JP2006006056A - Current source circuit, digital/analog conversion circuit with the same and image display apparatus - Google Patents
Current source circuit, digital/analog conversion circuit with the same and image display apparatus Download PDFInfo
- Publication number
- JP2006006056A JP2006006056A JP2004181354A JP2004181354A JP2006006056A JP 2006006056 A JP2006006056 A JP 2006006056A JP 2004181354 A JP2004181354 A JP 2004181354A JP 2004181354 A JP2004181354 A JP 2004181354A JP 2006006056 A JP2006006056 A JP 2006006056A
- Authority
- JP
- Japan
- Prior art keywords
- current
- circuit
- mode
- current source
- transistors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Control Of Electrical Variables (AREA)
- Continuous-Control Power Sources That Use Transistors (AREA)
- Dc-Dc Converters (AREA)
- Analogue/Digital Conversion (AREA)
- Amplifiers (AREA)
Abstract
Description
この発明は、電流源回路、およびそれを備えたデジタルアナログ変換回路ならびに画像表示装置に関し、特に、回路網に指示された電流を供給する電流源回路およびそれを備えたデジタルアナログ変換回路ならびに画像表示装置に関する。 The present invention relates to a current source circuit, a digital / analog conversion circuit including the current source circuit, and an image display device. Relates to the device.
負荷の変動とは無関係に一定の電流を流す電流源回路は、半導体集積回路における基本的かつ最も重要な回路の1つである。 A current source circuit that allows a constant current to flow regardless of load fluctuations is one of basic and most important circuits in a semiconductor integrated circuit.
電流源回路においては、従来より、カレントミラー型の回路が一般的に用いられる。カレントミラー型の電流源回路においては、それぞれのゲートが接続された2つのトランジスタの一方のトランジスタがダイオード接続され、そのトランジスタに流れる一定の基準電流に対して両トランジスタの能力比(具体的にはチャネル幅の比)倍の一定電流を独立した電位にある負荷回路と接続された他方のトランジスタに流すことができる。 In the current source circuit, a current mirror type circuit is generally used conventionally. In a current mirror type current source circuit, one transistor of two transistors each having a gate connected thereto is diode-connected, and the capacity ratio of the two transistors (specifically, a specific reference current flowing through the transistor) A constant current (multiple of the channel width) can be supplied to the other transistor connected to the load circuit at an independent potential.
このカレントミラー型の電流源回路において、電流の設定精度は、カレントミラーを構成するトランジスタの電流駆動能力が設計どおりであるか否かによる。一般に、トランジスタの駆動電流の設定精度は、トランジスタの製造プロセスによって定まるコンダクタンスおよび電源電圧の影響を受けるほか、そのトランジスタのしきい値電圧の影響を受ける。 In this current mirror type current source circuit, the current setting accuracy depends on whether or not the current drive capability of the transistors constituting the current mirror is as designed. In general, the setting accuracy of the drive current of a transistor is affected by the conductance and power supply voltage determined by the transistor manufacturing process, as well as the threshold voltage of the transistor.
したがって、カレントミラー型の電流源回路においては、高い電流設定精度を保持するため、トランジスタのしきい値電圧のばらつきを抑えることが課題となっていた。 Therefore, in the current mirror type current source circuit, in order to maintain high current setting accuracy, it has been a problem to suppress variation in threshold voltage of transistors.
そこで、最近では、トランジスタのしきい値電圧のばらつきの影響を受けず、常に所定の電流を供給可能な電流源回路が提案されている(たとえば特許文献1参照)。 Therefore, recently, a current source circuit that can always supply a predetermined current without being affected by variations in threshold voltages of transistors has been proposed (for example, see Patent Document 1).
図9は、たとえば特許文献1に記載される、従来の電流源回路の一例を示す回路図である。
FIG. 9 is a circuit diagram showing an example of a conventional current source circuit described in
図9を参照して、電流源回路は、回路網100に並列に接続される複数個の電流源トランジスタM1,M2・・・Mn(nは自然数)と、各電流源トランジスタM1〜Mnのドレインと定電流源60および回路網100のいずれか一方と選択的に結合する複数個のスイッチ回路S1〜Snとを備える。
Referring to FIG. 9, the current source circuit includes a plurality of current source transistors M1, M2,... Mn (n is a natural number) connected in parallel to
電流源回路は、電流源トランジスタM1〜Mnの各々について、ドレインとゲートとの間を電気的に結合/分離するスイッチ回路W1〜Wnと、ゲートとソースとの間に結合される容量素子C1〜Cnとをさらに備える。なお、電流源トランジスタM1〜Mnのソースは、電源電圧VLに共通に接続される。電源電圧VLには、接地電圧または所定の負電圧が印加される。 For each of the current source transistors M1 to Mn, the current source circuit includes switch circuits W1 to Wn that electrically couple / separate between the drain and the gate, and capacitive elements C1 to C1 that are coupled between the gate and the source. And Cn. The sources of the current source transistors M1 to Mn are commonly connected to the power supply voltage VL. A ground voltage or a predetermined negative voltage is applied to the power supply voltage VL.
この構成において、動作期間以外の任意の期間(以下、ブランキング期間とも称する)には、スイッチ回路S1〜Snによって、電流源トランジスタM1〜Mnのドレインと定電流源とがそれぞれ結合される。さらに、スイッチ回路W1〜Wnによって、電流源トランジスタM1〜Mnのドレインとゲートとがそれぞれ結合される。これによって、定電流源60からの所定の基準電流I0が電流源トランジスタM1〜Mnの各々に駆動される。このとき、容量素子C1〜Cnには、基準電流I0に応じた電荷が充電される。
In this configuration, the drains of the current source transistors M1 to Mn and the constant current source are respectively coupled by the switch circuits S1 to Sn during an arbitrary period other than the operation period (hereinafter also referred to as a blanking period). Further, the drains and gates of the current source transistors M1 to Mn are coupled by the switch circuits W1 to Wn, respectively. As a result, a predetermined reference current I 0 from the constant
所望の動作期間においては、スイッチ回路S1〜Snによって、電流源トランジスタM1〜Mnのドレインと回路網100とがそれぞれ結合される。電流源トランジスタM1〜Mnは、容量素子C1〜Cnに充電された電荷に基づいて電流I1〜In(=I0)が駆動される。これにより、回路網100には、一定の電流I0が供給されることになる。
During a desired operation period, the drains of the current source transistors M1 to Mn and the
このように、電流源回路では、任意の期間に定電流源からの基準電流を能動素子および容量成分に記憶させ、所望の動作期間に、この記憶された電荷に基づいて電流を発生させることにより、ばらつきのない所定の電流を回路網に供給することができる。
ここで、図9の電流源回路に用いられる電流源トランジスタとしては、MOS(Metal Oxide Semiconductor)トランジスタ等の電界効果型トランジスタが一般的に採用される。 Here, as a current source transistor used in the current source circuit of FIG. 9, a field effect transistor such as a MOS (Metal Oxide Semiconductor) transistor is generally employed.
図10は、一般的な電界効果型トランジスタにおけるドレイン・ソース間電流IDSとドレイン・ソース間電圧VDSとの関係を示す図である。 FIG. 10 is a diagram showing the relationship between the drain-source current IDS and the drain-source voltage VDS in a general field effect transistor.
図10を参照して、動作領域は、非飽和領域と飽和領域とに大別される。非飽和領域は、VDSとともにIDSが増加する領域である。一方、飽和領域は、VDSとは無関係にVGSだけで定まる定電流特性を示す領域である。 Referring to FIG. 10, the operation region is roughly divided into a non-saturation region and a saturation region. The non-saturated region is a region where IDS increases with VDS. On the other hand, the saturation region is a region showing a constant current characteristic determined only by VGS regardless of VDS.
ここで、図10中の点線で示す直流特性は、寸法が十分大きい理想的なトランジスタの特性である。実際の微細トランジスタは、実線で示すように、形状効果のためチャネル長、チャネル幅や電源電圧によってさらに複雑な特性を示すことが知られている。 Here, the direct current characteristic indicated by the dotted line in FIG. 10 is an ideal transistor characteristic having a sufficiently large size. As shown by the solid line, an actual fine transistor is known to exhibit more complicated characteristics depending on the channel length, channel width, and power supply voltage due to the shape effect.
理想的なトランジスタは、点線で示すように、IDSがいったん飽和すると、VDSを増加してもIDSは変わらない。これに対して、実際のトランジスタでは、飽和領域においてもIDSがVDSとともにわずかに増加する、いわゆるチャネル変調が現われる。これは、ドレインの空乏層端がソース側に動き、実効的にチャネル長が短くなることによる。このチャネル変調によって、飽和領域では、ドレイン・ソース間にある抵抗成分rが現われる。この抵抗成分rは、ドレイン・ソース間のチャネルコンダクタンスの逆数に相当する。 As shown by the dotted line, an ideal transistor does not change even if VDS is increased once IDS is saturated. On the other hand, in an actual transistor, so-called channel modulation appears in which IDS slightly increases with VDS even in the saturation region. This is because the end of the depletion layer of the drain moves to the source side and the channel length is effectively shortened. By this channel modulation, a resistance component r between the drain and source appears in the saturation region. This resistance component r corresponds to the reciprocal of the channel conductance between the drain and the source.
図9の電流源回路において、ブランキング期間にスイッチ回路S1〜Snが定電流源60側に接続されると、対応する電流源トランジスタM1〜Mnにはそれぞれ、基準電流I0が駆動される。図10の直流特性において、基準電流I0をIDS1とすると、対応するドレイン・ソース間電圧VDS1が一意的に求まる。
In the current source circuit of FIG. 9, the switch circuit S1~Sn the blanking interval when connected to the constant
続いて、スイッチ回路W1〜Wnがオフされると、ドレイン・ソース間電圧VDS1がゲート・ソース間電圧VGSとして容量素子C1〜Cnにそれぞれ充電される。 Subsequently, when the switch circuits W1 to Wn are turned off, the drain-source voltage VDS1 is charged to the capacitive elements C1 to Cn as the gate-source voltage VGS, respectively.
次に、動作期間において、スイッチ回路S1〜Snが回路網100側に接続されると、回路網100側から電流源トランジスタM1〜Mnのドレインに電圧が供給され、基準電流I0と同じ大きさの電流が流れるように動作が行なわれる。
Next, the operation period, the switch circuit S1~Sn is connected to the
ところが、実際には、回路網100側から供給される電圧を図10に示すVDS2とすると、電流源トランジスタM1〜Mnには、ドレイン・ソース間電流IDS2が駆動される。このIDS2は、先述のチャネル変調によって、基準電流I0であるIDS1とは一致せず、増大していることが分かる。
However, in reality, when the voltage supplied from the
図9の電流源回路に照らして、回路網100に並列に接続される電流源トランジスタM1〜Mnが互いに等しい抵抗成分r、すなわちチャネルコンダクタンスを有していれば、IDSの増加分は電流源トランジスタ間で等しくなり、各電流源トランジスタから回路網100に供給される電流を均一に保つことができる。
In view of the current source circuit of FIG. 9, if the current source transistors M1 to Mn connected in parallel to the
しかしながら、実際には、電流源トランジスタごとに抵抗成分rの大きさが異なることから、回路網100に供給される電流は、電流源トランジスタ間で一致せず、所定の電流を供給できないといった問題が生じてしまう。
In practice, however, the magnitude of the resistance component r is different for each current source transistor, so that the current supplied to the
この発明は、かかる課題を解決するためになされたものであり、その目的は、回路を構成するトランジスタの特性の影響を排除した電流源回路を提供することである。 The present invention has been made to solve such a problem, and an object thereof is to provide a current source circuit in which the influence of the characteristics of the transistors constituting the circuit is eliminated.
この発明の別の目的は、回路を構成するトランジスタの特性の影響を排除したデジタルアナログ変換回路を提供することである。 Another object of the present invention is to provide a digital-to-analog converter circuit that eliminates the influence of the characteristics of transistors constituting the circuit.
この発明の別の目的は、回路を構成するトランジスタの特性の影響を排除した電流源回路を備える画像表示回路を提供することである。 Another object of the present invention is to provide an image display circuit including a current source circuit that eliminates the influence of the characteristics of transistors constituting the circuit.
この発明に従う電流源回路は、基準電流に応じた電流を回路網に供給する電流源回路であって、第1のモードにおいて、第1の電圧源と電気的に結合されて前記基準電流を流入または流出し、前記第1のモードの後に実行される第2のモードにおいて、前記第1の電圧源と電気的に分離されるとともに、前記回路網と電気的に結合されるノードと、前記ノードと第2の電圧源との間に接続され、前記第1のモードにおいて、前記ノードに流入または流出される前記基準電流が通過するとともに、前記第2のモードにおいて、通過した前記基準電流に応じた電流を前記回路網に駆動する電流駆動部とを備える。前記電流駆動部は、前記ノードと前記第2の電圧源との間に直列に接続され、前記第1のモードにおいて、前記基準電流が通過する第1および第2のトランジスタと、前記第1のモードにおいて、前記第1および第2のトランジスタのゲート電極に前記基準電流によって決定される電圧をそれぞれ保持するように接続される第1および第2の容量素子とを含む。 A current source circuit according to the present invention is a current source circuit for supplying a current corresponding to a reference current to a network, and is electrically coupled to a first voltage source in the first mode to flow in the reference current. Or in a second mode that flows out and is executed after the first mode; a node that is electrically isolated from the first voltage source and electrically coupled to the network; and the node Is connected between the first voltage source and the second voltage source. In the first mode, the reference current flowing into or out of the node passes, and in the second mode, depending on the passed reference current. A current driver for driving the current to the circuit network. The current driver is connected in series between the node and the second voltage source, and in the first mode, the first and second transistors through which the reference current passes, and the first transistor And a first capacitive element and a second capacitive element connected to the gate electrodes of the first and second transistors so as to hold a voltage determined by the reference current, respectively.
この発明に従うデジタルアナログ変換回路は、m(mは自然数)ビットからなるデジタル信号に対応する電流を回路網に供給するデジタルアナログ変換回路であって、第1のモードにおいて、前記デジタル信号に応じて、各々がn(nは2以上の自然数)進数で重み付けられた基準電流を供給するm個の定電流源と選択的に結合されて所望の電流を流入または流出し、前記第1のモードの後に実行される第2のモードにおいて、前記選択的に結合された定電流源と電気的に分離されるとともに、前記回路網と電気的に結合されるm個のノードと、前記m個の定電流源と前記m個のノードとの間にそれぞれ配され、前記mビットからなるデジタル信号の各ビットに応じて、対応するノードと前記定電流源および前記回路網のいずれか一方とを電気的に結合するm個のスイッチ素子と、各前記m個のノードと第2の電圧源との間にそれぞれ接続され、前記第1のモードにおいて、前記対応するノードを流入または流出する前記基準電流が通過するとともに、前記第2のモードにおいて、通過した前記基準電流に応じた電流を前記回路網に駆動するm個の電流駆動部とを備える。各前記m個の電流駆動部は、前記ノードと前記第2の電圧源との間に直列に接続され、前記第1のモードにおいて、前記基準電流が通過する第1および第2のトランジスタと、前記第1のモードにおいて、前記第1および第2のトランジスタのゲート電極に前記基準電流によって決定される電圧をそれぞれ保持するように接続される第1および第2の容量素子とを含む。 A digital-analog conversion circuit according to the present invention is a digital-analog conversion circuit that supplies a current corresponding to a digital signal composed of m (m is a natural number) bits to a circuit network, and in a first mode, according to the digital signal , Each of which is selectively coupled to m constant current sources that supply a reference current weighted by n (where n is a natural number of 2 or more), and flows in or out a desired current. In a second mode to be executed later, m nodes that are electrically separated from the selectively coupled constant current source and electrically coupled to the network, and the m constants. In accordance with each bit of the m-bit digital signal that is arranged between the current source and the m nodes, the corresponding node, the constant current source, and the circuit network are electrically connected. Switch elements coupled to each other, and the reference currents connected between the m nodes and the second voltage source, respectively, and inflow or outflow of the corresponding nodes in the first mode And in the second mode, m current drive units that drive the circuit network with a current corresponding to the passed reference current. Each of the m current drivers is connected in series between the node and the second voltage source, and in the first mode, the first and second transistors through which the reference current passes; In the first mode, the first and second capacitors are connected to the gate electrodes of the first and second transistors so as to hold voltages determined by the reference current, respectively.
この発明に従う画像表示装置は、行列状に配列され、各々が電流駆動型発光素子を備える複数の画素回路と、前記複数の画素回路の行にそれぞれ対応して配置され、一定周期で順に選択される複数の走査線と、前記複数の画素回路の列に対応して配置される複数のデータ線と、各前記複数のデータ線に対応して配置され、前記複数の画素回路のうちの走査対象の画素回路での表示輝度を指示するk(kは自然数)ビットの表示信号に対応して設定される表示電流を各前記複数のデータ線に供給する電流源回路とを備える。前記電流源回路は、第1のモードにおいて、前記表示信号に応じて、各々がn進数で重み付けられた基準電流を供給するk個(kは自然数)の定電流源と選択的に結合されて所望の電流を流入または流出し、前記第1のモードの後に実行される第2のモードにおいて、前記選択的に結合された定電流源と電気的に分離されるとともに、前記回路網と電気的に結合されるk個のノードと、前記k個の定電流源と前記k個のノードとの間にそれぞれ配され、前記kビットの表示信号の各ビットに応じて、対応するノードと前記定電流源および前記回路網のいずれか一方とを電気的に結合するk個のスイッチ素子と、各前記k個のノードと第2の電圧源との間に接続され、前記第1のモードにおいて、前記対応するノードを流入または流出する前記基準電流が通過するとともに、前記第2のモードにおいて、通過した前記基準電流に応じた電流を前記回路網に駆動するk個の電流駆動部とを含む。各前記k個の電流駆動部は、前記ノードと前記第2の電圧源との間に直列に接続され、前記第1のモードにおいて、前記基準電流が通過する第1および第2のトランジスタと、前記第1のモードにおいて、前記第1および第2のトランジスタのゲート電極に前記基準電流によって決定される電圧をそれぞれ保持するように接続される第1および第2の容量素子とを含む。 An image display device according to the present invention is arranged in a matrix and is arranged corresponding to each of a plurality of pixel circuits each including a current-driven light emitting element and a row of the plurality of pixel circuits, and is sequentially selected at a constant cycle. A plurality of scanning lines, a plurality of data lines arranged corresponding to the columns of the plurality of pixel circuits, and a scanning target of the plurality of pixel circuits arranged corresponding to each of the plurality of data lines. And a current source circuit for supplying a display current set corresponding to a display signal of k (k is a natural number) bits indicating the display luminance in the pixel circuit to each of the plurality of data lines. In the first mode, the current source circuit is selectively coupled to k constant current sources (k is a natural number) each supplying a reference current weighted by an n-ary number in accordance with the display signal. In a second mode that flows in or out of a desired current and is executed after the first mode, the circuit is electrically isolated from the selectively coupled constant current source and electrically connected to the network. Are connected between the k nodes coupled to each other, the k constant current sources, and the k nodes, respectively, and corresponding to each of the bits of the k-bit display signal. K switch elements electrically coupled to either the current source or the network, and connected between each of the k nodes and a second voltage source, in the first mode, The inflow or outflow of the corresponding node With quasi current passes, in said second mode, and a k-number of the current driver for driving current corresponding to the reference current passing through the network. Each of the k current drivers is connected in series between the node and the second voltage source, and in the first mode, the first and second transistors through which the reference current passes; In the first mode, the first and second capacitors are connected to the gate electrodes of the first and second transistors so as to hold voltages determined by the reference current, respectively.
この発明に従う電流源回路によれば、電流源トランジスタのドレイン・ソース間電圧の変化をほとんどなくして、回路網に所望の電流を精度良く供給することができる。 According to the current source circuit according to the present invention, it is possible to supply a desired current with high accuracy to the circuit network with almost no change in the drain-source voltage of the current source transistor.
この発明に従うデジタルアナログ変換回路によれば、入力されるデジタル信号によって指示される電流値に高い確度で変換された電流を供給することができる。 According to the digital-analog conversion circuit according to the present invention, it is possible to supply a current converted with high accuracy to a current value indicated by an input digital signal.
この発明に従う画像表示装置によれば、画素回路に表示輝度に応じて設定された電流が高い精度を持って駆動されることから、電流源回路のトランジスタの特性の影響を排除し、駆動回路の誤動作および表示部における表示むらの発生を抑えることができる。 According to the image display device according to the present invention, since the current set in accordance with the display luminance is driven with high accuracy in the pixel circuit, the influence of the transistor characteristics of the current source circuit is eliminated, and the drive circuit It is possible to suppress malfunction and occurrence of display unevenness in the display portion.
以下、この発明の実施の形態について図面を参照して詳しく説明する。なお、図中同一符号は同一または相当部分を示す。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same reference numerals indicate the same or corresponding parts.
実施の形態1.
図1は、この発明の実施の形態1に従う電流源回路の構成を示す回路図である。
FIG. 1 is a circuit diagram showing a configuration of a current source circuit according to the first embodiment of the present invention.
図1を参照して、電流源回路は、回路網100に並列に接続される複数個の電流源トランジスタQ1A,Q2A,Q3A,・・・QnAと、各電流源トランジスタQ1A〜QnAのドレインと定電流源60および回路網100のいずれか一方と選択的に結合する複数個のスイッチ回路S1〜Snとを備える。なお、定電流源60については、本実施の形態のように電流源回路の外部に設ける構成以外にも、電流源回路の内部に設ける構成としても良い。
Referring to FIG. 1, the current source circuit includes a plurality of current source transistors Q1A, Q2A, Q3A,... QnA connected in parallel to a
スイッチ回路S1〜Snは、たとえば図1に示すように、図示しないH(論理ハイ)レベルの制御信号に応答して、対応するノードND1B〜ノードNDnBと定電流源60とを結合し、L(論理ロー)レベルの制御信号に応答して、対応するノードND1B〜NDnBと回路網100とを結合する。
For example, as shown in FIG. 1, the switch circuits S1 to Sn couple corresponding nodes ND1B to NDnB and the constant
電流源回路は、電流源トランジスタQ1A〜QnAの各々について、ドレインとゲートとの間を電気的に結合/分離するスイッチ回路T1A〜TnAと、ゲートとソースとの間に結合される容量素子C1A〜CnAとをさらに備える。なお、各電流源トランジスタのソースは、電源電圧VLに共通に接続される。電源電圧VLには、接地電圧または所定の負電圧が印加される。 For each of the current source transistors Q1A to QnA, the current source circuit includes switch circuits T1A to TnA that electrically couple / separate between the drain and the gate, and capacitive elements C1A to C1A that are coupled between the gate and the source. CnA is further provided. Note that the sources of the current source transistors are commonly connected to the power supply voltage VL. A ground voltage or a predetermined negative voltage is applied to the power supply voltage VL.
電流源回路は、さらに、電流源トランジスタQ1A〜QnAのドレインとスイッチ回路S1〜Snとの間にそれぞれ結合される複数個のNチャネルMOSトランジスタQ1B〜QnBを備える。 The current source circuit further includes a plurality of N channel MOS transistors Q1B to QnB respectively coupled between the drains of the current source transistors Q1A to QnA and the switch circuits S1 to Sn.
NチャネルMOSトランジスタQ1B〜QnBは、ドレインがスイッチ回路S1〜Snにそれぞれ接続され、ソースが電流源トランジスタQ1A〜QnAのドレインにそれぞれ接続される。 N channel MOS transistors Q1B to QnB have drains connected to switch circuits S1 to Sn, respectively, and sources connected to drains of current source transistors Q1A to QnA, respectively.
電流源回路は、NチャネルMOSトランジスタQ1B〜QnBのドレイン・ゲート間を電気的に結合/分離するスイッチ回路T1B〜TnBと、NチャネルMOSトランジスタQ1B〜QnBのゲートと電源電圧VLとの間に結合される容量素子C1B〜CnBとをさらに備える。 The current source circuit is coupled between switch circuits T1B to TnB for electrically coupling / separating the drains and gates of N channel MOS transistors Q1B to QnB, and between the gate of N channel MOS transistors Q1B to QnB and power supply voltage VL. The capacitor elements C1B to CnB are further included.
本実施の形態に係る電流源回路は、図9に示す従来の電流源回路に対して、基本的な構成を同じくするが、電流源トランジスタQ1A〜QnAとスイッチ回路S1〜Snとの間に、NチャネルMOSトランジスタQ1B〜QnBと、スイッチ回路T1B〜TnBと、容量素子C1B〜CnBとが配される点において異なる。これらの回路素子は、後述するように、電流源トランジスタQ1A〜QnAのドレイン(ノードND1A〜ノードNDnAに相当)の電位の変動を抑える機能を有しており、電流源トランジスタのドレイン電圧上昇制限回路を構成する。 The current source circuit according to the present embodiment has the same basic configuration as the conventional current source circuit shown in FIG. 9, but between the current source transistors Q1A to QnA and the switch circuits S1 to Sn. N channel MOS transistors Q1B to QnB, switch circuits T1B to TnB, and capacitive elements C1B to CnB are different. As will be described later, these circuit elements have a function of suppressing fluctuations in the potentials of the drains of the current source transistors Q1A to QnA (corresponding to the nodes ND1A to NDnA). Configure.
以下に、図1の電流源回路の動作について説明する。 The operation of the current source circuit of FIG. 1 will be described below.
最初に、任意のブランキング期間において、スイッチ回路S1〜Snの各々は、Hレベルの制御信号に応答して、NチャネルMOSトランジスタQ1B〜QnBのドレインと定電流源60とを電気的に結合する。
First, in any blanking period, each of switch circuits S1 to Sn electrically couples the drains of N channel MOS transistors Q1B to QnB and constant
このとき、図2に示すように、ブランキング期間の時刻t0において、スイッチ回路T1B〜TnBはオンし、NチャネルMOSトランジスタQ1B〜QnBにおいて、ドレインとゲートとが結合されたダイオード接続を形成する。さらに、スイッチ回路T1A〜TnAもオンし、電流源トランジスタQ1A〜QnAにおいて、ドレインとゲートとが結合されたダイオード接続を形成する。 At this time, as shown in FIG. 2, at time t0 in the blanking period, the switch circuits T1B to TnB are turned on, and the N-channel MOS transistors Q1B to QnB form a diode connection in which the drain and the gate are coupled. Further, the switch circuits T1A to TnA are turned on to form a diode connection in which the drain and the gate are coupled in the current source transistors Q1A to QnA.
これにより、定電流源60〜NチャネルMOSトランジスタ(Q1B〜QnB)〜電流源トランジスタ(Q1A〜QnA)〜電源電圧VLに至る電流経路が形成される。この電流経路において、両トランジスタは定電流源60と電源電圧VLとの間に直列接続されていることから、同じ電流I0が駆動されることとなる。
Thus, a current path is formed from constant
図3は、ブランキング期間における図1の定電流回路の等価回路図である。なお、説明の簡単のため、複数のトランジスタのうちの電流源トランジスタQ1AおよびNチャネルMOSトランジスタQ1Bについて抽出して示す。 FIG. 3 is an equivalent circuit diagram of the constant current circuit of FIG. 1 during the blanking period. For the sake of simplicity, the current source transistor Q1A and the N-channel MOS transistor Q1B out of a plurality of transistors are extracted and shown.
図3において、駆動電流I0に着目すると、電流源トランジスタQ1Aでは、電流I0とゲート・ソース間電圧VGSAとの間に式(1)の関係が成立する。 In FIG. 3, paying attention to the drive current I 0 , in the current source transistor Q 1 A, the relationship of Expression (1) is established between the current I 0 and the gate-source voltage VGSA.
I0=β・(VGSA−VTN)2/2 ・・・(1)
同様に、NチャネルMOSトランジスタQ1Bにおいても、電流I0とゲート・ソース間電圧VGSBとの間には、式(2)の関係が成り立つ。
I 0 = β · (VGSA- VTN) 2/2 ··· (1)
Similarly, also in the N-channel MOS transistor Q1B, between the current I 0 and the gate-source voltage Vgsb, the relationship of formula (2) holds.
I0=β・(VGSB−VTN)2/2 ・・・(2)
ここで、βは電流増幅係数、VTNはトランジスタのしきい値電圧である。なお、簡単のため、電流源トランジスタとNチャネルMOSトランジスタとは、トランジスタサイズ(ゲート長L、ゲート幅W)、しきい値電圧VTNおよび電流増幅係数βが等しいものとする。
I 0 = β · (VGSB- VTN) 2/2 ··· (2)
Here, β is a current amplification coefficient, and VTN is a threshold voltage of the transistor. For simplicity, it is assumed that the current source transistor and the N-channel MOS transistor have the same transistor size (gate length L, gate width W), threshold voltage VTN, and current amplification coefficient β.
式(1),(2)より、
VGSA=VTN+(2・I0/β)1/2 ・・・(3)
VGSB=VTN+(2・I0/β)1/2 ・・・(4)
の関係がそれぞれ導かれる。式(3),(4)から、ゲート・ソース間電圧VGSA,VGSBは、トランジスタのしきい値電圧VTNに駆動電流I0による電圧上昇分が加算された形で表わされることが分かる。
From equations (1) and (2),
VGSA = VTN + (2 · I 0 / β) 1/2 (3)
VGSB = VTN + (2 · I 0 / β) 1/2 (4)
Each relationship is derived. From equations (3) and (4), it can be seen that the gate-source voltages VGSA and VGSB are expressed in a form in which the voltage increase due to the drive current I 0 is added to the threshold voltage VTN of the transistor.
なお、各トランジスタにおいて、ゲートとドレインとがスイッチ回路T1A,T1Bによってダイオード接続されていることから、ドレイン・ソース間電圧VDSA,VDSBは、ゲート・ソース間電圧VGSA,VGSBとそれぞれ等電位となり、VTN+(2・I0/β)1/2が印加されることになる。 In each transistor, since the gate and the drain are diode-connected by the switch circuits T1A and T1B, the drain-source voltages VDSA and VDSB are equal to the gate-source voltages VGSA and VGSB, respectively, and VTN + (2 · I 0 / β) 1/2 is applied.
以上のブランキング期間に続いて動作期間になると、スイッチ回路S1〜Snは、Lレベルの制御信号に応答して、NチャネルMOSトランジスタQ1B〜QnBのドレインと回路網100とをそれぞれ電気的に結合する。
In the operation period subsequent to the above blanking period, switch circuits S1 to Sn electrically couple the drains of N channel MOS transistors Q1B to QnB and
このとき、図2に示すように、スイッチ回路T1B〜TnBは、いずれもオフとなり、対応するNチャネルMOSトランジスタQ1B〜QnBのドレインとゲートとを電気的に分離する。スイッチ回路T1A〜TnAについても同様に、いずれもオフとなり、対応する電流源トランジスタQ1A〜QnAのドレインとゲートとを電気的に分離する。 At this time, as shown in FIG. 2, the switch circuits T1B to TnB are all turned off, and the drains and gates of the corresponding N-channel MOS transistors Q1B to QnB are electrically separated. Similarly, the switch circuits T1A to TnA are all turned off, and the drains and gates of the corresponding current source transistors Q1A to QnA are electrically separated.
なお、各スイッチがオフとなる時刻は、同時でもよいが、図2に示すように、スイッチT1B〜TnBが先立って時刻t1でオフし、続いてスイッチT1A〜TnAが時刻t2(>t1)でオフするように設定することが望ましい。スイッチT1B〜TnBが先にオフすることによって、ノードN1Aの電位レベルが低下し、このレベルがn型TFT素子のゲート電圧として保持されるのを回避するためである。 Note that the time at which each switch is turned off may be simultaneous, but as shown in FIG. 2, the switches T1B to TnB are turned off at the time t1 in advance, and the switches T1A to TnA are subsequently turned on at the time t2 (> t1). It is desirable to set to turn off. This is to prevent the potential level of the node N1A from being lowered by turning off the switches T1B to TnB first, and this level being held as the gate voltage of the n-type TFT element.
再び図3を参照して、この状態において、回路網100から所定の電圧が供給されると、ノードND1Bの電位はそれぞれ上昇する。ここで、回路網100からの供給電圧を図9に示すVDS2とすると、ノードND1Bの電位は先のVDSよりも増加する。図10のトランジスタ特性に示すように、VDSの増加に応じて、チャネル変調により、NチャネルMOSトランジスタQ1Bのドレイン・ソース間電流IDSは、IDS1からIDS2に増加しようとする。
Referring to FIG. 3 again, in this state, when a predetermined voltage is supplied from
仮にドレイン・ソース間電流IDSがIDS2に増加したとすれば、同じ電流IDS2が電流源トランジスタQ1Aにも駆動されることから、ノードND1Aの電位も上昇することとなる。 If the drain-source current IDS increases to IDS2, the same current IDS2 is also driven by the current source transistor Q1A, so that the potential of the node ND1A also rises.
しかしながら、ノードND1Aの電位が上昇すれば、NチャネルMOSトランジスタQ1Bのゲート・ソース間電圧VGSBが減少することになる。このゲート・ソース間電圧VGSBの減少は、NチャネルMOSトランジスタQ1Bのドレイン・ソース間電流IDSを減少させる方向に作用する。 However, if the potential of node ND1A increases, gate-source voltage VGSB of N-channel MOS transistor Q1B decreases. This reduction in the gate-source voltage VGSB acts in the direction of reducing the drain-source current IDS of the N-channel MOS transistor Q1B.
ここで、ドレイン・ソース間電流IDSが減少するとすれば、ノードND1Aの電位は下降することになる。ノードND1Aの電位の下降は、ゲート・ソース間電圧VGSBを増加させることになり、ドレイン・ソース間電流IDSを増加させる方向に作用する。結果として、ノードND1Aの電位はほとんど変化することがなく、電流源トランジスタQ1Aのドレイン・ソース間電圧VDSAは一定レベルに保たれることとなる。すなわち、NチャネルMOSトランジスタQ1Bは、電流源トランジスタQ1Aのドレイン電圧の変動を抑える働きをする。したがって、電流源トランジスタQ1Aに駆動される電流IDSは、基準電流I0レベルを維持することとなる。 Here, if the drain-source current IDS decreases, the potential of the node ND1A decreases. The decrease in the potential of the node ND1A increases the gate-source voltage VGSB, which acts in the direction of increasing the drain-source current IDS. As a result, the potential of the node ND1A hardly changes, and the drain-source voltage VDSA of the current source transistor Q1A is kept at a constant level. That is, N channel MOS transistor Q1B functions to suppress fluctuations in the drain voltage of current source transistor Q1A. Therefore, the current IDS to be driven current source transistor Q1A becomes possible to maintain the reference current I 0 level.
最終的に、回路網から電流源トランジスタに駆動される電流は、最小電流の経路で決まり、ブランキング期間に設定された基準電流I0となる。なお、本実施の形態では、電流源回路の各トランジスタをN型トランジスタで構成し、回路網から電流を流出させるタイプについて説明したが、回路網に電流を流入させるタイプについても、電流が逆方向となるだけで動作は同じである。 Eventually, the current driven from the circuit network to the current source transistor is determined by the path of the minimum current and becomes the reference current I 0 set in the blanking period. In the present embodiment, each type of transistor in the current source circuit is an N-type transistor, and the type in which current flows out from the circuit network has been described. However, the current also flows in the reverse direction in the type in which current flows into the circuit network. The operation is the same.
実施の形態1の変更例.
図4は、回路網100に電流を流入させるタイプとしたときの電流源回路の構成を示す回路図である。
Modification example of the first embodiment.
FIG. 4 is a circuit diagram showing a configuration of a current source circuit when a current is made to flow into the
図4に示すように、電流源回路において、電流源トランジスタQ1A〜QnAおよびトランジスタQ1B〜QnBは、PチャネルMOSトランジスタで構成される。本構成において、電流源トランジスタQ1A〜QnAのドレインおよびPチャネルMOSトランジスタQ1B〜QnBのドレインは、それぞれ電源電圧VHに接続される。 As shown in FIG. 4, in the current source circuit, current source transistors Q1A to QnA and transistors Q1B to QnB are formed of P-channel MOS transistors. In this configuration, the drains of current source transistors Q1A to QnA and the drains of P channel MOS transistors Q1B to QnB are connected to power supply voltage VH, respectively.
最初に、任意のブランキング期間において、スイッチ回路S1〜Snの各々は、Hレベルの制御信号に応答して、PチャネルMOSトランジスタQ1B〜QnBのドレインと定電流源60とを電気的に結合する。
First, in any blanking period, each of switch circuits S1 to Sn electrically couples the drains of P channel MOS transistors Q1B to QnB and constant
このとき、スイッチ回路T1B〜TnBはオンし、PチャネルMOSトランジスタQ1B〜QnBにおいて、ドレインとゲートとが結合されたダイオード接続を形成する。さらに、スイッチ回路T1A〜TnAもオンし、電流源トランジスタQ1A〜QnAにおいて、ドレインとゲートとが結合されたダイオード接続を形成する。 At this time, switch circuits T1B to TnB are turned on to form a diode connection in which the drain and the gate are coupled in P channel MOS transistors Q1B to QnB. Further, the switch circuits T1A to TnA are turned on to form a diode connection in which the drain and the gate are coupled in the current source transistors Q1A to QnA.
これにより、電源電圧VH〜電流源トランジスタ(Q1A〜QnA)〜PチャネルMOSトランジスタ(Q1B〜QnB)〜定電流源60に至る電流経路が形成される。この電流経路において、両トランジスタは定電流源60と電源電圧VHとの間に直列接続されていることから、同じ電流I0が駆動されることとなる。
Thus, a current path is formed from power supply voltage VH to current source transistors (Q1A to QnA) to P channel MOS transistors (Q1B to QnB) to constant
次に、動作期間になると、スイッチ回路S1〜Snは、Lレベルの制御信号に応答して、PチャネルMOSトランジスタQ1B〜QnBのドレインと回路網100とをそれぞれ電気的に結合する。
Next, in the operation period, switch circuits S1 to Sn electrically couple the drains of P channel MOS transistors Q1B to QnB and
このとき、スイッチ回路T1B〜TnBは、いずれもオフとなり、対応するPチャネルMOSトランジスタQ1B〜QnBのドレインとゲートとを電気的に分離する。スイッチ回路T1A〜TnAについても同様に、いずれもオフとなり、対応する電流源トランジスタQ1A〜QnAのドレインとゲートとを電気的に分離する。 At this time, switch circuits T1B to TnB are all turned off, and the drains and gates of corresponding P-channel MOS transistors Q1B to QnB are electrically separated. Similarly, the switch circuits T1A to TnA are all turned off, and the drains and gates of the corresponding current source transistors Q1A to QnA are electrically separated.
この状態において、回路網100から所定の電圧が供給されると、ノードND1B〜NDnBの電位が変動する。ここで、ノードND1B〜NDnBの電位が低下したとすれば、PチャネルMOSトランジスタQ1B〜QnBのドレイン・ソース間電圧VDSが増加し、チャネル変調に起因してPチャネルMOSトランジスタQ1B〜QnBのドレイン・ソース間電流IDSが増加しようとする。
In this state, when a predetermined voltage is supplied from the
仮にドレイン・ソース間電流IDSが増加したとすれば、同じ電流IDSが電流源トランジスタQ1A〜QnAにも駆動されることから、ノードND1Aの電位を低下させることとなる。 If the drain-source current IDS increases, the same current IDS is also driven by the current source transistors Q1A to QnA, so that the potential of the node ND1A is lowered.
しかしながら、ノードND1A〜NDnAの電位が低下すれば、PチャネルMOSトランジスタQ1B〜QnBのゲート・ソース間電圧VGSが減少することになる。このゲート・ソース間電圧VGSの減少は、NチャネルMOSトランジスタQ1B〜QnBのドレイン・ソース間電流IDSを減少させる方向に作用する。 However, if the potentials of nodes ND1A to NDnA are lowered, gate-source voltage VGS of P channel MOS transistors Q1B to QnB is reduced. This reduction in the gate-source voltage VGS acts in a direction to reduce the drain-source current IDS of the N-channel MOS transistors Q1B to QnB.
ここで、ドレイン・ソース間電流IDSが減少するとすれば、ノードND1A〜NDnAの電位は上昇することになる。ノードND1A〜MDnAの電位の上昇は、ゲート・ソース間電圧VGSを低下させることになり、ドレイン・ソース間電流IDSを減少させる方向に作用する。結果として、ノードND1A〜NDnAの電位はほとんど変化することがなく、電流源トランジスタQ1A〜QnAのドレイン・ソース間電圧VDSAは一定レベルに保たれることとなる。すなわち、PチャネルMOSトランジスタQ1B〜QnBは、電流源トランジスタQ1A〜QnAのドレイン電圧の変動を抑える働きをする。したがって、電流源トランジスタQ1A〜QnAに駆動される電流IDSは、基準電流I0レベルを維持することとなる。 Here, if the drain-source current IDS decreases, the potentials of the nodes ND1A to NDnA rise. An increase in the potentials of the nodes ND1A to MDnA lowers the gate-source voltage VGS and acts in the direction of decreasing the drain-source current IDS. As a result, the potentials of the nodes ND1A to NDnA hardly change, and the drain-source voltage VDSA of the current source transistors Q1A to QnA is kept at a constant level. That is, P channel MOS transistors Q1B to QnB function to suppress fluctuations in drain voltage of current source transistors Q1A to QnA. Therefore, the current IDS to be driven current source transistor Q1A~QnA becomes possible to maintain the reference current I 0 level.
以上のように、この発明の実施の形態1によれば、電流源トランジスタのチャネル変調に影響されず、回路網に所望の電流を精度良く供給可能な電流源回路を実現することができる。 As described above, according to the first embodiment of the present invention, it is possible to realize a current source circuit that can accurately supply a desired current to the circuit network without being affected by channel modulation of the current source transistor.
実施の形態2.
実施の形態2では、実施の形態1による電流源回路が、DA(デジタルアナログ)コンバータに適用される場合が示される。
In the second embodiment, the current source circuit according to the first embodiment is applied to a DA (digital analog) converter.
図5は、この発明の実施の形態2によるDAコンバータの構成を示す回路図である。 FIG. 5 is a circuit diagram showing a configuration of a DA converter according to the second embodiment of the present invention.
図5を参照して、DAコンバータは、実施の形態1に係る電流源回路に対して、定電流源として、互いに電流レベルの異なる複数個(たとえば3個)の定電流源60,62,64が設けられる点でのみ異なる。したがって、重複する部位についての詳細な説明は繰り返さない。
Referring to FIG. 5, in the DA converter, a plurality of (for example, three) constant
3個の定電流源60,62,64は、基準電流がそれぞれI0,2I0,4I0であり、2進数で重み付けされる。スイッチ回路S1〜S3は、定電流源60,62,64の各々および回路網100とNチャネルMOSトランジスタQ1B〜Q3Bのドレインとの間にそれぞれ配される。なお、図示は省略するが、スイッチ回路S4以降についても同様に、3個のスイッチ回路を一単位として、3個の定電流源60,62,64および回路網100とノードND4B,ND5B・・・とをそれぞれ結合するように配される。
The three constant
スイッチ回路S1〜S3は、たとえば図5に示すように、図示しない3ビットのデジタル入力(たとえばD2D1D0とする)に応答して、対応するノードND1B〜ノードND3Bを定電流源60,62,64および回路網100のいずれか一方とを結合する。
For example, as shown in FIG. 5, the switch circuits S1 to S3 respond to a 3-bit digital input (not shown) (for example, D2D1D0) by turning the corresponding nodes ND1B to ND3B into constant
詳細には、図5に示すように、スイッチ回路S1は、Hレベルのデジタル入力D0に応答して、NチャネルMOSトランジスタQ1Bのドレイン(ノードND1Bに相当)と定電流源60とを電気的に結合する。一方、スイッチ回路S1は、Lレベルのデジタル入力D0に応答して、MチャネルMOSトランジスタQ1Bのドレインと回路網100とを電気的に結合する。
Specifically, as shown in FIG. 5, the switch circuit S1 electrically connects the drain of the N-channel MOS transistor Q1B (corresponding to the node ND1B) and the constant
スイッチ回路S2についても同様に、Hレベルのデジタル入力D1に応答して、NチャネルMOSトランジスタQ2Bのドレイン(ノードND2Bに相当)と定電流源62と回路網100とを電気的に結合し、Lレベルのデジタル入力D1に応答して、NチャネルMOSトランジスタQ2Bのドレインと回路網100とを電気的に結合する。
Similarly, switch circuit S2 electrically couples the drain of N-channel MOS transistor Q2B (corresponding to node ND2B), constant
スイッチ回路S3についても同様に、Hレベルのデジタル入力D2に応答して、NチャネルMOSトランジスタQ3Bのドレイン(ノードND3Bに相当)と定電流源64と回路網100とを電気的に結合し、Lレベルのデジタル入力D2に応答して、NチャネルMOSトランジスタQ3Bのドレインと回路網100とを電気的に結合する。なお、図示しないスイッチ回路S4以降においても、1単位ごとに3ビットのデジタル入力に応答して、対応する定電流源と回路網とを選択的に結合する。以下においては、簡単のため、一単位のスイッチ回路S1〜S3におけるDA変換動作について説明する。
Similarly, switch circuit S3 electrically couples the drain of N-channel MOS transistor Q3B (corresponding to node ND3B), constant
電流源回路において、NチャネルMOSトランジスタQ1B〜Q3B、スイッチ回路T1B〜T3Bおよび容量素子C1B〜C3Bは、実施の形態1で述べたように、対応する電流源トランジスタQ1B〜Q3Bのドレイン電圧を一定に保つドレイン電圧上昇制限回路を構成する。 In the current source circuit, N-channel MOS transistors Q1B to Q3B, switch circuits T1B to T3B, and capacitive elements C1B to C3B have the drain voltages of corresponding current source transistors Q1B to Q3B constant as described in the first embodiment. A drain voltage rise limiting circuit to be maintained is configured.
詳細には、図5のDAコンバータにおいて、スイッチ回路S1〜S3は、ブランキング期間に応じて、いずれも定電流源側に接続される。定電流源60,62,64は、NチャネルMOSトランジスタQ1B〜Q3Bおよび電流源トランジスタQ1A〜Q3Aに基準電流I0,2I0,4I0をそれぞれ駆動する。これにより、NチャネルMOSトランジスタQ1B〜Q3Bおよび電流源トランジスタQ1A〜Q3Aのゲートに接続される容量素子C1B〜C3B,C1A〜C3Aには、対応する基準電流に応じた電圧レベルが記憶される。
Specifically, in the DA converter of FIG. 5, the switch circuits S1 to S3 are all connected to the constant current source side according to the blanking period. Constant
次に、動作期間においては、3ビットのデジタル入力(D2D1D0)に応じてスイッチ回路S1〜S3が切り換わり、回路網100とNチャネルMOSトランジスタQ1B〜Q3Bのドレインとが選択的に結合される。
Next, in the operation period, the switch circuits S1 to S3 are switched according to the 3-bit digital input (D2D1D0), and the
このとき、実施の形態1で述べたように、各電流源トランジスタQ1A〜Q3Aは、NチャネルMOSトランジスタQ1B〜Q3Bによって、チャネル変調によるドレイン電圧の変動が抑えられ、一定に保持される。 At this time, as described in the first embodiment, each of the current source transistors Q1A to Q3A is held constant by the N-channel MOS transistors Q1B to Q3B with the fluctuation of the drain voltage due to channel modulation suppressed.
これにより、電流源トランジスタQ1A〜Q3Aからは、ブランキング期間に記憶された基準電流に等しい電流が駆動される、結果として、回路網100には、3ビットのデジタル入力(D2D1D0)によって指定される電流Iが駆動される。なお、回路網100に供給される電流Iは、
I=(4I0・D2+2I0・D1+I0・D0) ・・・(5)
となる。ただし、Dは1または0である。
As a result, a current equal to the reference current stored in the blanking period is driven from the current source transistors Q1A to Q3A. As a result, the
I = (4I 0 · D2 + 2I 0 · D1 + I 0 · D0) (5)
It becomes. However, D is 1 or 0.
なお、本実施の形態は、基準電流の重み付けが2進数のときに限定されず、いかなるn進数においても適用可能であることは言うまでもない。また、実施の形態1と同様に、各トランジスタをP型トランジスタで構成しても、電流の流れる方向が異なるのみで同様の動作を行なうことができる。 Needless to say, this embodiment is not limited to the case where the weighting of the reference current is a binary number, and can be applied to any n-ary number. Similarly to the first embodiment, even when each transistor is formed of a P-type transistor, the same operation can be performed only in the direction in which the current flows.
以上のように、この発明の実施の形態2によれば、各電流源トランジスタの電流が素子特性のばらつきに影響されないことから、正確な倍率の電流を得ることができ、精度の高いDAコンバータを実現することができる。 As described above, according to the second embodiment of the present invention, since the current of each current source transistor is not affected by variations in element characteristics, a current with an accurate magnification can be obtained, and a highly accurate DA converter can be obtained. Can be realized.
実施の形態3.
実施の形態3では、実施の形態1による電流源回路がエレクトロルミネッセンス表示装置(以下、EL表示装置とも称する)に適用される場合が示される。
The third embodiment shows a case where the current source circuit according to the first embodiment is applied to an electroluminescence display device (hereinafter also referred to as an EL display device).
近年、フラットパネル・ディスプレイの分野において注目される、低温ポリシリコン型TFTで構成されるEL表示装置においては、装置小型化の観点から、従来外付けのLSIによって構成されていた周辺回路を画像表示部と同一のガラス基板上に一体成形することが望まれている。 In recent years, EL display devices composed of low-temperature polysilicon TFTs, which are attracting attention in the field of flat panel displays, display images of peripheral circuits that have conventionally been configured by external LSIs from the viewpoint of device miniaturization. It is desired to be integrally formed on the same glass substrate as the part.
一方、EL表示装置においては、画素回路に印加する電圧を変化させることによって、画素回路ごとに設けられた電流駆動型発光素子である有機発光ダイオードに供給する電流を変化させることにより、有機発光ダイオードの表示輝度を変化させている。 On the other hand, in the EL display device, by changing the voltage applied to the pixel circuit, the current supplied to the organic light-emitting diode, which is a current-driven light-emitting element provided for each pixel circuit, is changed. The display brightness is changed.
EL表示装置の周辺回路には、画像データに応じた表示輝度で画素回路を駆動するためのデータ電流を画素回路が接続されるデータ線へ出力するソース駆動回路が含まれる。 The peripheral circuit of the EL display device includes a source drive circuit that outputs a data current for driving the pixel circuit with display luminance corresponding to image data to a data line to which the pixel circuit is connected.
階調表示を機能付けるソース駆動回路においては、高い動作安定性が求められており、その高い動作安定性を達成するためには、内部に含まれる電流源回路の安定動作が重要とされる。 In a source driving circuit that functions gradation display, high operation stability is required, and in order to achieve the high operation stability, stable operation of a current source circuit included therein is important.
しかしながら、ガラス基板上や樹枝基板上に形成されるポリシリコン型TFTにおいては、シリコン基板上に形成されるトランジスタと比べてしきい値電圧のばらつきが大きいことから、電流源回路をTFTで構成したときには、駆動電流の設定精度において問題が生じてしまう。 However, in the polysilicon type TFT formed on the glass substrate or the dendritic substrate, the variation in threshold voltage is larger than that of the transistor formed on the silicon substrate. Therefore, the current source circuit is constituted by the TFT. Sometimes, a problem arises in the setting accuracy of the drive current.
そこで、本実施の形態では、EL表示装置に含まれるソース駆動回路に、実施の形態1に係る電流源回路を採用し、安定した動作を保証するものとする。
Therefore, in this embodiment, the current source circuit according to
図6は、この発明の実施の形態3によるEL表示装置の全体構成を示す概略ブロック図である。
FIG. 6 is a schematic block diagram showing the overall configuration of an EL display device according to
図6を参照して、EL表示装置は、表示部20と、ゲート駆動回路30と、ソース駆動回路40とを備える。
Referring to FIG. 6, the EL display device includes a
表示部20は、行列状に配された複数の画素回路10を含む。画素回路の行(以下、画素行とも称する)の各々に対応して、走査線SLが配置される。また、画素回路の列(以下、画素列とも称する)のそれぞれに対応して、データ線DLがそれぞれ設けられる。図5には、第1行の第1列から第3列の画素回路ならびにこれに対応する走査線SLおよびデータ線DL(R),DL(G),DL(B)が代表的に示されている。
The
ゲート駆動回路30は、所定の走査周期に基づいて、走査線SLを走査期間において選択状態に設定し、それ以外の非走査期間において非選択状態に設定するように、走査線SLの電圧を制御する。
Based on a predetermined scanning cycle, the
ソース駆動回路40は、Nビット(N:自然数)のデジタル信号である表示信号SIGによって段階的に設定される表示電流をデータ線DLに出力する。図6には、N=6の場合、すなわち、表示信号SIGが表示信号ビットD0〜D5からなる場合の構成について代表的に示されている。6ビットの表示信号に基づいて、各画素において、26=64段階の階調的な輝度表示が可能となる。
The
ソース駆動回路40は、シフトレジスタ50と、第1および第2のデータラッチ回路52,54と、電流源回路56とを含む。
表示信号SIGは、画素回路10ごとに表示輝度に対応してシリアルに生成される。すなわち、各タイミングにおける表示信号ビットD0〜D5は、表示部20中の1つの画素回路10における表示輝度を示している。
The display signal SIG is generated serially for each
シフトレジスタ50は、表示信号SIGの設定が切換えられる所定周期に同期したタイミングで、第1のデータラッチ回路52に対して、表示信号ビットD0〜D5の取込を指示する。第1のデータラッチ回路52は、シリアルに生成される1つの画素行分の表示信号SIGを、順に取込んで保持する。
The
1つの画素行分の表示信号SIGが第1のデータラッチ回路52に取込まれたタイミングで、ラッチ信号LTの活性化に応答して、第1のデータラッチ回路52にラッチされた表示信号群は、第2のデータラッチ回路54に伝達される。
A group of display signals latched in the first
電流源回路56は、第2のデータラッチ回路54から1つの画素行分の画素データ(6ビット)を受け、各画素回路10において64階調の表示を行なうため、64レベルの表示電流IELを発生し、列方向に配置されたデータ線DLへ一斉に出力する。
The
ゲート駆動回路30が走査対象行に対応する走査線SLを活性化すると、その走査線SLに接続される画素回路10が一斉に活性化される。各画素回路10は、対応するデータ線DLに印加されている表示電流IELに応じた輝度で表示を行ない、これによって1画素行分の画素データが表示される。
When the
以上の動作を行方向に配置された走査線SLごとに順次実行することにより、表示部20に画像が表示される。
An image is displayed on the
図7は、図6に示した画素回路10の構成を示す回路図である。図7においては、データ線DL(R)および走査線SLに接続される画素について示されるが、その他の画素についても、構成は同じである。
FIG. 7 is a circuit diagram showing a configuration of the
図7を参照して、画素回路10は、有機発光ダイオードOLEDと、P型薄膜トランジスタ(以下、TFTとも称する)素子Qdと、電圧保持キャパシタCHと、スイッチ回路SW1〜SW3とを含む。
Referring to FIG. 7,
有機発光ダイオードOLEDは、電流駆動型の発光素子であって、供給される電流に応じてその表示輝度が変化する。有機発光ダイオードOLEDのカソードは、電源電圧VLに接続される。電源電圧VLには、接地電圧または所定の負電圧が印加される。 The organic light-emitting diode OLED is a current-driven light-emitting element, and its display luminance changes according to a supplied current. The cathode of the organic light emitting diode OLED is connected to the power supply voltage VL. A ground voltage or a predetermined negative voltage is applied to the power supply voltage VL.
P型TFT素子Qdは、電源電圧VHと有機発光ダイオードOLEDのアノードとの間に接続される。P型TFT素子Qdのゲートは、電圧保持キャパシタCHを介してP型TFT素子Qdのソースに接続されるとともに、スイッチ回路SW2を介してP型TFT素子のドレインに接続される。 The P-type TFT element Qd is connected between the power supply voltage VH and the anode of the organic light emitting diode OLED. The gate of the P-type TFT element Qd is connected to the source of the P-type TFT element Qd via the voltage holding capacitor CH, and is connected to the drain of the P-type TFT element via the switch circuit SW2.
スイッチ回路SW1は、P型TFT素子Qdのドレインとデータ線DLとの間に接続される。スイッチ回路SW3は、P型TFT素子Qdのドレインと有機発光ダイオードOLEDのアノードとの間に接続される。 The switch circuit SW1 is connected between the drain of the P-type TFT element Qd and the data line DL. The switch circuit SW3 is connected between the drain of the P-type TFT element Qd and the anode of the organic light emitting diode OLED.
以上の構成からなる画素回路10において、表示動作は2段階において行なわれる。
In the
まず、アドレス周期に対応するデータ書込モードにおいては、有機発光ダイオードOLEDからの必要な出力を決定する表示電流IELを画素回路10からデータ線DLを介して電流源回路56に供給する。このとき、スイッチ回路SW1,SW2をオンして、P型TFT素子Qdをダイオード接続するとともに、スイッチ回路SW3をオフして、有機発光ダイオードOLEDを絶縁する。これにより、電源電圧VH〜P型TFT素子Qd〜データ線DLの電流経路が形成されて、当該電流経路に表示電流IELが流れる。
First, in the data write mode corresponding to the address cycle, a display current I EL for determining a necessary output from the organic light emitting diode OLED is supplied from the
さらに、スイッチ回路SW1,SW2をオフして、画素回路10をデータ線DLから絶縁するとともに、電圧保持キャパシタCHを絶縁する。これにより、電圧保持キャパシタCHの端子間電圧には、P型TFT素子Qdに表示電流IELを流すのに必要なゲート・ソース間電圧VGSが格納される。
Further, the switch circuits SW1 and SW2 are turned off to insulate the
電圧保持キャパシタCHにゲート・ソース間電圧VGSが格納されてデータ書込モードが終了すると、スイッチ回路SW3をオンして有機発光ダイオードOLEDのカソードをP型TFT素子Qdのドレインに接続することにより、表示モードが開始する。 When the gate-source voltage VGS is stored in the voltage holding capacitor CH and the data writing mode is completed, the switch circuit SW3 is turned on to connect the cathode of the organic light emitting diode OLED to the drain of the P-type TFT element Qd. Display mode starts.
表示モードにおいては、P型TFT素子Qdは、先述の表示電流IELによって決定される出力を有機発光ダイオードOLEDから発生するために、電圧保持キャパシタCHに格納される電圧VGSに応じた電流を有機発光ダイオードOLEDに駆動する。すなわち、P型TFT素子Qdが電流源として動作することにより、表示電流IELに等しい電流が有機発光ダイオードOLEDを流れることになる。 In the display mode, the P-type TFT element Qd generates a current corresponding to the voltage VGS stored in the voltage holding capacitor CH in order to generate an output determined by the display current I EL from the organic light emitting diode OLED. Drives to the light emitting diode OLED. That is, when the P-type TFT element Qd operates as a current source, a current equal to the display current I EL flows through the organic light emitting diode OLED.
なお、図7では、電流源となるトランジスタをP型TFT素子で構成したが、印加される電圧の極性を逆にして、N型TFT素子で構成することもできる。この場合の構成は、表示電流IELの電流経路が図7とは逆方向となるが、各モードの動作は同じである。 In FIG. 7, the transistor serving as the current source is configured by the P-type TFT element, but may be configured by the N-type TFT element by reversing the polarity of the applied voltage. In this case, the current path of the display current I EL is in the opposite direction to that in FIG. 7, but the operation in each mode is the same.
図8は、図6における電流源回路56の構成を示す回路図である。
FIG. 8 is a circuit diagram showing a configuration of
図8を参照して、電流源回路56は、実施の形態2に係るDAコンバータを基本とした構成からなる。電流源回路56は、画素回路10に接続される1本のデータ線DLに対して配される図8の構成を1単位とし、連続して配列される複数単位(図示せず)と、6個の定電流源60〜70とを有する。
Referring to FIG. 8,
電流源回路56は、1本のデータ線DLに対して並列に接続される6個の電流源トランジスタQ1A〜Q6Aと、各電流源トランジスタQ1A〜Q6Aのドレインと定電流源60〜70および画素回路10のいずれか一方と選択的に結合するスイッチ回路S1〜S6とを備える。
The
電流源回路56は、電流源トランジスタQ1A〜Q6Aの各々について、ドレインとゲートとの間を電気的に結合/分離するスイッチ回路T1A〜T6Aと、ゲートとソースとの間に結合される容量素子C1A〜C6Aとをさらに備える。
For each of the current source transistors Q1A to Q6A, the
電流源回路56は、さらに、電流源トランジスタQ1A〜Q6Aのドレインとスイッチ回路S1〜S6との間にそれぞれ結合されるNチャネルMOSトランジスタQ1B〜Q6Bを備える。
NチャネルMOSトランジスタQ1B〜Q6Bは、ドレインがスイッチ回路S1〜S6にそれぞれ接続され、ソースが電流源トランジスタQ1A〜Q6Aのドレインにそれぞれ接続される。 N channel MOS transistors Q1B to Q6B have drains connected to switch circuits S1 to S6, respectively, and sources connected to drains of current source transistors Q1A to Q6A, respectively.
電流源回路56は、NチャネルMOSトランジスタQ1B〜Q6Bのドレイン・ゲート間を電気的に結合/分離するスイッチ回路T1B〜T6Bと、NチャネルMOSトランジスタQ1B〜Q6Bのゲートと電源電圧VLとの間に結合される容量素子C1B〜C6Bとをさらに備える。
以上に示す電流源回路56は、図1に示す電流源回路と同様の構成を有するものであるが、電流源トランジスタQ1A〜Q6Aと電気的に結合される定電流源60〜70が、それぞれ重み付けされた基準電流を有する点において異なる。
The
詳細には、6個の定電流源60〜70は、基準電流がそれぞれI0,2I0,4I0,8I0,16I0,32I0であり、2進数で重み付けされる。図8に示すように、定電流源60は、スイッチ回路S1によって、NチャネルMOSトランジスタQ1Bのドレインと電気的に結合される。定電流源62は、スイッチ回路S2によって、NチャネルMOSトランジスタQ2Bのドレインと電気的に結合される。定電流源64は、スイッチ回路S3によって、NチャネルMOSトランジスタQ3Bのドレインと電気的に結合される。定電流源66は、スイッチ回路S4によって、NチャネルMOSトランジスタQ4Bのドレインと電気的に結合される。定電流源68は、スイッチ回路S5によって、NチャネルMOSトランジスタQ5Bのドレインと電気的に結合される。定電流源70は、スイッチ回路S6によって、NチャネルMOSトランジスタQ6Bのドレインと電気的に結合される。
Specifically, the six constant
スイッチ回路S1〜S6はそれぞれ、図6における第2のデータラッチ回路54から伝達される表示信号ビットD0〜D5に応じて、対応する定電流源およびデータ線DLのいずれか一方と、対応するNチャネルMOSトランジスタQ1B〜Q6Bのドレインとを選択的に結合する。
Each of the switch circuits S1 to S6 corresponds to any one of the corresponding constant current source and the data line DL according to the display signal bits D0 to D5 transmitted from the second
電流源回路56において、NチャネルMOSトランジスタQ1B〜Q6B、スイッチ回路T1B〜T6Bおよび容量素子C1B〜C6Bは、実施の形態1で述べたように、対応する電流源トランジスタQ1A〜Q6Aのドレイン電圧を一定に保つ、ドレイン電圧上昇制限回路として機能する。
In
図8の電流源回路56においては、データ書込モードの開始時に、スイッチ回路S1〜S6が表示信号ビットD0〜D6に応答して、定電流源60〜70側に接続される。このとき、たとえば、対応する表示信号ビットがHレベル(=1)であれば、対応するノードND1B〜ND6Bと定電流源60〜70とが電気的に結合される。一方、対応する表示信号ビットがLレベル(=0)であれば、対応するノードND1B〜ND6Bと定電流源60〜70とが電気的に結合される。
In the
これにより、NチャネルMOSトランジスタQ1B〜Q6Bおよび電流源トランジスタQ1A〜Q6Aには、基準電流I0,2I0,・・・32I0が選択的に駆動される。これにより、容量素子C1A〜C6AおよびC1B〜C6Bには、対応するNチャネルMOSトランジスタおよび電流源トランジスタに基準電流を駆動するために必要な電圧が記憶される。 Thus, reference currents I 0 , 2I 0 ,... 32I 0 are selectively driven in N channel MOS transistors Q1B-Q6B and current source transistors Q1A-Q6A. Thus, voltages necessary for driving the reference current to the corresponding N-channel MOS transistor and current source transistor are stored in capacitive elements C1A to C6A and C1B to C6B.
続いて、6ビットの表示信号ビットD0〜D5に応じてスイッチ回路S1〜S6を画素回路10側に切換えられ、データ線DLとNチャネルMOSトランジスタQ1B〜Q6Bのドレインとが電気的に結合される。
Subsequently, the switch circuits S1 to S6 are switched to the
これにより、画素回路10には、6ビットの表示信号ビットD5〜D0によって指定される表示電流IELが駆動される。電流源トランジスタQ1A〜Q6Aからは、ドレイン電圧上昇制限回路によって基準電流に等しい電流がそれぞれ供給されるため、表示電流IELは、
IEL=(32I0・D5+16I0・D4+8I0・D3+4I0・D2+2I0・D1+I0・D0) ・・・(6)
となる。ただし、Dは1または0である。
Thereby, the display current I EL specified by the 6-bit display signal bits D5 to D0 is driven in the
I EL = (32I 0 · D5 + 16I 0 · D4 + 8I 0 · D3 + 4I 0 · D2 + 2I 0 · D1 + I 0 · D0) (6)
It becomes. However, D is 1 or 0.
この表示電流IELは、電流源回路56によって、6ビットの表示信号によって指定される電流値に正確に調整されている。画素回路10は、図7に示したように、データ書込モードにおいて、この表示電流IELを電圧保持キャパシタCHに記憶し、表示モードにおいて、記憶した電流を有機発光ダイオードOLEDに駆動する。結果として、画素回路10の有機発光ダイオードOLEDには、表示輝度に応じて設定された電流IELが高い精度を持って駆動され、表示むらの発生を抑えることができる。なお、本実施の形態では、表示電流が画素回路10からデータ線DLに流出する構成について説明したが、電流源回路56の各トランジスタをP型トランジスタで構成すれば、画素回路10に表示電流が流入する構成とすることもできる。
The display current I EL is accurately adjusted by the
以上のように、この発明の実施の形態3によれば、TFT素子のしきい値電圧のばらつきに起因する駆動回路の誤動作を防止することができる。 As described above, according to the third embodiment of the present invention, it is possible to prevent malfunction of the drive circuit due to variations in the threshold voltage of the TFT elements.
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
10 画素回路、20 表示部、30 ゲート駆動回路、40 ソース駆動回路、50 シフトレジスタ、52 第1のデータラッチ回路、54 第2のデータラッチ回路、56 電流源回路、60,62,64,66,68,70 定電流源、100 回路網、C1A〜CnA,C1B〜CnB 容量素子、CH 電圧保持キャパシタ、M1〜Mn,Q1A〜QnA 電流源トランジスタ、Q1B〜QnB NチャネルMOSトランジスタ、Qd P型TFT素子、OLED 有機発光ダイオード、DL データ線、SL 走査線、S1〜Sn,SW1〜SW3,T1A〜TnA,T1B〜TnB スイッチ回路。 10 pixel circuit, 20 display unit, 30 gate drive circuit, 40 source drive circuit, 50 shift register, 52 first data latch circuit, 54 second data latch circuit, 56 current source circuit, 60, 62, 64, 66 , 68, 70 Constant current source, 100 circuit network, C1A to CnA, C1B to CnB capacitive element, CH voltage holding capacitor, M1 to Mn, Q1A to QnA current source transistor, Q1B to QnB N-channel MOS transistor, Qd P-type TFT Element, OLED organic light emitting diode, DL data line, SL scanning line, S1 to Sn, SW1 to SW3, T1A to TnA, T1B to TnB switch circuit.
Claims (10)
第1のモードにおいて、第1の電圧源と電気的に結合されて前記基準電流を流入または流出し、前記第1のモードの後に実行される第2のモードにおいて、前記第1の電圧源と電気的に分離されるとともに、前記回路網と電気的に結合されるノードと、
前記ノードと第2の電圧源との間に接続され、前記第1のモードにおいて、前記ノードに流入または流出される前記基準電流が通過するとともに、前記第2のモードにおいて、通過した前記基準電流に応じた電流を前記回路網に駆動する電流駆動部とを備え、
前記電流駆動部は、
前記ノードと前記第2の電圧源との間に直列に接続され、前記第1のモードにおいて、前記基準電流が通過する第1および第2のトランジスタと、
前記第1のモードにおいて、前記第1および第2のトランジスタのゲート電極に前記基準電流によって決定される電圧をそれぞれ保持するように接続される第1および第2の容量素子とを含む、電流源回路。 A current source circuit for supplying a current corresponding to a reference current to a network;
In a first mode, electrically coupled to a first voltage source to flow in or out of the reference current, and in a second mode executed after the first mode, the first voltage source A node electrically isolated and electrically coupled to the network;
The reference current is connected between the node and a second voltage source, and the reference current flowing into or out of the node passes in the first mode, and the reference current passed in the second mode. A current drive unit that drives the current corresponding to the circuit network,
The current driver is
First and second transistors connected in series between the node and the second voltage source and through which the reference current passes in the first mode;
A current source including: first and second capacitive elements connected to hold the voltages determined by the reference current at the gate electrodes of the first and second transistors, respectively, in the first mode; circuit.
前記第1および第2のトランジスタのゲート電極と第1の電極との間にそれぞれ配され、前記第1のモードにおいてオンする一方で、前記第2のモードにおいてオフする第1および第2のスイッチ素子をさらに含む、請求項1に記載の電流源回路。 The current driver is
First and second switches disposed between the gate electrode and the first electrode of the first and second transistors, respectively, which are turned on in the first mode and turned off in the second mode The current source circuit according to claim 1, further comprising an element.
前記第2のトランジスタは、前記第2の電極が前記第1の電圧源に接続され、
前記第1および第2のスイッチ素子は、前記第1のモードにおいて、前記第1のスイッチ素子が、前記第2のスイッチ素子よりも少なくとも先にオフするように設定される、請求項2または3に記載の電流源回路。 The first transistor has the first electrode connected to the node, the second electrode connected to the first electrode of the second transistor,
The second transistor has the second electrode connected to the first voltage source,
The first and second switch elements are set such that, in the first mode, the first switch element is turned off at least before the second switch element. The current source circuit described in 1.
第1のモードにおいて、前記デジタル信号に応じて、各々がn(nは2以上の自然数)進数で重み付けられた基準電流を供給するm個の定電流源と選択的に結合されて所望の電流を流入または流出し、前記第1のモードの後に実行される第2のモードにおいて、前記選択的に結合された定電流源と電気的に分離されるとともに、前記回路網と電気的に結合されるm個のノードと、
前記m個の定電流源と前記m個のノードとの間にそれぞれ配され、前記mビットからなるデジタル信号の各ビットに応じて、対応するノードと前記定電流源および前記回路網のいずれか一方とを電気的に結合するm個のスイッチ素子と、
各前記m個のノードと第2の電圧源との間にそれぞれ接続され、前記第1のモードにおいて、前記対応するノードを流入または流出する前記基準電流が通過するとともに、前記第2のモードにおいて、通過した前記基準電流に応じた電流を前記回路網に駆動するm個の電流駆動部とを備え、
各前記m個の電流駆動部は、
前記ノードと前記第2の電圧源との間に直列に接続され、前記第1のモードにおいて、前記基準電流が通過する第1および第2のトランジスタと、
前記第1のモードにおいて、前記第1および第2のトランジスタのゲート電極に前記基準電流によって決定される電圧をそれぞれ保持するように接続される第1および第2の容量素子とを含む、デジタルアナログ変換回路。 A digital-to-analog conversion circuit that supplies a current corresponding to a digital signal composed of m (m is a natural number) bits to a circuit network,
In the first mode, a desired current is selectively combined with m constant current sources each supplying a reference current weighted by n (n is a natural number of 2 or more) in accordance with the digital signal. In a second mode executed after the first mode, and electrically isolated from the selectively coupled constant current source and electrically coupled to the network. M nodes,
Any one of the corresponding node, the constant current source, and the circuit network is arranged between the m constant current sources and the m nodes, and corresponding to each bit of the m-bit digital signal. M switch elements that electrically couple one of them;
Each of the m nodes is connected to a second voltage source. In the first mode, the reference current flowing in or out of the corresponding node passes, and in the second mode. And m current driving units for driving the current corresponding to the passed reference current to the circuit network,
Each of the m current drivers is
First and second transistors connected in series between the node and the second voltage source and through which the reference current passes in the first mode;
A digital analog comprising: a first capacitive element and a second capacitive element connected to hold the voltages determined by the reference current in the gate electrodes of the first and second transistors, respectively, in the first mode; Conversion circuit.
前記第1および第2のトランジスタのゲート電極と第1の電極との間にそれぞれ配され、前記第1のモードにおいてオンする一方で、前記第2のモードにおいてオフする第1および第2のスイッチ素子をさらに含む、請求項5に記載のデジタルアナログ変換回路。 Each of the m current drivers is
First and second switches disposed between the gate electrode and the first electrode of the first and second transistors, respectively, which are turned on in the first mode and turned off in the second mode The digital-to-analog converter circuit according to claim 5, further comprising an element.
前記第2のトランジスタは、前記第2の電極が前記第1の電圧源に接続され、
前記第1および第2のスイッチ素子は、前記第1のモードにおいて、前記第1のスイッチ素子が、前記第2のスイッチ素子よりも少なくとも先にオフするように設定される、請求項6に記載のデジタルアナログ変換回路。 The first transistor has the first electrode connected to the node, the second electrode connected to the first electrode of the second transistor,
The second transistor has the second electrode connected to the first voltage source,
7. The first and second switch elements are set so that, in the first mode, the first switch element is turned off at least before the second switch element. Digital-to-analog converter circuit.
前記複数の画素回路の行にそれぞれ対応して配置され、一定周期で順に選択される複数の走査線と、
前記複数の画素回路の列に対応して配置される複数のデータ線と、
各前記複数のデータ線に対応して配置され、前記複数の画素回路のうちの走査対象の画素回路での表示輝度を指示するk(kは自然数)ビットの表示信号に対応して設定される表示電流を各前記複数のデータ線に供給する電流源回路とを備え、
前記電流源回路は、
第1のモードにおいて、前記表示信号に応じて、各々がn進数で重み付けられた基準電流を供給するk個(kは自然数)の定電流源と選択的に結合されて所望の電流を流入または流出し、前記第1のモードの後に実行される第2のモードにおいて、前記選択的に結合された定電流源と電気的に分離されるとともに、前記回路網と電気的に結合されるk個のノードと、
前記k個の定電流源と前記k個のノードとの間にそれぞれ配され、前記kビットの表示信号の各ビットに応じて、対応するノードと前記定電流源および前記回路網のいずれか一方とを電気的に結合するk個のスイッチ素子と、
各前記k個のノードと第2の電圧源との間に接続され、前記第1のモードにおいて、前記対応するノードを流入または流出する前記基準電流が通過するとともに、前記第2のモードにおいて、通過した前記基準電流に応じた電流を前記回路網に駆動するk個の電流駆動部とを含み、
各前記k個の電流駆動部は、
前記ノードと前記第2の電圧源との間に直列に接続され、前記第1のモードにおいて、前記基準電流が通過する第1および第2のトランジスタと、
前記第1のモードにおいて、前記第1および第2のトランジスタのゲート電極に前記基準電流によって決定される電圧をそれぞれ保持するように接続される第1および第2の容量素子とを含む、画像表示装置。 A plurality of pixel circuits arranged in a matrix and each including a current-driven light emitting element;
A plurality of scanning lines that are arranged corresponding to the rows of the plurality of pixel circuits, respectively, and are sequentially selected in a fixed cycle;
A plurality of data lines arranged corresponding to the columns of the plurality of pixel circuits;
It is arranged corresponding to each of the plurality of data lines, and is set corresponding to a display signal of k (k is a natural number) bits indicating the display luminance in the pixel circuit to be scanned among the plurality of pixel circuits. A current source circuit for supplying a display current to each of the plurality of data lines,
The current source circuit is:
In the first mode, in accordance with the display signal, a desired current flows in by selectively combining with k constant current sources (k is a natural number) each supplying a reference current weighted by an n-ary number. In a second mode that flows out and is executed after the first mode, k is electrically separated from the selectively coupled constant current source and electrically coupled to the network Nodes
Each of the k constant current sources and the k nodes is arranged, and corresponding to each bit of the k-bit display signal, either the corresponding node, the constant current source, or the circuit network K switch elements that are electrically coupled to each other;
Connected between each of the k nodes and a second voltage source, in the first mode, the reference current flowing in or out of the corresponding node passes, and in the second mode, K current driving units for driving the current corresponding to the passed reference current to the network,
Each of the k current drivers is
First and second transistors connected in series between the node and the second voltage source and through which the reference current passes in the first mode;
In the first mode, the first and second capacitive elements connected to the gate electrodes of the first and second transistors so as to hold the voltages determined by the reference current, respectively. apparatus.
前記第1および第2のトランジスタのゲート電極と第1の電極との間にそれぞれ配され、前記第1のモードにおいてオンする一方で、前記第2のモードにおいてオフする第1および第2のスイッチ素子をさらに含む、請求項8に記載の画像表示装置。 Each of the k current drivers is
First and second switches disposed between the gate electrode and the first electrode of the first and second transistors, respectively, which are turned on in the first mode and turned off in the second mode The image display device according to claim 8, further comprising an element.
前記第2のトランジスタは、前記第2の電極が前記第1の電圧源に接続され、
前記第1および第2のスイッチ素子は、前記第1のモードにおいて、前記第1のスイッチ素子が、前記第2のスイッチ素子よりも少なくとも先にオフするように設定される、請求項9に記載の画像表示装置。 The first transistor has the first electrode connected to the node, the second electrode connected to the first electrode of the second transistor,
The second transistor has the second electrode connected to the first voltage source,
10. The first and second switch elements are set so that, in the first mode, the first switch element is turned off at least before the second switch element. Image display device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004181354A JP2006006056A (en) | 2004-06-18 | 2004-06-18 | Current source circuit, digital/analog conversion circuit with the same and image display apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004181354A JP2006006056A (en) | 2004-06-18 | 2004-06-18 | Current source circuit, digital/analog conversion circuit with the same and image display apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006006056A true JP2006006056A (en) | 2006-01-05 |
JP2006006056A5 JP2006006056A5 (en) | 2007-02-08 |
Family
ID=35773980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004181354A Pending JP2006006056A (en) | 2004-06-18 | 2004-06-18 | Current source circuit, digital/analog conversion circuit with the same and image display apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006006056A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108347163A (en) * | 2018-01-22 | 2018-07-31 | 江苏星宇芯联电子科技有限公司 | A kind of automatic gain control circuit and its control method of New Charge pump configuration |
CN112153312A (en) * | 2015-09-30 | 2020-12-29 | 株式会社尼康 | Image pickup element and image pickup apparatus |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62122488U (en) * | 1986-01-28 | 1987-08-04 | ||
JP2003195812A (en) * | 2001-08-29 | 2003-07-09 | Nec Corp | Semiconductor device for driving current load device and current load device equipped with the same |
JP2004077743A (en) * | 2002-08-16 | 2004-03-11 | Sony Corp | Current sampling circuit and current output type drive circuit using the same |
-
2004
- 2004-06-18 JP JP2004181354A patent/JP2006006056A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62122488U (en) * | 1986-01-28 | 1987-08-04 | ||
JP2003195812A (en) * | 2001-08-29 | 2003-07-09 | Nec Corp | Semiconductor device for driving current load device and current load device equipped with the same |
JP2004077743A (en) * | 2002-08-16 | 2004-03-11 | Sony Corp | Current sampling circuit and current output type drive circuit using the same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112153312A (en) * | 2015-09-30 | 2020-12-29 | 株式会社尼康 | Image pickup element and image pickup apparatus |
CN112153312B (en) * | 2015-09-30 | 2024-02-02 | 株式会社尼康 | Image pickup element and image pickup device |
CN108347163A (en) * | 2018-01-22 | 2018-07-31 | 江苏星宇芯联电子科技有限公司 | A kind of automatic gain control circuit and its control method of New Charge pump configuration |
CN108347163B (en) * | 2018-01-22 | 2024-02-23 | 江苏星宇芯联电子科技有限公司 | Novel automatic gain control circuit of charge pump structure and control method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9424770B2 (en) | Error compensator and organic light emitting display device using the same | |
JP5140232B2 (en) | Light emitting display device, display panel and driving method thereof | |
US8212749B2 (en) | AMOLED drive circuit using transient current feedback and active matrix driving method using the same | |
KR100639690B1 (en) | Image display apparatus without 0ccurrence of nonuniform display | |
US20100073344A1 (en) | Pixel circuit and display device | |
EP2200010B1 (en) | Current-driven display | |
WO2006103797A1 (en) | Display device and method for driving same | |
KR20100077649A (en) | Display device and driving method thereof | |
JPWO2003027997A1 (en) | Display device and driving method thereof | |
WO2014046029A1 (en) | Data line driving circuit, display device including same, and data line driving method | |
US8928647B2 (en) | Inverter circuit and display unit | |
US7586468B2 (en) | Display device using current driving pixels | |
JP2005017653A (en) | Current source circuit and semiconductor device with current source circuit | |
US8284182B2 (en) | Inverter circuit and display device | |
US8284183B2 (en) | Inverter circuit and display device | |
US7746299B2 (en) | Display, array substrate, and method of driving display | |
US20040208047A1 (en) | Electronic circuit, electronic device, electro-optical apparatus, and electronic unit | |
US7573442B2 (en) | Display, active matrix substrate, and driving method | |
JP2004341023A (en) | Active matrix type display device | |
KR100637824B1 (en) | Display, active matrix substrate and driving method | |
US8648776B2 (en) | Display device, pixel circuit, and method for driving same | |
JP2006006056A (en) | Current source circuit, digital/analog conversion circuit with the same and image display apparatus | |
WO2022118458A1 (en) | Display device and pixel circuit | |
JP4502603B2 (en) | Display device | |
JP2007086328A (en) | Driving circuit and driving method of display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061214 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100105 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100511 |