JP2006005535A - Power line communication system - Google Patents

Power line communication system Download PDF

Info

Publication number
JP2006005535A
JP2006005535A JP2004178125A JP2004178125A JP2006005535A JP 2006005535 A JP2006005535 A JP 2006005535A JP 2004178125 A JP2004178125 A JP 2004178125A JP 2004178125 A JP2004178125 A JP 2004178125A JP 2006005535 A JP2006005535 A JP 2006005535A
Authority
JP
Japan
Prior art keywords
power line
slave stations
communication system
power
line communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004178125A
Other languages
Japanese (ja)
Inventor
Shinsuke Kajiwara
慎介 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2004178125A priority Critical patent/JP2006005535A/en
Publication of JP2006005535A publication Critical patent/JP2006005535A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/16Electric power substations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/121Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using the power network as support for the transmission

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Dc Digital Transmission (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Manipulator (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power line communication system to which even a system with slave stations radially located can reasonably be connected and wherein many slave stations can be connected by using thin cables. <P>SOLUTION: In the power line communication system including: a relay unit comprising a DC power supply for supplying power, a power line wherein a supply current outputted from the DC power supply flows, and a coil; a master station for receiving the supply current from the relay unit via the power line; and a plurality of slave stations receiving the supply current from the relay unit via the power line, and carrying out communication via the power line, a plurality of the slave stations are connected to the relay unit in a star form. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、直流電源供給用の電力線に通信信号を重畳させて通信を行う、電力線通信システムに関する。   The present invention relates to a power line communication system that performs communication by superimposing a communication signal on a power line for supplying DC power.

従来の電力線通信システムは、複数の子局が中継機よりバス型に接続されている。(例えば、特許文献1参照)。
図9は従来の電力線通信システムを示す概要図である。図9において、5は中継機であり、DC電源1、電力線31及びコイル4により構成される。DC電源1からはDC48Vが供給され、コイル4及び電力線31を介して外部へ出力される。中継機5には親局6と複数の子局7がバス型に接続され、DC電源1の供給電流21はそれぞれに供給電流22、23、24、・・・2nが送られている。また、親局6と複数の子局7との間では、電力線32,33を介して差動信号による通信が行われている。
図10は従来の電力線通信システムの各点での電流値を示すグラフである。図に示されるように、末端から図9のc’’点、b’’点、a’’点と中継機5へ近づく程電流値は大きくなる。
以上のように、従来の電力線通信システムでは、中継機5へ複数の子局7がバス型に接続されている構成となっていた。
特開2003−179652号公報(第1−6頁、図6)
In a conventional power line communication system, a plurality of slave stations are connected in a bus type from a repeater. (For example, refer to Patent Document 1).
FIG. 9 is a schematic diagram showing a conventional power line communication system. In FIG. 9, reference numeral 5 denotes a repeater, which includes a DC power source 1, a power line 31, and a coil 4. DC 48 V is supplied from the DC power source 1 and is output to the outside through the coil 4 and the power line 31. A repeater 5 is connected to a master station 6 and a plurality of slave stations 7 in a bus form, and a supply current 21 of the DC power source 1 is supplied with supply currents 22, 23, 24,. In addition, communication using a differential signal is performed between the master station 6 and the plurality of slave stations 7 via the power lines 32 and 33.
FIG. 10 is a graph showing current values at various points in the conventional power line communication system. As shown in the figure, the current value increases as the distance from the end to the points c ″, b ″, and a ″ in FIG.
As described above, the conventional power line communication system has a configuration in which a plurality of slave stations 7 are connected to the repeater 5 in a bus shape.
Japanese Unexamined Patent Publication No. 2003-179652 (page 1-6, FIG. 6)

ところが従来の電力線通信システムでは、子局がバス型に接続されている為、子局の接続台数に比例してケーブル内を流れる最大電流I(a’’)が増加し、電力線ケーブルの最大許容電流値ImaxがImax≧I(a’’)を満たすように太い電力線ケーブルを選定する必要があった。例えばロボットの各関節部に用いられるモータ制御装置を子局とするシステム等に適用する際には、多数の子局と多くの消費電流を必要とする為、太い電力線ケーブルを使用しなければならず、関節部が曲がらない等の致命的な問題があった。また、従来の電力線通信システムでは、子局が直線的に接続される為、例えば人間型ロボットのように子局が胸部を中心に左右の手足等に放射状に位置するようなシステムに適用する場合、配線が複雑になる等の問題があった。
本発明はこのような問題点に鑑みてなされたものであり、子局の接続台数が多い場合であっても、細いケーブルを使用することができ、子局が放射状に位置するようなシステムであっても、無理なく接続することができる電力線通信システムを提供することを目的とする。
However, in the conventional power line communication system, since the slave stations are connected in a bus type, the maximum current I (a '') flowing in the cable increases in proportion to the number of slave stations connected, and the maximum allowable power line cable is allowed. It is necessary to select a thick power line cable so that the current value Imax satisfies Imax ≧ I (a ″). For example, when a motor control device used for each joint of a robot is applied to a system having a slave station, a large power line cable must be used because a large number of slave stations and a large amount of current consumption are required. There were fatal problems such as the joint part not bending. Also, in the conventional power line communication system, since the slave stations are connected in a straight line, for example, when applied to a system in which the slave stations are located radially on the left and right limbs around the chest, such as a humanoid robot There were problems such as complicated wiring.
The present invention has been made in view of such problems, and even when the number of connected slave stations is large, a thin cable can be used, and the slave station is located radially. Even if it exists, it aims at providing the power line communication system which can be connected without difficulty.

請求項1記載の本発明は、電源供給を行うDC電源とDC電源より出力される供給電流が内部を流れる電力線とコイルから成る中継機と、中継機より電力線を介して供給電流を受ける親局と、中継機より電力線を介して供給電流を受ける複数の子局から成り、電力線を介して通信を行う電力線通信システムにおいて、複数の子局は前記中継機にスター型に接続されるようにしたものである。
請求項2記載の本発明は、請求項1記載の電力線通信システムにおいて、複数の子局は中継機よりいくつかの系統にスター型に分岐した後、それぞれの系統においてバス型に接続されるようにしたものである。
請求項3記載の本発明は、親局及び子局は、受信信号を増幅する増幅部を備えるようにしたものである。
請求項4記載の本発明は、請求項1ないし3記載の電力線通信システムにおいて、子局をロボットシステムの関節部に配置したものである。
According to the first aspect of the present invention, there is provided a DC power source for supplying power, a relay unit including a power line and a coil through which a supply current output from the DC power source flows, and a master station receiving the supply current from the relay unit via the power line And in a power line communication system comprising a plurality of slave stations that receive supply current from a repeater via a power line and performing communication via the power line, the plurality of slave stations are connected to the repeater in a star shape. Is.
According to a second aspect of the present invention, in the power line communication system according to the first aspect, the plurality of slave stations are branched in a star shape into several systems from the repeater, and then connected in a bus shape in each system. It is a thing.
According to the third aspect of the present invention, the master station and the slave station include an amplifying unit that amplifies the received signal.
According to a fourth aspect of the present invention, in the power line communication system according to the first to third aspects, the slave station is arranged at a joint portion of the robot system.

請求項1に記載の発明によると、子局がスター型に接続されているので、子局の接続台数が多い場合でも、ケーブルを流れる電流が分散され、より細いケーブルを使用することができる。
また、請求項2に記載の発明によると、子局がいくつかの系統にスター型に分岐した後、それぞれの系統においてバス型に接続されているので、適度に細いケーブルで、自由度の高い子局の接続が可能となり、より幅広い分野のシステムに適用することができる。
また、請求項3に記載の発明によると、増幅部により受信信号を増幅することができるので、電力線がスター型に分岐する際の受信信号の減衰という問題を改善することができる。
According to the first aspect of the present invention, since the slave stations are connected in a star shape, even when the number of slave stations connected is large, the current flowing through the cable is dispersed, and a thinner cable can be used.
In addition, according to the invention of claim 2, since the slave station branches into several systems into a star shape, and is connected to the bus type in each system, the degree of freedom is high with a moderately thin cable. Slave stations can be connected and applied to systems in a wider range of fields.
According to the third aspect of the present invention, since the received signal can be amplified by the amplifying unit, it is possible to improve the problem of attenuation of the received signal when the power line branches into a star shape.

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の第1実施例を示す概要図である。図1において、5は中継機であり、DC電源1、電力線31及びコイル4により構成される。DC電源1からはDC48Vが供給され、コイル4及び電力線31を介して外部へ出力される。中継機5には親局6と複数の子局7がスター型に接続(中継器の電源端子に親局と複数の子局が互いに並列接続されている)され、それぞれに供給電流23、24、・・・2nが分散されて送られている。また、親局6と複数の子局7との間では、電力線32,33,34,3nを介して差動信号による通信が行われている。親局6及び子局7は図2に示すような回路構成になっており、供給電流22はコイル4を通過し、DC−DCコンバータ8によりDC48VからDC5Vに変換され、内部回路で消費される。また、コイル4は供給電流22のみを通過させ、通信信号は遮断するようになっている。一方、制御部9では通信信号のデータ処理が行われており、送信時には送信イネーブル信号10がイネーブル状態となり、シリアルデータがドライバ11及びコンデンサ13を介して電力線32へ送られる。また、受信時には送信イネーブル信号10がディセーブル状態となり、電力線32よりコンデンサ13及びレシーバ12を介してシリアルデータを受け取る。また、コンデンサ13は通信信号のみを通過させ、供給電流22は遮断するようになっている。
図3は本発明の第1実施例の各点での電流値を示すグラフである。供給電流23、24、・・・2nが分散されて送られているので、図3に示されるようにa点、b点、c点ともに同等の小さな電流値となっている。また、電力線ケーブルの最大許容電流値ImaxはImax≧I(a)≒ I(b)≒ I(c)を満たすようにケーブルを選定すればよいので、細いケーブルを使用することができる。
FIG. 1 is a schematic diagram showing a first embodiment of the present invention. In FIG. 1, reference numeral 5 denotes a repeater, which includes a DC power source 1, a power line 31 and a coil 4. DC 48 V is supplied from the DC power source 1 and is output to the outside through the coil 4 and the power line 31. The repeater 5 has a master station 6 and a plurality of slave stations 7 connected in a star shape (a master station and a plurality of slave stations are connected in parallel to the power terminal of the repeater), and supply currents 23 and 24 are respectively connected thereto. ... 2n are distributed and sent. In addition, communication using a differential signal is performed between the master station 6 and the plurality of slave stations 7 through the power lines 32, 33, 34, and 3n. The master station 6 and the slave station 7 have a circuit configuration as shown in FIG. 2, and the supply current 22 passes through the coil 4, is converted from DC 48V to DC 5V by the DC-DC converter 8, and is consumed by the internal circuit. . In addition, the coil 4 allows only the supply current 22 to pass, and cuts off the communication signal. On the other hand, the control unit 9 performs data processing of the communication signal. At the time of transmission, the transmission enable signal 10 is enabled, and serial data is sent to the power line 32 via the driver 11 and the capacitor 13. At the time of reception, the transmission enable signal 10 is disabled, and serial data is received from the power line 32 via the capacitor 13 and the receiver 12. Further, the capacitor 13 allows only the communication signal to pass, and the supply current 22 is cut off.
FIG. 3 is a graph showing current values at various points in the first embodiment of the present invention. Since the supply currents 23, 24,... 2n are distributed and sent, the points a, b, and c have the same small current value as shown in FIG. Further, since the cable may be selected so that the maximum allowable current value Imax of the power line cable satisfies Imax ≧ I (a) ≈I (b) ≈I (c), a thin cable can be used.

図4は、本発明の第2実施例を示す概要図である。図において、5は中継機であり、DC電源1、電力線31及びコイル4により構成される。DC電源1からはDC48Vが供給され、コイル4及び電力線31を介して外部へ出力される。中継機5には親局6と複数の子局7が接続され、複数の子局7は中継機5よりいくつかの系統にスター型に分岐した後、それぞれの系統においてバス型に接続されている。また、親局6と複数の子局7との間では、電力線32,33,34,3nを介して差動信号による通信が行われている。親局6及び子局7は、本発明の第1実施例同様の回路構成および動作となっている。   FIG. 4 is a schematic diagram showing a second embodiment of the present invention. In the figure, reference numeral 5 denotes a repeater, which includes a DC power source 1, a power line 31 and a coil 4. DC 48 V is supplied from the DC power source 1 and is output to the outside through the coil 4 and the power line 31. The repeater 5 is connected to a master station 6 and a plurality of slave stations 7, and the slave stations 7 are branched from the repeater 5 into several systems in a star shape, and then connected to a bus shape in each system. Yes. In addition, communication using a differential signal is performed between the master station 6 and the plurality of slave stations 7 through the power lines 32, 33, 34, and 3n. The master station 6 and the slave station 7 have the same circuit configuration and operation as the first embodiment of the present invention.

図5は、本発明の第2実施例の各点での電流値を示すグラフである。供給電流23、24、・・・2nが分散されて送られているので、図5に示されるようにa’点、b’点、c’点ともに同等の適度に小さな電流値となっている。また、電力線ケーブルの最大許容電流値ImaxはImax≧I(a’)≒ I(b’)≒ I(c’)を満たすようにケーブルを選定すればよいので、適度に細いケーブルを使用することができる。但し、各系統ともに数台の子局7がバス型に接続されているので、第1実施例に比べると多少ケーブルは太くなる。   FIG. 5 is a graph showing current values at various points in the second embodiment of the present invention. Since the supply currents 23, 24,... 2n are distributed and sent, the a ′ point, the b ′ point, and the c ′ point have the same reasonably small current values as shown in FIG. . In addition, the cable should be selected so that the maximum allowable current value Imax of the power line cable satisfies Imax ≧ I (a ′) ≈I (b ′) ≈I (c ′). Can do. However, since several slave stations 7 are connected in a bus type in each system, the cable is somewhat thicker than in the first embodiment.

第2実施例のような構成にすることで、図6のようなロボットシステムにも適用できる。図6において、ロボット15は子局7が中継機5より左右の手足4系統にスター型に分岐した後、それぞれの系統においてバス型に接続されており、肩、肘、手首、股関節、膝、足首等、様々な関節部に子局7を配置し、モータ制御を行うことができる。
但し、第1実施例及び第2実施例では、電力線がスター型に分岐する為、親局6からの送信信号が中継機5を通過する際に、特性インピーダンスの不整合による反射が生じ、透過波は大きく減衰する。例えば、電力線32,33,34,・・・3nの特性インピーダンスをZ0とし、子局7がN系統に分岐しているとすると,反射の現象は図7のような模式図で表され、反射率ρは(1)式で、透過率(1−ρ)は(2)式で表される。よって(2)式より、分岐数Nが多ければ多い程透過率は小さくなるので、子局7での受信信号の振幅は小さくなる。
By adopting the configuration as in the second embodiment, the present invention can also be applied to a robot system as shown in FIG. In FIG. 6, the robot 15 is connected to the bus type in each system after the slave station 7 branches from the relay unit 5 to the left and right limbs 4 systems in a star shape, and is connected to the shoulder, elbow, wrist, hip joint, knee, The slave station 7 can be arranged at various joints such as an ankle to perform motor control.
However, in the first embodiment and the second embodiment, since the power line branches in a star shape, when the transmission signal from the master station 6 passes through the repeater 5, reflection due to characteristic impedance mismatch occurs, and transmission occurs. The wave is greatly attenuated. For example, if the characteristic impedance of the power lines 32, 33, 34,... 3n is Z0 and the slave station 7 is branched into N systems, the reflection phenomenon is represented by a schematic diagram as shown in FIG. The rate ρ is expressed by equation (1), and the transmittance (1-ρ) is expressed by equation (2). Therefore, from equation (2), the greater the number of branches N, the smaller the transmittance, so the amplitude of the received signal at the slave station 7 becomes smaller.

ρ=(Z0−Z0/N)/(Z0+Z0/N)=(N−1)/(N+1)・・・(1)
(1−ρ)=1−(N−1)/(N+1)=2/(N+1) ・・・(2)
この問題を解決しようとしたのが本発明の第3実施例である。図8は、本発明の第3実施例の親局及び子局の回路構成を示すブロック図である。図8において、供給電流22はコイル4を通過し、DC−DCコンバータ8に電力供給され、内部回路で消費される。また、コイル4は供給電流22のみを通過させ、通信信号は遮断するようになっている。一方、制御部9では通信信号のデータ処理が行われており、送信時には送信イネーブル信号10がイネーブル状態となり、シリアルデータがドライバ11及びコンデンサ13を介して電力線32へ送られる。また、受信時には送信イネーブル信号10がディセーブル状態となり、電力線32よりコンデンサ13を介して一度増幅部14で受け、増幅部14で受信信号を増幅した後、レシーバ12を介してシリアルデータを受け取る。また、コンデンサ13は通信信号のみを通過させ、供給電流22は遮断するようになっている。このような構成にすることで、電力線がスター型に分岐する際の受信信号の減衰という問題を改善することができる。
なお、以上の実施例では、DC電源1より出力されたDC48Vを、DC−DCコンバータ8によりDC5Vに変換して使用するようになっているが、電圧値はDC48VやDC5Vに限らず、何Vであってもよい。また、DC−DCコンバータ8を使用しない構成であってもよい。さらに、実施例では信号受信時のインピーダンス整合の為の終端抵抗が図示されていないが、終端抵抗を用いる構成であってもよい。また、図1、図2、図4、図6、図8ではコイルを使用しているが、高周波信号を遮断するものであればコイルに限らず何でもよい。
ρ = (Z0−Z0 / N) / (Z0 + Z0 / N) = (N−1) / (N + 1) (1)
(1-ρ) = 1- (N−1) / (N + 1) = 2 / (N + 1) (2)
The third embodiment of the present invention is intended to solve this problem. FIG. 8 is a block diagram showing a circuit configuration of a master station and a slave station according to the third embodiment of the present invention. In FIG. 8, the supply current 22 passes through the coil 4, is supplied with power to the DC-DC converter 8, and is consumed in the internal circuit. In addition, the coil 4 allows only the supply current 22 to pass, and cuts off the communication signal. On the other hand, the control unit 9 performs data processing of the communication signal. At the time of transmission, the transmission enable signal 10 is enabled, and serial data is sent to the power line 32 via the driver 11 and the capacitor 13. At the time of reception, the transmission enable signal 10 is disabled, and is once received by the amplifying unit 14 via the capacitor 13 from the power line 32, and after receiving the signal is amplified by the amplifying unit 14, serial data is received via the receiver 12. Further, the capacitor 13 allows only the communication signal to pass, and the supply current 22 is cut off. With such a configuration, it is possible to improve the problem of reception signal attenuation when the power line branches into a star shape.
In the above embodiment, the DC 48V output from the DC power source 1 is used after being converted to DC 5V by the DC-DC converter 8; however, the voltage value is not limited to DC 48V or DC 5V, but what voltage It may be. Moreover, the structure which does not use the DC-DC converter 8 may be sufficient. Furthermore, although the termination resistor for impedance matching at the time of signal reception is not shown in the embodiment, a configuration using a termination resistor may be used. Moreover, although the coil is used in FIG.1, FIG.2, FIG.4, FIG.6, FIG.

自由度の高い子局の接続が可能となるので、人間型ロボットをはじめとするあらゆる多軸制御システムに適用できる。   Since it is possible to connect a slave station with a high degree of freedom, it can be applied to any multi-axis control system including a humanoid robot.

本発明の第1実施例を示す概要図Schematic diagram showing the first embodiment of the present invention 本発明の親局及び子局の回路構成を示すブロック図The block diagram which shows the circuit structure of the master station of this invention, and a slave station 本発明の第1実施例の各点での電流値を示すグラフThe graph which shows the electric current value in each point of 1st Example of this invention 本発明の第2実施例を示す概要図Schematic diagram showing a second embodiment of the present invention 本発明の第2実施例の各点での電流値を示すグラフThe graph which shows the electric current value in each point of 2nd Example of this invention 本発明の第2実施例を適用したロボットシステムの概要図Schematic diagram of a robot system to which a second embodiment of the present invention is applied 本発明の第1及び第2実施例での反射の現象を表した模式図Schematic diagram showing the phenomenon of reflection in the first and second embodiments of the present invention. 本発明の第3実施例の親局及び子局の回路構成を示すブロック図The block diagram which shows the circuit structure of the master station of the 3rd Example of this invention, and a slave station 従来の電力線通信システムを示す概要図Schematic diagram showing a conventional power line communication system 従来の電力線通信システムの各点での電流値を示すグラフThe graph which shows the electric current value in each point of the conventional power line communication system

符号の説明Explanation of symbols

1 DC電源
21,22,23,24,2n 供給電流
31,32,33,34,3n 電力線
4 コイル
5 中継機
6 親局
7 子局
8 DC−DCコンバータ
9 制御部
10 送信イネーブル信号
11 ドライバ
12 レシーバ
13 コンデンサ
14 増幅部
15 ロボット
1 DC power supply 21, 22, 23, 24, 2n Supply current 31, 32, 33, 34, 3n Power line
4 Coil 5 Repeater 6 Master station 7 Slave station 8 DC-DC converter 9 Control unit 10 Transmission enable signal 11 Driver 12 Receiver 13 Capacitor 14 Amplification unit 15 Robot

Claims (4)

電源供給を行うDC電源と前記DC電源より出力される供給電流が内部を流れる電力線とコイルから成る中継機と、前記中継機より電力線を介して前記供給電流を受ける親局と、前記中継機より電力線を介して前記供給電流を受ける複数の子局から成り、前記電力線を介して通信を行う電力線通信システムにおいて、前記複数の子局は前記中継機にスター型に接続されていることを特徴とする電力線通信システム。   A DC power source for supplying power, a relay unit including a power line and a coil through which a supply current output from the DC power source flows, a master station that receives the supply current from the relay unit via a power line, and a relay unit A power line communication system comprising a plurality of slave stations that receive the supply current via a power line and performing communication via the power line, wherein the plurality of slave stations are connected to the repeater in a star shape. Power line communication system. 前記複数の子局は前記中継機よりいくつかの系統にスター型に分岐した後、それぞれの系統においてバス型に接続されていることを特徴とする請求項1記載の電力線通信システム。   2. The power line communication system according to claim 1, wherein the plurality of slave stations are branched in a star shape into several systems from the repeater and are connected in a bus shape in each system. 前記親局及び前記子局は、受信信号を増幅する増幅部を備えていることを特徴とする請求項1又は請求項2に記載の電力線通信システム。   The power line communication system according to claim 1, wherein each of the master station and the slave station includes an amplifying unit that amplifies a received signal. 前記子局をロボットシステムの関節部に配置したものである請求項1ないし3記載の電力線通信システム。   4. The power line communication system according to claim 1, wherein the slave stations are arranged at joints of a robot system.
JP2004178125A 2004-06-16 2004-06-16 Power line communication system Pending JP2006005535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004178125A JP2006005535A (en) 2004-06-16 2004-06-16 Power line communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004178125A JP2006005535A (en) 2004-06-16 2004-06-16 Power line communication system

Publications (1)

Publication Number Publication Date
JP2006005535A true JP2006005535A (en) 2006-01-05

Family

ID=35773563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004178125A Pending JP2006005535A (en) 2004-06-16 2004-06-16 Power line communication system

Country Status (1)

Country Link
JP (1) JP2006005535A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011139417A (en) * 2009-12-01 2011-07-14 Central Res Inst Of Electric Power Ind Power line communication system and inverter unit
JP2011145928A (en) * 2010-01-15 2011-07-28 Sharp Corp Power source control system
JP2012231553A (en) * 2011-04-25 2012-11-22 Panasonic Corp Power distribution board
WO2017061088A1 (en) * 2015-10-08 2017-04-13 ソニー株式会社 Servo motor, servo motor system, and power supply method
WO2018153444A1 (en) * 2017-02-22 2018-08-30 Abb Schweiz Ag Industrial robot system with supervision sensor
JP2018207770A (en) * 2017-05-30 2018-12-27 インフィネオン テクノロジーズ オーストリア アクチエンゲゼルシャフト Powerline-controlled electric drive inverters

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011139417A (en) * 2009-12-01 2011-07-14 Central Res Inst Of Electric Power Ind Power line communication system and inverter unit
JP2011145928A (en) * 2010-01-15 2011-07-28 Sharp Corp Power source control system
JP2012231553A (en) * 2011-04-25 2012-11-22 Panasonic Corp Power distribution board
WO2017061088A1 (en) * 2015-10-08 2017-04-13 ソニー株式会社 Servo motor, servo motor system, and power supply method
WO2018153444A1 (en) * 2017-02-22 2018-08-30 Abb Schweiz Ag Industrial robot system with supervision sensor
US11413772B2 (en) 2017-02-22 2022-08-16 Abb Schweiz Ag Industrial robot system with supervision sensor
JP2018207770A (en) * 2017-05-30 2018-12-27 インフィネオン テクノロジーズ オーストリア アクチエンゲゼルシャフト Powerline-controlled electric drive inverters
JP7176863B2 (en) 2017-05-30 2022-11-22 インフィネオン テクノロジーズ オーストリア アクチエンゲゼルシャフト Power line control electric drive inverter

Similar Documents

Publication Publication Date Title
EP3128679B1 (en) Coupler for power line communication and power-over-ethernet
US7421531B2 (en) Isolating system that couples fieldbus data to a network
JP4875496B2 (en) Bus transmitter wireless transmitter
JP4499598B2 (en) Power superimposed multiplex communication system
US20060159186A1 (en) Data, power and supervisory signaling over twisted pairs
US10518898B2 (en) Communication system and method for an aircraft cargo/freight handling system
WO2016088885A1 (en) Wiring harness
US20170331516A1 (en) Feed line branching apparatus and feed line branching method
US20070110026A1 (en) Systems and methods for dual power and data over a single cable
JP2006005535A (en) Power line communication system
EP1128273A3 (en) Communication method and communication apparatus
JP2017535189A (en) Spur insulation in fieldbus networks
JP2012235336A (en) Communication system
US20180115191A1 (en) Fault-tolerant power network
JP2007312046A (en) Power line communication system
US20200136318A1 (en) Communication harness, communication harness set, and relay connector
JP2003212065A (en) Power supply device and joint connector
JP2011164966A (en) Wiring system of multiple proximity sensors and plc and relay box used for the system
CN112204893B (en) Data transmission system
JP2021520130A (en) Transmission of information signals on differential signal pairs
JP5789742B2 (en) Distribution board
JP2011135236A (en) Communication system, in-vehicle communication device, and branch connector
TWI739140B (en) Powering system and powered device thereof
US11956092B2 (en) Communication system and connector
US8350635B2 (en) Suppression of high-frequency perturbations in pulse-width modulation