JP2008074691A - Method for producing single crystal - Google Patents

Method for producing single crystal Download PDF

Info

Publication number
JP2008074691A
JP2008074691A JP2006259163A JP2006259163A JP2008074691A JP 2008074691 A JP2008074691 A JP 2008074691A JP 2006259163 A JP2006259163 A JP 2006259163A JP 2006259163 A JP2006259163 A JP 2006259163A JP 2008074691 A JP2008074691 A JP 2008074691A
Authority
JP
Japan
Prior art keywords
single crystal
raw material
growth
pulling
material melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006259163A
Other languages
Japanese (ja)
Inventor
Taisei Matsumoto
大成 松本
Ryohei Nakamura
良平 中村
Nobuyuki Yamada
信行 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2006259163A priority Critical patent/JP2008074691A/en
Publication of JP2008074691A publication Critical patent/JP2008074691A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which can prevent heterogeneous precipitation forming a Ce-enriched phase, a Nd-enriched phase or the like, without lowering production efficiency, in the growth of a garnet type oxide single crystal added with a luminescent element such as Ce:GGAG or Nd:YAG. <P>SOLUTION: The single crystal 1 is pulled in such a manner that the sum of descending rate of the liquid surface of raw material melt 2 stored in crucible 4 during the pulling of the single crystal and the pulling speed of the single crystal 1 is always constant during the pulling. The measurement of the height of the liquid surface of raw material melt 2 or the measurement of weights of single crystal 1 is performed so as to calculate the descending rate of raw material melt based on the variation of the weight. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、単結晶の製造方法に係り、特にCe添加ガドリニウムガリウムアルミニウムガーネット(Ce:GGAG)やNd添加イットリウムアルミニウムガーネット(Nd:YAG)などの発光元素を添加したガーネット型酸化物単結晶に好適な製造方法に関するものである。   The present invention relates to a method for producing a single crystal, and is particularly suitable for a garnet-type oxide single crystal to which a light emitting element such as Ce-added gadolinium gallium aluminum garnet (Ce: GGAG) or Nd-added yttrium aluminum garnet (Nd: YAG) is added. This relates to a manufacturing method.

Ce添加ガドリニウムガリウムアルミニウムガーネット(Ce:GGAG)単結晶は、Ceを発光元素として少なくともGd、Ga、AlおよびOを含むガーネット構造の酸化物単結晶であり、X線などの放射線検出器に用いられるシンチレータ材料として知られている。また、Nd添加イットリウムアルミニウムガーネット(Nd:YAG)単結晶は、固体レーザ発振素子として最も一般的に用いられている。   A Ce-added gadolinium gallium aluminum garnet (Ce: GGAG) single crystal is an oxide single crystal having a garnet structure containing at least Gd, Ga, Al, and O with Ce as a light emitting element, and is used for a radiation detector such as an X-ray. It is known as a scintillator material. Nd-doped yttrium aluminum garnet (Nd: YAG) single crystal is most commonly used as a solid-state laser oscillation element.

これらガーネット型酸化物単結晶は、坩堝内で溶解した原料融液に種結晶を浸漬したのち回転させながら引き上げていく、いわゆる引上げ法で育成される。酸化物単結晶の引上げ装置の一例(概略図)を図1に示す。イリジウムや白金などの貴金属性坩堝4に原料2を入れ、高周波コイル7により貴金属性坩堝4を誘導加熱して原料2を溶解する。貴金属坩堝4は、保温のためジルコニアやアルミナなどの耐火物5やバブルで覆われる。また、一般的に酸化物単結晶は脆く、熱歪みなどによってクラックを発生しやすいために、貴金属坩堝4の上方にもジルコニアやアルミナなどの耐火物5を設置して温度勾配を適正な範囲に保つようにしてホットゾーンを構成する。また育成する酸化物単結晶の種類によって、貴金属性のリングやアフターヒータ(ともに図示せず)を設置することもある。溶解した原料2が育成に適した温度となるように高周波コイル7の出力を調整した後、引上げ・回転軸6の先端に取り付けられた種結晶3の下端を浸漬して回転させながら引き上げていく。育成中の単結晶の直径は、センサなどで結晶径を直接測定したり育成した単結晶の重量から計算して、例えば図5のような予めプログラムされた結晶径と合致するように常に高周波コイルの出力を調整する。このように、常に直径を制御しながら、種結晶浸漬からネッキング工程を経て、徐々に結晶径を大きくしていき(肩部形成)、目的とする結晶径(直胴部)に達した後はその直径を一定に維持しつつ目的の長さまで育成して切り離す。   These garnet-type oxide single crystals are grown by a so-called pulling method in which a seed crystal is immersed in a raw material melt dissolved in a crucible and then pulled while rotating. An example (schematic diagram) of an oxide single crystal pulling apparatus is shown in FIG. The raw material 2 is put into a noble metal crucible 4 such as iridium or platinum, and the noble metal crucible 4 is induction-heated by a high frequency coil 7 to melt the raw material 2. The precious metal crucible 4 is covered with a refractory 5 such as zirconia or alumina or a bubble for heat insulation. Further, since oxide single crystals are generally brittle and are likely to crack due to thermal strain, a refractory 5 such as zirconia or alumina is also provided above the noble metal crucible 4 to keep the temperature gradient within an appropriate range. Configure hot zones to keep. Further, depending on the type of oxide single crystal to be grown, a noble metal ring or an after heater (both not shown) may be provided. After adjusting the output of the high-frequency coil 7 so that the melted raw material 2 has a temperature suitable for growth, the lower end of the seed crystal 3 attached to the tip of the pulling / rotating shaft 6 is immersed and rotated while being pulled up. . The diameter of the growing single crystal is measured directly by a sensor or the like, or calculated from the weight of the grown single crystal. For example, the high frequency coil always matches the pre-programmed crystal diameter as shown in FIG. Adjust the output of. In this way, while always controlling the diameter, through the necking process from seed crystal immersion, gradually increasing the crystal diameter (shoulder formation), after reaching the target crystal diameter (straight body) While maintaining the diameter constant, it is grown up to the desired length and separated.

一方、融液面の高さを計測して、液面の高さの変化に合わせて引上げ速度を制御する育成方法が特許文献1に、液面の位置を常に一定に保つ引上げ法の育成方法が特許文献2に開示されている。特許文献1では、RBaCu7−x(Rはイットリウムまたはランタノイド系元素)酸化物単結晶の育成で、融液が坩堝壁面をはい上がって溢れ出して融液面の降下速度が不安定であるため、センサ等を用いて直接融液面の高さを測定して融液面の降下速度を求め、その降下速度に連動させて引上げ速度を制御することで、結晶形状を安定に制御し育成を長時間安定に行うことを可能にしている。特許文献2では、育成した単結晶の重量と形状から融液面の降下量を計算し、融液面と加熱ヒータとの相対位置が単結晶育成の全行程を通じて保持されるように坩堝を軸方向に押し上げることで、融液内の上下方向の温度分布が変化することを防ぐ。
特開平8−183698号公報 特開平6−206797号公報
On the other hand, a growing method for measuring the height of the melt surface and controlling the pulling speed in accordance with the change in the height of the liquid level is disclosed in Patent Document 1, and the growing method of the pulling method that keeps the position of the liquid level constant. Is disclosed in Patent Document 2. In Patent Document 1, RBa 2 Cu 3 O 7-x (R is an yttrium or lanthanoid element) oxide single crystal is grown, and the melt overflows the crucible wall and overflows and the rate of lowering of the melt surface is unsatisfactory. Because it is stable, the height of the melt surface is directly measured using a sensor or the like to determine the descending speed of the melt surface, and the pulling speed is controlled in conjunction with the descending speed to stabilize the crystal shape. It is possible to control and cultivate stably for a long time. In Patent Document 2, the amount of drop of the melt surface is calculated from the weight and shape of the grown single crystal, and the crucible is pivoted so that the relative position between the melt surface and the heater is maintained throughout the entire process of single crystal growth. By pushing up in the direction, the temperature distribution in the vertical direction in the melt is prevented from changing.
JP-A-8-183698 JP-A-6-206797

例えばCe:GGAGやNd:YAGのようにGdやYの一部をCeやNdなどの発光元素で置換したガーネット型酸化物単結晶を育成する場合、Ce3+イオンやNd3+イオンはGd3+イオンやY3+イオンのイオン半径よりも大きいために、結晶化の際に原料融液の組成よりも少ない量しか結晶中に取り込まれない。結晶中のCe3+あるいはNd3+の濃度Xと融液中のCe3+あるいはNd3+の濃度Xとの比X/Xを分配係数と呼び、上述のCe:GGAGやNd:YAGなどでは、育成条件にもよるが、おおよそ0.1〜0.3である。 For example, when growing a garnet-type oxide single crystal in which part of Gd and Y is substituted with a light emitting element such as Ce and Nd, such as Ce: GGAG and Nd: YAG, Ce 3+ ions and Nd 3+ ions are Gd 3+ ions. Since it is larger than the ion radius of Y 3+ ions, only a smaller amount than the composition of the raw material melt is taken into the crystal during crystallization. The ratio X c / X m between the concentration X c of Ce 3+ or Nd 3+ in the crystal and the concentration X m of Ce 3+ or Nd 3+ in the melt is called a distribution coefficient, and the above-mentioned Ce: GGAG, Nd: YAG, etc. Then, depending on the growing conditions, it is approximately 0.1 to 0.3.

Ce:GGAG単結晶の育成では、上述のように融液中のCe3+濃度に対して育成した結晶中のCe3+濃度が大幅に違うため、固化するときに余剰のCe3+を融液に放出するので、固液界面近傍のCe3+濃度はそれ以外の場所の融液中Ce3+濃度よりも高い、いわゆる組成的過冷却を起こした状態となっている。組成的過冷却が大きい場合には、セル成長を起こして結晶中のCe3+濃度の不均一化やCeリッチ相の異相析出などの結晶欠陥が生じる。 Ce: GGAG In growth of a single crystal, since the Ce 3+ concentration in the crystal was grown against Ce 3+ concentration in the melt as described above is different significantly, release the excess Ce 3+ to melt when solidified Therefore, the Ce 3+ concentration in the vicinity of the solid-liquid interface is higher than the Ce 3+ concentration in the melt at other locations, so-called compositional supercooling occurs. When compositional supercooling is large, cell growth occurs and crystal defects such as non-uniformity of Ce 3+ concentration in the crystal and heterogeneous precipitation of Ce-rich phase occur.

このような組成的過冷却あるいはセル成長を低減する方法としては、固液界面の温度勾配を大きくすることや引上げ速度を小さくするなどの方法がある。しかし、固液界面の温度勾配を大きくすると、必然的に融液上方(ホットゾーン)の温度勾配も大きくなるため、熱歪みが発生し、冷却中などに単結晶が割れやすいという問題がある。また引上げ速度を小さくするのは有効ではあるものの、育成時間が長くなるために生産効率が低下するという問題点があった。特にガーネット型酸化物単結晶の育成では、欠陥の導入を防ぐために肩部の開き角を90°以下、より好ましくは60°程度にする必要があり、直胴部に達するまでに多くの時間を要するため、引上げ速度の低下は生産効率に大きく影響する。これらの問題は、Nd:YAG単結晶においても同様のことが言える。   As methods for reducing such compositional supercooling or cell growth, there are methods such as increasing the temperature gradient at the solid-liquid interface and decreasing the pulling rate. However, when the temperature gradient at the solid-liquid interface is increased, the temperature gradient above the melt (hot zone) inevitably increases, so that thermal distortion occurs and the single crystal is easily broken during cooling. Although it is effective to reduce the pulling speed, there is a problem that the production efficiency is lowered because the growing time becomes longer. In particular, in growing a garnet-type oxide single crystal, it is necessary to set the opening angle of the shoulder portion to 90 ° or less, more preferably about 60 ° in order to prevent the introduction of defects, and it takes a lot of time to reach the straight body portion. Therefore, the reduction in the pulling speed greatly affects the production efficiency. The same can be said for these problems in the Nd: YAG single crystal.

特許文献1は、融液が坩堝壁面をはい上がって溢れ出して融液面の降下速度が不安定であるため、センサ等を用いて直接融液面の高さを測定して融液面の降下速度を求め、その降下速度に連動させて引上げ速度を制御するとある。しかしながら、ガーネット型酸化物単結晶の場合は、原料融液が坩堝と反応したり、坩堝壁面をはい上がって溢れ出すという現象は起こらない。そのため、上記の方法を用いて予定形状に合うように長時間安定して育成すること自体は可能であるが、Ce:GGAG単結晶などでは、実効的な引上げ速度が早すぎればセル成長により異相などの結晶欠陥が入るため、組成的過冷却やセル成長を抑制するためには、上記の方法だけでは不十分である。   In Patent Document 1, since the melt rises over the crucible wall surface and overflows and the descending speed of the melt surface is unstable, the height of the melt surface is directly measured using a sensor or the like. In some cases, the lowering speed is obtained and the pulling speed is controlled in conjunction with the lowering speed. However, in the case of a garnet-type oxide single crystal, the phenomenon that the raw material melt reacts with the crucible or rises and overflows the crucible wall surface does not occur. For this reason, it is possible to stably grow for a long time so as to match the planned shape using the above method, but with Ce: GGAG single crystal, etc., if the effective pulling rate is too fast, the cell growth causes a different phase. In order to suppress compositional supercooling and cell growth, the above method alone is insufficient.

特許文献2では、加熱ヒータと原料融液の液面との相対位置が常に一定になるように坩堝を押し上げて融液内の上下方向の温度勾配が変化しないようにするとあるが、上述のように酸化物単結晶は半導体単結晶と比較して熱伝導が小さく、育成した単結晶が融液の放熱を妨げるため、温度勾配が小さくなることを避けられないだけでなく、酸化物単結晶の育成では高周波誘導加熱により直接貴金属坩堝が加熱されており、坩堝内の原料融液が育成に伴って減少することで、融液面より上方の貴金属坩堝の側壁がアフターヒータと同様の効果を発揮するため、融液および固液界面の上下方向の温度勾配が小さくなる。そのため、Ce:GGAG単結晶などの育成では、加熱ヒータと原料融液の液面との相対位置を一定に保っても組成的過冷却やセル成長を防ぐのに十分な効果を得られない。さらに、特許文献2の育成方法では、坩堝の上昇機構が必要となるため装置構造が煩雑となり、単結晶育成装置のコストが大きくなるという問題もある。   In Patent Document 2, the crucible is pushed up so that the relative position between the heater and the liquid level of the raw material melt is always constant so that the temperature gradient in the vertical direction in the melt does not change. In addition, the oxide single crystal has lower thermal conductivity than the semiconductor single crystal, and the grown single crystal hinders heat dissipation from the melt. In the growth, the noble metal crucible is heated directly by high frequency induction heating, and the side wall of the noble metal crucible above the melt surface shows the same effect as the after heater because the raw material melt in the crucible decreases with the growth. Therefore, the temperature gradient in the vertical direction of the melt and solid-liquid interface is reduced. Therefore, in the growth of Ce: GGAG single crystal or the like, a sufficient effect for preventing compositional supercooling and cell growth cannot be obtained even if the relative position between the heater and the liquid surface of the raw material melt is kept constant. Furthermore, the growing method of Patent Document 2 requires a crucible raising mechanism, which makes the structure of the apparatus complicated and increases the cost of the single crystal growing apparatus.

本発明は、斯かる問題点に鑑みてなされたものであり、上記問題点を解決する発明を提供することを目的とする。   The present invention has been made in view of such problems, and an object thereof is to provide an invention that solves the above problems.

上記課題を解決するために、本発明では、単結晶引上中における坩堝に収納された原料融液の降下速度と単結晶の引上げ速度との和が引上げ中において常に一定となるように単結晶を引上げる。これにより、単結晶育成の生産効率を低下させることなく、組成的過冷却やセル成長による異相析出を防ぐことができる。育成速度Vを原料融液の液面降下速度Vmと単結晶引上げ速度Vとの和であると定義して、育成速度Vを0.5mm/hr一定で育成したCe:GGAG単結晶と引上げ速度Vcを0.5mm/hr一定で育成したCe:GGAG単結晶の縦断面写真をそれぞれ図2と図3に示す。これらは、外径100mm×高さ100mm×厚さ2mmのイリジウム坩堝を用いて、肩部の開き角60°で直胴部直径60mmの単結晶を育成したものである。V=0.5mm/hr一定で育成するとき、直胴部ではV=0.30mm/hrであり、V=0.5mm/hr一定のときは、直胴部の育成速度Vは0.82mm/hrになる。引上げ速度Vを0.5mm/hr一定で育成したときには、直胴部に入って10mmをすぎたぐらいからCeリッチ相の異相11や気泡12が析出しているのに対して、育成速度Vを0.5mm/hrの一定速度で育成したときはそのような異相は析出していない。 In order to solve the above-described problems, the present invention provides a single crystal so that the sum of the descending speed of the raw material melt stored in the crucible during single crystal pulling and the single crystal pulling speed is always constant during pulling. Pull up. Thereby, heterogeneous precipitation due to compositional supercooling or cell growth can be prevented without lowering the production efficiency of single crystal growth. The growth rate V g is defined as the sum of the liquid surface lowering speed Vm and the single crystal pulling speed V c of the raw material melt, were grown growth velocity V g at 0.5 mm / hr constant Ce: GGAG single crystal FIG. 2 and FIG. 3 show longitudinal sectional photographs of Ce: GGAG single crystals grown at a constant pulling speed Vc of 0.5 mm / hr, respectively. These were grown using an iridium crucible having an outer diameter of 100 mm, a height of 100 mm, and a thickness of 2 mm, and a single crystal having a straight body portion diameter of 60 mm and an opening angle of the shoulder portion of 60 °. When growing at a constant V g = 0.5 mm / hr, V c = 0.30 mm / hr at the straight body, and when V c = 0.5 mm / hr is constant, the growing speed V g at the straight body Becomes 0.82 mm / hr. When it nurtures the pulling rate V c at 0.5mm / hr constant, while the out-of-phase 11 and bubbles 12 of the Ce-rich phase from about was only a 10mm entered the straight body portion is deposited, growth velocity V When g is grown at a constant rate of 0.5 mm / hr, no such heterogeneous phase is precipitated.

図4には、肩部開き角60°の結晶形状プログラムで、直胴部直径60mmおよび85mmの単結晶を育成するときに、直胴部での育成速度Vが0.5mm/hrとなるように、育成速度V一定で育成する場合と引上げ速度V一定で育成する場合について、育成開始からの時間に対する結晶径の関係を示した。ここで、直胴部直径60mmの単結晶育成では外径100mm×高さ100mm×厚さ2mmのイリジウム坩堝を、直胴部直径85mmの単結晶育成では外径150mm×高さ150mm×厚さ2mmのイリジウム坩堝をそれぞれ用いている。このとき、引上げ速度V一定の育成では、直胴部直径60mmの場合はV=0.30mm/hr、直胴部直径85mmの場合はV=0.33mm/hrとなる。直胴部直径60mmの単結晶を育成する場合、引上げ速度Vを0.30mm/hr一定で育成すると、ネッキングから直胴部に入るまでに約6日半(158時間)要するのに対し、育成速度Vを0.5mm/hr一定(直胴部の引上げ速度Vは0.30mm/hr)で育成する場合には約4日半(112時間)で直胴部に達するので、工程を2日短縮できる。また、直胴部直径85mmの単結晶を育成する場合には、引上げ速度Vを0.33mm/hr一定で育成すると、ネッキングから直胴部に入るまでに約8日半(207時間)要するのに対し、育成速度Vを0.5mm/hr一定(直胴部の引上げ速度Vは0.33mm/hr)で育成する場合には約6日半(155時間)で直胴部に達するので、工程を2日短縮できる。 In FIG. 4, when a single crystal having a straight body diameter of 60 mm and 85 mm is grown using a crystal shape program with a shoulder opening angle of 60 °, the growth rate V g at the straight body part is 0.5 mm / hr. as for the case of growing at a pulling rate V c constant and the case of growing at a growth rate V g constant, showing the relationship between crystal diameter relative to time from the start of breeding. Here, an iridium crucible having an outer diameter of 100 mm × height of 100 mm × thickness of 2 mm is used for growing a single crystal having a straight barrel diameter of 60 mm, and an outer diameter of 150 mm × height of 150 mm × thickness of 2 mm for growing a single crystal having a straight barrel diameter of 85 mm. Each of these iridium crucibles is used. At this time, the pulling rate V c constant development, in the case of V c = 0.30mm / hr, straight body diameter 85mm For straight body 60mm diameter becomes V c = 0.33mm / hr. Case of growing a single crystal of the straight body portion diameter 60 mm, when growing a pulling rate V c at 0.30 mm / hr constant, about 6 days and half before entering the straight body from necking (158 hours), while necessary, since the growth rate V g 0.5 mm / hr constant (pulling rate V c of the straight body portion is 0.30 mm / hr) reaching the straight body of about 4 and a half days (112 hours) in the case of growing in step Can be shortened by two days. Further, in the case of growing a single crystal straight body diameter 85mm, when growing the pulling rate V c at 0.33 mm / hr constant of about 8 and a half days before entering the straight body from necking (207 hours) required whereas, the growth rate V g 0.5 mm / hr constant (pulling rate V c of the straight body portion is 0.33 mm / hr) in the straight body of about 6 and a half days (155 hours) in the case of growing in The process can be shortened by 2 days.

原料融液の液面移動速度を求めるには、センサ等を用いて液面の高さを測定して、当該液面高さの変化に基づいて原料融液の降下速度を求めることができる。例えば、CCDカメラなどを設置して、CCDカメラで捉えた坩堝側面の原料融液のメニスカスの位置から画像処理により液面高さを計算し、それを一定時間毎に測定して移動速度を求める方法などがある。   In order to obtain the liquid surface moving speed of the raw material melt, the height of the liquid surface is measured using a sensor or the like, and the descending speed of the raw material melt can be obtained based on the change in the liquid surface height. For example, by installing a CCD camera or the like, the liquid level height is calculated by image processing from the position of the meniscus of the raw material melt on the side of the crucible captured by the CCD camera, and the moving speed is obtained by measuring it at regular intervals. There are methods.

原料融液の液面移動速度を求める別の方法として、引上げ中における単結晶の重量を計測し、当該重量の変化に基づいて原料融液の降下速度を求めることができる。引上げ・回転軸にロードセルなどの重量センサを設置し、育成する単結晶の予定形状で育成が進行する場合の重量変化に沿って、実際に育成した単結晶の重量が合うように高周波出力を調整しながら育成する。Ce:GGAGのように、原料融液が坩堝の側面をはい上がって溢れ出たりすることがない場合には、育成によって固化する重量が原料融液が減少する重量に等しくなるので、原料融液の液面低下速度は坩堝の内径と単結晶の直径と育成する単結晶の密度から計算することができる。これらの計算を行うときは、融液と単結晶の密度差や固液界面形状を反映したメニスカスの引張り張力や浮力などの補正を随時行うことがより好ましい。   As another method for obtaining the liquid surface moving speed of the raw material melt, the weight of the single crystal during pulling can be measured, and the lowering speed of the raw material melt can be obtained based on the change in the weight. A weight sensor such as a load cell is installed on the pulling / rotating shaft, and the high frequency output is adjusted so that the weight of the single crystal actually grown matches the weight change when the growth progresses in the planned shape of the single crystal to be grown. While nurturing. When the raw material melt does not overflow the crucible side surface and does not overflow like Ce: GGAG, the weight of the raw material melt is equal to the weight of the raw material melt reduced. The liquid level lowering rate can be calculated from the inner diameter of the crucible, the diameter of the single crystal, and the density of the single crystal to be grown. When performing these calculations, it is more preferable to correct the tension tension and buoyancy of the meniscus reflecting the density difference between the melt and the single crystal and the solid-liquid interface shape as needed.

本発明の育成方法によれば、Ce:GGAG単結晶やNd:YAG単結晶などの発光元素を添加したガーネット型酸化物単結晶を育成するときに、生産効率を低下させることなくCeリッチ相やNdリッチ相などの異相析出を防止することができる。   According to the growing method of the present invention, when growing a garnet-type oxide single crystal to which a light-emitting element such as Ce: GGAG single crystal or Nd: YAG single crystal is grown, a Ce-rich phase or It is possible to prevent heterogeneous precipitation such as Nd-rich phase.

以下、本発明について実施例を用いて具体的に説明する。なお、本発明の酸化物単結晶の育成方法は下記の実施例に限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples. Note that the method for growing an oxide single crystal of the present invention is not limited to the following examples.

(実施例1)
Gdを1641.73g、Luを200.25g、Ce(NO・6HOを72.84g、Gaを622.54g、Alを507.95g計量した。次に、これらの素原料を湿式ボールミル混合後、アルミナルツボに入れ、1400℃で2h焼成し、冷却後、原料粉を十分にほぐした。得られた原料粉をゴムチューブに詰めて、加圧力98MPaで冷間静水圧プレスを行い、棒状の成形体とした。この成形体2500gを外径100mm、高さ100mm、厚さ2mmのイリジウムルツボ中で高周波溶解後、種結晶を浸漬し、育成速度V0.5mm/h一定(直胴部育成時の引上げ速度Vは0.30mm/hr)、回転速度20〜30rpmとして、肩の開き角60°で直胴部直径60mmの単結晶育成を行った。育成雰囲気は2vol%の酸素を含む窒素ガス中で、育成方向は〈111〉方向とした。直胴部を50mm育成したところで単結晶を原料融液から切離し、冷却した。原料融液の降下速度Vmは、引上げ軸の上方に取り付けられたロードセルにより引上げ中の単結晶の重量を随時計測し、その重量変化から原料融液の降下速度Vを求めた。V=V+V=0.5mm/hrとなるように引上げ速度Vを調整して育成した。
(Example 1)
Gd 2 O 3 1641.73 g, Lu 2 O 3 200.25 g, Ce (NO 3 ) 3 .6H 2 O 72.84 g, Ga 2 O 3 622.54 g, Al 2 O 3 507.95 g Weighed. Next, after mixing these raw materials with a wet ball mill, they were put in an alumina crucible and fired at 1400 ° C. for 2 hours. After cooling, the raw material powder was sufficiently loosened. The obtained raw material powder was packed in a rubber tube and subjected to cold isostatic pressing at a pressure of 98 MPa to obtain a rod-shaped molded body. After 2500 g of this molded body was melted at high frequency in an iridium crucible having an outer diameter of 100 mm, a height of 100 mm, and a thickness of 2 mm, the seed crystal was immersed, and the growth rate V g was constant at 0.5 mm / h (the pulling rate when growing the straight body part) V c is a 0.30 mm / hr), the rotational speed 20~30Rpm, was single crystal growth of the straight body 60mm diameter shoulder opening angle 60 °. The growth atmosphere was nitrogen gas containing 2 vol% oxygen, and the growth direction was the <111> direction. When the straight body portion was grown 50 mm, the single crystal was separated from the raw material melt and cooled. Lowering speed Vm of the raw material melt, the weight of the single crystal during pulling any time measured by the load cell attached to the upper side of the pulling shaft was determined descending speed V m of the raw material melt from the weight change. The V g = V c + V m = 0.5mm / hr to become as pulling speed V c was adjusted to cultivate.

(実施例2)
Gdを5198.81g、Luを634.11g、Ce(NO・6HOを230.65g、Gaを1971.39g、Alを1608.52g計量した。次に、これらの素原料を湿式ボールミル混合後、アルミナルツボに入れ、1400℃で2h焼成し、冷却後、原料粉を十分にほぐした。得られた原料粉をゴムチューブに詰めて、加圧力98MPaで冷間静水圧プレスを行い、棒状の成形体とした。この成形体9000gを外径150mm、高さ150mm、厚さ2mmのイリジウムルツボ中で高周波溶解後、種結晶を浸漬し、育成速度V0.5mm/h一定(直胴部育成時の引上げ速度Vは0.33mm/hr)、回転速度10〜25rpmとして、肩の開き角60°で直胴部直径85mmの単結晶育成を行った。直胴部を50mm育成したところで単結晶を原料融液から切離し、冷却した。育成雰囲気は2vol%の酸素を含む窒素ガス中で、育成方向は〈111〉方向とした。原料融液の降下速度Vmは、CCDカメラで捉えた坩堝側面の原料融液のメニスカスの位置から画像処理により液面高さを計算し、それを一定時間毎に測定して移動速度を求めた。V=V+V=0.5mm/hrとなるように引上げ速度Vを調整して育成した。
(Example 2)
5198.81 g of Gd 2 O 3 , 634.11 g of Lu 2 O 3 , 230.65 g of Ce (NO 3 ) 3 .6H 2 O, 1971.39 g of Ga 2 O 3 , 1608.52 g of Al 2 O 3 Weighed. Next, after mixing these raw materials with a wet ball mill, they were put in an alumina crucible and fired at 1400 ° C. for 2 hours. After cooling, the raw material powder was sufficiently loosened. The obtained raw material powder was packed in a rubber tube and subjected to cold isostatic pressing at a pressure of 98 MPa to obtain a rod-shaped molded body. After 9000 g of this molded body was melted by high frequency in an iridium crucible having an outer diameter of 150 mm, a height of 150 mm, and a thickness of 2 mm, the seed crystal was immersed, and the growth rate V g was fixed at 0.5 mm / h (the pulling rate during straight body growth) V c is a 0.33 mm / hr), the rotational speed 10~25Rpm, was single crystal growth of the straight body 85mm diameter shoulder opening angle 60 °. When the straight body portion was grown 50 mm, the single crystal was separated from the raw material melt and cooled. The growth atmosphere was nitrogen gas containing 2 vol% oxygen, and the growth direction was the <111> direction. The descending speed Vm of the raw material melt was obtained by calculating the liquid surface height by image processing from the position of the meniscus of the raw material melt on the side of the crucible captured by the CCD camera, and measuring it at regular intervals to obtain the moving speed. . The V g = V c + V m = 0.5mm / hr to become as pulling speed V c was adjusted to cultivate.

(実施例3)
を1675.08g、Nd(NO・6HOを39.53g、Alを798.57g計量した。次に、これらの素原料を湿式ボールミル混合後、アルミナルツボに入れ、1400℃で2h焼成し、冷却後、原料粉を十分にほぐした。得られた原料粉をゴムチューブに詰めて、加圧力98MPaで冷間静水圧プレスを行い、棒状の成形体とした。この成形体1800gを外径100mm、高さ100mm、厚さ2mmのイリジウムルツボ中で高周波溶解後、種結晶を浸漬し、育成速度V0.5mm/h一定(直胴部育成時の引上げ速度Vは0.30mm/hr)、回転速度20〜30rpmとして、肩の開き角60°で直胴部直径60mmの単結晶育成を行った。育成雰囲気は2vol%の酸素を含む窒素ガス中で、育成方向は〈111〉方向とした。直胴部を50mm育成したところで単結晶を原料融液から切離し、冷却した。原料融液の降下速度Vmは、引上げ軸の上方に取り付けられたロードセルにより引上げ中の単結晶の重量を随時計測し、その重量変化から原料融液の降下速度Vを求めた。V=V+V=0.5mm/hrとなるように引上げ速度Vを調整して育成した。
(Example 3)
1675.08 g of Y 2 O 3 , 39.53 g of Nd (NO 3 ) 3 .6H 2 O, and 798.57 g of Al 2 O 3 were weighed. Next, after mixing these raw materials with a wet ball mill, they were put in an alumina crucible and fired at 1400 ° C. for 2 hours. After cooling, the raw material powder was sufficiently loosened. The obtained raw material powder was packed in a rubber tube and subjected to cold isostatic pressing at a pressure of 98 MPa to obtain a rod-shaped molded body. After 1800 g of this molded body was melted by high frequency in an iridium crucible having an outer diameter of 100 mm, a height of 100 mm, and a thickness of 2 mm, the seed crystal was immersed, and the growth rate V g was fixed at 0.5 mm / h (the pulling rate during straight body growth) V c is a 0.30 mm / hr), the rotational speed 20~30Rpm, was single crystal growth of the straight body 60mm diameter shoulder opening angle 60 °. The growth atmosphere was nitrogen gas containing 2 vol% oxygen, and the growth direction was the <111> direction. When the straight body portion was grown 50 mm, the single crystal was separated from the raw material melt and cooled. Lowering speed Vm of the raw material melt, the weight of the single crystal during pulling any time measured by the load cell attached to the upper side of the pulling shaft was determined descending speed V m of the raw material melt from the weight change. The V g = V c + V m = 0.5mm / hr to become as pulling speed V c was adjusted to cultivate.

(比較例1)
Gdを1641.73g、Luを200.25g、Ce(NO・6HOを72.84g、Gaを622.54g、Alを507.95g計量した。次に、これらの素原料を湿式ボールミル混合後、アルミナルツボに入れ、1400℃で2h焼成し、冷却後、原料粉を十分にほぐした。得られた原料粉をゴムチューブに詰めて、加圧力98MPaで冷間静水圧プレスを行い、棒状の成形体とした。この成形体2500gを外径100mm、高さ100mm、厚さ2mmのイリジウムルツボ中で高周波溶解後、種結晶を浸漬し、引上げ速度V0.5mm/h一定(直胴部育成時の育成速度Vは0.82mm/hr)、回転速度20〜30rpmとして、肩の開き角60°で直胴部直径60mmの単結晶育成を行った。育成雰囲気は2vol%の酸素を含む窒素ガス中で、育成方向は〈111〉方向とした。直胴部を50mm育成したところで単結晶を原料融液から切離し、冷却した。
(Comparative Example 1)
Gd 2 O 3 1641.73 g, Lu 2 O 3 200.25 g, Ce (NO 3 ) 3 .6H 2 O 72.84 g, Ga 2 O 3 622.54 g, Al 2 O 3 507.95 g Weighed. Next, after mixing these raw materials with a wet ball mill, they were put in an alumina crucible and fired at 1400 ° C. for 2 hours. After cooling, the raw material powder was sufficiently loosened. The obtained raw material powder was packed in a rubber tube and subjected to cold isostatic pressing at a pressure of 98 MPa to obtain a rod-shaped molded body. After 2500 g of this molded body was melted by high frequency in an iridium crucible having an outer diameter of 100 mm, a height of 100 mm, and a thickness of 2 mm, the seed crystal was immersed, and the pulling speed V c was constant at 0.5 mm / h (growth speed during straight body part growth) V g is 0.82 mm / hr), as the rotational speed 20~30Rpm, was single crystal growth of the straight body 60mm diameter shoulder opening angle 60 °. The growth atmosphere was nitrogen gas containing 2 vol% oxygen, and the growth direction was the <111> direction. When the straight body portion was grown 50 mm, the single crystal was separated from the raw material melt and cooled.

(比較例2)
Gdを1641.73g、Luを200.25g、Ce(NO・6HOを72.84g、Gaを622.54g、Alを507.95g計量した。次に、これらの素原料を湿式ボールミル混合後、アルミナルツボに入れ、1400℃で2h焼成し、冷却後、原料粉を十分にほぐした。得られた原料粉をゴムチューブに詰めて、加圧力98MPaで冷間静水圧プレスを行い、棒状の成形体とした。この成形体2500gを外径100mm、高さ100mm、厚さ2mmのイリジウムルツボ中で高周波溶解後、種結晶を浸漬し、引上げ速度V0.30mm/h一定(直胴部育成時の育成速度Vは0.5mm/hr)、回転速度20〜30rpmとして、肩の開き角60°で直胴部直径60mmの単結晶育成を行った。育成雰囲気は2vol%の酸素を含む窒素ガス中で、育成方向は〈111〉方向とした。直胴部を50mm育成したところで単結晶を原料融液から切離し、冷却した。
(Comparative Example 2)
Gd 2 O 3 1641.73 g, Lu 2 O 3 200.25 g, Ce (NO 3 ) 3 .6H 2 O 72.84 g, Ga 2 O 3 622.54 g, Al 2 O 3 507.95 g Weighed. Next, after mixing these raw materials with a wet ball mill, they were put in an alumina crucible and fired at 1400 ° C. for 2 hours. After cooling, the raw material powder was sufficiently loosened. The obtained raw material powder was packed in a rubber tube and subjected to cold isostatic pressing at a pressure of 98 MPa to obtain a rod-shaped molded body. After 2500 g of this molded body was melted by high frequency in an iridium crucible having an outer diameter of 100 mm, a height of 100 mm, and a thickness of 2 mm, the seed crystal was immersed, and the pulling speed V c was constant 0.30 mm / h (growth speed during straight body growth) V g is the 0.5 mm / hr), the rotational speed 20~30Rpm, was single crystal growth of the straight body 60mm diameter shoulder opening angle 60 °. The growth atmosphere was nitrogen gas containing 2 vol% oxygen, and the growth direction was the <111> direction. When the straight body portion was grown 50 mm, the single crystal was separated from the raw material melt and cooled.

(比較例3)
Gdを5198.81g、Luを634.11g、Ce(NO・6HOを230.65g、Gaを1971.39g、Alを1608.52g計量した。次に、これらの素原料を湿式ボールミル混合後、アルミナルツボに入れ、1400℃で2h焼成し、冷却後、原料粉を十分にほぐした。得られた原料粉をゴムチューブに詰めて、加圧力98MPaで冷間静水圧プレスを行い、棒状の成形体とした。この成形体9000gを外径150mm、高さ150mm、厚さ2mmのイリジウムルツボ中で高周波溶解後、種結晶を浸漬し、引上げ速度V0.5mm/hr一定(直胴部育成時の育成速度Vは0.76mm/hr)、回転速度10〜25rpmとして、肩の開き角60°で直胴部直径85mmの単結晶育成を行った。育成雰囲気は2vol%の酸素を含む窒素ガス中で、育成方向は〈111〉方向とした。直胴部を50mm育成したところで単結晶を原料融液から切離し、冷却した。
(Comparative Example 3)
5198.81 g of Gd 2 O 3 , 634.11 g of Lu 2 O 3 , 230.65 g of Ce (NO 3 ) 3 .6H 2 O, 1971.39 g of Ga 2 O 3 , 1608.52 g of Al 2 O 3 Weighed. Next, after mixing these raw materials with a wet ball mill, they were put in an alumina crucible and fired at 1400 ° C. for 2 hours. After cooling, the raw material powder was sufficiently loosened. The obtained raw material powder was packed in a rubber tube and subjected to cold isostatic pressing at a pressure of 98 MPa to obtain a rod-shaped molded body. The compact 9000g outside diameter 150 mm, height 150 mm, after high-frequency heating in an iridium crucible in a thickness of 2 mm, a seed crystal is immersed, growth velocity during the pulling rate V c 0.5 mm / hr constant (straight body foster V g is 0.76 mm / hr), as the rotational speed 10~25Rpm, was single crystal growth of the straight body 85mm diameter shoulder opening angle 60 °. The growth atmosphere was nitrogen gas containing 2 vol% oxygen, and the growth direction was the <111> direction. When the straight body portion was grown 50 mm, the single crystal was separated from the raw material melt and cooled.

(比較例4)
Gdを5198.81g、Luを634.11g、Ce(NO・6HOを230.65g、Gaを1971.39g、Alを1608.52g計量した。次に、これらの素原料を湿式ボールミル混合後、アルミナルツボに入れ、1400℃で2h焼成し、冷却後、原料粉を十分にほぐした。得られた原料粉をゴムチューブに詰めて、加圧力98MPaで冷間静水圧プレスを行い、棒状の成形体とした。この成形体9000gを外径150mm、高さ150mm、厚さ2mmのイリジウムルツボ中で高周波溶解後、種結晶を浸漬し、引上げ速度V0.33mm/h一定(直胴部育成時の育成速度Vは0.5mm/hr)、回転速度10〜25rpmとして、肩の開き角60°で直胴部直径85mmの単結晶育成を行った。育成雰囲気は2vol%の酸素を含む窒素ガス中で、育成方向は〈111〉方向とした。直胴部を50mm育成したところで単結晶を原料融液から切離し、冷却した。
(Comparative Example 4)
5198.81 g of Gd 2 O 3 , 634.11 g of Lu 2 O 3 , 230.65 g of Ce (NO 3 ) 3 .6H 2 O, 1971.39 g of Ga 2 O 3 , 1608.52 g of Al 2 O 3 Weighed. Next, after mixing these raw materials with a wet ball mill, they were put in an alumina crucible and fired at 1400 ° C. for 2 hours. After cooling, the raw material powder was sufficiently loosened. The obtained raw material powder was packed in a rubber tube and subjected to cold isostatic pressing at a pressure of 98 MPa to obtain a rod-shaped molded body. After 9000 g of this molded body was melted by high frequency in an iridium crucible having an outer diameter of 150 mm, a height of 150 mm, and a thickness of 2 mm, the seed crystal was immersed, and the pulling speed V c was constant 0.33 mm / h (growth speed during straight body growth) V g is the 0.5 mm / hr), the rotational speed 10~25Rpm, was single crystal growth of the straight body 85mm diameter shoulder opening angle 60 °. The growth atmosphere was nitrogen gas containing 2 vol% oxygen, and the growth direction was the <111> direction. When the straight body portion was grown 50 mm, the single crystal was separated from the raw material melt and cooled.

(比較例5)
を1675.08g、Nd(NO・6HOを39.53g、Alを798.57g計量した。次に、これらの素原料を湿式ボールミル混合後、アルミナルツボに入れ、1400℃で2h焼成し、冷却後、原料粉を十分にほぐした。得られた原料粉をゴムチューブに詰めて、加圧力98MPaで冷間静水圧プレスを行い、棒状の成形体とした。この成形体1800gを外径100mm、高さ100mm、厚さ2mmのイリジウムルツボ中で高周波溶解後、種結晶を浸漬し、引上げ速度V0.5mm/h一定(直胴部育成時の育成速度Vは0.82mm/hr)、回転速度20〜30rpmとして、肩の開き角60°で直胴部直径60mmの単結晶育成を行った。育成雰囲気は2vol%の酸素を含む窒素ガス中で、育成方向は〈111〉方向とした。直胴部を50mm育成したところで単結晶を原料融液から切離し、冷却した。
(Comparative Example 5)
1675.08 g of Y 2 O 3 , 39.53 g of Nd (NO 3 ) 3 .6H 2 O, and 798.57 g of Al 2 O 3 were weighed. Next, after mixing these raw materials with a wet ball mill, they were put in an alumina crucible and fired at 1400 ° C. for 2 hours. After cooling, the raw material powder was sufficiently loosened. The obtained raw material powder was packed in a rubber tube and subjected to cold isostatic pressing at a pressure of 98 MPa to obtain a rod-shaped molded body. The compact 1800g outer diameter 100 mm, height 100 mm, after high-frequency heating in an iridium crucible in a thickness of 2 mm, a seed crystal is immersed, growth velocity during the pulling rate V c 0.5 mm / h constant (straight body foster V g is 0.82 mm / hr), as the rotational speed 20~30Rpm, was single crystal growth of the straight body 60mm diameter shoulder opening angle 60 °. The growth atmosphere was nitrogen gas containing 2 vol% oxygen, and the growth direction was the <111> direction. When the straight body portion was grown 50 mm, the single crystal was separated from the raw material melt and cooled.

上記、実施例1〜3および比較例1〜5における異相析出の有無と、育成開始から直胴部に達するまでに必要な時間を表1にまとめた。引上げ速度Vc0.5mm/hr一定で育成した比較例1、3および5では、Ceリッチ相やNdリッチ相の異相が析出しているのに対し、育成速度Vg0.5mm/hr一定で育成した実施例1〜3では、異相が析出することなく、また直胴部に達するまでの時間も1日未満の延長で済んでいる。一方、引上げ速度Vc0.30mm/hr一定で育成した比較例2やVc0.33mm/hr一定で育成した比較例4では、Ceリッチ相やNdリッチ相の異相は析出していないが、実施例1および2と比較して直胴部に達するまでの時間が2日前後多くかかっており、生産効率が低下する。   Table 1 summarizes the presence / absence of heterogeneous precipitation in Examples 1 to 3 and Comparative Examples 1 to 5 and the time required from the start of growth to the straight body part. In Comparative Examples 1, 3, and 5 grown at a constant pulling speed Vc of 0.5 mm / hr, Ce-rich phase and heterogeneous phase of Nd-rich phase were precipitated, whereas the growth was carried out at a constant growing speed of Vg 0.5 mm / hr. In Examples 1 to 3, the heterogeneous phase does not precipitate, and the time required to reach the straight body portion can be extended by less than one day. On the other hand, in Comparative Example 2 grown at a constant pulling speed Vc of 0.30 mm / hr and Comparative Example 4 grown at a constant Vc of 0.33 mm / hr, no Ce-rich phase or Nd-rich phase was precipitated. Compared with 2 and 2, it takes about 2 days to reach the straight body part, and the production efficiency is lowered.

酸化物単結晶の育成装置の概略図である。It is the schematic of the growth apparatus of an oxide single crystal. 本発明の一実施形態によって育成したCe:GGAG単結晶の縦断面写真である。It is a longitudinal cross-sectional photograph of the Ce: GGAG single crystal grown by one Embodiment of this invention. 従来方法によって育成したCe:GGAG単結晶の縦断面写真およびSEM写真である。It is the longitudinal cross-sectional photograph and SEM photograph of Ce: GGAG single crystal grown by the conventional method. 本発明の一実施形態と従来方法における育成時間と単結晶直径の関係を示した図である。It is the figure which showed the relationship between the growth time and the single crystal diameter in one Embodiment of this invention and the conventional method. 引上げされた単結晶の構成を説明する図である。It is a figure explaining the structure of the pulled single crystal.

符号の説明Explanation of symbols

1:酸化物単結晶
2:原料融液
3:種結晶
4:貴金属坩堝
5:耐火物
6:引上げ・回転軸
7:高周波コイル
11:Ceリッチ相の異相
12:気泡
1: oxide single crystal 2: raw material melt 3: seed crystal 4: noble metal crucible 5: refractory 6: pulling / rotating shaft 7: high frequency coil 11: heterogeneous phase of Ce rich phase 12: bubbles

Claims (4)

単結晶引上げ中における坩堝に収納された原料融液の液面降下速度と単結晶の引上げ速度との和が引上げ中において常に一定となるように単結晶を引上げることを特徴とする単結晶の製造方法。 The single crystal is pulled so that the sum of the lowering speed of the raw material melt stored in the crucible during the pulling of the single crystal and the pulling speed of the single crystal is always constant during the pulling. Production method. 前記原料融液の液面の高さを計測し、当該液面高さの変化に基づいて原料融液の降下速度を求める請求項1に記載の単結晶の製造方法。 The method for producing a single crystal according to claim 1, wherein the height of the liquid surface of the raw material melt is measured, and the descending speed of the raw material melt is determined based on the change in the liquid surface height. 引上げ中における単結晶の重量を計測し、当該重量の変化に基づいて原料融液の降下速度を求める請求項1に記載の単結晶の製造方法。 The method for producing a single crystal according to claim 1, wherein the weight of the single crystal during pulling is measured, and the descending speed of the raw material melt is determined based on the change in the weight. 前記単結晶が、Ceを発光元素とし、少なくともGd、Al、Ga及びOを含んだガーネット単結晶である請求項1乃至3のいずれかに記載の単結晶の製造方法。 The method for producing a single crystal according to any one of claims 1 to 3, wherein the single crystal is a garnet single crystal containing Ce as a light emitting element and containing at least Gd, Al, Ga and O.
JP2006259163A 2006-09-25 2006-09-25 Method for producing single crystal Pending JP2008074691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006259163A JP2008074691A (en) 2006-09-25 2006-09-25 Method for producing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006259163A JP2008074691A (en) 2006-09-25 2006-09-25 Method for producing single crystal

Publications (1)

Publication Number Publication Date
JP2008074691A true JP2008074691A (en) 2008-04-03

Family

ID=39347132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006259163A Pending JP2008074691A (en) 2006-09-25 2006-09-25 Method for producing single crystal

Country Status (1)

Country Link
JP (1) JP2008074691A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116291A1 (en) 2008-03-21 2009-09-24 学校法人東京理科大学 Noise suppression device and noise suppression method
WO2012110009A1 (en) * 2011-02-17 2012-08-23 Crytur Spol.S R.O. Preparation of doped garnet structure single crystals with diameters of up to 500 mm

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116291A1 (en) 2008-03-21 2009-09-24 学校法人東京理科大学 Noise suppression device and noise suppression method
WO2012110009A1 (en) * 2011-02-17 2012-08-23 Crytur Spol.S R.O. Preparation of doped garnet structure single crystals with diameters of up to 500 mm
CN103370452A (en) * 2011-02-17 2013-10-23 克莱托斯波尔公司 Preparation of doped garnet structure single crystals with diameters of up to 500 mm
JP2014508704A (en) * 2011-02-17 2014-04-10 クライツール スポル.エス アール.オー. Method for preparing a garnet-type doped single crystal having a diameter of up to 500 mm
US9499923B2 (en) 2011-02-17 2016-11-22 Crytur Spol S.R.O. Method for the preparation of doped garnet structure single crystals with diameters of up to 500 mm
KR101858779B1 (en) 2011-02-17 2018-05-16 크라이투르 스폴.에스 알.오. A method for the preparation of doped garnet structure single crystals with diameters of up to 500 mm

Similar Documents

Publication Publication Date Title
WO2021008159A1 (en) Coil-movable temperature field structure suitable for czochralski method, and single crystal growth method
Peters et al. Growth of high-melting sesquioxides by the heat exchanger method
JP2020164415A (en) METHOD FOR GROWING BETA PHASE OF GALLIUM OXIDE (β-Ga2O3) SINGLE CRYSTALS FROM METAL CONTAINED WITHIN METAL CRUCIBLE
JP6606638B2 (en) Method and apparatus for growing Fe-Ga based alloy single crystal
EP2138610A1 (en) Method and apparatus for manufacturing silicon ingot
CN101835927B (en) Scintillator crystals and methods of forming
CN111020691A (en) System and control method for drawing crystal bar
WO2016123866A1 (en) Method for preparing large-sized slablike ce3+ ion doped rare-earth orthosilicate-series scintillation crystals by means of horizontal directional solidification
JP2011042560A (en) Method and equipment for producing sapphire single crystal
JP2011153054A (en) Method for producing gallium oxide single crystal and gallium oxide single crystal
CN107881550B (en) Melt method crystal growth method of large-size crystal
JP2007077013A (en) Method and apparatus for making highly uniform low-stress single crystal by pulling from melt and use of the single crystal
JP4810346B2 (en) Method for producing sapphire single crystal
JP2007223830A (en) Method of growing oxide single crystal
CN106149051A (en) The thermal control Bridgman method single-crystal growing apparatus of fluoride single crystal body and method
JP2010184839A (en) Silicon single crystal and method of manufacturing the same
JP4835582B2 (en) Method for producing aluminum oxide single crystal
JP2008074691A (en) Method for producing single crystal
CN110092411B (en) Polycrystalline material synthesis device and method for gallium-containing garnet structure scintillation crystal
CN109280973B (en) Temperature field structure for inhibiting garnet structure scintillation crystal from cracking and growth method thereof
JP2008024549A (en) Method and apparatus for manufacturing single crystal
CN105401211B (en) Draw C axles sapphire single crystal growth furnace and method
JP7082550B2 (en) Method for manufacturing silicon single crystal
CN105887187B (en) Method for stably controlling concentration of dopant for silicon single crystal growth
JP6147788B2 (en) Cu-Ga alloy sputtering target