、及び工業洗濯前後における抗菌・防カビ性評価結果を表3に示す。なお、表中で無機性値/有機性値を「I/O値」と表記する。
Example 1
The aqueous suspension of pyrithione zinc was placed in a bath, and 10 g of polyester fiber was immersed therein. Next, the polyester fiber was passed through a roller which was pressurized to 60% owf. After that, heat osmosis treatment is performed at 190 ° C. for 2 minutes with an atmospheric pressure dryer, and finally washed with water at room temperature for 5 minutes and then dried at 120 ° C. for 2 minutes to provide antibacterial / antifungal / antiviral fibers. A processed cloth was obtained. Table 3 shows the adsorptivity, elution, and antibacterial / antifungal evaluation results before and after industrial washing for this processed fabric. In the table, the inorganic value / organic value is expressed as “I / O value”.

Figure 2006009232
Figure 2006009232

(実施例2)
実施例1のピリチオン亜鉛の代わりにピリチオン銅を用いた以外は同様の方法で抗菌・防カビ・抗ウイルス性繊維である加工布を得た。この加工布についての評価結果を表3に示す。
(Example 2)
A processed cloth which is an antibacterial / antifungal / antiviral fiber was obtained in the same manner except that pyrithione copper was used in place of the pyrithione zinc of Example 1. Table 3 shows the evaluation results of this work cloth.

(比較例1)
実施例1のピリチオン亜鉛の代わりにピリチオンナトリウムを用いた以外は同様の方法で加工布を得た。この加工布についての評価結果を表3に示す。
(Comparative Example 1)
A processed fabric was obtained in the same manner except that sodium pyrithione was used in place of pyrithione zinc in Example 1. Table 3 shows the evaluation results of this work cloth.

(実施例3)
ピリチオン亜鉛による上記水性懸濁液を浴槽に入れ、この中に10gのナイロン繊維を浸した。次にそのナイロン繊維を、60%owfになるように圧力をかけたローラーに通した。その後、120℃で1分間常圧乾熱機にて熱浸透処理を行い、最後に常温の水で5分洗浄後、110℃で2分乾燥を行い、抗菌・防カビ・抗ウイルス性繊維である加工布を得た。この加工布についての溶出と、家庭洗濯前後における抗菌力との評価結果を表4に示す。
Example 3
The aqueous suspension of pyrithione zinc was placed in a bath, and 10 g of nylon fiber was immersed therein. The nylon fiber was then passed through a roller that was pressurized to 60% owf. After that, heat osmosis treatment is performed at 120 ° C. for 1 minute in an atmospheric pressure dryer, and finally washed with water at room temperature for 5 minutes, followed by drying at 110 ° C. for 2 minutes to provide antibacterial / antifungal / antiviral fibers. A processed cloth was obtained. Table 4 shows the results of the elution of the processed cloth and the antibacterial activity before and after home washing.

Figure 2006009232
Figure 2006009232

(実施例4)
実施例3のピリチオン亜鉛の代わりにピリチオン銅を用いた以外は同様の方法で、抗菌・防カビ・抗ウイルス性繊維である加工布を得た。この加工布についての評価結果を表4に示す。
Example 4
A processed cloth which is an antibacterial / antifungal / antiviral fiber was obtained in the same manner except that pyrithione copper was used in place of pyrithione zinc in Example 3. Table 4 shows the evaluation results of this work cloth.

(比較例2)
実施例3のピリチオン亜鉛の変わりにピリチオンナトリウムを用いた以外は同様の方法で、加工布を得た。この加工布についての評価結果を表4に示す。
(Comparative Example 2)
A processed fabric was obtained in the same manner except that sodium pyrithione was used in place of pyrithione zinc in Example 3. Table 4 shows the evaluation results of this work cloth.

(結果)
無機性値/有機性値が1.4を越え、3.3以下であるピリジン系抗菌剤を用いて製造した抗菌・防カビ・抗ウイルス性繊維は、無機性値/有機性値が3.3を超えたピリジン系抗菌剤を用いたものよりも、安定した抗菌効果を示し、また、溶出も起こさなかった。
(result)
Antibacterial / antifungal / antiviral fibers manufactured using a pyridine antibacterial agent having an inorganic value / organic value exceeding 1.4 and not more than 3.3 have an inorganic value / organic value of 3. The antibacterial effect was more stable than that using more than 3 pyridine antibacterial agents, and no elution occurred.

(実施例5)
実施例1において、上記水性懸濁液のピリチオン亜鉛濃度を0.8%から0.67%に変えた希釈液を用いた以外は、実施例1と同じ方法で、抗菌・防カビ・抗ウイルス性繊維である加工布を得た。そのときの期待吸着濃度は0.4%で、実測濃度は0.38%であった。また、工業洗濯も同様に、80℃で50回実施した。この加工布を用いて、抗ウイルス試験を行った。その結果を表5に示す。1時間以上でウイルスに対する不活化効果が現れ、3時間で100%の不活化効果が得られた。
(比較例3:対照区)
加工布による処理を行っていない上記ウイルス希釈液を用いて、抗ウイルス試験を行った。その結果を表5に示す。
(Example 5)
An antibacterial / antifungal / antiviral solution was prepared in the same manner as in Example 1, except that a diluted solution in which the concentration of pyrithione zinc in the aqueous suspension was changed from 0.8% to 0.67% was used. A processed cloth, which is a natural fiber, was obtained. The expected adsorption concentration at that time was 0.4%, and the actually measured concentration was 0.38%. Moreover, industrial washing was similarly performed 50 times at 80 degreeC. An antiviral test was performed using this processed cloth. The results are shown in Table 5. An inactivation effect on the virus appeared in 1 hour or more, and a 100% inactivation effect was obtained in 3 hours.
(Comparative Example 3: Control)
An antiviral test was performed using the above virus diluted solution that had not been treated with a processed cloth. The results are shown in Table 5.

Figure 2006009232
Figure 2006009232

Claims (7)

無機性値/有機性値が1.4を越え、3.3以下であるピリジン系抗菌剤が微粒子の状態で分散された水性懸濁液を合成繊維に付着させるとともに、又は付着させた後、機械的圧力をかけて微粒子状の上記ピリジン系抗菌剤を上記合成繊維同士の隙間に押し込み、その後熱浸透処理する、抗菌・防カビ・抗ウイルス性繊維の製造方法。   After attaching or adhering an aqueous suspension in which a pyridine-based antibacterial agent having an inorganic value / organic value of more than 1.4 and less than 3.3 is dispersed in a fine particle state to a synthetic fiber, A method for producing antibacterial / antifungal / antiviral fibers, wherein mechanical pressure is applied to push the particulate pyridine-based antibacterial agent into the gap between the synthetic fibers, followed by heat osmosis treatment. 上記熱浸透処理を行う際、上記合成繊維が含有する水分が、繊維重量に対して5〜100重量%である、請求項1に記載の抗菌・防カビ・抗ウイルス性繊維の製造方法。   The method for producing antibacterial / antifungal / antiviral fibers according to claim 1, wherein when the heat osmosis treatment is performed, the moisture contained in the synthetic fiber is 5 to 100% by weight with respect to the fiber weight. 上記ピリジン系抗菌剤が、下記化学式(1)で表される、2−ピリジンチオール亜鉛−1−オキシド、及び/又は、2−ピリジンチオール銅−1−オキシドである請求項1又は2に記載の抗菌・防カビ・抗ウイルス性繊維の製造方法。
Figure 2006009232
(なお、式中MはZn又はCuを示す。)
The pyridine antibacterial agent is 2-pyridinethiol zinc-1-oxide and / or 2-pyridinethiol copper-1-oxide represented by the following chemical formula (1). A method for producing antibacterial, antifungal and antiviral fibers.
Figure 2006009232
(In the formula, M represents Zn or Cu.)
上記の押し込み操作により、上記水性懸濁液の付着重量を繊維重量に対して5〜100%とする請求項1乃至3のいずれかに記載の抗菌・防カビ・抗ウイルス性繊維の製造方法。   The method for producing antibacterial / antifungal / antiviral fibers according to any one of claims 1 to 3, wherein an adhesion weight of the aqueous suspension is set to 5 to 100% with respect to a fiber weight by the pushing operation. 上記合成繊維がポリエステル系繊維であり、上記熱浸透処理を、150〜200℃で処理する、請求項1乃至4のいずれかに記載の抗菌・防カビ・抗ウイルス性繊維の製造方法。   The method for producing antibacterial / antifungal / antiviral fibers according to claim 1, wherein the synthetic fiber is a polyester fiber, and the heat osmosis treatment is performed at 150 to 200 ° C. 5. 上記合成繊維がナイロン繊維又はアクリル繊維であり、上記熱浸透処理を、80〜150℃で処理する、請求項1乃至4のいずれかに記載の抗菌・防カビ・抗ウイルス性繊維の製造方法。   The method for producing antibacterial / antifungal / antiviral fibers according to claim 1, wherein the synthetic fibers are nylon fibers or acrylic fibers, and the heat osmosis treatment is performed at 80 to 150 ° C. 5. 上記水性懸濁液が、上記ピリジン系抗菌剤に対して1/50〜1/1の重量の分散剤を含んでおり、かつ、水分を上記水性懸濁液の全重量に比して50〜99.99重量%含有する溶液である、請求項1乃至6のいずれかに記載の抗菌・防カビ・抗ウイルス性繊維の製造方法。   The aqueous suspension contains a dispersant having a weight of 1/50 to 1/1 with respect to the pyridine-based antibacterial agent, and moisture is 50 to 50% of the total weight of the aqueous suspension. The method for producing antibacterial / antifungal / antiviral fibers according to any one of claims 1 to 6, which is a solution containing 99.99% by weight.
JP2005006270A 2004-02-02 2005-01-13 Method for producing antibacterial, antifungal and antiviral fibers Active JP4125293B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005006270A JP4125293B2 (en) 2004-02-02 2005-01-13 Method for producing antibacterial, antifungal and antiviral fibers
CN2009101412578A CN101619539B (en) 2004-02-02 2005-02-02 Method for producing bacteria, fungus and virus resisting fiber
CN 200510006253 CN1651640B (en) 2004-02-02 2005-02-02 Method for producing bacteria,fungus and virus resisting fiber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004025715 2004-02-02
JP2004151577 2004-05-21
JP2005006270A JP4125293B2 (en) 2004-02-02 2005-01-13 Method for producing antibacterial, antifungal and antiviral fibers

Publications (2)

Publication Number Publication Date
JP2006009232A true JP2006009232A (en) 2006-01-12
JP4125293B2 JP4125293B2 (en) 2008-07-30

Family

ID=35776777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005006270A Active JP4125293B2 (en) 2004-02-02 2005-01-13 Method for producing antibacterial, antifungal and antiviral fibers

Country Status (1)

Country Link
JP (1) JP4125293B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138323A (en) * 2006-12-01 2008-06-19 Esuko:Kk Nonwoven fabric of extrafine copper wires and method for exterminating bird flu virus using the same
JP2011094283A (en) * 2009-09-29 2011-05-12 Osaka Kasei Kk Antibacterial, antifungal and antiviral fiber product and method for producing the same
CN114318866A (en) * 2022-02-25 2022-04-12 联科华技术有限公司 Monoatomic antibacterial antiviral mildew-proof formaldehyde-removing textile chemical fiber and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138323A (en) * 2006-12-01 2008-06-19 Esuko:Kk Nonwoven fabric of extrafine copper wires and method for exterminating bird flu virus using the same
JP2011094283A (en) * 2009-09-29 2011-05-12 Osaka Kasei Kk Antibacterial, antifungal and antiviral fiber product and method for producing the same
CN114318866A (en) * 2022-02-25 2022-04-12 联科华技术有限公司 Monoatomic antibacterial antiviral mildew-proof formaldehyde-removing textile chemical fiber and preparation method thereof

Also Published As

Publication number Publication date
JP4125293B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
CN107567513B (en) Cloth with antimicrobial properties
CN108884626B (en) Cloth with antimicrobial properties
US20200154712A1 (en) Disinfectant composition for textile and related substrates, and method of treating a substrate to provide disinfecting antibacterial, antiviral and antifungal, wash durable, optionally enhanced with multifunctional properties
Perera et al. Morphological, antimicrobial, durability, and physical properties of untreated and treated textiles using silver-nanoparticles
KR20070005658A (en) Antiviral fiber, process for producing the fiber, and textile product comprising the fiber
Laga et al. Use of nano silver as an antimicrobial agent for cotton
EP3795741A1 (en) Textiles having antimicrobial properties
JP5126745B2 (en) Antiviral agent and antiviral sheet
US8598053B2 (en) Materials incorporating antimicrobial polymers
JP4698386B2 (en) Antibacterial addition treatment liquid for textiles
KR20120046714A (en) Method for preparing an antimicrobial cotton of cellulose matrix having chemically and/or physically bonded silver and antimicrobial cotton prepared therefrom
CN1651640B (en) Method for producing bacteria,fungus and virus resisting fiber
JP2005521797A (en) Organic and / or inorganic fiber materials having bactericidal properties and use thereof
JP4125293B2 (en) Method for producing antibacterial, antifungal and antiviral fibers
US20170167073A1 (en) Antimicrobial textiles and methods for production of the same
CN113265878A (en) Antibacterial and antiviral polypropylene non-woven fabric and preparation method thereof
JP6734776B2 (en) Process for producing anti-virus processed product and anti-virus processed product obtained thereby
JP2005009065A (en) Bactericidal/antibacterial textile product and method for manufacturing the same
WO2021253015A1 (en) Textile treatment compositions
JP2011127243A (en) Bacteriostatically treating method
RU2640277C2 (en) Method for production of antimicrobial silver-containing cellulose material
JP2005281951A (en) Method for producing antibacterial, antifungal and antiviral fiber
JP3779124B2 (en) Antibacterial and antifungal processing methods for fibers
JP2009007736A (en) Method for producing bacteria, fungus and virus resisting fiber
WO2021248220A1 (en) Silver-based antimicrobial and antiviral compositions, textile materials comprising the same, methods and uses thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4125293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250