JP2006007317A - Dry-type tundish coating material and working method therefor - Google Patents

Dry-type tundish coating material and working method therefor Download PDF

Info

Publication number
JP2006007317A
JP2006007317A JP2005118680A JP2005118680A JP2006007317A JP 2006007317 A JP2006007317 A JP 2006007317A JP 2005118680 A JP2005118680 A JP 2005118680A JP 2005118680 A JP2005118680 A JP 2005118680A JP 2006007317 A JP2006007317 A JP 2006007317A
Authority
JP
Japan
Prior art keywords
coating material
dry
tundish
core
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005118680A
Other languages
Japanese (ja)
Other versions
JP4478061B2 (en
Inventor
Satoru Akai
哲 赤井
Takashi Nishi
敬 西
Toshiyuki Suzuki
利幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2005118680A priority Critical patent/JP4478061B2/en
Publication of JP2006007317A publication Critical patent/JP2006007317A/en
Application granted granted Critical
Publication of JP4478061B2 publication Critical patent/JP4478061B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the strength of a worked body by drying for short time, and also, the operating ratio of a tundish by solving such problem as to the pick-up of carbon caused by the shortage of the strength and the increase of adding amount of a binder in the conventional dry-type coating applied to the tundish. <P>SOLUTION: In the subject dry-type coating material containing a refractory raw material and a silicate and/or a phenol resin, and also, added with an organic hardening agent having 50-120°C melting point at 0.05-5 pts.mass to 100 pts.mass of the refractory raw material, a core is inserted into the tundish and the coating material is filled up into a gap arranged between a lining refractory and the core, and successively, the coating material is heated and hardened through the core to obtain the coating. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、低温硬化性の乾式タンディッシュコーティング材とその施工方法に関するものである。   The present invention relates to a low-temperature curable dry tundish coating material and a construction method thereof.

鋼の連続鋳造において、タンディッシュは溶鋼の分配・温度均一・脱酸生成物浮上等を行う役割をもつ。タンディッシュの内張り耐火物には通常、溶鋼汚染防止と内張り耐火物保護のために、マグネシア、ドロマイト等の塩基性質耐火原料を主材とした薄肉の耐火性コーティング材が被覆される。その施工は水を添加し、吹き付けまたはコテ塗りによって行われる。   In continuous casting of steel, the tundish plays a role in distributing molten steel, uniform temperature, and deoxidation product levitation. The tundish lining refractory is usually coated with a thin refractory coating material mainly composed of basic refractory raw materials such as magnesia and dolomite to prevent molten steel contamination and lining refractory protection. The construction is done by adding water and spraying or troweling.

コーティング材は施工後、使用前に加熱乾燥される。しかし、コーティング材に添加された水は乾燥によっても完全には抜けきれず、水が原因した水素ピックアップによる鋼製品の品質低下を招いている。   The coating material is heated and dried after use and before use. However, the water added to the coating material cannot be completely removed even by drying, and the quality of the steel product is lowered due to the hydrogen pickup caused by the water.

また、コーティング材は、損耗等によって残厚が少なくなると解体して新規に施工されるが、内張り耐火物への焼き付きによって解体に相当な手間と時間を要し、タンディッシュの稼働率を低下させている。   In addition, the coating material is dismantled and newly constructed when the remaining thickness decreases due to wear, etc., but seizure to the lining refractory requires considerable labor and time to reduce the operating rate of the tundish. ing.

そこで近年、乾式によるコーティング材施工法が提案されている(特許文献1、2)。この方法は、内張り耐火物を配したタンディッシュ内に中子を設け、内張り耐火物と中子との間に耐火性原料および結合剤よりなる水添加をしない乾粉状のコーティング材を投入し、充填後、中子の内側からガスバーナー等で加熱してコーティング材を硬化させるものである。この乾式法は、吹き付けあるいはコテ塗りと違ってコーティング材に水を添加しないことにより、前記の水素ピックアップや焼き付きの問題が解消される。
特許第3342427号公報 特許第2567770号公報
Therefore, in recent years, a dry coating material construction method has been proposed (Patent Documents 1 and 2). In this method, a core is provided in a tundish provided with a lining refractory, and a dry powder coating material made of a refractory raw material and a binder is added between the lining refractory and the core without adding water. After the filling, the coating material is cured by heating from the inside of the core with a gas burner or the like. In this dry method, unlike the spraying or troweling, water is not added to the coating material, so that the problems of hydrogen pickup and image sticking are solved.
Japanese Patent No. 3342427 Japanese Patent No. 2567770

従来、前記の乾式法に使用されるコーティング材は、加熱乾燥で硬化を図るために結合剤として熱可塑性樹脂が使用されている。しかし、その際の加熱が中子を介したうちがわからであること、さらにはコーティング材自身が断熱性を備えていることで、施工体のうち特に背面部は十分な加熱を受け難い。また、タンディッシュの稼動率の関係から、加熱昇温時間を十分に取れないのが実状である。   Conventionally, a thermoplastic resin is used as a binder for the coating material used in the dry method in order to cure by heat drying. However, since the heating at that time is from the inside through the core, and the coating material itself has a heat insulating property, the back portion of the construction body is particularly difficult to receive sufficient heating. Moreover, the actual situation is that the heating temperature raising time cannot be sufficiently taken from the relationship of the operation rate of the tundish.

これらが原因し、コーティング材は施工以後の加熱乾燥において十分な加熱を受けることができず、施工体強度が不足する。コーティング材の施工体は内張り耐火物と違って施工厚みが一般に30〜100mm程度と薄く、施工体強度が不足すると、タンディッシュ移送の際に受ける衝撃等によって倒壊が生じ易い。   For these reasons, the coating material cannot receive sufficient heating in the heat drying after the construction, and the construction body strength is insufficient. Unlike the lining refractory, the construction body of the coating material is generally as thin as about 30 to 100 mm, and if the construction body strength is insufficient, the construction body tends to collapse due to the impact received during the tundish transfer.

この乾式法のコーティング材に使用される結合剤としては、フェノール樹脂あるいは珪酸塩の水和物が知られている。結合剤の添加量を増せば、施工体は比較的低温での乾燥であっても十分な強度が得られる。しかし、フェノール樹脂においては、その量が多くなると樹脂炭化による残留炭素成分が増し、カーボンピックアップによる溶鋼汚染の問題が生じ、タンディッシュコーティング材がもつ溶鋼汚染防止の効果が損なわれる。   As binders used in this dry coating material, phenolic resins or silicate hydrates are known. If the amount of the binder added is increased, sufficient strength can be obtained even when the construction body is dried at a relatively low temperature. However, when the amount of the phenol resin is increased, the residual carbon component due to carbonization of the resin is increased, causing a problem of molten steel contamination by the carbon pickup, and the effect of preventing the molten steel contamination of the tundish coating material is impaired.

結合剤に珪酸塩の水和物を使用した場合は、加熱乾燥時に珪酸塩からの水分の溶出によってコーティング材組織が湿潤状態となり、結合剤の拡散が促進され、施工体の硬化発現に効果的である。しかし、加熱乾燥が不十分となりやすい背面部は水分が結晶水として残留し、加熱乾燥時にボイリングを生じ、コーティング材の一部がタンデッシュ内張り層の表面から剥離する現象が見られる。   When hydrated silicate is used for the binder, the coating material structure becomes wet due to the elution of moisture from the silicate during heat drying, which promotes the diffusion of the binder and is effective for hardening the construction body. It is. However, moisture remains as crystal water on the back surface where heat drying tends to be insufficient, causing boiling during heat drying, and a part of the coating material is peeled off from the surface of the tundish lining layer.

本発明は、乾式タンディッシュコーティング材とその施工方法において、上記従来の課題を解決したものである。その特徴とするところは、耐火性原料と結合剤としての珪酸塩および/またはフェノール樹脂を含むと共に、融点50〜120℃の有機質硬化付与剤を、前記耐火性原料100質量部に対し0.05〜5質量部添加してなる乾式タンディッシュコーティング材である。また、タンディッシュに中子を入れ、内張り耐火物と中子との間に設けた隙間に、前記の乾式タンディッシュコーティング材を充填し、次いで中子を介してコーティング材を加熱硬化させる乾式タンディッシュコーティング材の施工方法である。   This invention solves the said conventional subject in the dry-type tundish coating material and its construction method. The feature is that it contains a refractory raw material and a silicate and / or a phenol resin as a binder, and an organic curing agent having a melting point of 50 to 120 ° C. is added in an amount of 0.05 to 100 parts by weight of the refractory raw material. It is a dry-type tundish coating material obtained by adding ~ 5 parts by mass. In addition, a dry tank in which a core is placed in a tundish, the gap provided between the lining refractory and the core is filled with the dry tundish coating material, and then the coating material is heated and cured via the core. This is a method of applying a dish coating material.

本発明において使用する珪酸塩およびフェノール樹脂は、結合剤としての役割をもち、中子脱枠後の施工体の強度を付与する。珪酸塩はこれに加えて、施工体使用時の高温下における強度付与の効果を持つ。   The silicate and phenol resin used in the present invention have a role as a binder, and give the strength of the construction body after the core is removed. In addition to this, silicate has the effect of imparting strength at high temperatures when the construction body is used.

本発明はこれらの結合剤に、融点50〜120℃の有機質硬化付与剤を組み合わせ、その相溶作用によって結合剤の軟化点が低下し、比較的低温での加熱乾燥をもって十分な施工体強度を得ることができる。また、同様の効果によって、結合剤にフェノール樹脂を使用した場合でも、その添加量を増やすことなく十分な施工体強度が得られることから、カーボンピックアップの問題も回避することができる。   In the present invention, organic binders having a melting point of 50 to 120 ° C. are combined with these binders, and the softening point of the binder is lowered by the compatible action, and sufficient construction body strength is obtained by heat drying at a relatively low temperature. Obtainable. In addition, due to the same effect, even when a phenol resin is used as a binder, a sufficient construction body strength can be obtained without increasing the amount of addition thereof, so that the problem of carbon pickup can also be avoided.

有機質硬化付与剤による結合剤との相溶化は、コーティング材組織に対する結合剤の拡散を促進させる。また、有機質硬化付与剤が融点50〜120℃であることで、加熱乾燥あるいは予熱の際に有機質硬化付与剤が速やかに揮発し、コーティング材施工体に均一に微細気孔を形成する。その結果、珪酸塩の水和物を使した場合、加熱乾燥時にこの水和物から発生する水蒸気が前記微細気孔から施工体外で容易に逸散し、ボイリング現象を生じることもない。   Compatibilization with the binder by the organic curing imparting agent promotes diffusion of the binder into the coating material structure. Further, when the organic curing imparting agent has a melting point of 50 to 120 ° C., the organic curing imparting agent volatilizes quickly during heat drying or preheating, and uniformly forms fine pores in the coating material construction body. As a result, when a hydrate of silicate is used, water vapor generated from the hydrate during heat drying easily dissipates from the fine pores outside the construction body, and no boiling phenomenon occurs.

一方、結合剤にフェノール樹脂を使用した場合は、有機質硬化付与剤による前記した微細気孔の形成で、フェノール樹脂の揮発成分の揮発が促進され、コーティング材の硬化促進が図られ、早期の強度付与によって施工体の倒壊防止効果がより一層向上する。   On the other hand, when a phenol resin is used as the binder, the formation of the fine pores by the organic curing imparting agent promotes the volatilization of the volatile components of the phenol resin, promotes the curing of the coating material, and provides early strength. This further improves the effect of preventing the construction body from collapsing.

本発明の乾式タンディッシュコーティング材は、以上のように、比較的低温での加熱乾燥においても施工体に十分な乾燥強度を付与することができる。結合剤を多量に添加する必要もなく、カーボンピックアップの問題もない。また、珪酸塩の水和物を結合剤とした場合におけるボイリングを生じることもない。   As described above, the dry tundish coating material of the present invention can impart sufficient dry strength to the construction body even in heat drying at a relatively low temperature. There is no need to add a large amount of binder, and there is no problem of carbon pickup. Further, no boiling occurs when a silicate hydrate is used as a binder.

タンディッシュコーティング材の剥離、倒壊は、コーティング材が内張り耐火物と違って施工厚みがごく薄いこと、さらには施工の際に水を添加しないことで焼付きが無い乾式施工であることで顕著に生じる問題である。カーボンピックアップの防止もタンディッシュコーティング材の使用目的からしてきわめて重要な課題である。本発明はこの乾式タンディッシュコーティング材おける特有かつ重要な問題および課題の解決を図ったものであり、その産業上の利用性はきわめて高い。   Peeling and collapsing the tundish coating material is noticeable because the coating material is very thin unlike the lining refractory, and it is dry construction that does not cause seizure by not adding water during construction. It is a problem that arises. Prevention of carbon pickup is also an extremely important issue for the purpose of using tundish coating materials. The present invention is intended to solve problems and problems peculiar and important in this dry tundish coating material, and its industrial applicability is extremely high.

本件発明に用いる耐火性原料は従来材質と特に変わりなく、例えばマグネシア、マグネサイト、ドロマイト、カルシア、アルミナ、シリカ及びその組み合わせとする。中でも鋼清浄の面から、マグネシア、マグネサイト、ドロマイト、カルシアの塩基性原料を主体に使用することが好ましい。また、前記塩基性材質を主体とする耐火物リサイクル品としてもよい。粒度は例えば最大1〜3mmとし、粗粒、中粒、微粒に適宜調整する。   The refractory raw material used in the present invention is not particularly different from conventional materials. For example, magnesia, magnesite, dolomite, calcia, alumina, silica, and combinations thereof are used. Among these, from the viewpoint of steel cleaning, it is preferable to use mainly magnesia, magnesite, dolomite and calcia basic raw materials. Moreover, it is good also as a refractory recycled product which has the said basic material as a main body. The particle size is, for example, 1 to 3 mm at maximum, and is appropriately adjusted to coarse particles, medium particles and fine particles.

結合剤は珪酸塩および/またはフェノール樹脂とし、これら結合剤の使用量は、耐火性原料100質量部に対して1〜10質量部が最適である。1質量部未満では硬化性に劣る傾向にある。10質量部を超えるとフェノール樹脂の場合は残留炭素成分によって溶鋼へのカーボンピックアップが懸念され好ましくない。また、珪酸塩が水和物の場合は、多過ぎると耐食性の低下に加え、結晶水が原因したコーティング材の経時変化を起こしやすい。珪酸塩は、粉末状の珪酸塩またはその水和物とする。その具体例としては、NaSiO、NaSiO・4HO、NaSiO・5HO、NaSiO・6HO、NaSiO・9HO、から選ばれる1種以上である。 The binder is silicate and / or phenol resin, and the amount of these binders used is optimally 1 to 10 parts by mass with respect to 100 parts by mass of the refractory raw material. If it is less than 1 part by mass, the curability tends to be inferior. When the amount exceeds 10 parts by mass, the phenol resin is not preferable because the carbon pickup to the molten steel may be caused by the residual carbon component. When the silicate is a hydrate, if it is too much, the corrosion resistance is lowered and the coating material is likely to change with time due to crystal water. The silicate is powdered silicate or a hydrate thereof. Specific examples thereof are selected from Na 2 SiO 3 , Na 2 SiO 3 .4H 2 O, Na 2 SiO 3 .5H 2 O, Na 2 SiO 3 .6H 2 O, Na 2 SiO 3 .9H 2 O. One or more.

珪酸塩の水和物は前記したように結晶水が原因した経時変化の問題がある。そこで、珪酸塩の水和物を使用する場合は、その添加量は少ないことが好ましい。本発明においては特定の有機質硬化付与剤を組み合わせたことで、この珪酸塩の水和物の添加量を従来材質に比べて少なくしても十分な施工体強度を得ることができる。   Silicate hydrates have the problem of aging due to crystal water as described above. Therefore, when a silicate hydrate is used, the addition amount is preferably small. In the present invention, by combining a specific organic curing agent, sufficient construction strength can be obtained even if the amount of silicate hydrate added is less than that of conventional materials.

フェノール樹脂は、熱可塑性または熱硬化性の粉末状あるいはフレーク状とする。有機質硬化付与剤と相溶性の面から、融点120℃以下の熱硬化性フェノール樹脂が好ましい。   The phenol resin is a thermoplastic or thermosetting powder or flake. A thermosetting phenol resin having a melting point of 120 ° C. or lower is preferable from the viewpoint of compatibility with the organic curing imparting agent.

有機質硬化付与剤は、融点50〜120℃のものとする。融点が50℃未満では、コーティング材が保管時に耐火性原料と反応して固化し、施工困難となる。融点が120℃を超えるものでは、乾式施工における短時間乾燥において施工体の背面部が十分硬化せず、施工体倒壊が懸念され、本発明の効果が得られない。   The organic curing agent has a melting point of 50 to 120 ° C. When the melting point is less than 50 ° C., the coating material reacts with the refractory raw material during storage and solidifies, making it difficult to construct. When the melting point exceeds 120 ° C., the back surface of the construction body is not sufficiently cured in the short-time drying in the dry construction, and there is a concern that the construction body collapses, and the effect of the present invention cannot be obtained.

この本発明で使用する有機質硬化付与剤の具体例は、ラクタム類、アセトアニリド類、アルキルフェノール類等から選ばれる一種以上である。さらに具体的には、ラクタム類であればε−カプロラクタム、アセトアニリド類であればアセトアニリドおよび/またはアセト酢酸アニリド、アルキルフェノール類であればp−t−ブチルフェノールおよび/またはp−オクチルフェノールなどが挙げられる。さらにアセトアニリドおよびアセト酢酸アニリドにおいては、そのメチル・ジメチル誘導体類、メトキシ・エトキシ誘導体類、カルボン酸誘導体類、アセチルアミノ誘導体類、スルファミン酸誘導体類とその塩、クロロ誘導体類なども含まれる。   Specific examples of the organic curing agent used in the present invention are one or more selected from lactams, acetanilides, alkylphenols and the like. More specifically, ε-caprolactam for lactams, acetanilide and / or acetoacetanilide for acetanilides, pt-butylphenol and / or p-octylphenol for alkylphenols, and the like. Further, in the case of acetanilide and acetoacetanilide, methyl dimethyl derivatives, methoxy ethoxy derivatives, carboxylic acid derivatives, acetylamino derivatives, sulfamic acid derivatives and salts thereof, chloro derivatives and the like are also included.

以上の有機質硬化付与剤のうち、特にアセトアニリドもしくはアセト酢酸アニリドのアセトアニリド類が好ましい。アセトアニリド類は他の有機質硬化付与剤と違って非潮解性で且つ無臭である。潮解性の場合は、その水分でコーティング材保管時に耐火性微粉と反応してコーティング材が経時変化しやすい。   Of the above organic curing imparting agents, acetanilide or acetanilide of acetoacetanilide is particularly preferable. Acetanilides are non-deliquescent and odorless unlike other organic curing agents. In the case of deliquescence, the coating material is likely to change with time by reacting with the refractory fine powder when the coating material is stored with the moisture.

また、有機質硬化付与剤の残炭性は、乾燥性向上に効果をもつ微細気孔の形成の弊害となりやすい。アセトアニリド類は残炭性の無く、残炭性のアルキルフェノール類に比べてコーティング材の加熱乾燥性に優れている。   Further, the residual carbon property of the organic curing imparting agent tends to be an adverse effect of the formation of fine pores that are effective in improving the drying property. Acetanilides have no residual charcoal and are superior in heat drying properties of coating materials compared to residual charcoal alkylphenols.

有機質硬化付与剤の使用量は、耐火性原料粉末100質量部に対して外掛け0.05〜5質量部とする。0.05質量部未満では硬化性が不十分であり、また、乾燥性にも劣る。逆に5質量部超えると施工体が多孔質となり耐食性が低下する。さらに好ましい範囲は0.1〜3質量部とする。   The amount of the organic curing agent used is 0.05 to 5 parts by mass on the basis of 100 parts by mass of the refractory raw material powder. If it is less than 0.05 part by mass, the curability is insufficient and the drying property is also inferior. Conversely, when it exceeds 5 mass parts, a construction body will become porous and corrosion resistance will fall. A more preferable range is 0.1 to 3 parts by mass.

本発明のコーティング材組成には、必要によっては他に、有機短繊維、有機湿潤剤等を添加してもよい。例えば有機短繊維を耐火性原料100質量部に対して0.5質量部以下添加することによって施工体の熱膨張応力を緩和させることができる。   In addition, organic short fibers, organic wetting agents and the like may be added to the coating material composition of the present invention as necessary. For example, the thermal expansion stress of the construction body can be relaxed by adding 0.5 parts by mass or less of organic short fibers to 100 parts by mass of the refractory raw material.

有機湿潤剤は発塵防止の効果をもつ。具体例としては石炭・石油系オイル、植物オイル、動物オイル等である。その添加量は、耐火性原料粉末100質量部に対する外掛けで0.05〜0.5質量部が好ましい。   Organic wetting agents have the effect of preventing dust generation. Specific examples include coal / petroleum oil, vegetable oil, animal oil and the like. The addition amount is preferably 0.05 to 0.5 parts by mass with respect to 100 parts by mass of the refractory raw material powder.

コーティング材の施工は、耐火物が新規に内張りされたタンディッシュ、あるいは使用後のタンディッシュに対して行う。使用後のタンディッシュに対しては残留コーティング材を除去した後、施工する。   The coating material is applied to a tundish in which a refractory is newly lined or after use. For the tundish after use, install after removing the residual coating material.

中子を入れ、内張り耐火物と中子との間の隙間に前記した乾粉状のコーティング材を投入充填する。充填の際には従来方法と同様に、中子に取り付けた振動機で振動を付与し、コーティング材の充填率を向上させるのが好ましい。コーティング材の厚さは20〜60mmが好ましい。次に、中子の内側からガスバーナー等で加熱し、硬化させた後、中子を取り外す。   The core is put, and the above-mentioned dry powder coating material is charged into the gap between the refractory lining and the core. At the time of filling, as in the conventional method, it is preferable to apply vibration with a vibrator attached to the core to improve the filling rate of the coating material. The thickness of the coating material is preferably 20 to 60 mm. Next, the core is removed after being heated and cured from the inside of the core with a gas burner or the like.

以下に本発明実施例とその比較例を示す。各例は表1に示す組成のコーティング材をもって各種の試験を行った。試験方法は以下のとおりである。   Examples of the present invention and comparative examples thereof are shown below. Each example was subjected to various tests using the coating materials having the compositions shown in Table 1. The test method is as follows.

耐火性原料の主材は、マグネシアおよびドロマイトとした。粒度はJISふるい目開きで2.8〜1mm:30質量%、1mm以下:40質量%、75μm以下:30質量%とした。   The main materials of the refractory raw material were magnesia and dolomite. The particle size was 2.8 to 1 mm: 30% by mass, 1 mm or less: 40% by mass, and 75 μm or less: 30% by mass with a JIS sieve opening.

硬化試験は、乾式コーティング材組成を乾粉状態で40×40×160mmの金枠に投入し、一定の振動をかけて充填した後、110℃、150℃、200℃の各温度雰囲気中にて3時間加熱し、その硬化状態を成形体試片の強度で判定した。◎…強度大、○…強度やや小、△…強度小。   In the curing test, the dry coating material composition was put into a 40 × 40 × 160 mm metal frame in a dry powder state, filled with constant vibration, and then in a temperature atmosphere of 110 ° C., 150 ° C., and 200 ° C. 3 It heated for time and the hardening state was determined by the intensity | strength of the molded object specimen. A: High strength, B: Slightly low, B: Low strength.

見掛気孔率・圧縮強さ試験は、前記の硬化試験と同様に金枠内に充填後、110℃で加熱後の成形体試片と、さらにこれを1500℃で加熱した成形体試片について、それぞれJIS:R2205およびJIS:R2206に準じて見掛気孔率・圧縮強さを測定した。   The apparent porosity / compressive strength test is performed on a molded specimen after being filled in a metal frame and heated at 110 ° C., and a molded specimen obtained by heating the specimen at 1500 ° C. The apparent porosity and compressive strength were measured according to JIS: R2205 and JIS: R2206, respectively.

実機試験はアルミナ質れんがで内張りした30tタンディッシュに対し、中子を入れ、中子に取り付けた振動機をもって振動を付与しつつコーティング材を投入し、充填させた。コーティング材の厚さは約50mmとした。加熱乾燥は中子内面部からのガスバーナーによる加熱で行った。   In the actual machine test, a core was inserted into a 30-ton tundish lined with an alumina brick, and the coating material was charged while being vibrated by a vibrator attached to the core and filled. The thickness of the coating material was about 50 mm. Heat drying was performed by heating with a gas burner from the inner surface of the core.

表1の試験結果が示すように、本発明実施例によるコーティング材は、いずれも110℃の低温域での加熱乾燥で十分な強度と緻密性を備えている。このことは、見掛気孔率および圧縮強さの測定からも確認できる。その結果、十分な昇温、長時間乾燥を待たずに施工体強度が得られ、乾式タンディッシュコーティング材に求められる短時間での加熱乾燥が可能となる。ついで、中子とコーティング材層との間、コーティング材層と内張りれんがとの間のそれぞれに熱電対温度計を配置し、温度を測定した。コーティング材層と内張りれんが間の温度が110℃に達した時点で加熱を中止し、コーティング材層の一部を切り出し、目視観察と圧縮強さの測定によって硬化状況の良否を判定した。   As the test results in Table 1 show, the coating materials according to the examples of the present invention all have sufficient strength and denseness by heat drying in a low temperature region of 110 ° C. This can also be confirmed from the measurement of apparent porosity and compressive strength. As a result, the construction body strength can be obtained without waiting for sufficient temperature rise and drying for a long time, and heat drying in a short time required for the dry tundish coating material becomes possible. Next, thermocouple thermometers were arranged between the core and the coating material layer, and between the coating material layer and the lining brick, and the temperature was measured. When the temperature between the coating material layer and the lining brick reached 110 ° C., heating was stopped, a part of the coating material layer was cut out, and the quality of the cured state was judged by visual observation and measurement of compressive strength.

この実施例の中でも有機質硬化付与剤にアセト酢酸アニリドを使用したものでは、他の実施例に比べて圧縮強さが一層大きい。これは、他と違ってアセト酢酸アニリドが非潮解性のために、コーティング材が施工前に経時変化により固化がまったく進行せず、内張り耐火物と中子との間への充填率が高いことによる。   Among these examples, those using acetoacetanilide as the organic curing agent have a higher compressive strength than the other examples. This is because, unlike others, acetoacetate anilide is non-deliquescent, so that the coating material does not solidify at all due to aging before construction, and the filling rate between the lining refractory and the core is high. by.

硬化付与剤を添加しない比較例1〜4は、硬化試験および加熱試験において、110℃はもとより150℃での加熱においても十分な強度が得られていない。比較例5では、有機質硬化付与剤の添加量が本発明で限定した範囲より多いため、低温域での乾燥において成形体の見掛気孔率が大きく、耐食性に劣る材質である。   In Comparative Examples 1 to 4 to which no curing imparting agent is added, sufficient strength is not obtained not only at 110 ° C. but also at 150 ° C. in the curing test and the heating test. In Comparative Example 5, the addition amount of the organic curing imparting agent is larger than the range limited in the present invention, so that the apparent porosity of the molded body is high and the corrosion resistance is poor when drying in a low temperature range.

比較例6は、融点が本発明で限定した範囲より高いo−クロロ安息香酸を有機質硬化付与剤としたものである。熱可塑性フェノール樹脂との相溶温度が高くなり、110℃の低温域での施工体強度が得られにくい。   In Comparative Example 6, o-chlorobenzoic acid having a melting point higher than the range defined in the present invention is used as an organic curing agent. The compatibility temperature with a thermoplastic phenol resin becomes high, and it is difficult to obtain a construction strength at a low temperature of 110 ° C.

比較例7は、融点が本発明で限定した範囲より低い2,6−di−tert−ブチルフェノールを有機質硬化付与剤としたものである。コーティング材が保管時に耐火性原料と反応して固化し、施工が容易でないため成形体試片が得られず、試験を行なわなかった。   In Comparative Example 7, 2,6-di-tert-butylphenol having a melting point lower than the range defined in the present invention is used as an organic curing agent. Since the coating material reacted with the refractory raw material during storage and solidified, and the construction was not easy, a molded specimen was not obtained and the test was not performed.

実機試験は実施例1、2、10および比較例1、3について行った。実施例のものはいずれも十分な施工体強度を示し、タンディッシュ移送の際に受ける衝撃等によって施工体が倒壊する等の懸念もない。また、表には示していないが、加熱乾燥時において剥離の問題も無い。   The actual machine test was conducted for Examples 1, 2, and 10 and Comparative Examples 1 and 3. All of the examples show sufficient construction body strength, and there is no concern that the construction body collapses due to an impact received during tundish transfer. Further, although not shown in the table, there is no problem of peeling during heat drying.

比較例1は実施例に比べて施工体強度が大幅に劣る。比較例1の材質も高温で且つ長時間での加熱乾燥を行えば施工体強度が向上するが、本発明が目的とする短時間乾燥ができず、タンディッシュ稼働率向上の効果が得られない。結合剤にメタ珪酸ナトリウム9水和物を使用したものであり、加熱乾燥後にもメタ珪酸ナトリウム9水和物の結晶水が残留していたことにより、表には示していないがタンディシュ受湯時にボイリング現象が生じ、施工体は一部において剥離損傷が生じた。

Figure 2006007317
Figure 2006007317
The construction body strength of Comparative Example 1 is significantly inferior to that of the Example. If the material of Comparative Example 1 is also heated and dried at a high temperature for a long time, the strength of the construction body is improved. However, the purpose of the present invention is not to be dried for a short time, and the effect of improving the tundish operating rate cannot be obtained. . Although sodium metasilicate nonahydrate was used as a binder and the water of crystallization of sodium metasilicate nonahydrate remained after heating and drying, although not shown in the table, when receiving tundish water Boiling phenomenon occurred, and part of the construction body was peeled off.
Figure 2006007317
Figure 2006007317

Claims (3)

耐火性原料と結合剤としての珪酸塩および/またはフェノール樹脂を含むと共に、融点50〜120℃の有機質硬化付与剤を、前記耐火性原料100質量部に対し0.05〜5質量部添加してなる乾式タンディッシュコーティング材。   While containing a refractory raw material and a silicate and / or phenol resin as a binder, an organic curing agent having a melting point of 50 to 120 ° C. is added in an amount of 0.05 to 5 parts by weight with respect to 100 parts by weight of the refractory raw material. Dry tundish coating material. 有機質硬化付与剤が、アセトアニリド類である請求項1記載の乾式タンディッシュコーティング材。   The dry tundish coating material according to claim 1, wherein the organic curing imparting agent is an acetanilide. タンディッシュに中子を入れ、内張り耐火物と中子との間に設けた隙間に、請求項1または2記載の乾式タンディッシュコーティング材を充填し、次いで中子を介して前記乾式タンディッシュコーティング材を加熱硬化させる乾式タンディッシュコーティング材の施工方法。   A core is placed in a tundish, and a dry tundish coating material according to claim 1 or 2 is filled in a gap provided between the refractory lining and the core, and then the dry tundish coating is passed through the core. Construction method of dry tundish coating material that heat cures the material.
JP2005118680A 2004-05-25 2005-04-15 Dry tundish coating material and its construction method Expired - Fee Related JP4478061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005118680A JP4478061B2 (en) 2004-05-25 2005-04-15 Dry tundish coating material and its construction method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004155224 2004-05-25
JP2005118680A JP4478061B2 (en) 2004-05-25 2005-04-15 Dry tundish coating material and its construction method

Publications (2)

Publication Number Publication Date
JP2006007317A true JP2006007317A (en) 2006-01-12
JP4478061B2 JP4478061B2 (en) 2010-06-09

Family

ID=35775115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005118680A Expired - Fee Related JP4478061B2 (en) 2004-05-25 2005-04-15 Dry tundish coating material and its construction method

Country Status (1)

Country Link
JP (1) JP4478061B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010137279A (en) * 2008-12-15 2010-06-24 Kurosaki Harima Corp Method of forming coating layer on tundish
WO2013018476A1 (en) * 2011-08-02 2013-02-07 黒崎播磨株式会社 Monolithic refractory
JP2013119093A (en) * 2011-12-06 2013-06-17 Nippon Steel & Sumitomo Metal Corp Method for manufacturing extremely-low-carbon steel
JP2015196177A (en) * 2014-04-01 2015-11-09 黒崎播磨株式会社 dry coating material
JP2016172280A (en) * 2015-03-18 2016-09-29 品川リフラクトリーズ株式会社 Dry coating material and construction method of the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5636982B2 (en) * 2011-01-21 2014-12-10 新日鐵住金株式会社 Tundish coating core and how to set it

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010137279A (en) * 2008-12-15 2010-06-24 Kurosaki Harima Corp Method of forming coating layer on tundish
WO2013018476A1 (en) * 2011-08-02 2013-02-07 黒崎播磨株式会社 Monolithic refractory
JP2013032247A (en) * 2011-08-02 2013-02-14 Kurosaki Harima Corp Monolithic refractory
JP2013119093A (en) * 2011-12-06 2013-06-17 Nippon Steel & Sumitomo Metal Corp Method for manufacturing extremely-low-carbon steel
JP2015196177A (en) * 2014-04-01 2015-11-09 黒崎播磨株式会社 dry coating material
JP2016172280A (en) * 2015-03-18 2016-09-29 品川リフラクトリーズ株式会社 Dry coating material and construction method of the same

Also Published As

Publication number Publication date
JP4478061B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
JP4478061B2 (en) Dry tundish coating material and its construction method
JP5419231B2 (en) Indefinite refractory
JP5302651B2 (en) Method for forming coating layer on tundish
JP5754295B2 (en) Dry coating material
US20030032701A1 (en) Refractory compositions
JP5417448B2 (en) Adhesives and coatings for heat-resistant materials and ceramics
WO2019070051A1 (en) Mold material and manufacturing method therefor, mold and manufacturing method therefor, and molding sand regeneration method
CN100427242C (en) Dry-type intermediate storage tank coating material and its construction method
JP2008247720A (en) Monolithic refractory forming material and monolithic refractory formed body
JP2016172280A (en) Dry coating material and construction method of the same
JP4132471B2 (en) Non-aqueous press-fit material for blast furnace repair
JP6326266B2 (en) Dry coating material
JP5742695B2 (en) Method for producing ultra-low carbon steel
JP2010235340A (en) Aqueous spray material for hot repair
RU2390513C2 (en) Refractory ramming mixture for refractory lining
JPS59217679A (en) Dry formless refractories
JP3037625B2 (en) Baking repair material
JP2023149350A (en) Manufacturing method of graphite-containing refractory
JP2000063183A (en) Closing material
JPH08133852A (en) Magnesia spraying material
JP2023149344A (en) Graphite-containing refractory
JPH04300982A (en) Fire-resistant adhesive composition
JP2015178128A (en) Dry coat material
JPS624355B2 (en)
JPS5927272B2 (en) Molten metal container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100212

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160319

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees