JP2006008483A - Apparatus for manufacturing thin sheet - Google Patents

Apparatus for manufacturing thin sheet Download PDF

Info

Publication number
JP2006008483A
JP2006008483A JP2004191876A JP2004191876A JP2006008483A JP 2006008483 A JP2006008483 A JP 2006008483A JP 2004191876 A JP2004191876 A JP 2004191876A JP 2004191876 A JP2004191876 A JP 2004191876A JP 2006008483 A JP2006008483 A JP 2006008483A
Authority
JP
Japan
Prior art keywords
container
melt
substrate
crucible
thin plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004191876A
Other languages
Japanese (ja)
Inventor
Yoshikazu Matsui
美和 松井
Hideo Okada
英生 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2004191876A priority Critical patent/JP2006008483A/en
Publication of JP2006008483A publication Critical patent/JP2006008483A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for manufacturing a thin sheet which can manufacture the thin sheet having a stable quality over a long period of time by keeping the position of the liquid level of a melt stored in a container and used as a raw material for the thin sheet constant. <P>SOLUTION: In manufacturing a silicon wafer as a thin sheet in the apparatus 1 for manufacturing the thin sheet by storing the melt 2 of silicon in a crucible 3, dipping the surface for crystalline growth of a ground substrate 4 into the melt 2 in the crucible 3, and growing silicon by solidification on the surface for crystalline growth of the ground substrate 4, when the amount of the melt 2 stored in the crucible 3 is reduced and the height of the liquid level is lowered, a container position regulating means 18 regulates the position of the crucible 3 so that the position of the liquid level of the melt becomes constant in the direction of gravity, and the apparatus 1 is constructed such that the limit position where the container position regulating means 18 can not regulate the height of the liquid level of the melt 2 can be detected by a container position detection means 19. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、金属または半導体材料の融液から薄板を製造する薄板製造装置および薄板製造方法に関する。   The present invention relates to a thin plate manufacturing apparatus and a thin plate manufacturing method for manufacturing a thin plate from a melt of metal or semiconductor material.

近年、地球環境に対する負荷を軽減するべく、化石燃料を用いる火力発電以外の、風力発電、波力発電などの発電方法が種々試みられている。なかでも最も注目され、実用化の先端に位置付けられているのが太陽電池による発電であり、この太陽電池には、その素材として多結晶シリコンウエハが用いられている。   In recent years, various power generation methods such as wind power generation and wave power generation other than thermal power generation using fossil fuels have been attempted in order to reduce the burden on the global environment. Among them, the most noticed and positioned at the forefront of practical use is power generation by a solar cell, and a polycrystalline silicon wafer is used as a material for the solar cell.

太陽電池に用いられる多結晶シリコンウエハの代表的な製造方法の1つは、不活性ガス雰囲気中でリン(P)またはボロン(B)等のドーパントを添加した高純度シリコンを坩堝中で加熱溶融させ、この融液を鋳型に流し込んで冷却し、得られた多結晶シリコンのインゴットをバンドソー等で小さなブロックに切断し、さらにワイヤーソー等でスライス加工してシリコンウエハとするものである。   One of the typical methods for producing polycrystalline silicon wafers used in solar cells is to heat and melt high-purity silicon to which a dopant such as phosphorus (P) or boron (B) is added in an inert gas atmosphere. The melt is poured into a mold and cooled, and the resulting polycrystalline silicon ingot is cut into small blocks with a band saw or the like, and further sliced with a wire saw or the like to obtain a silicon wafer.

このような製造方法では、多結晶シリコンインゴットを得るための鋳造工程に加え、ウエハ外形ブロックサイズに切断する工程と、ウエハ厚さにスライス加工する工程、さらに洗浄工程、乾燥工程等が必要である。また、厚さ0.3mmのウエハを得るべくスライス加工する際に、0.2〜0.3mmの切り代が、切断粉として失われてしまうので、シリコン材料の利用効率、すなわち歩留が悪く、太陽電池の製造コスト低減を図る上で大きな障害となっている。   In such a manufacturing method, in addition to a casting process for obtaining a polycrystalline silicon ingot, a process of cutting into a wafer outer block size, a process of slicing to a wafer thickness, a cleaning process, a drying process, and the like are required. . Further, when slicing to obtain a wafer having a thickness of 0.3 mm, the cutting allowance of 0.2 to 0.3 mm is lost as cutting powder, so that the utilization efficiency of the silicon material, that is, the yield is poor. This is a major obstacle to reducing the manufacturing cost of solar cells.

このような問題を解決する先行技術の一つに、たとえば溶融シリコンから直接シリコンシートすなわちシリコンの薄板を製造するものがある(たとえば、特許文献1参照)。特許文献1におけるシリコンシートの製造は、本体装置の回転軸まわりに転動可能に備えられる基板保持体に保持されるシリコンシート生成基板を、容器内に貯留されるシリコン融液に浸漬し、シリコンシート生成基板の表面に付着したシリコンを凝固成長させた後、引上げることによって、シリコンシートを製造するものである。特許文献1に提案される製造方法によれば、鋳造工程、スライス工程等を必要としないので、生産効率を向上し、コスト低減に寄与することができる。   As one of the prior arts for solving such a problem, for example, a silicon sheet, that is, a silicon thin plate is manufactured directly from molten silicon (see, for example, Patent Document 1). In the manufacture of a silicon sheet in Patent Document 1, a silicon sheet generating substrate held by a substrate holding body provided so as to be able to roll around a rotation axis of a main body device is immersed in a silicon melt stored in a container, A silicon sheet is manufactured by solidifying and growing silicon adhering to the surface of the sheet generating substrate and then pulling it up. According to the manufacturing method proposed in Patent Document 1, since a casting process, a slicing process, and the like are not required, the production efficiency can be improved and the cost can be reduced.

しかしながら、特許文献1に開示される技術には、以下のような問題がある。シリコンシート生成基板の表面に凝固成長するシリコンシートの品質は、シリコンシート生成基板が、容器内に貯留される融液に対して浸漬される深さに大きく影響を受ける。したがって、シリコンシートの品質安定化のためには、シリコンシート生成基板が融液に対して浸漬される深さを一定に保つことが必要とされる。換言すれば、本体装置に備えられる基板保持体の配置設定が同一であるとき、容器内に貯留される融液の液面高さを一定にすることが必要とされる。特許文献1には、容器内に貯留される融液の液面高さを一定にする技術が何ら開示されていない。   However, the technique disclosed in Patent Document 1 has the following problems. The quality of the silicon sheet solidified and grown on the surface of the silicon sheet generation substrate is greatly affected by the depth at which the silicon sheet generation substrate is immersed in the melt stored in the container. Therefore, in order to stabilize the quality of the silicon sheet, it is necessary to maintain a constant depth at which the silicon sheet production substrate is immersed in the melt. In other words, when the arrangement setting of the substrate holders provided in the main body apparatus is the same, it is necessary to make the liquid level height of the melt stored in the container constant. Patent Document 1 does not disclose any technique for making the liquid surface height of the melt stored in the container constant.

このような問題を解決する先行技術に、処理対象物の融液の液面に対してグリーンレーザ光を照射し、その反射光を検出して液面高さを算出し、算出した液面高さ位置情報に応じて溶解装置を昇降して高さを調整し、浸漬物に対する液面の相対高さを一定に維持することのできる装置がある(特許文献2参照)。   Prior art to solve such problems is to irradiate the liquid surface of the melt of the processing object with green laser light, detect the reflected light and calculate the liquid level height, There is an apparatus capable of adjusting the height by raising and lowering the dissolution apparatus according to the position information, and maintaining the relative height of the liquid level with respect to the immersion material (see Patent Document 2).

しかしながら、特許文献2に開示されるグリーンレーザ光を融液面に照射して液面高さを検出する方法は、融液面が穏やかであれば有効な手段であるけれども、坩堝内における溶融原料の対流または装置振動などに起因して融液面に発生する波の影響を受けるので、グリーンレーザ光の反射位置が安定せず、融液面高さの検出精度が悪くなるという問題がある。   However, the method of detecting the liquid surface height by irradiating the melt surface with the green laser light disclosed in Patent Document 2 is an effective means if the melt surface is gentle. Therefore, there is a problem in that the reflection position of the green laser light is not stable and the detection accuracy of the melt surface height is deteriorated.

特開2002−338225号公報JP 2002-338225 A 特開2003−21466号公報JP 2003-21466 A

本発明の目的は、容器内に貯留されて薄板原料となる融液の液面の位置を一定に保ち、長期にわたって安定した品質の薄板を製造することができる薄板製造装置を提供することである。   An object of the present invention is to provide a thin plate manufacturing apparatus capable of manufacturing a thin plate having a stable quality over a long period of time while keeping the position of a melt surface stored in a container to be a thin plate raw material constant. .

本発明は、金属または半導体材料の融液を容器内に貯留し、薄板の原板である下地基板の結晶生成面を容器内の融液に浸漬し、金属または半導体材料を下地基板の結晶生成面で凝固成長させて薄板を製造する薄板製造装置において、
容器内に貯留される金属または半導体材料の融液の重量に応じて、融液の液面の位置が重力方向において一定になるように容器の位置を調整する容器位置調整手段と、
容器位置調整手段によって調整される容器の重力方向における位置を検出する容器位置検出手段とを含むことを特徴とする薄板製造装置である。
The present invention stores a melt of a metal or a semiconductor material in a container, immerses the crystal generation surface of a base substrate, which is a thin original plate, in the melt in the container, and causes the metal or semiconductor material to crystallize on the crystal generation surface of the base substrate In a thin plate manufacturing apparatus that manufactures a thin plate by solidifying and growing with
Container position adjusting means for adjusting the position of the container so that the position of the liquid surface of the melt is constant in the direction of gravity according to the weight of the melt of the metal or semiconductor material stored in the container;
And a container position detecting means for detecting the position of the container in the direction of gravity adjusted by the container position adjusting means.

また本発明は、容器位置調整手段が、
弾性を有する素材から成り容器を支持する弾性支持部材と、
弾性支持部材を挟持し容器を保持する容器保持部材とを含むことを特徴とする。
In the present invention, the container position adjusting means
An elastic support member made of an elastic material and supporting the container;
And a container holding member for holding the container by sandwiching the elastic support member.

また本発明は、容器内に貯留される融液の重量変化量に対応する液面高さの変位量と、容器内に貯留される融液の重量変化量に対応する弾性支持部材の重力方向の弾性変形量とが、等しくなるように構成されることを特徴とする。
また本発明は、弾性支持部材が、コイルばね部材であることを特徴とする。
Further, the present invention provides a displacement amount of the liquid surface height corresponding to the weight change amount of the melt stored in the container, and a gravity direction of the elastic support member corresponding to the weight change amount of the melt stored in the container. The amount of elastic deformation is equal to each other.
In the present invention, the elastic support member is a coil spring member.

本発明によれば、薄板製造装置には、容器内に貯留される金属または半導体材料の融液の重量に応じて、融液の液面の位置が重力方向において一定になるように容器の位置を調整する容器位置調整手段が備えられる。このことによって、容器内に貯留される融液の液面の位置が一定に保たれ、融液に対して浸漬される下地基板の浸漬条件を同一にすることができるので、高い品質の薄板を連続して安定的に製造することができる。   According to the present invention, the thin plate manufacturing apparatus includes a position of the container so that the position of the melt surface is constant in the direction of gravity according to the weight of the melt of the metal or semiconductor material stored in the container. A container position adjusting means for adjusting is provided. As a result, the position of the liquid surface of the melt stored in the container can be kept constant, and the immersion conditions of the base substrate immersed in the melt can be made the same. It can be produced continuously and stably.

また薄板製造装置には、容器位置調整手段によって調整される容器の重力方向における位置を検出する容器位置検出手段が備えられる。容器位置調整手段が、融液の液面の位置を一定になるように調整できる限界位置を予め定め、該限界位置を容器位置検出手段で検出できるように設定しておくことによって、液面の位置が変動した不適な製造条件下において下地基板を融液に浸漬することを防止できる。容器が前記限界位置に達したことは、容器内に貯留される融液の残量が、同一の浸漬条件で薄板を製造できる規定量以下となる閾値まで減少し、容器内へ薄板原料を補充する必要があることを意味する。したがって、該限界位置を容器位置検出手段で検出することによって、薄板の製造を中断して容器内へ薄板原料を追加するべきタイミングを正確に知ることができる。   Further, the thin plate manufacturing apparatus is provided with container position detecting means for detecting the position of the container in the gravity direction adjusted by the container position adjusting means. By setting a limit position where the container position adjusting means can adjust the position of the melt liquid level to be constant and setting the limit position so that the container position detecting means can detect the limit position, It is possible to prevent the base substrate from being immersed in the melt under unsuitable manufacturing conditions whose positions have changed. When the container reaches the limit position, the remaining amount of the melt stored in the container decreases to a threshold value that is less than the specified amount that allows the production of a thin plate under the same immersion conditions, and the thin plate raw material is replenished into the container. It means you need to. Therefore, by detecting the limit position by the container position detecting means, it is possible to accurately know the timing at which the production of the thin plate is interrupted and the thin plate material is added into the container.

また本発明によれば、容器位置調整手段が、弾性を有する素材から成り容器を支持する弾性支持部材を含むので、容器内に貯留される融液の重量変化に対応する弾性支持部材の弾性変形を利用することによって、簡単な構成で、融液の液面の位置が重力方向において一定になるように容器の位置を調整することが可能になる。   According to the invention, since the container position adjusting means includes an elastic support member that is made of an elastic material and supports the container, the elastic deformation of the elastic support member corresponding to a change in the weight of the melt stored in the container. By using this, the position of the container can be adjusted with a simple configuration so that the position of the liquid surface of the melt is constant in the direction of gravity.

また本発明によれば、容器内に貯留される融液の重量変化量に対応する液面高さの変位量と、容器内に貯留される融液の重量変化量に対応する弾性支持部材の重力方向の弾性変形量とが、等しくなるように構成される。このように、弾性支持部材の弾性を利用することによって、複雑な調整機構を設けることなく、高い精度で融液の液面の位置を一定に保つことができる。   Further, according to the present invention, the displacement of the liquid level corresponding to the weight change amount of the melt stored in the container, and the elastic support member corresponding to the weight change amount of the melt stored in the container. The elastic deformation amount in the gravitational direction is configured to be equal. Thus, by utilizing the elasticity of the elastic support member, the position of the melt surface can be kept constant with high accuracy without providing a complicated adjustment mechanism.

また本発明によれば、弾性支持部材が、安価かつ入手が容易で耐久性に優れるコイルばね部材で構成されるので、汎用性の高い薄板製造装置を実現することができる。   Further, according to the present invention, since the elastic support member is composed of a coil spring member that is inexpensive, easily available, and excellent in durability, a highly versatile thin plate manufacturing apparatus can be realized.

図1は、本発明の実施の一形態である薄板製造装置1の構成をチャンバ5の天板が除かれた状態で示す平面図であり、図2は図1に示す切断面線II−IIから見た断面図である。   FIG. 1 is a plan view showing a configuration of a thin plate manufacturing apparatus 1 according to an embodiment of the present invention in a state where a top plate of a chamber 5 is removed, and FIG. 2 is a sectional line II-II shown in FIG. It is sectional drawing seen from.

薄板製造装置1は、金属または半導体材料の融液2を容器3内に貯留し、薄板製造に用いる基板である下地基板4を容器3内の融液2に浸漬し、金属または半導体材料を融液2に浸漬される下地基板4の表面で凝固成長させて薄板を製造することに用いられる。ここでは、融液2として半導体材料であるシリコンの融液について例示する。すなわち、本実施の形態の薄板製造装置1は、溶融シリコンから薄板状のシリコンウエハを製造することに用いられる。   The thin plate manufacturing apparatus 1 stores a melt 2 of metal or semiconductor material in a container 3 and immerses a base substrate 4 which is a substrate used for thin plate manufacture in the melt 2 in the container 3 to melt the metal or semiconductor material. It is used for producing a thin plate by solidifying and growing on the surface of the base substrate 4 immersed in the liquid 2. Here, a melt of silicon as a semiconductor material is illustrated as the melt 2. That is, the thin plate manufacturing apparatus 1 of the present embodiment is used for manufacturing a thin plate-like silicon wafer from molten silicon.

薄板製造装置1は、大略、チャンバ5と、下地基板4をチャンバ5内へ装入する第1および第2基板装入部6,7と、シリコンの融液2を貯留する容器3である坩堝3と、坩堝3内の融液2または薄板原料を加熱する加熱手段8と、下地基板4を坩堝3内の融液2に対して浸漬し引上げる浸漬動作部9と、チャンバ5内へ装入された下地基板4が一旦載置される浸漬前基板置台10と、下地基板4を浸漬前基板置台10から浸漬動作部9へ移送する浸漬前基板移載部11と、融液2に浸漬後引上げた下地基板4を浸漬動作部9から受取り移送する浸漬後基板移載部12と、下地基板4が浸漬後基板移載部12によって一旦載置される浸漬後基板置台13と、浸漬後の下地基板4を冷却する基板冷却部14と、浸漬後基板置台13に載置される下地基板4を基板冷却部14へと送る基板プッシャ15と、基板冷却部14で冷却された下地基板4をチャンバ5から取出す第1および第2基板取出部16,17と、容器内に貯留されるシリコン融液2の重量に応じて、融液2の液面の位置が重力方向において一定になるように容器3の位置を調整する容器位置調整手段18と、容器位置調整手段18によって調整される容器3の重力方向における位置を検出する容器位置検出手段19とを含む。   The thin plate manufacturing apparatus 1 generally includes a chamber 5, first and second substrate loading portions 6 and 7 for loading the base substrate 4 into the chamber 5, and a crucible that is a container 3 for storing a silicon melt 2. 3, a heating means 8 for heating the melt 2 or the thin plate material in the crucible 3, a dipping operation unit 9 for dipping the base substrate 4 in the melt 2 in the crucible 3, and a chamber 5. Immersion in the melt 2, the pre-immersion substrate mounting table 10 on which the base substrate 4 that has been placed is placed, the pre-immersion substrate transfer unit 11 that transfers the base substrate 4 from the pre-immersion substrate mounting table 10 to the immersion operation unit 9, Subsequent substrate transfer unit 12 for receiving and transferring the rear substrate 4 pulled up from the immersion operation unit 9, post-immersion substrate mounting table 13 on which the base substrate 4 is once mounted by the post-immersion substrate transfer unit 12, and after immersion The substrate cooling unit 14 for cooling the base substrate 4 and the substrate mounting table 13 after immersion A substrate pusher 15 that sends the base substrate 4 to the substrate cooling unit 14, first and second substrate extraction units 16 and 17 that extract the base substrate 4 cooled by the substrate cooling unit 14 from the chamber 5, and are stored in a container. The container position adjusting means 18 adjusts the position of the container 3 so that the position of the liquid surface of the melt 2 is constant in the direction of gravity according to the weight of the silicon melt 2 and the container position adjusting means 18. Container position detecting means 19 for detecting the position of the container 3 in the direction of gravity.

チャンバ5は、外観が大略直方体形状を有し、内部が中空の構造体である。チャンバ5は、たとえば鋼製の躯体に図示を省くけれどもアルミナ(Al)などの断熱材が内張りされて、断熱かつ耐火構造を備える。このチャンバ5には、不図示の真空排気手段と不活性ガス供給手段とが付設され、これらによって、チャンバ5の内部空間21を真空雰囲気または不活性ガス雰囲気に保つことができる。 The chamber 5 has a substantially rectangular parallelepiped appearance and is a hollow structure. The chamber 5 is provided with a heat insulating and fireproof structure, although a heat insulating material such as alumina (Al 2 O 3 ) is lined, although not shown in a steel casing. The chamber 5 is provided with an unillustrated evacuation unit and an inert gas supply unit, whereby the internal space 21 of the chamber 5 can be maintained in a vacuum atmosphere or an inert gas atmosphere.

図3および図4は、容器3付近の構成を拡大して示す図である。図3では容器3内に融液2が満たされた状態を示し、図4では容器3内の融液2が減量した状態を示す。   3 and 4 are enlarged views showing the configuration in the vicinity of the container 3. 3 shows a state in which the melt 2 is filled in the container 3, and FIG. 4 shows a state in which the melt 2 in the container 3 is reduced.

チャンバ5内に設けられて融液2を貯留する坩堝3は、たとえばグラファイト製の有底円筒状容器である。坩堝3は、融液2を貯留する部分を除く外面が、断熱部材25で被覆される。坩堝3を被覆する断熱部材25からわずかの間隙をあけて坩堝3の半径方向外方に、坩堝3を周回するように加熱手段8に含まれる高周波誘導コイル8aが巻きまわされる。高周波誘導コイル8aは耐火材からなる被覆部材22に覆われ、被覆部材22を介してコイル支持部材26に支持される。またコイル支持部材26は、高周波誘導コイル8aを支持した状態でコイル架台27上に装着され、コイル架台27が、チャンバ5の底板5a上に設けられる基台23に固設される。   The crucible 3 provided in the chamber 5 and storing the melt 2 is, for example, a bottomed cylindrical container made of graphite. The outer surface of the crucible 3 excluding the portion for storing the melt 2 is covered with a heat insulating member 25. A high-frequency induction coil 8 a included in the heating means 8 is wound around the crucible 3 so as to go around the crucible 3 radially outwardly with a slight gap from the heat insulating member 25 covering the crucible 3. The high frequency induction coil 8 a is covered with a covering member 22 made of a refractory material, and is supported by the coil support member 26 via the covering member 22. The coil support member 26 is mounted on the coil mount 27 while supporting the high-frequency induction coil 8 a, and the coil mount 27 is fixed to the base 23 provided on the bottom plate 5 a of the chamber 5.

高周波誘導コイル8aは、チャンバ5外に設けられる不図示の高周波制御電源に接続され、高周波制御電源から高周波電流が流されることによって、坩堝3内のシリコンに交番磁界を印加し、シリコンを溶解するとともにシリコンの融液2を所望の温度に維持することができる。高周波誘導コイル8aと高周波制御電源とが加熱手段8を構成する。   The high-frequency induction coil 8a is connected to a high-frequency control power source (not shown) provided outside the chamber 5, and when a high-frequency current is passed from the high-frequency control power source, an alternating magnetic field is applied to the silicon in the crucible 3 to melt the silicon. At the same time, the melt 2 of silicon can be maintained at a desired temperature. The high frequency induction coil 8a and the high frequency control power supply constitute the heating means 8.

坩堝3は、基台23上に設けられる設置板28の上に容器位置調整手段18を介して装着される。容器位置調整手段18は、弾性を有する素材から成り坩堝3を支持する弾性支持部材61と、弾性支持部材61を挟持して坩堝3を保持する容器保持部材62とを含む。本実施の形態では、弾性支持部材61として、金属製のコイルばね部材が用いられる。   The crucible 3 is mounted on the installation plate 28 provided on the base 23 via the container position adjusting means 18. The container position adjusting means 18 includes an elastic support member 61 that is made of an elastic material and supports the crucible 3, and a container holding member 62 that holds the crucible 3 while holding the elastic support member 61. In the present embodiment, a metal coil spring member is used as the elastic support member 61.

容器保持部材62は、鋼製の2つの円筒状部材である坩堝受台63とばね受台64によって構成される。ばね受台64が設置板28上に設けられ、ばね受台64の上にコイルばね部材61が設けられ、コイルばね部材61の上に、すなわちコイルばね部材61を挟持して坩堝受台63が設けられる。坩堝3は、坩堝受台63の上に載置される。このようにして坩堝3が、容器保持部材62に挟持されるコイルばね部材61で弾性支持される。   The container holding member 62 includes a crucible receiving base 63 and a spring receiving base 64 which are two cylindrical members made of steel. A spring cradle 64 is provided on the installation plate 28, a coil spring member 61 is provided on the spring cradle 64, and the crucible cradle 63 is sandwiched between the coil spring member 61, that is, the coil spring member 61. Provided. The crucible 3 is placed on the crucible cradle 63. In this way, the crucible 3 is elastically supported by the coil spring member 61 held between the container holding members 62.

坩堝3の支持のために設けられるコイルばね部材61の数は、特に限定されるものではなく、坩堝3が水平面に対して平衡するように選定されれば良い。ただし、設けられるコイルばね部材61のすべてによって定まるばね定数が、以下の条件を満足するように、コイルばね部材61の種類と設置個数とが選定されることが望ましい。   The number of coil spring members 61 provided for supporting the crucible 3 is not particularly limited, and may be selected so that the crucible 3 is balanced with respect to a horizontal plane. However, it is desirable that the type and the number of installed coil spring members 61 are selected so that the spring constant determined by all of the provided coil spring members 61 satisfies the following conditions.

たとえばコイル部材61が、4個並列に設けられる場合について例示する。薄板製造に伴う坩堝3内の融液重量の変化量をΔWとし、坩堝3の融液2を貯留する部分の開口面積をAとし、薄板原料であるシリコンの密度をρとし、融液重量の変化量ΔWに対応する坩堝3内における融液2の液面高さの変位量をΔhとし、4個のコイルばね部材61のばね定数をそれぞれk1,k2,k3,k4とする。   For example, the case where four coil members 61 are provided in parallel is illustrated. The amount of change in the weight of the melt in the crucible 3 due to the production of the thin plate is ΔW, the opening area of the portion of the crucible 3 where the melt 2 is stored is A, the density of silicon as the thin plate material is ρ, and the melt weight A displacement amount of the liquid surface height of the melt 2 in the crucible 3 corresponding to the change amount ΔW is Δh, and spring constants of the four coil spring members 61 are k1, k2, k3, and k4, respectively.

このとき、坩堝3内における融液2の液面高さの変位量Δhは、下記式(1)で与えられる。また、4個のコイルばね部材61によって構成される弾性支持体のばね定数Kが、各ばね定数の和(=k1+k2+k3+k4)で与えられるので、下記式(2)を満足するように、コイルばね部材61を選定することによって、坩堝3内に貯留される融液2の重量変化量ΔWに対応する液面高さの変位量Δhと、坩堝3内に貯留される融液2の重量変化量ΔWに対応するコイルばね部材61の重力方向の弾性変形量Δhとが、等しくなるようにすることができる。
Δh=ΔW/(A×ρ) …(1)
ΔW=K×Δh …(2)
At this time, the displacement amount Δh of the liquid surface height of the melt 2 in the crucible 3 is given by the following formula (1). Further, since the spring constant K of the elastic support constituted by the four coil spring members 61 is given by the sum of the spring constants (= k1 + k2 + k3 + k4), the coil spring member satisfies the following expression (2). By selecting 61, the displacement amount Δh of the liquid level corresponding to the weight change amount ΔW of the melt 2 stored in the crucible 3 and the weight change amount ΔW of the melt 2 stored in the crucible 3 are selected. The elastic deformation amount Δh in the gravity direction of the coil spring member 61 corresponding to can be made equal.
Δh = ΔW / (A × ρ) (1)
ΔW = K × Δh (2)

このように、コイルばね部材61の弾性を利用することによって、複雑な調整機構を設けることなく、また特別な調整作業を行うことなく、坩堝3内の融液2の重量変化に対応してその液面の重力方向における位置を高い精度で一定に保つことが可能になる。   In this way, by utilizing the elasticity of the coil spring member 61, it is possible to cope with a change in the weight of the melt 2 in the crucible 3 without providing a complicated adjustment mechanism and without performing a special adjustment operation. The position of the liquid surface in the direction of gravity can be kept constant with high accuracy.

また容器位置検出手段19が、コイル架台27に装着される。容器位置検出手段19は、コイル架台27形成される凹所28の底部ほぼ中央に坩堝受台63を臨むようにして形成される貫通孔29を挿通するようにして設けられる。容器位置検出手段19は、たとえば近接センサによって実現される。近接センサ19は、センサ部19aとセンサ部19aに接続されるケーブル19bとを含んで構成される。センサ部19aは、坩堝受台63を臨むようにして配置され、鋼製の坩堝受台63の近接離反に伴う磁界変化を検出することによって、その位置、すなわち坩堝受台63上に載置される坩堝3の重力方向における位置を検出することができる。   Container position detection means 19 is attached to the coil mount 27. The container position detection means 19 is provided so as to pass through a through-hole 29 formed so as to face the crucible support 63 at the center of the bottom of the recess 28 where the coil mount 27 is formed. The container position detection means 19 is realized by, for example, a proximity sensor. The proximity sensor 19 includes a sensor unit 19a and a cable 19b connected to the sensor unit 19a. The sensor unit 19a is arranged so as to face the crucible support 63, and detects the change in the magnetic field accompanying the proximity and separation of the steel crucible support 63, so that the crucible placed on the crucible support 63 is located. 3 can be detected in the direction of gravity.

薄板の製造が行われると、坩堝3内の融液2が、下地基板4に付着して持ち去られるので、減少する。坩堝3内の融液2が減少して液面高さが低下すると、容器位置調整手段18によって坩堝3が押上げられて液面の位置が一定になるように調整される。しかしながら、融液2の減少量が大きくなると、容器位置調整手段18によって押上げ調整をすることができなくなる限界に達する。   When the thin plate is manufactured, the melt 2 in the crucible 3 adheres to the base substrate 4 and is removed, so that the thickness decreases. When the melt 2 in the crucible 3 is reduced and the liquid level is lowered, the crucible 3 is pushed up by the container position adjusting means 18 so that the position of the liquid level becomes constant. However, when the amount of decrease of the melt 2 increases, the limit is reached where the container position adjusting means 18 cannot perform the push-up adjustment.

したがって、容器位置調整手段18による液面位置の調整が可能な限界位置を予め定め、該限界位置を近接センサ19で検出できるように設定し、近接センサ19による坩堝位置の検出出力を、ケーブル19bを介して薄板製造装置1の動作を制御する不図示の制御手段へ入力するようにしておくことによって、融液2の液面位置が変動した不適な製造条件下において下地基板4を融液2に浸漬することを防止できる。   Therefore, a limit position where the liquid level position can be adjusted by the container position adjusting means 18 is determined in advance, the limit position is set so that it can be detected by the proximity sensor 19, and the detection output of the crucible position by the proximity sensor 19 is sent to the cable 19b. Is input to a control means (not shown) for controlling the operation of the thin plate manufacturing apparatus 1 through the base plate 4 under the unsuitable manufacturing conditions in which the liquid surface position of the melt 2 fluctuates. It can prevent being immersed in.

坩堝3の位置が、容器位置調整手段18による液面位置の調整可能な限界位置に達したことは、坩堝3内に貯留される融液2の残量が、同一の浸漬条件で薄板を製造できる規定量以下となる閾値まで減少し、坩堝3内へ薄板原料を補充する必要があることを意味する。したがって、該限界位置を近接センサ19で検出することによって、薄板の製造を中断して坩堝3内へ薄板原料を追加するべきタイミングを正確に知ることができる。   The fact that the position of the crucible 3 has reached the limit position where the liquid level position can be adjusted by the container position adjusting means 18 is that the remaining amount of the melt 2 stored in the crucible 3 is manufactured under the same immersion conditions. It means that it is necessary to replenish the thin plate material into the crucible 3 by reducing it to a threshold value that is not more than a specified amount. Therefore, by detecting the limit position with the proximity sensor 19, it is possible to accurately know the timing at which the production of the thin plate is interrupted and the thin plate raw material is added into the crucible 3.

図1および図2に戻って、下地基板4は、坩堝3と同じくチャンバ5内に設けられる浸漬動作部9に保持されて、坩堝3内の融液2に対して浸漬され、また引上げられる。浸漬動作部9は、下地基板4を保持する保持ヘッド31と、保持ヘッド31が装着されて垂直方向に延びて設けられる垂直アーム32と、垂直アーム32に継手部材33で連結されて水平方向に延びて設けられる水平アーム34と、水平アーム34をその軸線まわりに垂直回転させる垂直回動部35と、水平および垂直アーム34,32ならびに保持ヘッド31を一体的に水平移動させる水平駆動部36と、昇降移動させる昇降駆動部37とを含んで構成される。   Returning to FIGS. 1 and 2, the base substrate 4 is held in the dipping operation unit 9 provided in the chamber 5 similarly to the crucible 3, dipped in the melt 2 in the crucible 3, and pulled up. The dipping operation unit 9 includes a holding head 31 that holds the base substrate 4, a vertical arm 32 that is attached to the holding head 31 and extends in the vertical direction, and is connected to the vertical arm 32 by a joint member 33 in the horizontal direction. An extended horizontal arm 34, a vertical rotation unit 35 that vertically rotates the horizontal arm 34 about its axis, and a horizontal drive unit 36 that horizontally moves the horizontal and vertical arms 34 and 32 and the holding head 31 integrally. And an elevating drive unit 37 that moves up and down.

保持ヘッド31は、下地基板4が保持される側に吸引孔が形成されるとともに、不図示の吸引ポンプに配管を介して接続され、吸引ポンプの動作に従って下地基板4を吸着保持するとともに、吸引を停止することによって下地基板4を離脱させることもできる。この浸漬手段9の動作を制御することによって、保持ヘッド31に吸着保持される下地基板4を、垂直(上下)、水平および回転駆動させることができるので、坩堝3に貯留される融液2中へ所望の深さかつ角度で浸漬させるとともに、浸漬後引上げることが可能になる。   The holding head 31 has a suction hole formed on the side on which the base substrate 4 is held, and is connected to a suction pump (not shown) via a pipe to suck and hold the base substrate 4 according to the operation of the suction pump, The base substrate 4 can be detached by stopping the process. By controlling the operation of the dipping means 9, the base substrate 4 attracted and held by the holding head 31 can be driven vertically (up and down), horizontally and rotationally, so that the melt 2 stored in the crucible 3 It is possible to soak at a desired depth and angle, and to pull up after soaking.

第1および第2基板装入部6,7は、チャンバ5の壁部に形成される第1および第2基板装入孔41,42を塞ぎ、開閉自在に設けられる第1および第2装入孔開閉扉43,44を介して、チャンバ5に装着される。第1基板装入部6と第2基板装入部7とは、同一に構成されるので、第1基板装入部6について説明し、第2基板装入部7の第1基板装入部6に対応する部分については、同一の参照符号を付して説明を省略する。   The first and second substrate insertion portions 6 and 7 close the first and second substrate insertion holes 41 and 42 formed in the wall portion of the chamber 5 and are provided so as to be freely opened and closed. It is attached to the chamber 5 through the hole opening / closing doors 43 and 44. Since the first substrate loading portion 6 and the second substrate loading portion 7 are configured identically, the first substrate loading portion 6 will be described, and the first substrate loading portion of the second substrate loading portion 7 will be described. The portions corresponding to 6 are denoted by the same reference numerals and description thereof is omitted.

第1基板装入部6は、箱型容器状の基板装入副室45と、第1装入孔開閉扉43に対向するように配置される基板装入副室45の室壁45aを挿通して摺動可能に設けられる基板装入アーム46と、基板装入副室45に付設される不図示の真空排気手段および不活性ガス供給手段とを含む。   The first substrate loading section 6 is inserted through the box-shaped container-shaped substrate loading subchamber 45 and the chamber wall 45a of the substrate loading subchamber 45 disposed so as to face the first loading hole opening / closing door 43. The substrate loading arm 46 is slidably provided, and the evacuation means and the inert gas supply means (not shown) attached to the substrate loading subchamber 45 are included.

基板装入副室45には、下地基板4を装入することのできる不図示の装入口が形成され、この装入口には、第1装入孔開閉扉43とは別途、開閉自在の扉が設けられる。基板装入アーム46は、下地基板4を保持するフォーク状の基板受部46aと、基板受部46aに連なり、基板装入副室45の室壁45aを挿通して延びるアーム軸部46bとからなり、アーム軸部46bは、室壁45aを挿通して摺動することができる。   The substrate loading subchamber 45 is formed with a loading port (not shown) into which the base substrate 4 can be loaded. The loading port is a door that can be opened and closed separately from the first loading hole opening / closing door 43. Is provided. The substrate loading arm 46 includes a fork-shaped substrate receiving portion 46 a that holds the base substrate 4, and an arm shaft portion 46 b that is connected to the substrate receiving portion 46 a and extends through the chamber wall 45 a of the substrate loading subchamber 45. Thus, the arm shaft portion 46b can slide through the chamber wall 45a.

下地基板4を装入する装入口の扉を開け、下地基板4を基板装入副室45へ装入し、基板受部46aに保持させる。装入口の扉を閉じ、基板装入副室45をチャンバ5内雰囲気と同一の真空または不活性ガス雰囲気にする。次いで、第1装入孔開閉扉43を開き、アーム軸部46bをチャンバ5内へ押込むように摺動させることによって、下地基板4をチャンバ5内へ装入することができる。   The door at the entrance for loading the base substrate 4 is opened, the base substrate 4 is loaded into the substrate loading subchamber 45, and held in the substrate receiving portion 46a. The entrance door is closed, and the substrate loading subchamber 45 is brought to the same vacuum or inert gas atmosphere as the atmosphere in the chamber 5. Next, the first charging hole opening / closing door 43 is opened, and the base substrate 4 can be inserted into the chamber 5 by sliding the arm shaft portion 46 b so as to push it into the chamber 5.

チャンバ5内へ装入された下地基板4は、浸漬前基板置台10上に一旦載置される。その後、アーム軸部46bをチャンバ5外へ引出すように摺動させ、第1装入孔開閉扉43を閉じ、基板装入副室45内の雰囲気を大気雰囲気とすることによって、再び装入口の扉を開いて次の下地基板4を基板装入副室45内に装填することができる。   The base substrate 4 charged into the chamber 5 is once placed on the substrate table 10 before immersion. Thereafter, the arm shaft portion 46b is slid so as to be pulled out of the chamber 5, the first loading hole opening / closing door 43 is closed, and the atmosphere in the substrate loading subchamber 45 is changed to the atmospheric atmosphere, so that the loading port is opened again. The next base substrate 4 can be loaded into the substrate loading subchamber 45 by opening the door.

チャンバ5内へ装入された浸漬前の下地基板4が一旦載置される浸漬前基板置台10は、下地基板4の受渡し高さを調整する上下動作および方向を調整する回転動作が可能に構成される。浸漬前基板移載部11は、前述の基板装入アーム46と同様の構成を有し、下地基板4を保持するフォーク状の基板受部11aと、基板受部11aに連なり、チャンバ5の壁部を挿通して延びるアーム軸部11bとからなり、アーム軸部11bは、チャンバ5の壁部を挿通して摺動することができる。浸漬前基板移載部11は、下地基板4を、フォーク状の基板受部11aで浸漬前基板置台10から持上げ、アーム軸部11bを摺動させて浸漬動作部9の保持ヘッド31まで移載する。   The substrate table 10 before immersion on which the base substrate 4 before immersion inserted into the chamber 5 is once placed is configured to be capable of up and down operation for adjusting the delivery height of the base substrate 4 and rotation operation for adjusting the direction. Is done. The pre-immersion substrate transfer unit 11 has the same configuration as the above-described substrate loading arm 46, is connected to the fork-shaped substrate receiving unit 11 a that holds the base substrate 4, the substrate receiving unit 11 a, and the wall of the chamber 5. The arm shaft portion 11 b extends through the portion, and the arm shaft portion 11 b can slide through the wall portion of the chamber 5. The pre-dipping substrate transfer unit 11 lifts the base substrate 4 from the pre-dipping substrate mounting table 10 with a fork-shaped substrate receiving unit 11a and slides the arm shaft portion 11b to the holding head 31 of the dipping operation unit 9. To do.

浸漬前基板移載部11から下地基板4を受取った浸漬動作部9は、前述のようにして下地基板4を坩堝3内の融液2へ浸漬し、その後引上げる。   The immersion operation unit 9 that has received the base substrate 4 from the pre-immersion substrate transfer unit 11 immerses the base substrate 4 in the melt 2 in the crucible 3 as described above, and then pulls it up.

浸漬後基板移載部12は、浸漬前基板移載部11と同一の構成を有し、坩堝3に関して浸漬前基板移載部11と対称になるように配置される。浸漬後基板移載部12は、浸漬後の下地基板4を、フォーク状の基板受部12aで浸漬動作部9から受取り、チャンバ5の壁面を挿通して設けられるアーム軸部12bを摺動させて浸漬後基板置台13まで移載する。浸漬後基板置台13は、浸漬後の下地基板4の受渡し高さを調整する上下動作が可能に構成される。   The post-immersion substrate transfer unit 12 has the same configuration as the pre-immersion substrate transfer unit 11 and is arranged so as to be symmetric with respect to the pre-immersion substrate transfer unit 11 with respect to the crucible 3. The substrate transfer unit 12 after immersion receives the base substrate 4 after immersion from the immersion operation unit 9 with a fork-shaped substrate receiver 12a, and slides an arm shaft 12b provided through the wall surface of the chamber 5. Then, the substrate is transferred to the substrate table 13 after immersion. The post-immersion substrate mounting table 13 is configured to be capable of up and down operation for adjusting the delivery height of the base substrate 4 after immersion.

基板プッシャ15は、浸漬後基板移載部12の動作方向に対して直交する方向に動作することができるように、チャンバ5の壁部に設けられる。 基板プッシャ15は、下地基板4に当接させる押板部15aと、チャンバ5の壁部を挿通して摺動可能に設けられるアーム軸部15bとを含み、アーム軸部15bを摺動させることによって、浸漬後基板置台13に載置される下地基板4を基板冷却部14へ押送することができる。   The substrate pusher 15 is provided on the wall portion of the chamber 5 so that the substrate pusher 15 can operate in a direction orthogonal to the operation direction of the substrate transfer unit 12 after immersion. The substrate pusher 15 includes a pressing plate portion 15a that is brought into contact with the base substrate 4 and an arm shaft portion 15b that is slidably provided through the wall portion of the chamber 5, and slides the arm shaft portion 15b. Thus, the base substrate 4 placed on the substrate stage 13 after immersion can be pushed to the substrate cooling unit 14.

基板冷却部14は、浸漬後基板置台13に隣接し、基板プッシャ15による下地基板4の押送方向に延びて設けられる。基板冷却部14は、熱伝導が良い銅等の材質からなるステージであり、ステージ上に載置される下地基板4を搬送する搬送手段を備えるとともに、たとえば水冷配管などの冷却手段を備える。基板冷却部14は、坩堝3内の融液2に浸漬されることによって昇温した下地基板4を、冷却しながら基板冷却部14に付設される基板位置調整部47まで移動させる。基板位置調整部47は、下地基板4を、第1または第2基板取出部16,17へ受渡す受渡し高さを調整する上下動作および方向を調整する回転動作が可能に構成される。   The substrate cooling unit 14 is provided adjacent to the substrate table 13 after immersion and extending in the direction in which the base substrate 4 is pushed by the substrate pusher 15. The substrate cooling unit 14 is a stage made of a material such as copper having good thermal conductivity, and includes a transport unit that transports the base substrate 4 placed on the stage, and also includes a cooling unit such as a water cooling pipe. The substrate cooling unit 14 moves the base substrate 4 heated by being immersed in the melt 2 in the crucible 3 to the substrate position adjusting unit 47 attached to the substrate cooling unit 14 while cooling. The substrate position adjustment unit 47 is configured to be capable of a vertical operation for adjusting the delivery height for delivering the base substrate 4 to the first or second substrate take-out unit 16, 17 and a rotation operation for adjusting the direction.

第1および第2基板取出部16,17は、チャンバ5の壁部に形成される第1および第2基板取出孔49,50を塞ぎ、開閉自在に設けられる第1および第2取出孔開閉扉51,52を介して、チャンバ5に装着される。第1基板取出部16と第2基板取出部17とは、同一に構成されるので、第1基板取出部16について説明し、第2基板取出部17の第1基板取出部16に対応する部分については、同一の参照符号を付して説明を省略する。   The first and second substrate take-out portions 16 and 17 close the first and second substrate take-out holes 49 and 50 formed in the wall portion of the chamber 5 and are provided so as to be freely opened and closed. It is attached to the chamber 5 via 51 and 52. Since the first substrate extraction unit 16 and the second substrate extraction unit 17 are configured identically, the first substrate extraction unit 16 will be described, and the portion of the second substrate extraction unit 17 corresponding to the first substrate extraction unit 16 Are given the same reference numerals and the description thereof is omitted.

第1基板取出部16は、箱型容器状の基板取出副室53と、第1取出孔開閉扉51に対向するように配置される基板取出副室53の室壁53aを挿通して摺動可能に設けられる基板取出アーム54と、基板取出副室53に付設される不図示の真空排気手段および不活性ガス供給手段とを含む。   The first substrate take-out section 16 is slid by inserting through the box-shaped container-like substrate take-out subchamber 53 and the chamber wall 53a of the substrate take-out subchamber 53 arranged to face the first take-out hole opening / closing door 51. A substrate take-out arm 54 that can be provided, and a vacuum exhaust means and an inert gas supply means (not shown) attached to the substrate take-out subchamber 53 are included.

基板取出副室53には、下地基板4を取出すことのできる不図示の取出口が形成され、この取出口には、第1取出孔開閉扉51とは別途、開閉自在の扉が設けられる。基板取出アーム54は、下地基板4を保持するフォーク状の基板受部54aと、基板受部54aに連なり、基板取出副室53の室壁53aを挿通して延びるアーム軸部54bとからなり、アーム軸部54bは、室壁53aを挿通して摺動することができる。   The substrate take-out subchamber 53 is formed with an unillustrated take-out port through which the base substrate 4 can be taken out, and a door that can be opened and closed is provided separately from the first take-out opening / closing door 51 at the take-out port. The substrate take-out arm 54 includes a fork-like substrate receiving portion 54a that holds the base substrate 4, and an arm shaft portion 54b that is connected to the substrate receiving portion 54a and extends through the chamber wall 53a of the substrate take-out sub chamber 53, The arm shaft portion 54b can slide through the chamber wall 53a.

下地基板4を取出す取出口の扉を閉じ、基板取出副室53をチャンバ5内雰囲気と同一の真空または不活性ガス雰囲気にする。次いで、第1取出孔開閉扉51を開き、アーム軸部54bをチャンバ5内へ押込むように摺動させ、基板位置調整部47に載置される浸漬後の下地基板4を受取る。アーム軸部54bをチャンバ5外へ引出すように摺動させ、下地基板4を基板取出副室53内へ装入する。第1取出孔開閉扉51を閉じ、基板取出副室53内の雰囲気を大気雰囲気とする。取出口の扉を開くことによって、浸漬後の下地基板4を基板取出副室53から取出すことができる。   The door of the take-out port for taking out the base substrate 4 is closed, and the substrate take-out sub chamber 53 is set to the same vacuum or inert gas atmosphere as the atmosphere in the chamber 5. Next, the first extraction hole opening / closing door 51 is opened, the arm shaft portion 54 b is slid so as to be pushed into the chamber 5, and the base substrate 4 after immersion placed on the substrate position adjustment portion 47 is received. The arm shaft portion 54 b is slid so as to be pulled out of the chamber 5, and the base substrate 4 is loaded into the substrate extraction subchamber 53. The first extraction hole opening / closing door 51 is closed, and the atmosphere in the substrate extraction subchamber 53 is an atmospheric atmosphere. By opening the door of the outlet, the substrate 4 after immersion can be taken out from the substrate taking-out subchamber 53.

以下薄板製造装置1における全体動作を簡単に説明する。なお、薄板製造装置1における薄板製造の全体動作は、不図示の制御手段に備えられるメモリに予め格納される動作制御プログラムを読出し、該動作制御プログラムに従い、制御手段が前述の装置各部に対して動作指示信号を出力することによって実行される。   The overall operation of the thin plate manufacturing apparatus 1 will be briefly described below. The overall operation of thin plate manufacturing in the thin plate manufacturing apparatus 1 reads out an operation control program stored in advance in a memory provided in a control means (not shown), and the control means controls each part of the apparatus described above according to the operation control program. This is executed by outputting an operation instruction signal.

まず第1または第2の基板装入副室45内に、下地基板4を装填する。基板装入副室45内に装填された下地基板4は、下地基板4が装填された方の第1または第2基板装入部6,7によってチャンバ5内の浸漬前基板置台10に載置される。浸漬前基板置台10に載置された下地基板4は、浸漬前基板移載部11によって、浸漬動作部9に備わる保持ヘッド31に受渡される。   First, the base substrate 4 is loaded into the first or second substrate loading subchamber 45. The base substrate 4 loaded in the substrate loading subchamber 45 is placed on the pre-immersion substrate platform 10 in the chamber 5 by the first or second substrate loading section 6, 7 on which the base substrate 4 is loaded. Is done. The base substrate 4 placed on the substrate table 10 before immersion is delivered to the holding head 31 provided in the immersion operation unit 9 by the substrate transfer unit 11 before immersion.

浸漬動作部9は、保持ヘッド31で保持する下地基板4を、製造するべき薄板の種類ごとに予めプログラミングされている動作指示に従い、所定の浸漬角度、所定の浸漬深さ、所定の浸漬時間浸漬する。この浸漬によって、下地基板4の結晶生成面にシリコン結晶が凝固成長されて薄板が生成される。   The dipping operation unit 9 immerses the base substrate 4 held by the holding head 31 according to a pre-programmed operation instruction for each type of thin plate to be manufactured, with a predetermined immersion angle, a predetermined immersion depth, and a predetermined immersion time. To do. By this immersion, silicon crystals are solidified and grown on the crystal generation surface of the base substrate 4 to generate a thin plate.

浸漬動作部9によって融液2から引上げられた浸漬後の下地基板4は、浸漬後基板移載部12によって、浸漬動作部9から浸漬後基板置台13に移載される。浸漬後基板置台13に載置された下地基板4が、基板プッシャ15によって、基板冷却部14へ押送される。基板冷却部14で冷却されるとともに、基板位置調整部47まで搬送された下地基板4は、第1または第2基板取出部16,17によって、チャンバ5外へ取出される。   The substrate 4 after dipping pulled up from the melt 2 by the dipping operation unit 9 is transferred from the dipping operation unit 9 to the substrate table 13 after dipping by the substrate transfer unit 12 after dipping. After the immersion, the base substrate 4 placed on the substrate table 13 is pushed to the substrate cooling unit 14 by the substrate pusher 15. The base substrate 4 cooled by the substrate cooling unit 14 and transported to the substrate position adjusting unit 47 is taken out of the chamber 5 by the first or second substrate take-out units 16 and 17.

以上で一連の薄板製造の動作を終了し、続けて薄板を製造する場合、基板装入副室45へ下地基板4を装填する動作に戻り、以降の動作を繰返す。   When a series of thin plate manufacturing operations is completed as described above and thin plates are subsequently manufactured, the operation returns to the operation of loading the base substrate 4 into the substrate loading subchamber 45, and the subsequent operations are repeated.

薄板製造装置1においては、坩堝3内の融液2に下地基板4を浸漬し、下地基板4にシリコンを結晶成長させ、その後下地基板4を融液2から引上げることによって、坩堝3内の融液2の量が減少するけれども、容器位置調整手段18が、融液2の減量に伴う液面高さの低下量に等しい高さだけ、坩堝3を押上げるので、融液2の液面の位置が一定に保たれる。   In the thin plate manufacturing apparatus 1, the base substrate 4 is immersed in the melt 2 in the crucible 3, silicon is crystal-grown on the base substrate 4, and then the base substrate 4 is pulled up from the melt 2. Although the amount of the melt 2 decreases, the container position adjusting means 18 pushes up the crucible 3 by a height equal to the amount of decrease in the liquid surface height accompanying the decrease in the melt 2. The position of is kept constant.

このように、薄板製造の一連の動作を繰返して下地基板4を融液2に浸漬するに際し、融液2の液面の位置が、常に一定に保たれるので、一定位置にある融液面に対して浸漬動作部9に保持された下地基板4を浸漬し、その浸漬深さを一定に保つことができる。すなわち、下地基板4にシリコンの結晶を凝固成長させるに際し、同じ浸漬条件を実現し、また同じ浸漬動作を行うことができるので、長期にわたり安定した品質の薄板状のシリコンウエハを製造することが可能になる。   Thus, when the base substrate 4 is immersed in the melt 2 by repeating a series of operations for manufacturing the thin plate, the position of the liquid surface of the melt 2 is always kept constant. On the other hand, the base substrate 4 held by the dipping operation unit 9 can be dipped, and the dipping depth can be kept constant. That is, when the silicon crystal is solidified and grown on the base substrate 4, the same immersion conditions can be realized and the same immersion operation can be performed, so that a thin silicon wafer having a stable quality can be manufactured over a long period of time. become.

また液面高さの低下が、容器位置調整手段18による調整をすることができなくなる限界まで達するとき、容器位置検出手段19は、坩堝3が容器位置調整手段18による調整限界位置にあることを、検出することができる。したがって、容器位置検出手段19の検出出力に応じて、薄板製造を中断し、坩堝3内へ薄板原料を補充することができるので、融液2の液面の位置が変動した不適な製造条件下における薄板の製造が防止される。   When the drop in the liquid level reaches the limit at which the adjustment by the container position adjusting means 18 cannot be performed, the container position detecting means 19 indicates that the crucible 3 is at the adjustment limit position by the container position adjusting means 18. Can be detected. Accordingly, the production of the thin plate can be interrupted and the raw material of the thin plate can be replenished into the crucible 3 in accordance with the detection output of the container position detection means 19, so that the unsuitable production conditions in which the position of the liquid surface of the melt 2 has fluctuated. The production of the thin plate is prevented.

本発明の実施の一形態である薄板製造装置1の構成をチャンバ5の天板が除かれた状態で示す平面図である。It is a top view which shows the structure of the thin plate manufacturing apparatus 1 which is one Embodiment of this invention in the state from which the top plate of the chamber 5 was removed. 図1に示す切断面線II−IIから見た断面図であり、It is sectional drawing seen from the cut surface line II-II shown in FIG. 容器3付近の構成を拡大して示す図である。It is a figure which expands and shows the structure of the container 3 vicinity. 容器3付近の構成を拡大して示す図である。It is a figure which expands and shows the structure of the container 3 vicinity.

符号の説明Explanation of symbols

1 薄板製造装置
2 融液
3 坩堝
4 下地基板
5 チャンバ
6 第1基板装入部
7 第2基板装入部
8 加熱手段
9 浸漬動作部
10 浸漬前基板置台
11 浸漬前基板移載部
12 浸漬後基板移載部
13 浸漬後基板置台
14 基板冷却部
15 基板プッシャ
16 第1基板取出部
17 第2基板取出部
18 容器位置調整手段
19 容器位置検出手段
61 弾性支持部材
62 容器保持部材
DESCRIPTION OF SYMBOLS 1 Thin plate manufacturing apparatus 2 Melt 3 Crucible 4 Base substrate 5 Chamber 6 1st board | substrate insertion part 7 2nd board | substrate insertion part 8 Heating means 9 Immersion operation part 10 Substrate table before immersion 11 Substrate transfer part before immersion 12 After immersion Substrate transfer unit 13 Substrate post stage 14 Substrate cooling unit 15 Substrate pusher 16 First substrate extraction unit 17 Second substrate extraction unit 18 Container position adjustment means 19 Container position detection means 61 Elastic support member 62 Container holding member

Claims (4)

金属または半導体材料の融液を容器内に貯留し、薄板の原板である下地基板の結晶生成面を容器内の融液に浸漬し、金属または半導体材料を下地基板の結晶生成面で凝固成長させて薄板を製造する薄板製造装置において、
容器内に貯留される金属または半導体材料の融液の重量に応じて、融液の液面の位置が重力方向において一定になるように容器の位置を調整する容器位置調整手段と、
容器位置調整手段によって調整される容器の重力方向における位置を検出する容器位置検出手段とを含むことを特徴とする薄板製造装置。
The melt of metal or semiconductor material is stored in the container, the crystal generation surface of the base substrate, which is a thin original plate, is immersed in the melt in the container, and the metal or semiconductor material is solidified and grown on the crystal generation surface of the base substrate. In a thin plate manufacturing apparatus that manufactures thin plates,
Container position adjusting means for adjusting the position of the container so that the position of the liquid surface of the melt is constant in the direction of gravity according to the weight of the melt of the metal or semiconductor material stored in the container;
And a container position detecting means for detecting a position of the container in the direction of gravity adjusted by the container position adjusting means.
容器位置調整手段は、
弾性を有する素材から成り容器を支持する弾性支持部材と、
弾性支持部材を挟持し容器を保持する容器保持部材とを含むことを特徴とする請求項1記載の薄板製造装置。
The container position adjusting means
An elastic support member made of an elastic material and supporting the container;
The thin plate manufacturing apparatus according to claim 1, further comprising: a container holding member that holds the container while holding the elastic support member.
容器内に貯留される融液の重量変化量に対応する液面高さの変位量と、容器内に貯留される融液の重量変化量に対応する弾性支持部材の重力方向の弾性変形量とが、等しくなるように構成されることを特徴とする請求項2記載の薄板製造装置。   The amount of displacement of the liquid level corresponding to the amount of change in the weight of the melt stored in the container, and the amount of elastic deformation in the gravity direction of the elastic support member corresponding to the amount of change in the weight of the melt stored in the container The thin plate manufacturing apparatus according to claim 2, wherein the two are configured to be equal to each other. 弾性支持部材が、
コイルばね部材であることを特徴とする請求項2または3記載の薄板製造装置。
The elastic support member is
4. The thin plate manufacturing apparatus according to claim 2, wherein the thin plate manufacturing apparatus is a coil spring member.
JP2004191876A 2004-06-29 2004-06-29 Apparatus for manufacturing thin sheet Pending JP2006008483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004191876A JP2006008483A (en) 2004-06-29 2004-06-29 Apparatus for manufacturing thin sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004191876A JP2006008483A (en) 2004-06-29 2004-06-29 Apparatus for manufacturing thin sheet

Publications (1)

Publication Number Publication Date
JP2006008483A true JP2006008483A (en) 2006-01-12

Family

ID=35776130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004191876A Pending JP2006008483A (en) 2004-06-29 2004-06-29 Apparatus for manufacturing thin sheet

Country Status (1)

Country Link
JP (1) JP2006008483A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009298609A (en) * 2008-06-10 2009-12-24 Sharp Corp Apparatus for manufacturing thin plate
JP2011513168A (en) * 2008-02-27 2011-04-28 サントル、ナショナール、ド、ラ、ルシェルシュ、シアンティフィク、(セーエヌエルエス) Crystal formation method of conductive material in molten state

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011513168A (en) * 2008-02-27 2011-04-28 サントル、ナショナール、ド、ラ、ルシェルシュ、シアンティフィク、(セーエヌエルエス) Crystal formation method of conductive material in molten state
JP2009298609A (en) * 2008-06-10 2009-12-24 Sharp Corp Apparatus for manufacturing thin plate

Similar Documents

Publication Publication Date Title
RU2448204C2 (en) SAPPHIRE WITH r-PLANE, METHOD AND DEVICE FOR ITS OBTAINING
CN103938270B (en) Growth method of gallium heavily doped low-dislocation germanium single crystal
CN106498488B (en) A variety of doping CaF are grown simultaneously2The device of crystal and preparation method based on the device
US20160230307A1 (en) Apparatus and methods for producing silicon-ingots
JP4113532B2 (en) Thin plate manufacturing method and thin plate manufacturing apparatus
TW202146714A (en) Gallium oxide crystal manufacturing device
JP5728385B2 (en) Sheet manufacturing method and sheet manufacturing apparatus from melt
TW201404956A (en) Apparatus and method for the production of ingots
JP2007290914A (en) Apparatus for supplying molten raw material and apparatus for manufacturing polycrystal substance or single-crystal substance
JP2005336020A (en) Silicon single crystal puller and method of manufacturing silicon single crystal
JP2006008483A (en) Apparatus for manufacturing thin sheet
JP5848752B2 (en) Removal of sheet from melt surface using elasticity and buoyancy
JP2006008482A (en) Apparatus and method for manufacturing thin sheet
CN1318113A (en) Method and system for stabilizing dendritic web crystal growth
JP3973852B2 (en) Semiconductor substrate manufacturing equipment
JP2006151768A (en) Apparatus for manufacturing deposited plate
JP2001031496A (en) Apparatus and method for producing silicon ribbon
JP2006199511A (en) Crystal production apparatus
JP2006027976A (en) Method for producing nitride single crystal and producing apparatus therefor
JP2007314383A (en) Crucible and thin plate manufacturing apparatus
JP2009242143A (en) Silicon single crystal pulling apparatus and method for producing silicon single crystal
JP2006008481A (en) Apparatus and method for manufacturing thin sheet
JP2006049439A (en) Apparatus and method for manufacturing deposited plate
JP2002283044A (en) Device and method for manufacturing crystalline sheet
JP2008074691A (en) Method for producing single crystal