JP2006005839A - Amplifier - Google Patents

Amplifier Download PDF

Info

Publication number
JP2006005839A
JP2006005839A JP2004182341A JP2004182341A JP2006005839A JP 2006005839 A JP2006005839 A JP 2006005839A JP 2004182341 A JP2004182341 A JP 2004182341A JP 2004182341 A JP2004182341 A JP 2004182341A JP 2006005839 A JP2006005839 A JP 2006005839A
Authority
JP
Japan
Prior art keywords
power supply
unit
power
amplifier
supply unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004182341A
Other languages
Japanese (ja)
Inventor
Eiichiro Otobe
英一郎 乙部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2004182341A priority Critical patent/JP2006005839A/en
Priority to KR1020050051774A priority patent/KR100703393B1/en
Priority to US11/157,427 priority patent/US7292096B2/en
Publication of JP2006005839A publication Critical patent/JP2006005839A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • H03F1/0227Continuous control by using a signal derived from the input signal using supply converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0277Selecting one or more amplifiers from a plurality of amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0283Reducing the number of DC-current paths
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Control Of Amplification And Gain Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an amplifier which is small-sized, is made inexpensive and has wide-range output power and high efficiency characteristics. <P>SOLUTION: A control circuit 30 outputs a power control signal to a function control power supply section 20, and power to be supplied to a high-output amplifier and low-loss resistor 11 is controlled so that the high-output amplifier and low-loss resistor 11 does not amplify any input signal during low-output operation but amplifies input signals during high-output operation. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、小型高出力増幅器に関する。特に携帯端末のような電池で動作する無線装置に適用される増幅器に関する。   The present invention relates to a small high-power amplifier. In particular, the present invention relates to an amplifier applied to a wireless device that operates on a battery such as a portable terminal.

近無線送信装置の最終出力段に用いられる高出力増幅器には、無線装置全体の低消費電力化のために高効率特性、小型、低価格が要求される。一般に増幅器は出力電力が下がると効率が下がってくる。高効率特性を出力電力の広範囲にわたり維持するためには、低出力電カ時でも増幅器の効率を改善しなくてはならない。
この問題を解決する方法として、高出力増幅器の電源電圧を制御する方法や多段に接続された増幅器の最も消費電力の高い最終段の増幅器をスイッチによりバイパスする方法が知られている。
第1の電源電圧制御の方法は、出力電力に応じて電源電圧を制御し効率を改善する方法であり、DCDCコンバータを用いる。
また、第2のバイパス方式は、図4のように2個の増幅器と2個のスイッチを従属接続し、高出力動作時には2つの増幅器1,2を動作させ、低出力動作時には2段目の増幅器2をバイパスさせるとともに、2段目の増幅器2をOFFにして、電流を流さないようにすることで効率を改善する(特許文献1を参照)。
特表2000−513544号公報
High-power amplifiers used in the final output stage of a near-radio transmission apparatus are required to have high efficiency characteristics, small size, and low price in order to reduce power consumption of the entire radio apparatus. In general, the efficiency of an amplifier decreases as the output power decreases. In order to maintain high efficiency characteristics over a wide range of output power, the efficiency of the amplifier must be improved even at low output power.
As a method for solving this problem, there are known a method of controlling the power supply voltage of the high-power amplifier and a method of bypassing the amplifier at the final stage with the highest power consumption among the amplifiers connected in multiple stages by a switch.
The first power supply voltage control method is a method for improving the efficiency by controlling the power supply voltage according to the output power, and uses a DCDC converter.
In the second bypass system, two amplifiers and two switches are cascade-connected as shown in FIG. 4, two amplifiers 1 and 2 are operated at the time of high output operation, and the second stage is operated at the time of low output operation. The efficiency is improved by bypassing the amplifier 2 and turning off the second-stage amplifier 2 so that no current flows (see Patent Document 1).
Special Table 2000-513544

上述した第1の電源電圧制御の方法はDCDCコンバータを用いるため、その周辺回路まで考慮するとサイズが大きくなり、価格が高くなるという問題がある。また、DCDCコンバータの変換損失は電源電圧が低くなるとき(出力電力が低いとき)は効率が悪くなるので、増幅器とDCDCコンバータを合わせたときの効率は劣化するという問題がある。
また、第2のバイパス方式は、低出力動作時に増幅器1の出力の伝送路に損失を持った2個のスイッチが入るために、スイッチのロス分だけ効率が劣化しまう、スイッチ回路か入るために小型化に難点がある、スイッチの価格分だけ価格か増加してしまうという問題がある。
Since the first power supply voltage control method described above uses a DCDC converter, there is a problem that the size becomes large and the price becomes high when the peripheral circuit is taken into consideration. Further, since the conversion loss of the DCDC converter is inefficient when the power supply voltage is low (when the output power is low), there is a problem that the efficiency when the amplifier and the DCDC converter are combined is deteriorated.
Further, the second bypass system is provided with a switch circuit in which the efficiency is deteriorated by the switch loss because two switches having a loss are inserted in the output transmission line of the amplifier 1 at the time of low output operation. There is a problem that the price is increased by the price of the switch, which has a difficulty in miniaturization.

本発明は、このような事情を考慮してなされたものであり、その目的は、小型かつ低価格で、広範囲な出力電力で高効率特性を有する増幅器を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an amplifier having high efficiency characteristics with a wide range of output power at a small size and at a low price.

この発明は上記の課題を解決すべくなされたもので、本発明は、多段に接続された第1、第2の増幅部を有する増幅器において、前記第2の増幅部に電力を供給する電源供給部と、前記第2の増幅部が、低出力動作時は入力信号を電力消費の無い低損失伝送路として伝送させ、高出力動作時は入力信号を増幅するように、前記電源供給部の電力供給を制御する制御部とを具備することを特徴とする。   The present invention has been made to solve the above-described problems. The present invention provides a power supply for supplying power to the second amplifying unit in an amplifier having first and second amplifying units connected in multiple stages. And the second amplifying unit transmit the input signal as a low-loss transmission line that does not consume power during low output operation, and amplify the input signal during high output operation. And a control unit for controlling supply.

また、本発明は、前記電源供給部は、前記第2の増幅部の機能制御用電源供給部と、DC電源供給部とからなり、前記制御部は、低出力動作時は、前記DC電源供給部から前記第2の増幅部への電力供給を停止させるとともに、前記機能制御用電源供給部から前記第2の増幅部へ所定の電力を供給させ、高出力動作時は、前記DC電源供給部から前記第2の増幅部へ電力を供給させるとともに、前記機能制御用電源供給部から前記第2の増幅部へ所定の電力を供給させることを特徴とする。   Further, according to the present invention, the power supply unit includes a function control power supply unit of the second amplification unit and a DC power supply unit, and the control unit supplies the DC power supply during a low output operation. The power supply from the power supply unit to the second amplification unit is stopped, the predetermined power is supplied from the function control power supply unit to the second amplification unit, and the DC power supply unit during high output operation. The power is supplied from the power supply unit to the second amplification unit, and the predetermined power is supplied from the function control power supply unit to the second amplification unit.

また、本発明は、前記第2の増幅部は、ゲート、ドレイン、ソースの3端子からなる半導体素子であって、ゲート接地とし、前記制御部は、低出力動作時は、前記DC電源供給部から前記第2の増幅部のドレインへの電力供給を停止させるとともに、前記機能制御用電源供給部から前記第2の増幅部のゲートへ0Vの電圧を供給させ、高出力動作時は、前記DC電源供給部から前記第2の増幅部のドレインへ電力を供給させるとともに、前記機能制御用電源供給部から前記第2の増幅部のゲートへ所定の電圧を供給させることを特徴とする。   Further, according to the present invention, the second amplifying unit is a semiconductor element including three terminals of a gate, a drain, and a source, and the gate is grounded. The control unit is configured to supply the DC power supply unit during a low output operation. To stop the power supply to the drain of the second amplifying unit and supply a voltage of 0 V from the function control power supply unit to the gate of the second amplifying unit. Power is supplied from the power supply unit to the drain of the second amplifying unit, and a predetermined voltage is supplied from the function control power supply unit to the gate of the second amplifying unit.

以上説明したように、本発明によれば、多段に接続された第1、第2の増幅部を有する増幅器において、第2の増幅部が、低出力動作時は入力信号を電力消費の無い低損失伝送路として伝送させ、高出力動作時は入力信号を増幅するように、第2の増幅部に電力を供給する電源供給部を制御する。
このように構成することで、低出力動作時は第1の増幅部のみが動作し、高出力動作時は第1、2の増幅部が動作する。
したがって、広範囲な出力電力で高効率特性を得ながら、増幅部の伝送路にスイッチを介在させることなく、スイッチのロス分の効率劣化を防止することができる効果が得られる。
As described above, according to the present invention, in the amplifier having the first and second amplifying units connected in multiple stages, the second amplifying unit reduces the input signal to a low power consumption during the low output operation. The power supply unit that supplies power to the second amplifying unit is controlled so as to transmit as a lossy transmission line and amplify the input signal during high output operation.
With this configuration, only the first amplifying unit operates during a low output operation, and the first and second amplifying units operate during a high output operation.
Therefore, it is possible to obtain an effect that it is possible to prevent deterioration in efficiency due to the loss of the switch without interposing the switch in the transmission path of the amplifying unit while obtaining high efficiency characteristics with a wide range of output power.

また、本発明によれば、低出力動作時は、DC電源供給部から第2の増幅部への電力供給を停止させるとともに、機能制御用電源供給部から第2の増幅部へ所定の電力を供給させ、高出力動作時は、DC電源供給部から第2の増幅部へ電力を供給させるとともに、機能制御用電源供給部から第2の増幅部へ所定の電力を供給させることで、第2の増幅部が低出力動作時は入力信号を電力消費の無い低損失伝送路として伝送させ、高出力動作時は入力信号を増幅するように制御する。
このように構成することで、低出力動作時は機能制御用電源供給部のみが動作し、第2の増幅部には電流が流れず、高出力動作時のみ、DC電源供給部が動作して、第2の増幅部には電流が流れる。
したがって、低出力動作時において、もっとも消費電力の高い増幅部に電流が流れないことから高効率の増幅作用が実現できる効果が得られる。
Further, according to the present invention, during low output operation, power supply from the DC power supply unit to the second amplification unit is stopped, and predetermined power is supplied from the function control power supply unit to the second amplification unit. In the high output operation, power is supplied from the DC power supply unit to the second amplifying unit, and predetermined power is supplied from the function control power supply unit to the second amplifying unit. The amplifying unit controls the input signal to be transmitted as a low-loss transmission line with no power consumption when the output is low, and amplifies the input signal when the output is high.
With this configuration, only the function control power supply unit operates during low output operation, no current flows through the second amplifier unit, and the DC power supply unit operates only during high output operation. A current flows through the second amplifying unit.
Therefore, during the low output operation, since no current flows through the amplifying unit with the highest power consumption, an effect of realizing a highly efficient amplifying operation can be obtained.

また、本発明によれば、第2の増幅部は、ゲート、ドレイン、ソースの3端子からなる半導体素子であって、ゲート接地され、低出力動作時は、DC電源供給部から第2の増幅部のドレインへの電力供給を停止させるとともに、機能制御用電源供給部から第2の増幅部のゲートへ0Vの電圧を供給させ、高出力動作時は、DC電源供給部から第2の増幅部のドレインへ電力を供給させるとともに、機能制御用電源供給部から第2の増幅部のゲートへ所定の電圧を供給させる。
このように構成することで、第2の増幅部は、低出力動作時は低損失の抵抗器として動作し、高出力動作時は増幅部として動作する。
したがって、単純な回路構成により、広範囲な出力電力範囲にわたり、高効率、小型、低価格で高出力増幅器が実現できる。
Further, according to the present invention, the second amplifying unit is a semiconductor element having three terminals of a gate, a drain, and a source, and is grounded at the gate. The power supply to the drain of the unit is stopped, and a voltage of 0 V is supplied from the function control power supply unit to the gate of the second amplifying unit. During high output operation, the DC power supply unit supplies the second amplifying unit. In addition, power is supplied to the drain of the second amplifier, and a predetermined voltage is supplied from the function control power supply unit to the gate of the second amplifying unit.
With this configuration, the second amplifying unit operates as a low-loss resistor during a low output operation and operates as an amplifying unit during a high output operation.
Therefore, with a simple circuit configuration, a high-output amplifier can be realized with high efficiency, small size, and low cost over a wide range of output power.

以下、本発明を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

以下、図面を参照して、本発明の増幅器の一実施形態について説明する。図1は、本実施形態の増幅器1の構成図である。
図1に示すように、本実施形態の増幅器1は、多段に接続された増幅部10、高出力増幅部兼低損失抵抗器11(以下、簡単のため、高出力増幅部11とする)を有しており、増幅部10の後段に高出力増幅部11が設けられる。高出力増幅部11には、入力信号を増幅するための電力を供給する電源供給部2が接続される。電源供給部2は、制御回路30と接続されており、電力制御信号を制御回路30から入力して、高出力増幅部11に対する電力供給/電力供給停止を実行する。具体的には、電源供給部2は、高出力増幅部11が低出力動作時は入力信号を増幅せず、高出力動作時は入力信号を増幅するように、制御回路30から電力供給制御を受ける。
電源供給部2は、高出力増幅部11の機能制御用電源供給部20と、DC電源供給部21とからなる。機能制御用電源供給部20、DC電源供給部21は、図1に示すように、制御回路30と接続される。制御回路30は、低出力動作時は、DC電源供給部21へ電力供給指令信号を出力して、高出力増幅部11への電力供給を停止させるとともに、機能制御用電源供給部20へ電力供給指令信号を出力して、高出力増幅部11へ所定の電力を供給させ、高出力動作時は、DC電源供給部21から高出力増幅部11へ電力を供給させるとともに、機能制御用電源供給部20から第2の増幅器へ所定の電力を供給させる。
Hereinafter, an embodiment of an amplifier according to the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of an amplifier 1 of the present embodiment.
As shown in FIG. 1, the amplifier 1 of this embodiment includes an amplification unit 10 and a high output amplification unit / low loss resistor 11 (hereinafter, referred to as a high output amplification unit 11 for simplicity) connected in multiple stages. And a high-power amplifier 11 is provided at the subsequent stage of the amplifier 10. A power supply unit 2 that supplies power for amplifying an input signal is connected to the high-power amplifier 11. The power supply unit 2 is connected to the control circuit 30 and inputs a power control signal from the control circuit 30 to execute power supply / power supply stop to the high-power amplifier unit 11. Specifically, the power supply unit 2 controls the power supply from the control circuit 30 so that the input signal is not amplified when the high output amplifier 11 is in a low output operation, and the input signal is amplified during a high output operation. receive.
The power supply unit 2 includes a function control power supply unit 20 of the high output amplification unit 11 and a DC power supply unit 21. The function control power supply unit 20 and the DC power supply unit 21 are connected to the control circuit 30 as shown in FIG. During a low output operation, the control circuit 30 outputs a power supply command signal to the DC power supply unit 21 to stop the power supply to the high output amplification unit 11 and supply power to the function control power supply unit 20. A command signal is output to supply predetermined power to the high-power amplifier 11, and during high-power operation, power is supplied from the DC power supply 21 to the high-power amplifier 11 and a function control power supply A predetermined power is supplied from 20 to the second amplifier.

以下、増幅器1のより具体的な構成について説明する。図2は、図1に示す増幅器1の具体的な実装例を示す。増幅器1は、広範囲な出力電力範囲で効率を改善するために、動作を低出力動作、高出力動作に分けて高出力増幅部11を動作させる。図2においては、最終段の高出力増幅部11として、D−modeのFETまたはHEMTを採用している。
図2に示すように、高出力増幅部11は、ゲート(Gate)、ドレイン(Drain)、ソース(Source)の3端子からなる半導体素子(FET/HEMT)であって、ゲート接地される。制御回路30が、この半導体素子を高出力動作の場合は増幅器として動作させ、低出力動作の時は、FET/HEMTスイッチのスルー状態として動作させる。
具体的には、制御回路30は、低出力動作時は、DC電源供給部21から高出力増幅部11のドレインへの電力供給を停止させるとともに、機能制御用電源供給部20から高出力増幅部11のゲートへ0Vの電圧を供給させ、高出力動作時は、DC電源供給部21から高出力増幅部11のドレインへ電力を供給させるとともに、機能制御用電源供給部20から高出力増幅部11のゲートへ所定の電圧を供給させる。そして、低出力動作時にはFET/HEMTを透過回路として作用させるため可変抵抗器22の値を数Kohmとし、高出力動作時はFET/HEMTに増幅作用を持たせるために数ohm程度になるように制御回路で制御する。
Hereinafter, a more specific configuration of the amplifier 1 will be described. FIG. 2 shows a specific implementation example of the amplifier 1 shown in FIG. The amplifier 1 operates the high output amplifier 11 by dividing the operation into a low output operation and a high output operation in order to improve the efficiency in a wide range of output power. In FIG. 2, a D-mode FET or HEMT is employed as the final high-output amplifier 11.
As shown in FIG. 2, the high-power amplifier 11 is a semiconductor element (FET / HEMT) composed of three terminals: a gate (Gate), a drain (Drain), and a source (Source), and is grounded at the gate. The control circuit 30 operates the semiconductor element as an amplifier in a high output operation, and operates as a through state of the FET / HEMT switch in a low output operation.
Specifically, the control circuit 30 stops power supply from the DC power supply unit 21 to the drain of the high output amplification unit 11 and operates from the function control power supply unit 20 to the high output amplification unit during low output operation. A voltage of 0 V is supplied to the gate of the power supply 11, and power is supplied from the DC power supply unit 21 to the drain of the high output amplification unit 11 and a high output amplification unit 11 is supplied from the function control power supply unit 20 during high output operation. A predetermined voltage is supplied to the gate. Then, the value of the variable resistor 22 is set to several Kohms so that the FET / HEMT functions as a transmission circuit at the time of low output operation, and about several ohms at the time of high output operation to give the FET / HEMT an amplification function. Control by the control circuit.

機能制御用電源供給部20は、電源部のマイナス(−)側が、可変抵抗器22を介して、高出力増幅部11のゲートと接続され、プラス(+)側が、接地される。また、DC電源供給部21は、DCスイッチと電源部を有しており、電源部のプラス(+)側が、DCスイッチを介して、高出力増幅部11のドレインと接続され、マイナス(−)側が、接地される。
増幅部10と高出力増幅部11の間には、キャパシタ(Capacitor)40が設けられ、キャパシタ40の後段で、高出力増幅部11と分岐する形で、インダクタ(Inductor)50が設けられる。インダクタ50の他端(キャパシタ40、高出力増幅部11端の反対側)は、接地される。
同様に、高出力増幅部11と、出力端の間には、キャパシタ(Capacitor)41が設けられ、高出力増幅部11の後段(及びキャパシタ41の前段)で、キャパシタ41と分岐する形で、インダクタ(Inductor)51が設けられる。インダクタ51の他端(キャパシタ41、高出力増幅部11端の反対側)は、DC電源供給部21のDCスイッチと接続される。
なお、FET/HEMTとしては、E−ModeのFET/HEMTを用いることもでき、D−modeとE−modeでは電源1の極性が反転する。D−Modeの場合には、低出力時にはゲート電圧に0Vを設定し、高出力時にはゲート電圧に最も効率がよくなる所定の電圧を設定する。一方、E−Modeの場合には、低出力時にはゲート電圧にFET/HEMTのDrain−Source間の抵抗値が最小(FET/HEMTスイッチのスルー状態)となる所定の電圧を設定し、高出力時にはゲート電圧に最も効率がよくなる所定の電圧を設定する。
In the function control power supply unit 20, the negative (−) side of the power supply unit is connected to the gate of the high-power amplification unit 11 via the variable resistor 22, and the positive (+) side is grounded. The DC power supply unit 21 includes a DC switch and a power supply unit, and the plus (+) side of the power supply unit is connected to the drain of the high-power amplifier 11 via the DC switch, and minus (−). The side is grounded.
A capacitor (Capacitor) 40 is provided between the amplifying unit 10 and the high-power amplifying unit 11, and an inductor (Inductor) 50 is provided after the capacitor 40 so as to branch from the high-power amplifying unit 11. The other end of the inductor 50 (the side opposite to the end of the capacitor 40 and the high output amplifier 11) is grounded.
Similarly, a capacitor (Capacitor) 41 is provided between the high output amplification unit 11 and the output terminal, and branches from the capacitor 41 at the subsequent stage of the high output amplification unit 11 (and the previous stage of the capacitor 41). An inductor 51 is provided. The other end of the inductor 51 (the side opposite to the end of the capacitor 41 and the high-power amplifier 11) is connected to the DC switch of the DC power supply 21.
As the FET / HEMT, an E-Mode FET / HEMT can also be used, and the polarity of the power source 1 is inverted between the D-mode and the E-mode. In the case of D-Mode, the gate voltage is set to 0 V when the output is low, and the predetermined voltage that is the most efficient is set to the gate voltage when the output is high. On the other hand, in the case of E-Mode, a predetermined voltage at which the resistance value between the drain and source of the FET / HEMT is minimized (through state of the FET / HEMT switch) is set as the gate voltage at the time of low output, and at the time of high output. A predetermined voltage that provides the most efficient gate voltage is set.

以下、本実施形態の増幅器1の動作について説明する。図3は、本実施形態の増幅器1の出力電力と電力付加効率の関係図である。
まず出力電力が設定値より低い低出力動作時において、出力電力が前段の増幅部10の出力電力で賄える場合、高出力増幅部11(FET/HEMT)をスイッチのスルー状態で動作させる。具体的には、制御部30は、DC電源供給部21に電力制御信号を出力して、DCスイッチをOFFにさせて、高出力増幅部11への電圧供給を停止させ、機能制御用電源供給部20に電力制御信号を出力して、高出力増幅部11のゲート側にOVを供給させる。
高出力増幅部11への電力供給をこのように制御することで、出力段の高出力増幅部11は、低損失の抵抗器として動作する。そうすると、入力端から増幅器10に入力されて増幅された入力信号は、抵抗器として動作している高出力増幅部11を通過して、出力端から出力される。したがって、図4に示す従来構成と比較して、スイッチによる損失が1個分で済み、電力付加効率が改善される。また、高出力増幅部11への電力供給をこのように制御することで、最も消費電力の高い増幅器に電流が流れないので、さらに高効率が実現できる効果が得られる。
Hereinafter, the operation of the amplifier 1 of the present embodiment will be described. FIG. 3 is a relationship diagram between the output power and the power added efficiency of the amplifier 1 of the present embodiment.
First, in the low output operation where the output power is lower than the set value, when the output power can be covered by the output power of the amplifying unit 10 in the previous stage, the high output amplifying unit 11 (FET / HEMT) is operated in the through state of the switch. Specifically, the control unit 30 outputs a power control signal to the DC power supply unit 21, turns off the DC switch, stops the voltage supply to the high-output amplification unit 11, and supplies power for function control. The power control signal is output to the unit 20 and OV is supplied to the gate side of the high-power amplifier 11.
By controlling the power supply to the high-power amplifier 11 in this way, the high-power amplifier 11 in the output stage operates as a low-loss resistor. If it does so, the input signal which was inputted into the amplifier 10 from the input terminal and was amplified will pass through the high output amplification part 11 which is operate | moving as a resistor, and will be output from an output terminal. Therefore, compared with the conventional configuration shown in FIG. 4, only one loss due to the switch is required, and the power added efficiency is improved. In addition, by controlling the power supply to the high-power amplifier 11 in this way, no current flows through the amplifier with the highest power consumption, so that an effect of achieving higher efficiency can be obtained.

次に出力電力が設定値より高い高出力動作時において、出力電力が前段の増幅部10の出力電力で賄えない場合、高出力増幅部11を増幅部として動作させる。具体的には、制御部30は、DC電源供給部21に電力制御信号を出力して、高出力増幅部11のドレイン側と接続されるDCスイッチをONにさせ、高出力増幅部11のドレイン側に電力を供給させる。また、制御部30は、これと同時に、機能制御用電源供給部20に電力制御信号を出力して、出力電力に適当な電流を高出力増幅部11のゲート側に出力させる。
このようにして、制御部30は、高出力動作時に、FET/HEMTからなる高出力増幅部11を増幅部として動作させる。
そうすると、入力端から増幅器10に入力されて増幅された入力信号は、増幅器として動作している高出力増幅部11でさらに増幅されて、出力端から出力される。したがって、図4に示す従来構成と比較して、スイッチによる損失が1個分で済み、電力付加効率が改善される。
Next, when the output power is higher than the set value and the output power cannot be covered by the output power of the previous amplification unit 10, the high output amplification unit 11 is operated as an amplification unit. Specifically, the control unit 30 outputs a power control signal to the DC power supply unit 21 to turn on the DC switch connected to the drain side of the high-power amplification unit 11, so that the drain of the high-power amplification unit 11 is turned on. Supply power to the side. At the same time, the control unit 30 outputs a power control signal to the function control power supply unit 20 to output a current suitable for the output power to the gate side of the high output amplification unit 11.
In this way, the control unit 30 operates the high output amplification unit 11 made of FET / HEMT as an amplification unit during a high output operation.
Then, the input signal that has been input to the amplifier 10 from the input end and amplified is further amplified by the high-power amplifier 11 operating as an amplifier, and output from the output end. Therefore, compared with the conventional configuration shown in FIG. 4, only one loss due to the switch is required, and the power added efficiency is improved.

以上説明したように、本実施形態の増幅器1によれば、増幅部10、高出力増幅部11を接続して構成され、高出力増幅部11が、低出力動作時は入力信号を電力消費の無い低損失伝送路として伝送させ、高出力動作時は入力信号を増幅するように、高出力増幅部11に電力を供給する電源供給部2を制御する。このように構成することで、スイッチを用いなくても、低出力動作時は増幅部10のみが動作し、高出力動作時は増幅部10、高出力増幅部11が動作する。
したがって、広範囲な出力電力で高効率特性を得ながら、増幅部10、11の伝送路のスイッチ数を削減させ、低出力時の電力付加効率を改善させることができる。
また、本実施形態の増幅器1は、電源電圧制御方式やバイパス方式に比べて、付加回路を少ない部品点数で構成される。したがって、単純な回路構成により、小型、低価格で高出力増幅器が実現できる。
このため、無線装置全休の低消費電力、小型、低価格が実現できる効果が得られる。特に携帯端末のような電池で動作する無線装置には有効である。また、応用例としては、マイクロ波、ミリ波を用いた無線通信装置の増幅器として広く応用できる。
As described above, according to the amplifier 1 of the present embodiment, the amplifier 10 and the high-power amplifier 11 are connected to each other, and the high-power amplifier 11 consumes the input signal during the low-power operation. The power supply unit 2 that supplies power to the high-power amplifier 11 is controlled so that the signal is transmitted as a low-loss transmission line and the input signal is amplified during a high-power operation. With this configuration, only the amplifying unit 10 operates during a low output operation, and the amplifying unit 10 and the high output amplifying unit 11 operate during a high output operation without using a switch.
Therefore, while obtaining high efficiency characteristics with a wide range of output power, the number of switches in the transmission path of the amplifiers 10 and 11 can be reduced, and the power added efficiency at low output can be improved.
In addition, the amplifier 1 according to the present embodiment includes an additional circuit with a smaller number of parts than the power supply voltage control method and the bypass method. Therefore, a high output amplifier can be realized with a small size and low cost by a simple circuit configuration.
For this reason, the effect which can implement | achieve the low power consumption, small size, and low price of a radio | wireless apparatus all the rest is acquired. This is particularly effective for a wireless device that operates on a battery such as a portable terminal. As an application example, it can be widely applied as an amplifier of a wireless communication device using microwaves and millimeter waves.

増幅器1の構成図。1 is a configuration diagram of an amplifier 1. FIG. 増幅器1の具体的な実装例。A specific implementation example of the amplifier 1. 出力電力と電力付加効率の関係図。The relationship figure of output electric power and electric power addition efficiency. バイパス方式の構成図。The block diagram of a bypass system.

符号の説明Explanation of symbols

1…増幅器
10…増幅部
11…高出力増幅器兼低損失抵抗器
20…機能制御用電源供給部
21…DC電源供給部
30…制御回路
40、41…キャパシタ
50、51…インダクタ

DESCRIPTION OF SYMBOLS 1 ... Amplifier 10 ... Amplifying part 11 ... High output amplifier and low-loss resistor 20 ... Function control power supply part 21 ... DC power supply part 30 ... Control circuit 40, 41 ... Capacitor 50, 51 ... Inductor

Claims (3)

多段に接続された第1、第2の増幅部を有する増幅器において、
前記第2の増幅部に電力を供給する電源供給部と、
前記第2の増幅部が、低出力動作時は入力信号を電力消費の無い低損失伝送路として伝送させ、高出力動作時は入力信号を増幅するように、前記電源供給部の電力供給を制御する制御部と
を具備することを特徴とする増幅器。
In an amplifier having first and second amplification units connected in multiple stages,
A power supply unit for supplying power to the second amplification unit;
The second amplifying unit controls the power supply of the power supply unit so that the input signal is transmitted as a low-loss transmission line with no power consumption during low output operation and the input signal is amplified during high output operation. And an amplifier.
前記電源供給部は、前記第2の増幅部の機能制御用電源供給部と、DC電源供給部とからなり、
前記制御部は、低出力動作時は、前記DC電源供給部から前記第2の増幅部への電力供給を停止させるとともに、前記機能制御用電源供給部から前記第2の増幅部へ所定の電力を供給させ、高出力動作時は、前記DC電源供給部から前記第2の増幅部へ電力を供給させるとともに、前記機能制御用電源供給部から前記第2の増幅部へ所定の電力を供給させる
ことを特徴とする請求項1に記載の増幅器。
The power supply unit includes a function control power supply unit of the second amplification unit and a DC power supply unit.
The control unit stops power supply from the DC power supply unit to the second amplifying unit during low output operation, and also supplies predetermined power from the function control power supply unit to the second amplifying unit. In the high output operation, power is supplied from the DC power supply unit to the second amplifying unit, and predetermined power is supplied from the function control power supply unit to the second amplifying unit. The amplifier according to claim 1.
前記第2の増幅部は、ゲート、ドレイン、ソースの3端子からなる半導体素子であって、ゲート接地とし、
前記制御部は、低出力動作時は、前記DC電源供給部から前記第2の増幅部のドレインへの電力供給を停止させるとともに、前記機能制御用電源供給部から前記第2の増幅部のゲートへ0Vの電圧を供給させ、高出力動作時は、前記DC電源供給部から前記第2の増幅部のドレインへ電力を供給させるとともに、前記機能制御用電源供給部から前記第2の増幅部のゲートへ所定の電圧を供給させる
ことを特徴とする請求項2に記載の増幅器。

The second amplifying unit is a semiconductor element including three terminals of a gate, a drain, and a source, and has a gate ground.
The control unit stops power supply from the DC power supply unit to the drain of the second amplifying unit during low output operation, and from the function control power supply unit to the gate of the second amplifying unit. In the high output operation, power is supplied from the DC power supply unit to the drain of the second amplifying unit, and from the function control power supply unit to the second amplifying unit. The amplifier according to claim 2, wherein a predetermined voltage is supplied to the gate.

JP2004182341A 2004-06-21 2004-06-21 Amplifier Pending JP2006005839A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004182341A JP2006005839A (en) 2004-06-21 2004-06-21 Amplifier
KR1020050051774A KR100703393B1 (en) 2004-06-21 2005-06-16 Amplifier
US11/157,427 US7292096B2 (en) 2004-06-21 2005-06-21 Amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004182341A JP2006005839A (en) 2004-06-21 2004-06-21 Amplifier

Publications (1)

Publication Number Publication Date
JP2006005839A true JP2006005839A (en) 2006-01-05

Family

ID=35773816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004182341A Pending JP2006005839A (en) 2004-06-21 2004-06-21 Amplifier

Country Status (2)

Country Link
JP (1) JP2006005839A (en)
KR (1) KR100703393B1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351709A (en) * 1986-08-21 1988-03-04 Matsushita Electric Ind Co Ltd Electronic circuit board
JPH05308233A (en) * 1992-04-28 1993-11-19 Nippon Telegr & Teleph Corp <Ntt> High frequency amplifier
JPH05315994A (en) * 1992-05-06 1993-11-26 Nec Corp Radio equipment to be shared by transmission and reception
JPH06177681A (en) * 1992-12-01 1994-06-24 Nippon Telegr & Teleph Corp <Ntt> High frequency amplifier
JPH0738404A (en) * 1993-07-21 1995-02-07 Nippon Telegr & Teleph Corp <Ntt> Output changeover amplifier
JPH10173453A (en) * 1996-12-09 1998-06-26 Sony Corp High-frequency variable gain amplifying device and radio communication equipment
JP2000022452A (en) * 1998-07-06 2000-01-21 Nec Corp Power amplifier
JP2000196365A (en) * 1998-12-28 2000-07-14 New Japan Radio Co Ltd High frequency isolation amplifier
JP2001284974A (en) * 2000-03-30 2001-10-12 Nec Corp Fet amplifier
JP2002290163A (en) * 2001-03-23 2002-10-04 Mitsubishi Electric Corp High-frequency amplifier

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001007653A (en) 1999-06-18 2001-01-12 Fujitsu General Ltd High-frequency power amplifier circuit
JP2003324323A (en) * 2002-05-01 2003-11-14 Nec Corp High-output amplifying circuit
JP2003332859A (en) 2002-05-13 2003-11-21 Fujitsu Ltd Output amplifier and radio transmitter
JP2004214747A (en) 2002-12-27 2004-07-29 Kenwood Corp Power amplifier
JP4088177B2 (en) 2003-03-12 2008-05-21 株式会社東芝 Bias current supply circuit and amplifier circuit

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351709A (en) * 1986-08-21 1988-03-04 Matsushita Electric Ind Co Ltd Electronic circuit board
JPH05308233A (en) * 1992-04-28 1993-11-19 Nippon Telegr & Teleph Corp <Ntt> High frequency amplifier
JPH05315994A (en) * 1992-05-06 1993-11-26 Nec Corp Radio equipment to be shared by transmission and reception
JPH06177681A (en) * 1992-12-01 1994-06-24 Nippon Telegr & Teleph Corp <Ntt> High frequency amplifier
JPH0738404A (en) * 1993-07-21 1995-02-07 Nippon Telegr & Teleph Corp <Ntt> Output changeover amplifier
JPH10173453A (en) * 1996-12-09 1998-06-26 Sony Corp High-frequency variable gain amplifying device and radio communication equipment
JP2000022452A (en) * 1998-07-06 2000-01-21 Nec Corp Power amplifier
JP2000196365A (en) * 1998-12-28 2000-07-14 New Japan Radio Co Ltd High frequency isolation amplifier
JP2001284974A (en) * 2000-03-30 2001-10-12 Nec Corp Fet amplifier
JP2002290163A (en) * 2001-03-23 2002-10-04 Mitsubishi Electric Corp High-frequency amplifier

Also Published As

Publication number Publication date
KR20060049609A (en) 2006-05-19
KR100703393B1 (en) 2007-04-03

Similar Documents

Publication Publication Date Title
JP3809777B2 (en) Power amplifier
ATE443374T1 (en) DRIVER CIRCUITS FOR SWITCHED HF POWER AMPLIFIER
JPH06314985A (en) Portable radio device
KR100353313B1 (en) Method and apparatus for enhancing transmitter circuit efficiency of mobile radio units
US8140028B2 (en) Low noise RF driver
KR100880448B1 (en) Low power consumptive mixed mode power amplifier
JP2004007405A (en) Efficient power amplifier
JP2001168647A5 (en)
WO2003021766A3 (en) Switching power supply for rf power amplifiers
JP4024010B2 (en) Radio frequency power amplifier for battery-powered handset units in wireless communication systems
JP2006512847A (en) High efficiency multimode power amplifier
JP2007288780A (en) Power amplifier using transmission line transformer
US7292096B2 (en) Amplifier
JPH0936675A (en) Output power variable multistage amplifier device
JP2006005839A (en) Amplifier
JP3393441B2 (en) Communication terminal device
JP2009118254A (en) High-frequency signal output circuit
JPH1032441A (en) Power amplifier
KR100654644B1 (en) Power amplifier having optimized power added efficiencyPAE
JP6494908B2 (en) High frequency amplifier
JP3708869B2 (en) High frequency circuit
JP2004159102A (en) High-frequency power amplifier circuit
JPH03289802A (en) Electronic circuit
JP2503311Y2 (en) Microwave power amplifier switching circuit
JPH03277003A (en) High frequency high output amplifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100831