JP2006009143A - Heat resistant alloy for use as material of engine valve - Google Patents

Heat resistant alloy for use as material of engine valve Download PDF

Info

Publication number
JP2006009143A
JP2006009143A JP2005108165A JP2005108165A JP2006009143A JP 2006009143 A JP2006009143 A JP 2006009143A JP 2005108165 A JP2005108165 A JP 2005108165A JP 2005108165 A JP2005108165 A JP 2005108165A JP 2006009143 A JP2006009143 A JP 2006009143A
Authority
JP
Japan
Prior art keywords
value
phase
alloy
resistant alloy
heat resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005108165A
Other languages
Japanese (ja)
Other versions
JP3977847B2 (en
Inventor
Akihiro Tsuji
昭宏 都地
Toshihiro Uehara
利弘 上原
Katsuhiko Tominaga
克彦 富永
Shoichi Nakatani
庄一 中谷
Katsuaki Sato
克明 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Proterial Ltd
Original Assignee
Honda Motor Co Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Hitachi Metals Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005108165A priority Critical patent/JP3977847B2/en
Publication of JP2006009143A publication Critical patent/JP2006009143A/en
Application granted granted Critical
Publication of JP3977847B2 publication Critical patent/JP3977847B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low cost, economical and less resource-consuming heat resistant alloy for use as material of engine valve, while the alloy has strength at a high temperature and excellent toughness after heated for a long time that conventional heat resistant alloys have not had. <P>SOLUTION: The heat resistant alloy for use as material of engine valve consists essentially of, in mass percent, C of 0.01 to 0.15%, Si of 0.01 to 0.8%, Mn of 0.01 to 0.8, Cr of 14 to 17%, Mo of more than 3.0% but equal to or less than 5.0%, Al of 1.6 to 2.5%, Ti of 1.5 to 3.0%, Nb or Nb+Ta of 0.5 to 2.0%, Ni of 50 to 60%, B of 0.001 to 0.015%, at least one of Mg of 0.001 to 0.015% and Ca of 0.001 to 0.015%, and the balance substantially being Fe, wherein value A defined by 0.293[Ni]-0.513[Cr]-1.814[Mo]is 2.0 to 5.8, value B defined by [Al]/([Al]+[Ti]+[Nb]+[Ta]) is 0.45 to 0.65, and value C defined by [Al]+[Ti]+[Nb]+[Ta] is 6.2 to 7.6, wherein brackets mean atomic% of each element in the alloy. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、主に自動車の排気エンジンバルブに用いられるエンジンバルブ用耐熱合金に関するものである。   The present invention relates to a heat-resistant alloy for engine valves mainly used for automobile exhaust engine valves.

従来、自動車用エンジンバルブには、SUH11、SUH35等のFe基合金(耐熱鋼)が広く用いられてきたが、一部使用温度の高温化に伴ってNi基超耐熱合金であるNCF751(Ni−15.5Cr−1Nb−2.3Ti−1.2Al−7Fe[質量%])が用いられるようになった。   Conventionally, Fe-based alloys (heat-resistant steel) such as SUH11 and SUH35 have been widely used for automobile engine valves. However, NCF751 (Ni— 15.5Cr-1Nb-2.3Ti-1.2Al-7Fe [mass%]) has come to be used.

しかし、NCF751はNiを約70%も含むためFe基合金に比べて非常に高価であり、そのため、NCF751に近い高温強度と長時間加熱後の組織安定性を備えた省資源型の合金開発が行われてきた。その結果、例えばNi含有量を30〜35質量%に低減させたFe基耐熱合金が特許文献1に、Ni含有量を30〜49質量%まで低減させたFe基耐熱合金が特許文献2に、Ni含有量を35〜45質量%まで低減させたFe基耐熱合金が特許文献3に開示されている。また、NCF751よりも高温強度に優れた高Niの耐熱合金が、特許文献4および特許文献5等に開示されている。
特開平9−279309号公報 特開平7−109539号公報 特開平7−332035号公報 特開平7−216482号公報 特開平11−229059号公報
However, NCF751 contains approximately 70% Ni and is therefore very expensive compared to Fe-based alloys. Therefore, the development of resource-saving alloys with high-temperature strength close to NCF751 and structural stability after long-time heating has been developed. Has been done. As a result, for example, an Fe-based heat-resistant alloy having a Ni content reduced to 30 to 35% by mass is disclosed in Patent Document 1, and an Fe-based heat-resistant alloy having a Ni content reduced to 30 to 49% by mass is disclosed in Patent Document 2. Patent Document 3 discloses an Fe-based heat-resistant alloy in which the Ni content is reduced to 35 to 45% by mass. Further, a high-Ni heat-resistant alloy having a higher temperature strength than NCF751 is disclosed in Patent Literature 4, Patent Literature 5, and the like.
JP-A-9-279309 JP-A-7-109539 JP 7-332035 A Japanese Patent Laid-Open No. 7-216482 Japanese Patent Laid-Open No. 11-229059

近年、地球規模の環境問題を背景に、エンジンの更なる高効率化を目的として、一部ではNCF751でも満足できない程の高い高温強度がバルブ材に要求されるようになってきた。その一方で、市場のグローバル化に対してコスト競争力を高めるため、部品の省資源化、低コスト化も望まれている。   In recent years, against the background of global environmental problems, high-temperature strength that is partially unsatisfactory even by NCF751 has been required for valve materials for the purpose of further increasing the efficiency of engines. On the other hand, in order to increase cost competitiveness with respect to globalization of the market, resource saving and cost reduction of parts are also desired.

上記の特許文献1〜3に開示された合金は、Ni含有量が49質量%以下であり省資源・低コストの点で優れているが、高温強度はNCF751を大きく超えるものではない。また、特許文献4に開示された合金は、NCF751よりも優れた高温強度を有するが、実際には60質量%を超えるNi含有量の合金として考えられており、省資源化・低コスト化という点で不十分である。   The alloys disclosed in Patent Documents 1 to 3 described above are excellent in terms of resource saving and low cost because the Ni content is 49% by mass or less, but the high-temperature strength does not greatly exceed NCF751. Further, the alloy disclosed in Patent Document 4 has a high temperature strength superior to that of NCF751, but is actually considered as an alloy having a Ni content exceeding 60% by mass, which means resource saving and cost reduction. Inadequate in terms.

これら従来合金では達成できなかった、優れた高温強度と低コストを両立させた、本願出願人の提案による特許文献5に開示された合金は、Ni含有量が50〜60質量%でNCF751よりも低コストで優れた高温強度を有するが、高温での組織安定性が不十分であり、バルブとして使用した場合、長時間加熱によって靭性が低下する可能性があることが判明した。   The alloy disclosed in Patent Document 5 proposed by the applicant of the present application that achieves both excellent high-temperature strength and low cost, which could not be achieved with these conventional alloys, has a Ni content of 50 to 60% by mass and is more than NCF751. It has been found that although it has excellent high-temperature strength at low cost, the structure stability at high temperatures is insufficient, and when used as a valve, toughness may be reduced by heating for a long time.

本発明の目的は、これら上記の耐熱合金が成し得なかった高温強度と長時間加熱後の優れた靭性を有し、且つ低コストで経済性に優れた省資源のエンジンバルブ用耐熱合金を提供することである。   It is an object of the present invention to provide a resource-saving engine valve heat-resistant alloy that has high-temperature strength and excellent toughness after long-time heating, which have not been achieved by the above-mentioned heat-resistant alloys, and that is economical and economical. Is to provide.

まず、本発明者等は、特許文献5に開示された合金をベースに、高温での組織安定性が不十分で長時間加熱によって靭性が低下するというその合金の欠点を改善するために、詳細な検討を行った。その結果、この合金はNCF751以上の高温強度を有するものの、実際にはCrが17質量%を超えて含まれており、組織安定性を保つにはそのNi含有量や固溶強化元素であるMo,Wの含有量に対してCrが過剰であるため、高温長時間加熱後にσ相やα’相などの脆化相が生成し、靭性が大きく低下することが分かった。この長時間加熱後の靭性を高いレベルに維持可能なように鋭意検討した結果、Cr含有量と、オーステナイトの構成元素であるNi、および固溶強化元素であるMoの含有量をより最適な範囲に同時に規定することにより、組織安定性が非常に高く長時間加熱後の靭性に優れ、且つNCF751よりも高い高温強度を有する耐熱合金を得られることを見出し、本発明に到達した。   First, the present inventors based on the alloy disclosed in Patent Document 5, in order to improve the defect of the alloy that the structural stability at high temperature is insufficient and the toughness is lowered by long-time heating. The examination was done. As a result, although this alloy has a high temperature strength of NCF751 or more, it actually contains Cr in excess of 17% by mass. To maintain the structural stability, its Ni content and Mo, which is a solid solution strengthening element, are included. It has been found that since Cr is excessive with respect to the W content, brittle phases such as σ phase and α ′ phase are produced after high temperature and long time heating, and the toughness is greatly reduced. As a result of diligent investigation to maintain the toughness after heating for a long time at a high level, the Cr content, the content of Ni, which is a constituent element of austenite, and the content of Mo, which is a solid solution strengthening element, are more optimal. It was found that a heat-resistant alloy having very high structure stability, excellent toughness after long-time heating, and high-temperature strength higher than that of NCF751 can be obtained.

すなわち本発明のエンジンバルブ用耐熱合金は、質量%でC:0.01〜0.15%、Si:0.01〜0.8%、Mn:0.01〜0.8%、Cr:14〜17%、Mo:3.0%を超えて5.0%以下、Al:1.6〜2.5%、Ti:1.5〜3.0%、Nb単独またはNb+Ta:0.5〜2.0%、Ni:50〜60%、B:0.001〜0.015%を含有し、Mg:0.001〜0.015%およびCa:0.001〜0.015%のうち一種または二種を含み、残部は実質的にFeからなり、且つ原子%で下記A値が2.0〜5.8、B値が0.45〜0.65、C値が6.2〜7.6を満足する。
A値 0.293[Ni]−0.513[Cr]−1.814[Mo]
B値 [Al]/([Al]+[Ti]+[Nb]+[Ta])
C値 [Al]+[Ti]+[Nb]+[Ta] [ ]は原子%を表す。
That is, the heat-resistant alloy for engine valves of the present invention is C: 0.01 to 0.15%, Si: 0.01 to 0.8%, Mn: 0.01 to 0.8%, Cr: 14 in mass%. -17%, Mo: more than 3.0% and 5.0% or less, Al: 1.6-2.5%, Ti: 1.5-3.0%, Nb alone or Nb + Ta: 0.5- 2.0%, Ni: 50-60%, B: 0.001-0.015%, Mg: 0.001-0.015% and Ca: 0.001-0.015% Or two types are included, the remainder consists essentially of Fe, and the following A value is 2.0-5.8 in atomic%, B value is 0.45-0.65, C value is 6.2-7. .6 is satisfied.
A value 0.293 [Ni] -0.513 [Cr] -1.814 [Mo]
B value [Al] / ([Al] + [Ti] + [Nb] + [Ta])
C value [Al] + [Ti] + [Nb] + [Ta] [] represents atomic%.

前記本発明のエンジンバルブ用耐熱合金は、Mo:3.5〜4.0%、A値が2.4〜4.0、B値が0.5〜0.6、C値が6.4〜7.0であることが好ましい。   The heat-resistant alloy for engine valves of the present invention has Mo: 3.5 to 4.0%, A value of 2.4 to 4.0, B value of 0.5 to 0.6, and C value of 6.4. It is preferably ˜7.0.

前記エンジンバルブ用耐熱合金の断面上のCrをEPMAでライン分析した時、Cr量の最大値と最小値が、(最大値)/(最小値)≦1.2であることが好ましい。   When Cr on the cross section of the engine valve heat resistant alloy is subjected to line analysis by EPMA, the maximum value and the minimum value of the Cr amount are preferably (maximum value) / (minimum value) ≦ 1.2.

また、800℃で400時間加熱後の常温における2mmUノッチシャルピー衝撃値が、50J/cm以上であることが好ましい。 Moreover, it is preferable that the 2 mmU notch Charpy impact value in normal temperature after heating at 800 degreeC for 400 hours is 50 J / cm < 2 > or more.

800℃で400時間加熱後の顕微鏡組織において、3μm以上長さのσ相、α’相、η相、δ相の金属間化合物が実質的に析出していないことが更に好ましい。   More preferably, in the microstructure after heating at 800 ° C. for 400 hours, intermetallic compounds of σ phase, α ′ phase, η phase, and δ phase having a length of 3 μm or more are not substantially precipitated.

本発明のエンジンバルブ用耐熱合金は、従来の耐熱合金が成し得なかった高温強度と長時間加熱後の優れた靭性を有し、且つ省資源・低コストで経済性に優れているため、高強度が要求されるエンジンバルブ材として使用する場合に、エンジンの高効率化とバルブ材の省資源化、低コスト化を実現することができる。   The heat-resistant alloy for engine valves of the present invention has high-temperature strength and high toughness after long-time heating, which cannot be achieved by conventional heat-resistant alloys, and is excellent in economic efficiency with resource saving, low cost, When used as an engine valve material that requires high strength, it is possible to achieve higher engine efficiency, resource saving of the valve material, and cost reduction.

本発明の重要な特徴は、本願出願人の提案した特許文献5に開示された合金をベースに、高温長時間加熱後の組織安定性を向上させた点にある。特許文献5に開示された合金においても、組織安定性確保のためにCr,Mo,Wの総量が重要視されている。しかしながら、Cr,Mo,Wの総量が特許文献5で規定する範囲内であってもNi含有量が低い場合には高温での組織安定性が不十分であり、長時間加熱によってσ相やα’相などの脆化相が生成し、靭性が低下した。そのため、Niも特定の範囲内に調整する必要がある。つまり、Cr,Mo,W量だけでなくNi量を同時に管理することによって初めて、高温での組織が安定な高温強度に優れた合金を得ることができる。   An important feature of the present invention is that the structure stability after high-temperature and long-time heating is improved based on the alloy disclosed in Patent Document 5 proposed by the present applicant. In the alloy disclosed in Patent Document 5, the total amount of Cr, Mo, and W is regarded as important for ensuring the structural stability. However, even if the total amount of Cr, Mo and W is within the range specified in Patent Document 5, if the Ni content is low, the structure stability at high temperature is insufficient, and the σ phase and α are not heated by long-time heating. 'A brittle phase such as a phase was formed, and toughness decreased. Therefore, it is necessary to adjust Ni within a specific range. That is, an alloy excellent in high-temperature strength with a stable structure at high temperature can be obtained only by simultaneously managing not only the Cr, Mo and W amounts but also the Ni amount.

また、Moと同様にWも、オーステナイト基地を固溶強化し、高温疲労強度と高温クリープ強度を高める効果を持つ。しかしWはその比重がMoの2倍近くあり、Moと同等の効果を得るにはMoの2倍近くの添加量が必要となる。また、Moと同等の効果が得られる量のWを添加することにより、脆化相であるLAVES相が析出しやすくなるというデメリットもある。そこで、低コストと組織安定性を目的とした本発明合金には、Moのみを必須添加する。さらに、γ’相が長時間加熱中に粗大化・凝集してγ’相の析出強化の効果が次第に低下していくのに比べ、Moによる固溶強化の効果が安定なので、Moの固溶強化を、組織安定性を保ちつつ最大限に利用する本発明合金は、長時間域での疲労強度が高いという利点を有する。   Further, like Mo, W also has the effect of strengthening the austenite base in a solid solution and increasing the high temperature fatigue strength and the high temperature creep strength. However, W has a specific gravity nearly twice that of Mo, and in order to obtain the same effect as Mo, an addition amount almost twice that of Mo is required. Moreover, there is a demerit that the LAVES phase, which is an embrittlement phase, easily precipitates by adding W in an amount that can provide the same effect as Mo. Therefore, only Mo is essentially added to the alloy of the present invention aiming at low cost and structural stability. Furthermore, the effect of solid solution strengthening by Mo is stable compared to the fact that the effect of precipitation strengthening of γ 'phase gradually decreases as the γ' phase coarsens and aggregates during long-time heating. The alloy of the present invention that makes maximum use of strengthening while maintaining the structural stability has the advantage of high fatigue strength in the long-term region.

本発明のエンジンバルブ用耐熱合金において、各化学組成を規定した理由は以下の通りである。なお、特に記載のない限り化学組成を質量%で表す。   In the heat-resistant alloy for engine valves of the present invention, the reason why each chemical composition is specified is as follows. Unless otherwise specified, the chemical composition is expressed in mass%.

C:0.01〜0.15%
CはTiやNbと結び付いてMC炭化物を形成し、結晶粒の粗大化防止やクリープ破断延性の改善に役立つ。Cが0.01%未満であるとMC炭化物によるそれらの効果が十分でない。一方で、0.15%を超えると長時間加熱時にMC炭化物からM23炭化物への分解反応が多量に生じて、常温における粒界の延性が低下するという問題が生じるため、0.01〜0.15%の範囲とした。Cの好ましい範囲は0.01〜0.08%である。
C: 0.01 to 0.15%
C combines with Ti and Nb to form MC carbide, which is useful for preventing coarsening of crystal grains and improving creep rupture ductility. If C is less than 0.01%, those effects due to MC carbide are not sufficient. On the other hand, if it exceeds 0.15%, a large amount of decomposition reaction from MC carbide to M 23 C 6 carbide occurs during long-time heating, resulting in a problem that the ductility of the grain boundary at normal temperature is lowered. It was made into the range of -0.15%. The preferable range of C is 0.01 to 0.08%.

Si:0.01〜0.8%
Siは脱酸効果を得るために0.01%以上添加する必要があるが、0.8%を超えると高温強度が低下するという問題が生じるため、Siは0.01〜0.8%に規定する。Siの好ましい範囲は0.01〜0.6%である。
Si: 0.01 to 0.8%
Si needs to be added in an amount of 0.01% or more in order to obtain a deoxidizing effect. However, if it exceeds 0.8%, there is a problem that the high-temperature strength is lowered. Stipulate. A preferable range of Si is 0.01 to 0.6%.

Mn:0.01〜0.8%、
MnもSiと同様に脱酸効果を得るために0.01%以上添加する必要があるが、0.8%を超えると高温強度が低下するという問題が生じるため、Mnは0.01〜0.8%に規定する。Mnの好ましい範囲は0.01〜0.6%である。
Mn: 0.01 to 0.8%
Mn also needs to be added in an amount of 0.01% or more in order to obtain a deoxidizing effect as in the case of Si. However, if it exceeds 0.8%, there is a problem that the high-temperature strength is lowered. .8% is specified. A preferable range of Mn is 0.01 to 0.6%.

Cr:14〜17%
Crは、高温で用いられる合金に耐酸化性を付与するために不可欠な元素であり、また、オーステナイト中に固溶して固溶強化する役割も有する重要な元素である。自動車用エンジンバルブ材に必要な耐酸化性・耐熱性を確保するには最低14%以上必要であるが、上限の17%を超えると、高温長時間の加熱により組織が不安定となり、Crに富んだα’相またはσ相などの有害脆化相が生成し、疲労強度やクリープ破断強度を低下させ、常温延性の低下も招く。本発明の重要な特徴は、高温長時間加熱後の組織安定性であるため、Cr含有量は耐酸化性を維持できる最低限度に留める。従って、Crは14〜17%に規定する。Crの好ましい範囲は14.5〜16.5%である。さらに好ましい範囲は、15〜16.5%であり、15.5〜16.5%がより好ましい。
Cr: 14-17%
Cr is an indispensable element for imparting oxidation resistance to an alloy used at a high temperature, and is an important element having a role of forming a solid solution in austenite and strengthening the solution. In order to ensure the oxidation resistance and heat resistance required for automotive engine valve materials, a minimum of 14% is required. However, if the upper limit of 17% is exceeded, the structure becomes unstable due to heating at high temperatures for a long time, resulting in Cr A harmful embrittlement phase such as a rich α ′ phase or σ phase is generated, which reduces fatigue strength and creep rupture strength, and also causes a decrease in normal temperature ductility. An important feature of the present invention is the stability of the structure after high-temperature and long-time heating, so the Cr content is kept to a minimum level that can maintain oxidation resistance. Therefore, Cr is specified to be 14 to 17%. The preferable range of Cr is 14.5 to 16.5%. A more preferable range is 15 to 16.5%, and more preferably 15.5 to 16.5%.

Mo: 3.0%を超えて5.0%以下
Moはオーステナイト基地を固溶強化し、高温疲労強度と高温クリープ強度を著しく高める効果をもつ、本発明合金において最も重要な元素の一つである。Moが3.0%以下であると、固溶強化が十分に働かないため、本発明が成し得ようとする高温強度を達成することが出来ない。逆に5.0%を超える過度のMoの添加は、熱間加工性を害し、Crを過剰に含む場合と同様に、高温長時間の加熱によりα’相またはσ相等の有害相が析出するという問題を生じる。従って、Moは3.0%を超えて5.0%以下に規定する。好ましい範囲は3.3〜4.8%である。さらに好ましいMo含有量の上限は4.6%以下であり、4.0%以下がより好ましい。また、さらに好ましいMo含有量の下限は3.5%以上である。
Mo: more than 3.0% to 5.0% or less Mo is one of the most important elements in the alloy of the present invention, which has the effect of solid solution strengthening the austenite base and remarkably increasing the high temperature fatigue strength and the high temperature creep strength. is there. If the Mo content is 3.0% or less, the solid solution strengthening does not work sufficiently, so that the high temperature strength that the present invention can achieve cannot be achieved. Conversely, excessive addition of Mo exceeding 5.0% impairs hot workability, and a harmful phase such as an α ′ phase or a σ phase is precipitated by heating at a high temperature for a long time, as in the case of containing excessive Cr. This causes a problem. Therefore, Mo is specified to be more than 3.0% and 5.0% or less. A preferable range is 3.3 to 4.8%. Furthermore, the upper limit of preferable Mo content is 4.6% or less, and 4.0% or less is more preferable. Moreover, the minimum of more preferable Mo content is 3.5% or more.

Al:1.6〜2.5%
Alは、安定なγ’相を析出させて所望の高温強度を得るために不可欠な元素であり、少なくとも1.6%を必要とするが、2.5%を超えると熱間加工性が劣化するという問題を生じるので1.6〜2.5%に規定する。Alの好ましい範囲は1.6〜2.1%であり、さらに好ましい範囲は1.6〜1.9%である。
Al: 1.6-2.5%
Al is an indispensable element for obtaining a desired high-temperature strength by precipitating a stable γ 'phase, and at least 1.6% is required. However, when it exceeds 2.5%, hot workability deteriorates. Therefore, it is defined as 1.6 to 2.5%. A preferable range of Al is 1.6 to 2.1%, and a more preferable range is 1.6 to 1.9%.

Ti:1.5〜3.0%
Tiは、Cと結び付いてMC炭化物を形成してオーステナイト結晶粒を微細化するとともに、Al、Nb、TaとともにNiと結び付いてγ’相を形成し、高温強度を向上させる効果があり、1.5%以上の添加が必要である。しかし、3.0%を超えてTiを添加すると、高温においてγ’相からη相への変態が起こり易くなり高温強度が低下し、さらに、Tiの過度な添加はγ’相を過度に増加させて熱間加工性を低下させるという問題を生じる。従ってTiの組成範囲は1.5〜3.0%に規定する。Tiの好ましい範囲は1.5〜2.5%である。さらに好ましいTi含有量の上限は2.3%以下であり、さらに好ましいTi含有量の下限は1.8%以上である。
Ti: 1.5-3.0%
Ti combines with C to form MC carbide to refine the austenite crystal grains, and together with Al, Nb, and Ta to form Ni 'phase by forming Ni and has the effect of improving the high temperature strength. Addition of 5% or more is necessary. However, if Ti is added in excess of 3.0%, transformation from the γ 'phase to the η phase is likely to occur at high temperatures and the high-temperature strength is lowered. Further, excessive addition of Ti excessively increases the γ' phase. This causes a problem of reducing hot workability. Therefore, the composition range of Ti is defined as 1.5 to 3.0%. A preferable range of Ti is 1.5 to 2.5%. A more preferable upper limit of the Ti content is 2.3% or less, and a further preferable lower limit of the Ti content is 1.8% or more.

Nb単独またはNb+Ta:0.5〜2.0%
NbおよびTaは、Tiと同様Cと結び付いてMC炭化物を形成してオーステナイト結晶粒を微細化するとともに、γ’相を形成して高温強度を向上させる効果があるが、Tiと比較して高温でγ’相をより安定化させる効果があるため、高温長時間加熱後における高温強度の低下を抑制する。従って、Nbの単独またはNbおよびTaは合計で少なくとも0.5%以上添加することが必要であるが、2.0%を超える過度の添加は高温においてγ’相からδ相への変態を起こし易くなり、高温強度が低下するという問題が生じるため、NbとTaは合計で0.5〜2.0%に規定する。好ましい範囲は0.5〜1.8%である。さらに好ましいNb+Ta含有量の上限は1.6%以下であり、1.4%以下がより好ましい。また、さらに好ましいNb+Ta含有量の下限は0.8%以上であり、1.0%以上がより好ましい。
Nb alone or Nb + Ta: 0.5 to 2.0%
Nb and Ta are combined with C in the same way as Ti to form MC carbide and refine the austenite crystal grains, and also have the effect of improving the high temperature strength by forming the γ 'phase. This has the effect of further stabilizing the γ 'phase, and therefore suppresses the decrease in high temperature strength after high temperature and long time heating. Therefore, it is necessary to add Nb alone or Nb and Ta in total at least 0.5% or more, but excessive addition exceeding 2.0% causes transformation from the γ ′ phase to the δ phase at a high temperature. Since it becomes easy and the problem that high temperature intensity | strength falls arises, Nb and Ta are prescribed | regulated to 0.5 to 2.0% in total. A preferable range is 0.5 to 1.8%. Furthermore, the upper limit of preferable Nb + Ta content is 1.6% or less, and 1.4% or less is more preferable. Moreover, the minimum of more preferable Nb + Ta content is 0.8% or more, and 1.0% or more is more preferable.

Ni:50〜60%
Niは、オーステナイト基地を安定化させ高温強度を高めるとともに、析出強化に寄与するγ’相の構成元素でもある非常に重要な元素である。Niが50%未満ではγ’相の析出が不十分になるとともに、固溶強化元素であるMoを、組織安定性を維持したままで強化に十分な量を固溶することが出来なくなるため、高温強度が低下するという問題が生じる。一方で、60%を超えると熱間加工性が低下し、さらに低コスト材としてのメリットがなくなってしまうという問題を生じる。従って、Niは50〜60%の範囲に規定する。Niの好ましい範囲は50〜58%である。さらに好ましいNi含有量の上限は56%以下である。また、さらに好ましいNi含有量の下限は52%以上であり、54%以上がより好ましい。
Ni: 50-60%
Ni is a very important element that stabilizes the austenite base to increase the high-temperature strength and is also a constituent element of the γ ′ phase that contributes to precipitation strengthening. If Ni is less than 50%, precipitation of the γ ′ phase becomes insufficient, and Mo, which is a solid solution strengthening element, cannot be dissolved in a sufficient amount for strengthening while maintaining the structural stability. The problem that high temperature strength falls arises. On the other hand, when it exceeds 60%, the hot workability is lowered, and further, the problem that the merit as a low cost material is lost occurs. Therefore, Ni is specified in the range of 50 to 60%. A preferable range of Ni is 50 to 58%. A more preferable upper limit of the Ni content is 56% or less. Further, the lower limit of the Ni content is more preferably 52% or more, and more preferably 54% or more.

B:0.001〜0.015%
Bは、適量添加によって粒界強化作用により高温の強度と延性を高めるのに有効である。その効果は0.001%以上の少量の添加量で生じ始めるが、0.015%を超えるとBが偏析した部位の融点が低下して部分的に高温延性が低下することにより熱間加工性が低下するという問題が生じるので、Bは0.001〜0.015%に規定する。
B: 0.001 to 0.015%
B is effective for increasing the high-temperature strength and ductility by the grain boundary strengthening action by adding an appropriate amount. The effect starts to occur with a small amount of addition of 0.001% or more, but when it exceeds 0.015%, the melting point of the part where B segregates is lowered and the hot ductility is partially lowered, thereby causing hot workability. Therefore, B is specified to be 0.001 to 0.015%.

Mg:0.001〜0.015%、Ca:0.001〜0.015%の少なくとも一種
MgとCaは、強力な脱酸・脱硫元素として合金の清浄度を高めるとともに、高温引張やクリープ変形時さらに熱間加工時の延性改善に役立つため、少なくとも一種を適量添加する。その効果は0.001%以上の少量添加で生じ始めるが、Mg、Caそれぞれを0.015%を超えて添加すると低融点の化合物が生成して高温延性が低下することにより、熱間加工性が低下するという問題が生じるので、Mg、Caはそれぞれ0.001〜0.015%に規定する。
Mg: 0.001 to 0.015%, Ca: 0.001 to 0.015% Mg and Ca are powerful deoxidation / desulfurization elements that increase the cleanliness of the alloy, as well as high-temperature tension and creep deformation. In order to help improve the ductility during hot working, at least one kind is added in an appropriate amount. The effect begins to occur with addition of a small amount of 0.001% or more, but when Mg and Ca are added in excess of 0.015%, a low melting point compound is formed and the high temperature ductility is lowered. Therefore, Mg and Ca are respectively specified to be 0.001 to 0.015%.

残部は実質的にFe
残部はFeであるが、不可避的不純物を含むことができる。また、以下の元素については下記に示す範囲で含有することができる。
P≦0.04%,S≦0.02%,O≦0.02%,N≦0.05%
本発明では、NCF751以上の高温強度と高温での組織安定性を得るために、上記のように元素の含有量を個々に規定するだけではなく、母材のオーステナイトの構成元素であるNiとCr、および固溶強化元素であるMoの含有量を関係式として、より最適な範囲に規定する必要がある。
The balance is substantially Fe
The balance is Fe, but can contain inevitable impurities. Further, the following elements can be contained in the ranges shown below.
P ≦ 0.04%, S ≦ 0.02%, O ≦ 0.02%, N ≦ 0.05%
In the present invention, in order to obtain a high-temperature strength of NCF751 or higher and a structure stability at a high temperature, not only the contents of the elements are individually defined as described above, but also Ni and Cr which are constituent elements of austenite of the base material. The content of Mo, which is a solid solution strengthening element, needs to be specified in a more optimal range as a relational expression.

組織安定性は、母材のオーステナイトの構成元素であるNi,Crと固溶強化元素であるMoのバランスによって決定される。高温強度を高めるには、Ni含有量が50〜60質量%、Cr含有量が14〜17質量%の範囲で、組織安定性を保ちつつ固溶強化元素のMoを如何に多く含有させることができるかが重要である。原子%で表されるA値:0.293[Ni]−0.513[Cr]−1.814[Mo]の値を2.0〜5.8に規定することによって、優れた高温強度と高温での組織安定性を同時に達成し得る。A値が2.0未満であると、高温長時間加熱後に脆化層であるσ相やα’相などが析出し、材料の靭性を劣化させる。一方、A値が5.8を超えると、固溶強化が不十分となるため、高温強度が低下する。A値のより好ましい範囲は2.2〜5.6である。さらに好ましい範囲は2.4〜5.0であり、2.4〜4.0の範囲であればさらに好ましい。   The structural stability is determined by the balance between Ni and Cr, which are constituent elements of austenite, and Mo, which is a solid solution strengthening element. In order to increase the high-temperature strength, it is necessary to contain Mo as a solid solution strengthening element while maintaining the structural stability in the range of Ni content of 50-60 mass% and Cr content of 14-17 mass%. It is important to be able to do it. A value expressed in atomic%: 0.293 [Ni] -0.513 [Cr] -1.814 [Mo] High temperature tissue stability can be achieved simultaneously. When the A value is less than 2.0, the σ phase and α ′ phase, which are embrittled layers, are precipitated after high temperature and long time heating, and the toughness of the material is deteriorated. On the other hand, when the A value exceeds 5.8, the solid solution strengthening becomes insufficient, so that the high-temperature strength decreases. A more preferable range of the A value is 2.2 to 5.6. A more preferable range is 2.4 to 5.0, and a more preferable range is 2.4 to 4.0.

さらに本発明では、下記のようにγ’相中のAl比率とγ’相生成元素であるAl,Ti,Nb,Taの総量も規定する。
B値 [Al]/([Al]+[Ti]+[Nb]+[Ta])
C値 [Al]+[Ti]+[Nb]+[Ta]
[ ]は原子%を表す。
Furthermore, in the present invention, the Al ratio in the γ ′ phase and the total amount of Al, Ti, Nb, Ta as the γ ′ phase forming elements are also defined as follows.
B value [Al] / ([Al] + [Ti] + [Nb] + [Ta])
C value [Al] + [Ti] + [Nb] + [Ta]
[] Represents atomic%.

B値は、γ’相中のAlの比率を示すものである。Alの比率が低くB値が0.45未満であると、高温長時間加熱後にγ’相がη相やδ相へ変態することにより高温強度が低下し、逆にAlの比率が高くB値が0.65を超えると、γ’相の格子定数が小さくなり析出強化の効果が低下して高温強度が低下するとともに、熱間加工性が低下する。そのため、B値を0.45〜0.65に規定する必要がある。より好ましいB値の範囲は0.5〜0.6である。   The B value indicates the ratio of Al in the γ ′ phase. If the Al ratio is low and the B value is less than 0.45, the high temperature strength decreases due to the transformation of the γ 'phase to the η phase or δ phase after high temperature heating for a long time. Conversely, the Al ratio is high and the B value is high. If it exceeds 0.65, the lattice constant of the γ ′ phase is decreased, the effect of precipitation strengthening is reduced, the high temperature strength is lowered, and the hot workability is lowered. Therefore, it is necessary to define the B value to 0.45 to 0.65. A more preferable range of the B value is 0.5 to 0.6.

また、十分な高温強度を得るには、C値が6.2以上必要である。しかし、C値が7.6を超えるとγ’相が過剰となり熱間での変形抵抗が高くなるため、熱間加工性が低下し、バルブを製造する上で困難を伴う。よって、C値を6.2〜7.6に規定する。より好ましいC値の範囲は6.2〜7.4である。さらに好ましい範囲は6.4〜7.2であり、6.4〜7.0の範囲であればさらに好ましい。   Moreover, in order to obtain sufficient high temperature strength, C value of 6.2 or more is required. However, if the C value exceeds 7.6, the γ ′ phase becomes excessive and the hot deformation resistance increases, so that the hot workability is lowered, and it is difficult to manufacture the valve. Therefore, the C value is defined as 6.2 to 7.6. A more preferable range of the C value is 6.2 to 7.4. A more preferable range is 6.4 to 7.2, and a more preferable range is 6.4 to 7.0.

本発明では、高温長時間加熱後の組織安定性をさらに高めるために、合金中の元素の偏析についても検討した。   In the present invention, the segregation of elements in the alloy was also examined in order to further improve the structural stability after high-temperature and long-time heating.

本発明合金は、Ni含有量が50〜60質量%の範囲で高温強度を向上させるために、固溶強化元素であるMoを組織安定性が保たれる限界に近い量添加している。この状態で合金中に元素の偏析があると、部分的に組織が不安定となる可能性がある。そこで、各元素の偏析が組織安定性に及ぼす影響の大きさについて調査した結果、オーステナイトの構成元素であるCrの影響が最も大きいことが分かった。合金中にCrの偏析があると、Cr濃度の高い部分ではσ相やα’相などの脆化相が非常に生成しやすくなり強度が低下しやすくなる。そこで、Crの偏析に関して種々検討した結果、EPMAで本発明合金の一断面上でライン分析したCr量の最大値と最小値を、(最大値)/(最小値)≦1.2に管理することにより、合金の組織安定性を確保できることが分かった。好ましくは、(最大値)/(最小値)≦1.1である。   In the alloy of the present invention, in order to improve the high-temperature strength when the Ni content is in the range of 50 to 60% by mass, Mo, which is a solid solution strengthening element, is added in an amount close to the limit where the structural stability is maintained. If there is segregation of elements in the alloy in this state, the structure may become partially unstable. Therefore, as a result of investigating the magnitude of the influence of segregation of each element on the structure stability, it was found that the influence of Cr, which is a constituent element of austenite, is the largest. If there is segregation of Cr in the alloy, embrittled phases such as σ phase and α ′ phase are very likely to be formed in a portion where the Cr concentration is high, and the strength tends to be lowered. Therefore, as a result of various studies on the segregation of Cr, the maximum value and the minimum value of the Cr amount analyzed on one cross section of the alloy of the present invention by EPMA are managed as (maximum value) / (minimum value) ≦ 1.2. It was found that the structural stability of the alloy can be secured. Preferably, (maximum value) / (minimum value) ≦ 1.1.

50〜60質量%Ni含有量の耐熱合金において、高温長時間加熱後の組織安定性を確保することは、高温強度を向上させるためにも長時間加熱後の靭性を維持するためにも不可欠である。Crの偏析は、溶解後の鋼塊またはVAR、ESR等による再溶解を行った鋼塊に1150〜1220℃で10時間以上の均質化熱処理を行うこと等によって、低減させることができる。本発明合金は母相のオーステナイトが安定な領域の境界付近の組成であるため、特にCrの偏析が生じると、オーステナイト安定領域から外れて、合金の靭性を低下させる脆化相が生成しやすい。そこで、本発明合金に均質化熱処理を行うことによってCrの偏析を低減させることができ、高温長時間加熱後の組織安定性を向上させることができるので、安定して高い靭性を確保することができる。   In a heat-resistant alloy having a Ni content of 50 to 60% by mass, ensuring the structural stability after high-temperature and long-time heating is essential for improving high-temperature strength and maintaining toughness after long-time heating. is there. The segregation of Cr can be reduced by subjecting the steel ingot after melting or the steel ingot subjected to remelting by VAR, ESR or the like to homogenization heat treatment at 1150 to 1220 ° C. for 10 hours or more. Since the alloy of the present invention has a composition in the vicinity of the boundary of the region where the austenite of the parent phase is stable, particularly when segregation of Cr occurs, an embrittled phase that easily falls out of the austenite stable region and lowers the toughness of the alloy is likely to be generated. Therefore, by performing homogenization heat treatment on the alloy of the present invention, it is possible to reduce the segregation of Cr and improve the structural stability after high-temperature and long-time heating, so that stable high toughness can be ensured. it can.

また、近年、自動車の使用寿命が延びており、そのため、各部品材に対して従来よりも耐久性が求められるようになっている。自動車エンジンバルブ用耐熱合金に関しても、800℃で400時間加熱後の常温におけるシャルピー衝撃値が、50J/cm以上を満たさないと、長時間使用後にバルブに必要とされる靭性が不十分となることがある。従って、本発明合金では800℃で400時間加熱後の常温における2mmUノッチシャルピー衝撃値を50J/cm以上に必要に応じて規定する。 In recent years, the service life of automobiles has been extended, and as a result, durability of each component material has been required more than ever. For heat-resistant alloys for automotive engine valves, if the Charpy impact value at room temperature after heating at 800 ° C. for 400 hours does not satisfy 50 J / cm 2 or more, the toughness required for the valves will be insufficient after long-term use. Sometimes. Therefore, in the alloy of the present invention, the 2 mm U notch Charpy impact value at room temperature after heating at 800 ° C. for 400 hours is defined as 50 J / cm 2 or more as necessary.

さらに、本発明合金の800℃で400時間加熱後の顕微鏡組織において、3μm以上長さのσ相、α’相、η相、δ相の金属間化合物が実質的に析出していないことを規定することによって、高温長時間加熱後の靭性をより確実なものにすることができる。σ相、α’相、η相、δ相の金属間化合物は合金の靭性を低下させるが、これらの金属間化合物が実質的に析出していない合金では、800℃で400時間加熱後の常温における2mmUノッチシャルピー衝撃値が50J/cm以上を満足し、好ましくは70J/cm以上を得ることができる。 Furthermore, it is specified that intermetallic compounds of σ phase, α ′ phase, η phase, and δ phase having a length of 3 μm or more are not substantially precipitated in the microstructure of the alloy of the present invention heated at 800 ° C. for 400 hours. By doing, the toughness after a high-temperature and long-time heating can be made more reliable. Intermetallic compounds of σ phase, α ′ phase, η phase, and δ phase reduce the toughness of the alloy. However, in an alloy in which these intermetallic compounds are not substantially precipitated, room temperature after heating at 800 ° C. for 400 hours. 2 mmU notch Charpy impact value of 50 J / cm 2 or more is satisfied, and preferably 70 J / cm 2 or more can be obtained.

長さで3μm以上のσ相、α’相、η相、δ相の金属間化合物が合金中に析出すると、靭性が大きく低下する恐れがある。ここで、σ相、α’相、η相、δ相の金属間化合物が実質的に析出していないとは、1000倍でSEM組織観察を行った場合に、上記金属間化合物が観察されないことをいう。また、高温長時間加熱後の靭性をより確実なものにするためには、2μm以上長さのそれら金属間化合物が析出していないことが好ましく、1μm以上長さのそれら金属間化合物が析出していないことがさらに好ましい。   If intermetallic compounds of σ phase, α ′ phase, η phase, and δ phase having a length of 3 μm or more are precipitated in the alloy, the toughness may be greatly reduced. Here, the fact that the intermetallic compounds of σ phase, α ′ phase, η phase, and δ phase are not substantially precipitated means that the above intermetallic compounds are not observed when the SEM structure is observed at 1000 times. Say. Moreover, in order to ensure the toughness after heating at high temperature for a long time, it is preferable that those intermetallic compounds having a length of 2 μm or more are not deposited, and those intermetallic compounds having a length of 1 μm or more are deposited. More preferably not.

本発明合金および比較合金を真空誘導炉にて溶製し10kgの鋼塊を作製後、1180℃で20時間均質化熱処理を行い、1150℃に加熱して30mm角の棒材に鍛伸した。表1に本発明合金No.1〜9,従来合金No.21,比較合金No.22〜27の化学組成を示す。ここで、従来合金No.21はNCF751相当の合金である。比較合金No.22、23、27は特許文献5に開示された合金であり、特に比較合金No.27は特許文献5の実施例No.6相当合金である。また、比較合金No.23のみ、上記均質化熱処理を行わなかった。さらに実際のバルブ用素材に近い形状の試料を評価するため、本発明合金No.9は、鋼塊を1150℃の熱間で丸棒に鍛伸した後、冷間引抜加工により6mm直径の棒材に仕上げた。   The alloy of the present invention and the comparative alloy were melted in a vacuum induction furnace to produce a 10 kg steel ingot, then subjected to homogenization heat treatment at 1180 ° C. for 20 hours, heated to 1150 ° C. and forged into 30 mm square bars. Table 1 shows the alloy No. of the present invention. 1-9, conventional alloy no. 21, Comparative Alloy No. The chemical composition of 22-27 is shown. Here, the conventional alloy no. 21 is an alloy equivalent to NCF751. Comparative Alloy No. Nos. 22, 23 and 27 are alloys disclosed in Patent Document 5, and in particular, comparative alloy Nos. No. 27 in Example No. 5 of Patent Document 5. 6 equivalent alloy. Comparative alloy No. No. 23 was not subjected to the homogenization heat treatment. Furthermore, in order to evaluate a sample having a shape close to an actual valve material, the alloy No. 1 of the present invention is used. In No. 9, the steel ingot was forged into a round bar at 1150 ° C. hot, and then finished into a 6 mm diameter bar by cold drawing.

Figure 2006009143
Figure 2006009143

Crの偏析を評価するため、この鍛伸材および棒材の縦断面が測定面となるように試料を採取し、EPMAを用いて、長さ方向に対して直角に測定距離3mm、ビーム径7.5μmでCrのライン分析を行った。その最大値と最小値を読み取り、偏析の度合いを示す(最大値)/(最小値)の値を算出した。また、鍛伸材および棒材に1050℃×30分,水冷の固溶化処理後、750℃×4時間,空冷の時効処理を行った。鍛伸材については、この熱処理後、平行部直径6.35mm、標点間距離25.4mmの丸棒試験片を採取し、ASTM法により800℃で引張試験を行った。   In order to evaluate the segregation of Cr, a sample was taken so that the longitudinal section of the forged material and the bar became a measurement surface, and using EPMA, a measurement distance of 3 mm and a beam diameter of 7 were perpendicular to the length direction. A Cr line analysis was performed at 5 μm. The maximum value and the minimum value were read, and the value of (maximum value) / (minimum value) indicating the degree of segregation was calculated. Further, the forged material and the bar were subjected to an aqueous aging treatment at 750 ° C. for 4 hours after a solid solution treatment at 1050 ° C. for 30 minutes and water cooling. For the forged material, after this heat treatment, a round bar test piece having a parallel part diameter of 6.35 mm and a distance between gauge points of 25.4 mm was collected and subjected to a tensile test at 800 ° C. by the ASTM method.

また、同じ熱処理後に平行部直径8mmの丸棒試験片を採取し、JIS Z2274に従って、試験温度800℃,3600rpmの回転数で回転曲げ疲労試験を実施し、10回での疲労強度を求めた。さらに、この時効処理材に800℃×400時間の加熱を加えた後、2mmUノッチJIS3号試験片を採取し、JIS Z2242に従って常温におけるシャルピー衝撃試験を行った。 In addition, a round bar test piece having a parallel part diameter of 8 mm was collected after the same heat treatment, and a rotating bending fatigue test was performed at a test temperature of 800 ° C. and a rotational speed of 3600 rpm in accordance with JIS Z2274, and fatigue strength at 10 7 times was obtained. . Furthermore, after heating this aging-treated material at 800 ° C. for 400 hours, a 2 mm U-notch JIS No. 3 test piece was collected and subjected to a Charpy impact test at room temperature in accordance with JIS Z2242.

また、高温での組織安定性をみるために、800℃×400時間加熱後に1000倍でのSEMによる顕微鏡組織観察を150mmの面積について行った。これらの結果を表2に示す。ここで、本発明合金No.9は、6mm直径の棒材なので棒材から試験片を加工することが困難なため、Crの偏析測定、縮小試験片を用いた引張試験、および顕微鏡組織観察のみを行った。 Moreover, in order to check the structure stability at high temperature, the microscope structure observation by SEM at 1000 times was performed on an area of 150 mm 2 after heating at 800 ° C. for 400 hours. These results are shown in Table 2. Here, the present alloy No. Since No. 9 is a 6 mm diameter bar, it is difficult to process the test piece from the bar, so only the segregation measurement of Cr, the tensile test using the reduced test piece, and the microscopic observation were performed.

Figure 2006009143
Figure 2006009143

図1に本発明合金No.3、図2に比較合金No.22を800℃×400時間加熱後に、塩酸,硝酸,グリセリンを容積比3:1:1で混合した液で腐食し、1000倍で観察したSEM組織写真を示し、合わせてその模式図も示した。本発明合金No.3では、母材のオーステナイト中に1.MC炭化物のみが観察されたが、長時間加熱後の組織安定性が低い比較合金No.22では、1.MC炭化物とともに、脆化層である2.σ相が析出している。   In FIG. 3 and FIG. 22 was heated at 800 ° C. for 400 hours, then corroded with a solution in which hydrochloric acid, nitric acid, and glycerin were mixed at a volume ratio of 3: 1: 1, and an SEM structure photograph observed at a magnification of 1000 times was shown together with a schematic diagram thereof. . Invention alloy No. 3, in the austenite of the base material, 1. Although only MC carbide was observed, comparative alloy No. 1 with low structural stability after prolonged heating was used. 22: 1. It is an embrittlement layer together with MC carbides. The σ phase is precipitated.

表2から、従来合金No.21のNCF751相当合金と比較して、本発明合金No.1〜8は800℃での機械的特性および疲労強度は遥かに優れている。また、本発明合金は、Crの偏析が少なく、800℃×400時間加熱後のシャルピー衝撃値も高く、1000倍でのSEMによる組織観察において、3μm以上長さのσ相、α’相、η相、δ相の金属間化合物が確認されないため、高温での組織安定性も非常に高いことが分かる。さらに高倍率の4000倍でのSEMによる組織観察においても、本発明合金においては長さで1μmを超える金属間化合物は確認されなかった。また、6mm直径棒材とした本発明合金No.9も同様に、800℃での機械的特性が優れており、且つCrの偏析も非常に少ない。   From Table 2, the conventional alloy No. In comparison with the NCF751-equivalent alloy of No. 21, the present alloy No. 1 to 8 are far superior in mechanical properties and fatigue strength at 800 ° C. Further, the alloy of the present invention has little segregation of Cr, a high Charpy impact value after heating at 800 ° C. for 400 hours, and a structure observation by SEM at 1000 times, a σ phase having a length of 3 μm or more, an α ′ phase, η It can be seen that the structure stability at high temperature is very high because no intermetallic compound of δ phase and δ phase is confirmed. Furthermore, even when the structure was observed by SEM at a high magnification of 4000 times, no intermetallic compound exceeding 1 μm in length was found in the alloy of the present invention. In addition, the alloy No. 1 of the present invention having a 6 mm diameter bar. Similarly, No. 9 has excellent mechanical properties at 800 ° C. and very little segregation of Cr.

特許文献5に開示された比較合金No.22は、800℃での機械的特性および疲労強度は高いが、Cr含有量が高く高温での組織安定性が低いため、800℃×400時間加熱後に脆化相のσ相が析出し、脆化してシャルピー衝撃値が低くなっている。比較合金No.23も同様に、Crの偏析のために高温での組織安定性が低いため、800℃×400時間加熱後のシャルピー衝撃値が低くなっている。また、比較合金No.24はγ’相中のAl比率が高いため、比較合金No.25はγ’相中のAl比率が低く高温長時間加熱によりγ’相が脆化相のη相へ変態するため、さらに比較合金No.26はγ’相が析出強化に十分に寄与するほどの量はないため、本発明合金に比べて800℃での機械的特性および疲労強度が低くなっている。   Comparative Alloy No. disclosed in Patent Document 5 No. 22 has high mechanical properties and fatigue strength at 800 ° C., but the Cr content is high and the structural stability at high temperature is low. And the Charpy impact value is low. Comparative Alloy No. Similarly, No. 23 has low structure stability at high temperature due to segregation of Cr, and thus the Charpy impact value after heating at 800 ° C. for 400 hours is low. Comparative alloy No. No. 24 has a high Al ratio in the γ 'phase. No. 25 has a low Al ratio in the γ ′ phase, and the γ ′ phase transforms into an embrittled η phase by high temperature and long time heating. Since the amount of γ ′ phase does not sufficiently contribute to precipitation strengthening, the mechanical properties and fatigue strength at 800 ° C. are lower than that of the alloy of the present invention.

特許文献5の実施例合金相当の比較合金No.27は、Mo量が低いため10回長時間域の疲労強度は低く、かつA値が低く高温での組織安定性が低いため、800℃×400時間加熱後に脆化相のσ相が析出し、脆化してシャルピー衝撃値が低くなっている。つまり、材料強化のための十分なMo量を有し、且つ高温での組織安定性を示すA値を満足する本発明合金のみが、10回長時間域での高い疲労強度と長時間加熱後の高い靭性を同時に有している。 Comparative alloy No. corresponding to the example alloy of Patent Document 5 27, the fatigue strength of the long-range 10 7 times amount of Mo is low low and is low structural stability at high temperatures lower A values, sigma phase embrittlement phase is precipitated after heating 800 ° C. × 400 hours However, it becomes brittle and has a low Charpy impact value. In other words, it has a sufficient amount of Mo for material reinforcement, and only the invention alloy which satisfies the A value indicating the structural stability at high temperature, long-time heating and high fatigue strength at long range 10 7 times It has high toughness at the same time.

以上より、本発明合金は、NCF751よりも高い高温強度を有し、且つ高温での組織安定性に優れ長時間加熱後にも高い靭性を示し、また低コストで経済性に優れた省資源のエンジンバルブ用耐熱合金であることがわかる。   As described above, the alloy of the present invention has a high-temperature strength higher than that of NCF751, has excellent structure stability at high temperatures, exhibits high toughness even after long-time heating, and is low-cost and resource-saving engine with excellent economy. It turns out that it is a heat-resistant alloy for valves.

本発明のエンジンバルブ用耐熱合金は、従来の耐熱合金が成し得なかった高温強度と長時間加熱後の優れた靭性を有し、且つ省資源・低コストで経済性に優れているため、高強度が要求されるエンジンバルブ材として使用する場合に、エンジンの高効率化とバルブ材の省資源化、低コスト化を実現することができる。   The heat-resistant alloy for engine valves of the present invention has high-temperature strength and high toughness after long-time heating, which cannot be achieved by conventional heat-resistant alloys, and is excellent in economic efficiency with resource saving, low cost, When used as an engine valve material that requires high strength, it is possible to achieve higher engine efficiency, resource saving of the valve material, and cost reduction.

本発明合金No.3を800℃×400時間加熱した後の電子顕微鏡組織写真とその模式図である。Invention alloy No. It is the electron microscopic structure photograph after heating 3 for 800 degreeC x 400 hours, and its schematic diagram. 比較合金No.22を800℃×400時間加熱した後の電子顕微鏡組織写真とその模式図である。Comparative Alloy No. It is the electron microscopic structure photograph after heating 22 for 800 degreeC x 400 hours, and its schematic diagram.

符号の説明Explanation of symbols

1.MC炭化物、 2.σ相 1. MC carbide, σ phase

Claims (5)

質量%でC:0.01〜0.15%、Si:0.01〜0.8%、Mn:0.01〜0.8%、Cr:14〜17%、Mo:3.0%を超えて5.0%以下、Al:1.6〜2.5%、Ti:1.5〜3.0%、Nb単独またはNb+Ta:0.5〜2.0%、Ni:50〜60%、B:0.001〜0.015%を含有し、Mg:0.001〜0.015%およびCa:0.001〜0.015%のうち一種または二種を含み、残部は実質的にFeからなり、且つ原子%で下記A値が2.0〜5.8、B値が0.45〜0.65、C値が6.2〜7.6を満足することを特徴とするエンジンバルブ用耐熱合金。
A値 0.293[Ni]−0.513[Cr]−1.814[Mo]
B値 [Al]/([Al]+[Ti]+[Nb]+[Ta])
C値 [Al]+[Ti]+[Nb]+[Ta] [ ]は原子%を表す。
C: 0.01 to 0.15% by mass%, Si: 0.01 to 0.8%, Mn: 0.01 to 0.8%, Cr: 14 to 17%, Mo: 3.0% More than 5.0%, Al: 1.6-2.5%, Ti: 1.5-3.0%, Nb alone or Nb + Ta: 0.5-2.0%, Ni: 50-60% , B: 0.001 to 0.015%, Mg: 0.001 to 0.015% and Ca: 0.001 to 0.015%, one or two of them, the balance is substantially An engine comprising Fe and having an atomic percent satisfying the following A value of 2.0 to 5.8, B value of 0.45 to 0.65, and C value of 6.2 to 7.6. Heat resistant alloy for valves.
A value 0.293 [Ni] -0.513 [Cr] -1.814 [Mo]
B value [Al] / ([Al] + [Ti] + [Nb] + [Ta])
C value [Al] + [Ti] + [Nb] + [Ta] [] represents atomic%.
Mo:3.5〜4.0%、A値が2.4〜4.0、B値が0.5〜0.6、C値が6.4〜7.0である請求項1に記載のエンジンバルブ用耐熱合金。 The Mo value is 3.5 to 4.0%, the A value is 2.4 to 4.0, the B value is 0.5 to 0.6, and the C value is 6.4 to 7.0. Heat resistant alloy for engine valves. Crの偏析を断面上でEPMAでライン分析した時、Cr量の最大値と最小値が、(最大値)/(最小値)≦1.2である請求項1または2に記載のエンジンバルブ用耐熱合金。 The maximum and minimum values of Cr amount are (maximum value) / (minimum value) ≦ 1.2 when the Cr segregation is subjected to line analysis by EPMA on the cross section. Heat resistant alloy. 800℃で400時間加熱後の常温における2mmUノッチシャルピー衝撃値が、50J/cm以上である請求項1乃至3の何れかに記載のエンジンバルブ用耐熱合金。 The heat resistant alloy for engine valves according to any one of claims 1 to 3, wherein a 2 mmU notch Charpy impact value at normal temperature after heating at 800 ° C for 400 hours is 50 J / cm 2 or more. 800℃で400時間加熱後の顕微鏡組織において、3μm以上長さのσ相、α’相、η相、δ相の金属間化合物が実質的に析出していない請求項1乃至4の何れかに記載のエンジンバルブ用耐熱合金。
5. The microscopic structure after heating at 800 ° C. for 400 hours is substantially free of intermetallic compounds of σ phase, α ′ phase, η phase, and δ phase having a length of 3 μm or more. The heat-resistant alloy for engine valves as described.
JP2005108165A 2004-05-26 2005-04-05 Heat resistant alloy for engine valves Active JP3977847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005108165A JP3977847B2 (en) 2004-05-26 2005-04-05 Heat resistant alloy for engine valves

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004155518 2004-05-26
JP2005108165A JP3977847B2 (en) 2004-05-26 2005-04-05 Heat resistant alloy for engine valves

Publications (2)

Publication Number Publication Date
JP2006009143A true JP2006009143A (en) 2006-01-12
JP3977847B2 JP3977847B2 (en) 2007-09-19

Family

ID=35776701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005108165A Active JP3977847B2 (en) 2004-05-26 2005-04-05 Heat resistant alloy for engine valves

Country Status (1)

Country Link
JP (1) JP3977847B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127204A (en) * 2009-12-21 2011-06-30 Hitachi Metals Ltd Hydrogen embrittlement-resistant high strength austenitic alloy
WO2015008343A1 (en) * 2013-07-17 2015-01-22 三菱日立パワーシステムズ株式会社 Ni-BASED ALLOY PRODUCT AND METHOD FOR PRODUCING SAME, AND Ni-BASED ALLOY MEMBER AND METHOD FOR PRODUCING SAME
JP2016003374A (en) * 2014-06-18 2016-01-12 三菱日立パワーシステムズ株式会社 Ni-BASED ALLOY SOFTENING MATERIAL AND PRODUCTION METHOD OF Ni-BASED ALLOY MEMBER
JP2018188738A (en) * 2018-08-02 2018-11-29 三菱日立パワーシステムズ株式会社 PRODUCTION METHOD OF Ni-BASED ALLOY SOFTENER AND PRODUCTION METHOD OF Ni-BASED ALLOY MEMBER

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127204A (en) * 2009-12-21 2011-06-30 Hitachi Metals Ltd Hydrogen embrittlement-resistant high strength austenitic alloy
WO2015008343A1 (en) * 2013-07-17 2015-01-22 三菱日立パワーシステムズ株式会社 Ni-BASED ALLOY PRODUCT AND METHOD FOR PRODUCING SAME, AND Ni-BASED ALLOY MEMBER AND METHOD FOR PRODUCING SAME
JP5985754B2 (en) * 2013-07-17 2016-09-06 三菱日立パワーシステムズ株式会社 Ni-base alloy product and manufacturing method thereof
JPWO2015008343A1 (en) * 2013-07-17 2017-03-02 三菱日立パワーシステムズ株式会社 Ni-base alloy product and manufacturing method thereof
US10487384B2 (en) 2013-07-17 2019-11-26 Mitsubishi Hitachi Power Systems, Ltd. Ni-based alloy product and method for producing same, and Ni-based alloy member and method for producing same
JP2016003374A (en) * 2014-06-18 2016-01-12 三菱日立パワーシステムズ株式会社 Ni-BASED ALLOY SOFTENING MATERIAL AND PRODUCTION METHOD OF Ni-BASED ALLOY MEMBER
US10557189B2 (en) 2014-06-18 2020-02-11 Mitsubishi Hitachi Power Systems, Ltd. Ni based superalloy, member of Ni based superalloy, and method for producing same
JP2018188738A (en) * 2018-08-02 2018-11-29 三菱日立パワーシステムズ株式会社 PRODUCTION METHOD OF Ni-BASED ALLOY SOFTENER AND PRODUCTION METHOD OF Ni-BASED ALLOY MEMBER

Also Published As

Publication number Publication date
JP3977847B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
JP6004140B1 (en) Austenitic stainless steel and manufacturing method thereof
JP6451545B2 (en) High Mn steel for high-pressure hydrogen gas, method for producing the same, and piping, container, valve and joint made of the steel
JP6705508B2 (en) NiCrFe alloy
JP5786830B2 (en) High-strength austenitic stainless steel for high-pressure hydrogen gas
JP4521470B1 (en) Ferritic heat-resistant cast steel and exhaust system parts
JP2001342549A (en) Heat resisting steel with low and medium cr content
JP2006225756A (en) Heat resistant alloy for exhaust valve enduring use at 900°c and exhaust valve using the alloy
US5660938A (en) Fe-Ni-Cr-base superalloy, engine valve and knitted mesh supporter for exhaust gas catalyzer
JP3951943B2 (en) High-strength heat-resistant alloy for exhaust valves with excellent anti-aging characteristics
JP2011219864A (en) Heat resistant steel for exhaust valve
JP3977847B2 (en) Heat resistant alloy for engine valves
JP4830443B2 (en) Heat-resistant alloy for exhaust valves with excellent strength characteristics at high temperatures
JP2019059995A (en) Austenitic stainless steel plate having excellent heat resistance and method for producing the same
EP2503012B1 (en) Precipitation hardened heat-resistant steel
US7481970B2 (en) Heat resistant alloy for use as material of engine valve
BRPI1005394B1 (en) HEAT RESISTANT STEEL FOR ENGINE VALVES WITH HIGH TEMPERATURE RESISTANCE
JP6738010B2 (en) Nickel-based alloy with excellent high-temperature strength and high-temperature creep properties
JP7131332B2 (en) Austenitic heat-resistant alloys and parts of austenitic heat-resistant alloys
CN109252088B (en) Ferritic stainless steel and heat-resistant member
JP4057208B2 (en) Fe-base heat-resistant alloy for engine valves with good cold workability and high-temperature strength
JP3744084B2 (en) Heat-resistant alloy with excellent cold workability and overaging characteristics
JP2001158943A (en) Heat resistant bolt
CN113195762A (en) Ferritic stainless steel
JP2015120956A (en) Austenitic heat resistant casting alloy
JP3744083B2 (en) Heat-resistant alloy with excellent cold workability

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3977847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140629

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250