JP2006005508A - Electromagnetic ultrasonic sensor - Google Patents

Electromagnetic ultrasonic sensor Download PDF

Info

Publication number
JP2006005508A
JP2006005508A JP2004177720A JP2004177720A JP2006005508A JP 2006005508 A JP2006005508 A JP 2006005508A JP 2004177720 A JP2004177720 A JP 2004177720A JP 2004177720 A JP2004177720 A JP 2004177720A JP 2006005508 A JP2006005508 A JP 2006005508A
Authority
JP
Japan
Prior art keywords
ultrasonic sensor
permanent magnet
electromagnetic ultrasonic
magnetic flux
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004177720A
Other languages
Japanese (ja)
Other versions
JP4270036B2 (en
Inventor
Masashi Narushige
将史 成重
Yoshiaki Nagashima
良昭 永島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004177720A priority Critical patent/JP4270036B2/en
Publication of JP2006005508A publication Critical patent/JP2006005508A/en
Application granted granted Critical
Publication of JP4270036B2 publication Critical patent/JP4270036B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform remote flaw detection on the surface of a metallic structure using an electromagnetic ultrasonic sensor with high sensitivity. <P>SOLUTION: An arcuate permanent magnet 1 having a centrally recessed arcuate pole surface facing the coil side of an electromagnetic ultrasonic sensor is employed, and magnetic flux generated from that arcuate permanent magnet 1 is converged to the surface of a metallic structure 3. When an AC current is supplied to a coil 2 located under the arcuate permanent magnet 1, an eddy current is generated in the metallic structure 3. A Rorentz force is generated at the intersection (becoming a sound source) of the eddy current and the magnetic flux and an ultrasonic wave generated by the Rorentz force propagates through the surface layer of the metallic structure 3. Since the magnetic flux is converged, the size of a sound souce becomes small and directivity for making the ultrasonic wave propagate in the horizontal direction parallel with the surface of the metallic structure 3 is improved. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電磁超音波センサの感度を高めるのに有効な技術に関するものである。   The present invention relates to a technique effective in increasing the sensitivity of an electromagnetic ultrasonic sensor.

圧電振動型センサは、センサ内で発生させた超音波を被検査体に伝達して初めて被検査体に超音波を導入できるのに対して、電磁超音波センサは、電磁気的な作用で被検査体内に直接超音波を発生させ、被検査体内の超音波を電磁気的な作用でコイル内の誘導起電力として受信することができる。そのため、電磁超音波センサは、圧電振動型センサに比較して、超音波のセンサと被検査体との間で伝達し合うための制約が無い。   Piezoelectric vibration-type sensors can only introduce ultrasonic waves into an object to be inspected by transmitting ultrasonic waves generated in the sensor to the object to be inspected, whereas electromagnetic ultrasonic sensors are inspected by electromagnetic action. An ultrasonic wave can be directly generated in the body, and the ultrasonic wave in the body to be inspected can be received as an induced electromotive force in the coil by electromagnetic action. For this reason, the electromagnetic ultrasonic sensor has no restriction for transmission between the ultrasonic sensor and the object to be inspected, as compared with the piezoelectric vibration type sensor.

このように、電磁超音波センサは、超音波振動の送受信に電磁気的な作用のみを利用しているため、圧電振動型センサを用いて被検査体の傷などの欠陥を検査する際での探傷に不可欠な接触媒質(超音波をセンサと被検査体との間で送受するための超音波の伝達用媒質)の塗布やセンサの押し付けが不要である。そのため、電磁超音波センサは、定量性・再現性・操作性の高い探傷が可能となる。   As described above, since the electromagnetic ultrasonic sensor uses only an electromagnetic action for transmitting and receiving ultrasonic vibrations, flaw detection is performed when inspecting defects such as scratches on the object to be inspected using the piezoelectric vibration type sensor. It is unnecessary to apply a contact medium (ultrasonic transmission medium for transmitting and receiving ultrasonic waves between the sensor and the object to be inspected) and press the sensor. Therefore, the electromagnetic ultrasonic sensor can perform flaw detection with high quantitativeness, reproducibility, and operability.

電磁超音波センサは、このような長所を有する一方で、電磁超音波センサの送受信感度は圧電振動型センサより2桁以上低く、送受信感度の向上は大きな課題となっている。その課題を改善するために、電磁超音波センサは磁束を発生する手段としての永久磁石と電流を通すためのコイルの形状を工夫して超音波を集束させる方法が公知である。その公知の内容は、被検査体内に発生させた超音波が音源(超音波の発生個所)から距離Rの集束点に向かうように、曲率半径Rを持つ永久磁石を扇状に配列し、スパイラルコイルの直線形状部を集束点へ向けた配置構造を持つ電磁超音波センサである。このように、永久磁石とコイルの形状と配置を工夫することで、金属製構造物面内での超音波の集束が可能である(例えば、特許文献1参照)。   While the electromagnetic ultrasonic sensor has such advantages, the transmission / reception sensitivity of the electromagnetic ultrasonic sensor is two orders of magnitude lower than that of the piezoelectric vibration type sensor, and improvement of the transmission / reception sensitivity is a major issue. In order to improve the problem, a method of focusing an ultrasonic wave by devising a shape of a permanent magnet as a means for generating a magnetic flux and a coil for passing a current is known. The known contents are that a permanent magnet having a radius of curvature R is arranged in a fan shape so that the ultrasonic waves generated in the body to be inspected are directed from the sound source (the location where the ultrasonic waves are generated) to the focusing point at a distance R, and the spiral coil. This is an electromagnetic ultrasonic sensor having an arrangement structure in which the linear shape portion is directed to the focusing point. Thus, by contriving the shape and arrangement of the permanent magnet and the coil, it is possible to focus ultrasonic waves within the surface of the metal structure (see, for example, Patent Document 1).

特開2000−88816号公報JP 2000-88816 A

前記の従来技術は電磁超音波センサで被検査体である金属性構造物中に発生させた超音波をその金属製構造物の面内で集束可能であるが、厚み方向(電磁超音波センサに被検査体が対面する面と垂直な方向)に集束することはできない。そのため、電磁超音波センサから遠く離れた金属製構造物の表面欠陥を遠距離探傷する場合、厚み方向への超音波の拡散が大きくなるという問題がある。   The above-mentioned conventional technique can focus the ultrasonic wave generated in the metallic structure, which is the object to be inspected, by the electromagnetic ultrasonic sensor within the plane of the metallic structure. It is not possible to focus in a direction perpendicular to the surface facing the object to be inspected. Therefore, when a surface defect of a metal structure far away from the electromagnetic ultrasonic sensor is detected at a long distance, there is a problem that diffusion of ultrasonic waves in the thickness direction becomes large.

ここでは、電磁超音波センサの寸法と超音波の厚み方向への拡散について図2から図5を使って説明する。その前に電磁超音波センサの超音波送受信原理を説明すると次の通りである。即ち、図2に示すように送信用の電磁超音波センサ5aの構成要素である送信用のコイル2aの断面内に表示した

Figure 2006005508
印はそれぞれ紙面に対して手前側と奥側に向かって流れるコイル2a内の電流の向きを表している。コイル2aに接続した電源から図2(a)に示したような向きに交流電流をコイル2a内に流すと、送信用のコイル2aに近接する被検査体である金属製構造物3内にコイル電流と逆向きの渦電流Iが生じる。送信用のコイル2aの上には磁束の発生手段として永久磁石4aが置かれており、金属製構造物3内には矢印の向きに磁束密度Bの磁場が形成される。 Here, the dimension of the electromagnetic ultrasonic sensor and the diffusion of the ultrasonic wave in the thickness direction will be described with reference to FIGS. Prior to that, the principle of ultrasonic transmission / reception of the electromagnetic ultrasonic sensor will be described as follows. That is, as shown in FIG. 2, it is displayed in the cross section of the transmission coil 2a, which is a constituent element of the transmission electromagnetic ultrasonic sensor 5a.
Figure 2006005508
Each mark represents the direction of current in the coil 2a flowing toward the near side and the far side with respect to the paper surface. When an alternating current is passed through the coil 2a from the power source connected to the coil 2a in the direction shown in FIG. 2 (a), the coil is placed in the metal structure 3 which is an object to be inspected close to the transmission coil 2a. An eddy current I opposite to the current is generated. A permanent magnet 4a is placed on the transmission coil 2a as means for generating magnetic flux, and a magnetic field having a magnetic flux density B is formed in the metal structure 3 in the direction of the arrow.

この磁場と渦電流により、ローレンツ力F(=I×B)が金属製構造物3内に水平な白抜き矢印の方向に発生する。ローレンツ力Fは金属製構造物3内に機械的な歪みを生み、その歪み振動が超音波として伝搬する。超音波の伝播振動の受信も送信の場合と同様に電磁的な作用を利用する。受信原理を図2(b)に示す。図2(b)で金属製構造物3内を伝播する超音波振動が受信側の電磁超音波センサ5bの下に到達すると、超音波の振動方向と永久磁石4bの磁場方向の両者に垂直な方向に渦電流が生じる。その渦電流により発生する磁束が受信用のコイル2bと鎖交すると、誘導起電力が受信用のコイル2bに発生し、受信用のコイル2bに接続した計測装置で誘導起電力を電気信号として観測される。   By this magnetic field and eddy current, a Lorentz force F (= I × B) is generated in the direction of the horizontal white arrow in the metal structure 3. The Lorentz force F causes mechanical distortion in the metal structure 3, and the distortion vibration propagates as ultrasonic waves. The reception of ultrasonic propagation vibrations uses an electromagnetic action as in the case of transmission. The reception principle is shown in FIG. When the ultrasonic vibration propagating through the metal structure 3 in FIG. 2B reaches below the electromagnetic ultrasonic sensor 5b on the receiving side, it is perpendicular to both the ultrasonic vibration direction and the magnetic field direction of the permanent magnet 4b. An eddy current is generated in the direction. When the magnetic flux generated by the eddy current interlinks with the receiving coil 2b, an induced electromotive force is generated in the receiving coil 2b, and the induced electromotive force is observed as an electric signal by a measuring device connected to the receiving coil 2b. Is done.

このように電磁超音波センサの超音波送受信原理から、電磁超音波センサによる超音波振動はコイルによる渦電流Iと永久磁石による磁束密度Bを持つ磁場の重なった領域に発生する。図3に一例を示す。図3内の

Figure 2006005508
印はそれぞれ紙面に対して手前側と奥側に向かって生じるローレンツ力の向きを表している。このローレンツ力の発生する範囲を音源と呼ぶ。図2内に示した一般的な電磁超音波センサ5aにおいて、渦電流Iは金属製構造物3の表面のコイル2aの直下に流れる。すなわち、渦電流はコイル内の電流の向きとは逆であるが、渦電流の生じる範囲はコイル
2aの寸法(コイル2aと永久磁石4aの下端磁極面との重なり合う範囲)と等しい。金属製構造物3の表面を透過する永久磁石の磁束の範囲も永久磁石の寸法とほぼ等しくなる。これは、永久磁石4aが金属製構造物3の表面に近づけて配置されるためである。図4に永久磁石4の磁束分布の概念図を示す。点線で描かれたものが永久磁石4の磁束を表している。永久磁石4の磁束はN極からS極に向かってループを形成し、N極とS極の表面では磁極表面に垂直となる。これらのことから、永久磁石4の下全体にコイル2が敷詰められている場合、音源は永久磁石4の寸法に等しくなる。 Thus, based on the principle of ultrasonic transmission / reception of the electromagnetic ultrasonic sensor, ultrasonic vibration generated by the electromagnetic ultrasonic sensor is generated in a region where magnetic fields having an eddy current I by a coil and a magnetic flux density B by a permanent magnet overlap. An example is shown in FIG. In FIG.
Figure 2006005508
Each mark represents the direction of Lorentz force generated toward the near side and the far side with respect to the paper surface. A range where the Lorentz force is generated is called a sound source. In the general electromagnetic ultrasonic sensor 5 a shown in FIG. 2, the eddy current I flows directly under the coil 2 a on the surface of the metal structure 3. That is, the eddy current is opposite to the direction of the current in the coil, but the range in which the eddy current is generated is equal to the dimension of the coil 2a (the overlapping range of the coil 2a and the bottom pole surface of the permanent magnet 4a). The range of the magnetic flux of the permanent magnet that passes through the surface of the metal structure 3 is also substantially equal to the size of the permanent magnet. This is because the permanent magnet 4 a is arranged close to the surface of the metal structure 3. FIG. 4 shows a conceptual diagram of the magnetic flux distribution of the permanent magnet 4. What is drawn with a dotted line represents the magnetic flux of the permanent magnet 4. The magnetic flux of the permanent magnet 4 forms a loop from the north pole to the south pole, and the surfaces of the north and south poles are perpendicular to the magnetic pole surface. From these facts, when the coil 2 is laid all over the permanent magnet 4, the sound source is equal to the size of the permanent magnet 4.

一般的な電磁超音波センサは図2に示したようなコイル2a,2b上に永久磁石4a,4bが配列されたものである。図2の電磁超音波センサによって金属製構造物3の表面に水平な方向に伝播する超音波(表面SH波)を送信する場合、その永久磁石4a,4bの長さLは超音波波長の2分の1の長さが良いことが知られている。例えば、金属製構造物3をSUS 304材とし、超音波の周波数を300kHzとすると、永久磁石4a,
4bの長さLは約5.2mmとなる。
A general electromagnetic ultrasonic sensor has permanent magnets 4a and 4b arranged on coils 2a and 2b as shown in FIG. When the ultrasonic wave (surface SH wave) propagating in the horizontal direction is transmitted to the surface of the metal structure 3 by the electromagnetic ultrasonic sensor of FIG. 2, the length L of the permanent magnets 4a and 4b is 2 of the ultrasonic wavelength. It is known that a fraction of a length is good. For example, if the metal structure 3 is SUS 304 material and the ultrasonic frequency is 300 kHz, the permanent magnet 4a,
The length L of 4b is about 5.2 mm.

永久磁石4a,4bの長さLは超音波の指向特性に影響する。超音波の磁極面に垂直な指向特性は、一般的に音源が大きいほど鋭くなる。すなわち、金属製構造物の厚み方向
(磁極面に垂直な方向)に伝播する超音波振幅が増大する。電磁超音波センサの場合、前述より音源の寸法は永久磁石4a,4bの長さLに依存する。上述の例では永久磁石の長さL(=5.2mm )が大きいため、電磁超音波センサの送信波は金属製構造物3の厚み方向に拡がりやすくなる。その一例を図5に示す。点線は送信波の波面を表す。図5のように送信波が金属製構造物3の厚み方向に拡がると、表面欠陥からの反射波は小さくなる。このように、従来の電磁超音波センサは、金属製構造物の厚み方向への超音波の拡散が大きいため、遠距離探傷には不向きである。従って、金属製構造物の表面に水平な方向に伝播する超音波振幅を高めることが可能な構造を持つ電磁超音波センサが必要である。
The length L of the permanent magnets 4a and 4b affects the directivity characteristics of ultrasonic waves. The directivity characteristic perpendicular to the magnetic pole surface of ultrasonic waves generally becomes sharper as the sound source is larger. That is, the amplitude of ultrasonic waves propagating in the thickness direction of the metal structure (direction perpendicular to the magnetic pole surface) increases. In the case of an electromagnetic ultrasonic sensor, the size of the sound source depends on the length L of the permanent magnets 4a and 4b as described above. In the above example, since the length L (= 5.2 mm) of the permanent magnet is large, the transmission wave of the electromagnetic ultrasonic sensor is likely to spread in the thickness direction of the metal structure 3. An example is shown in FIG. The dotted line represents the wavefront of the transmitted wave. When the transmission wave spreads in the thickness direction of the metal structure 3 as shown in FIG. 5, the reflected wave from the surface defect becomes small. Thus, the conventional electromagnetic ultrasonic sensor is not suitable for long-distance flaw detection because of the large diffusion of ultrasonic waves in the thickness direction of the metal structure. Therefore, there is a need for an electromagnetic ultrasonic sensor having a structure that can increase the amplitude of ultrasonic waves that propagate in a horizontal direction on the surface of a metal structure.

受信用の電磁超音波センサの受信感度も永久磁石の長さLにより指向特性が変化する。その指向特性は、送信用の場合の説明と同様であり、永久磁石の長さLが大きいほど、金属製構造物の厚み方向の受信感度が向上する。すなわち、従来の電磁超音波センサは金属製構造物の表面欠陥を遠距離探傷するには不向きである。   The directivity of the reception sensitivity of the electromagnetic ultrasonic sensor for reception varies depending on the length L of the permanent magnet. The directivity is the same as that in the case of transmission. As the length L of the permanent magnet is larger, the reception sensitivity in the thickness direction of the metal structure is improved. That is, the conventional electromagnetic ultrasonic sensor is not suitable for detecting a surface defect of a metal structure over a long distance.

したがって、本発明の目的は、被検査体の表面欠陥の遠距離探傷に適した電磁超音波センサを提供することである。   Accordingly, an object of the present invention is to provide an electromagnetic ultrasonic sensor suitable for long-distance flaw detection of a surface defect of an inspection object.

本発明の目的を達成するための具体的な手段においては、前記目的が、コイル上に永久磁石を配列した電磁超音波センサにおいて、底面形状がアーチ型である永久磁石とコイルから構成されることにより達成される。また、前記目的はコイル上に永久磁石を配列した電磁超音波センサにおいて、永久磁石と底面形状がアーチ型である磁極片と、コイルから構成されることにより達成される。また、前記目的はコイル上に永久磁石を配列した電磁超音波センサにおいて、永久磁石の磁極面の面積より底面面積が小さい磁極片と、永久磁石と、コイルから構成されることにより達成される。   In a specific means for achieving the object of the present invention, the object is an electromagnetic ultrasonic sensor in which permanent magnets are arranged on a coil, wherein the bottom surface shape is constituted by an arcuate permanent magnet and a coil. Is achieved. The object is achieved by an electromagnetic ultrasonic sensor in which permanent magnets are arranged on a coil, comprising a permanent magnet, a pole piece having an arched bottom shape, and a coil. The object is achieved by an electromagnetic ultrasonic sensor in which permanent magnets are arranged on a coil, comprising a magnetic pole piece having a bottom surface area smaller than the magnetic pole surface area of the permanent magnet, a permanent magnet, and the coil.

本発明によれば、被検査体の表面に水平な方向に伝播する超音波振幅を高めることが可能な構造を持つ電磁超音波センサを提供できるので、超音波を被検査体内で集束させる為の複雑な磁石とコイルの配置を採用することなく、被検査体の表面欠陥の遠距離探傷を可能にできる。   According to the present invention, an electromagnetic ultrasonic sensor having a structure capable of increasing the ultrasonic amplitude propagating in the horizontal direction on the surface of the object to be inspected can be provided. It is possible to perform long-range flaw detection of surface defects of the object to be inspected without adopting complicated magnet and coil arrangements.

(実施例1)
実施例1の電磁超音波センサ6の構成は次の内容を備える。即ち、図1(a)に示すように、アルミニューム製のケースで代表される金属製のケース20内には、異なる極性が隣接するようにして複数のアーチ型永久磁石1が磁束の発生手段として2列4行の配置で配列されている。その複数の永久磁石1はケース20内に充填された樹脂25によってそのケース20内に固定されて設けられている。そのアーチ型永久磁石1の真下には、例えばエナメル線製のコイル2が配置されている。このコイル2は極薄の保護フイルム21によって包み込まれて保護されている。その保護フイルム21は止ネジ22でケース20に固定されている。コイル2を形成しているエナメル線の延長線がコイル2のリード線23としてコネクタ24に接続されている。このコネクタ24はケース20に設置され、ケース20外の電磁超音波計測装置への電気的接続手段として利用される。
Example 1
The configuration of the electromagnetic ultrasonic sensor 6 according to the first embodiment includes the following contents. That is, as shown in FIG. 1 (a), a plurality of arch-type permanent magnets 1 are provided with magnetic flux generating means such that different polarities are adjacent to each other in a metal case 20 represented by an aluminum case. As shown in FIG. The plurality of permanent magnets 1 are fixed in the case 20 by a resin 25 filled in the case 20. A coil 2 made of enameled wire, for example, is arranged directly below the arch-type permanent magnet 1. The coil 2 is wrapped and protected by a very thin protective film 21. The protective film 21 is fixed to the case 20 with a set screw 22. An extension of the enamel wire forming the coil 2 is connected to the connector 24 as a lead wire 23 of the coil 2. The connector 24 is installed in the case 20 and is used as an electrical connection means to an electromagnetic ultrasonic measurement device outside the case 20.

このような送信用の電磁超音波センサ6においては、図1(a)や図1(b)のように、各アーチ型永久磁石1の底面(コイル2に近接する磁曲面)の形状は中央が凹んだ曲面によるアーチ型の形状である。各アーチ型永久磁石1は各々の磁力により密着している。その各アーチ型永久磁石1の2列4行の配列したもの、即ちアレイを1セットとし、そのアレイの底面側に多数回巻きのコイル2を各アーチ型永久磁石共通のコイルとして配置している。   In such an electromagnetic ultrasonic sensor 6 for transmission, as shown in FIGS. 1A and 1B, the shape of the bottom surface (magnetic curved surface close to the coil 2) of each arch-type permanent magnet 1 is the center. It is an arched shape with a curved surface. Each arch-type permanent magnet 1 is in close contact with each other by its magnetic force. The arch-type permanent magnets 1 arranged in two columns and four rows, that is, the array is set as one set, and a multi-turn coil 2 is arranged on the bottom side of the array as a common coil for each arch-type permanent magnet. .

受信用の電磁超音波センサ14も送信用の電磁超音波センサ6と同じ構成である。   The electromagnetic ultrasonic sensor 14 for reception has the same configuration as the electromagnetic ultrasonic sensor 6 for transmission.

図6は送受信の各電磁超音波センサ6,14に電気的に接続される電磁超音波計測装置の構成図である。図6において、6は送信用電磁超音波センサである。7は送信用マッチング回路であり、市販のインピーダンス素子を組み合わせて送信回路の整合をとることができる。8は電力増幅器、9はパルサレシーバ、10はコンピュータ、11はモニタ、
12は受信信号増幅器であり、全て市販品が利用できる。13は受信用マッチング回路であり、市販のインピーダンス素子を組み合わせて受信回路の整合をとることができる。
14は受信用の電磁超音波センサである。送信用の電磁超音波センサ6は送信用マッチング回路7,電力増幅器8を介してパルサレシーバ9と接続されている。受信用の電磁超音波センサ14は受信用マッチング回路13と受信信号増幅器12を介して、パルサレシーバ9に接続されている。受信用の電磁超音波センサ14からの信号及びパルサレシーバ9からの制御信号はコンピュータ10を介してモニタ11により観測できる。
FIG. 6 is a configuration diagram of an electromagnetic ultrasonic measurement device electrically connected to each of the transmission / reception electromagnetic ultrasonic sensors 6 and 14. In FIG. 6, 6 is a transmission electromagnetic ultrasonic sensor. Reference numeral 7 denotes a transmission matching circuit, which can match a transmission circuit by combining commercially available impedance elements. 8 is a power amplifier, 9 is a pulser receiver, 10 is a computer, 11 is a monitor,
Reference numeral 12 denotes a reception signal amplifier, and all commercially available products can be used. Reference numeral 13 denotes a receiving matching circuit, which can be matched with a commercially available impedance element.
Reference numeral 14 denotes a receiving electromagnetic ultrasonic sensor. The transmission electromagnetic ultrasonic sensor 6 is connected to a pulsar receiver 9 via a transmission matching circuit 7 and a power amplifier 8. The reception electromagnetic ultrasonic sensor 14 is connected to the pulsar receiver 9 via the reception matching circuit 13 and the reception signal amplifier 12. The signal from the reception electromagnetic ultrasonic sensor 14 and the control signal from the pulser receiver 9 can be observed by the monitor 11 via the computer 10.

次に、本発明の送信用の電磁超音波センサ6と受信用の電磁超音波センサ14を用いた電磁超音波計測装置の動作を図6を用いて説明する。パルサレシーバ9は内部クロックを発生する。その内部クロックはパルサレシーバ9内に交流電圧を発生させる。交流電圧は電力増幅器8によって増幅される。その交流電圧は送信用マッチング回路7を介して送信用の電磁超音波センサ6に印加され、送信用の電磁超音波センサ6内のコイル2に交流電流が生じる。これによって、超音波振動が被検査体である金属製構造物の内部表層近傍に励起される。   Next, the operation of the electromagnetic ultrasonic measurement apparatus using the electromagnetic ultrasonic sensor 6 for transmission and the electromagnetic ultrasonic sensor 14 for reception according to the present invention will be described with reference to FIG. The pulsar receiver 9 generates an internal clock. The internal clock generates an alternating voltage in the pulser receiver 9. The AC voltage is amplified by the power amplifier 8. The AC voltage is applied to the transmission electromagnetic ultrasonic sensor 6 via the transmission matching circuit 7, and an AC current is generated in the coil 2 in the transmission electromagnetic ultrasonic sensor 6. As a result, ultrasonic vibration is excited in the vicinity of the inner surface layer of the metal structure as the object to be inspected.

その超音波振動は欠陥での反射や散乱により受信用の電磁超音波センサ14の下に到達する。受信用の電磁超音波センサ14の下に超音波振動が到達すると、その超音波振動は電磁超音波センサ14によって交流電圧に変換される。その交流電圧は受信用マッチング回路13を介して受信信号増幅器12に送られる。受信信号増幅器12はその交流電圧を増幅し、パルサレシーバ9に送信する。パルサレシーバ9はその交流電圧をデジタル処理し、コンピュータ10に送る。そのデジタル処理化された交流電圧の情報はモニタ11に画像として表示され、超音波の受信波形の情報が表示される。   The ultrasonic vibration reaches under the electromagnetic ultrasonic sensor 14 for reception by reflection and scattering at the defect. When the ultrasonic vibration reaches the reception electromagnetic ultrasonic sensor 14, the ultrasonic vibration is converted into an AC voltage by the electromagnetic ultrasonic sensor 14. The AC voltage is sent to the reception signal amplifier 12 via the reception matching circuit 13. The reception signal amplifier 12 amplifies the AC voltage and transmits it to the pulser receiver 9. The pulsar receiver 9 digitally processes the AC voltage and sends it to the computer 10. The digitally processed AC voltage information is displayed on the monitor 11 as an image, and the received ultrasonic wave information is displayed.

次に、図7から図9を用いて送信用の電磁超音波センサ6と受信用の電磁超音波センサ14の指向特性について説明する。電磁超音波センサによる超音波振動はコイル2による渦電流Iと永久磁石1による磁束密度Bを持つ磁場の重なった領域に発生する。送信用の電磁超音波センサ6の場合、アーチ型永久磁石1を用いているため、その底面形状に応じて金属製構造物3の表面を透過する磁束の範囲は変化する。   Next, directivity characteristics of the electromagnetic ultrasonic sensor 6 for transmission and the electromagnetic ultrasonic sensor 14 for reception will be described with reference to FIGS. Ultrasonic vibration generated by the electromagnetic ultrasonic sensor is generated in a region where magnetic fields having an eddy current I generated by the coil 2 and a magnetic flux density B generated by the permanent magnet 1 overlap. In the case of the electromagnetic ultrasonic sensor 6 for transmission, since the arch type permanent magnet 1 is used, the range of the magnetic flux which permeate | transmits the surface of the metal structure 3 changes according to the bottom face shape.

アーチ型永久磁石1の磁束が金属製構造物3の表面で集束する場合の磁束分布の例を図7に示す。点線が磁束を表している。アーチ型永久磁石1の磁束は曲面であるN極とS極の磁極面に垂直であり、金属製構造物3の表面で集束している。したがって、集束している分だけ音源(図8で

Figure 2006005508
印を囲っている矩形の図形部分)は図8に示したようにアーチ型永久磁石の長さLよりも短くなる。音源のサイズと超音波の指向特性の関係は、弾性波素子技術ハンドブック(日本学術振興会弾性波素子技術第150委員会編)P131より式1で表される。 An example of the magnetic flux distribution when the magnetic flux of the arch-type permanent magnet 1 is focused on the surface of the metal structure 3 is shown in FIG. The dotted line represents the magnetic flux. The magnetic flux of the arch-type permanent magnet 1 is perpendicular to the magnetic pole surfaces of the N pole and S pole, which are curved surfaces, and is focused on the surface of the metal structure 3. Therefore, the sound source (in FIG.
Figure 2006005508
The rectangular graphic portion surrounding the mark is shorter than the length L of the arch-type permanent magnet as shown in FIG. The relationship between the size of the sound source and the directivity characteristics of the ultrasonic wave is expressed by Formula 1 from the elastic wave element technology handbook (edited by the 150th Committee of Elastic Wave Element Technology, JSPS) P131.

Figure 2006005508
ここで、A0 は中心軸上の音圧(A(0))、θは中心軸からの角度、Lは音源のサイズ、λは超音波の波長である。
Figure 2006005508
Here, A 0 is the sound pressure (A (0)) on the central axis, θ is the angle from the central axis, L is the size of the sound source, and λ is the wavelength of the ultrasonic wave.

すなわち、式1中の音源のサイズLが超音波の波長に対して小さいほど、金属製構造物の表面に水平な方向に伝播する超音波成分が相対的に増大する。そのため、送信用の電磁超音波センサ6の送信超音波の波面は図9のようになる。図9内の点線は送信波の波面を表している。図5に示した波面と比較して、図9の波面は金属製構造物3の表面に垂直な方向の超音波成分が少ない。すなわち、図9のように送信超音波が金属製構造物3の厚み方向(図9の上下方向)に拡がりにくいため、表面欠陥からの超音波の反射波は図5の場合と比較して大きくなる。受信用の電磁超音波センサ14の受信感度も、上記理由から金属製構造物3の表面に水平な方向の成分に対して向上する。   That is, as the size L of the sound source in Equation 1 is smaller than the wavelength of the ultrasonic wave, the ultrasonic component propagating in the direction horizontal to the surface of the metal structure is relatively increased. For this reason, the wavefront of the transmission ultrasonic wave of the electromagnetic ultrasonic sensor 6 for transmission is as shown in FIG. The dotted line in FIG. 9 represents the wavefront of the transmission wave. Compared with the wavefront shown in FIG. 5, the wavefront of FIG. 9 has less ultrasonic components in the direction perpendicular to the surface of the metal structure 3. That is, as shown in FIG. 9, the transmission ultrasonic wave is difficult to spread in the thickness direction (vertical direction in FIG. 9) of the metal structure 3, so that the reflected wave of the ultrasonic wave from the surface defect is larger than that in FIG. 5. Become. The reception sensitivity of the electromagnetic ultrasonic sensor 14 for reception is also improved with respect to the component in the direction horizontal to the surface of the metal structure 3 for the above reason.

次に、図10を用いて送信用の電磁超音波センサ6と受信用の電磁超音波センサ14を用いた電磁超音波計測装置の効果を説明する。図10(a)は図2に示した電磁超音波センサ5a,5bを用いたときのモニタに表示された受信波形であり、図10(b)は図1(a),(b)に示したアーチ型永久磁石1を採用した電磁超音波センサ6,14を用いた場合の受信波形である。測定では送信用と受信用の電磁超音波センサを金属製構造物3の上に並べて配置した。送信用の電磁超音波センサによる送信波が金属製構造物3内を伝播し、表面欠陥において反射した波の強度を受信用の電磁超音波センサによって測定した。図10(a),(b)に示したものが表面欠陥からの超音波の反射波の受信波形である。上記の説明から理解されるように、送信用の電磁超音波センサ6と受信用の電磁超音波センサ14を用いた電磁超音波計測装置による測定(図9)では、表面欠陥の検出感度が向上し、図10(b)に示す反射波の超音波強度のように図10(a)のそれに比べて受信信号強度が増加する。これにより、金属製構造物3の表面欠陥が遠距離から感度よく探傷可能になる。   Next, the effect of the electromagnetic ultrasonic measuring apparatus using the electromagnetic ultrasonic sensor 6 for transmission and the electromagnetic ultrasonic sensor 14 for reception will be described with reference to FIG. FIG. 10 (a) is a received waveform displayed on the monitor when the electromagnetic ultrasonic sensors 5a and 5b shown in FIG. 2 are used, and FIG. 10 (b) is shown in FIGS. 1 (a) and 1 (b). 6 is a received waveform when the electromagnetic ultrasonic sensors 6 and 14 employing the arch-type permanent magnet 1 are used. In the measurement, electromagnetic ultrasonic sensors for transmission and reception were arranged side by side on the metal structure 3. A transmission wave transmitted by the electromagnetic ultrasonic sensor for transmission propagated through the metal structure 3, and the intensity of the wave reflected by the surface defect was measured by the electromagnetic ultrasonic sensor for reception. FIGS. 10A and 10B show the received waveform of the reflected wave of the ultrasonic wave from the surface defect. As understood from the above description, the surface defect detection sensitivity is improved in the measurement (FIG. 9) by the electromagnetic ultrasonic measurement device using the electromagnetic ultrasonic sensor 6 for transmission and the electromagnetic ultrasonic sensor 14 for reception. However, the received signal intensity increases as compared with that in FIG. 10A, as in the ultrasonic intensity of the reflected wave shown in FIG. Thereby, the surface defect of the metal structure 3 can be detected with high sensitivity from a long distance.

これまでの記述において、金属製構造物3を本発明の実施例の適用可能な対象例としたが、本発明は導電性の物体全てに対して成り立つものである。   In the description so far, the metal structure 3 is an example to which the embodiment of the present invention can be applied. However, the present invention is applicable to all conductive objects.

(実施例2)
実施例1の実施形態にあっては、コイルに対向する磁極面がアーチ型のアーチ型永久磁石1を備えた送信用の電磁超音波センサ6と受信用の電磁超音波センサ14を用いた電磁超音波計測装置について説明したが、永久磁石自身の磁極端面をアーチ型に成型する代わりに、図11のように、一端面が平坦で、他端面がアーチ型の曲面を有するアーチ型磁極片15を用意し、そのアーチ型磁極片15の一端面を磁極面が平坦な永久磁石4のコイル2寄りの磁極面に磁気的に吸着させるようにしても良い。この永久磁石4とアーチ型磁極片15の下にコイル2を配置した。そのアーチ型磁極片15の材質は透磁率がアーチ型磁極片15の周囲の雰囲気のそれよりも高い材質で構成されている。その他の構成や作用は実施例1と同様である。
(Example 2)
In the embodiment of Example 1, the electromagnetic wave using the electromagnetic ultrasonic sensor 6 for transmission and the electromagnetic ultrasonic sensor 14 for reception provided with the arch-type permanent magnet 1 whose magnetic pole surface facing the coil is an arch type. Although the ultrasonic measuring apparatus has been described, instead of molding the magnetic pole end face of the permanent magnet itself into an arch shape, as shown in FIG. 11, an arch type magnetic pole piece 15 having one end face that is flat and the other end face having an arch-shaped curved surface. May be prepared so that one end face of the arched pole piece 15 is magnetically attracted to the pole face near the coil 2 of the permanent magnet 4 having a flat pole face. The coil 2 is disposed under the permanent magnet 4 and the arched pole piece 15. The material of the arched pole piece 15 is made of a material having a higher magnetic permeability than that of the atmosphere around the arched pole piece 15. Other configurations and operations are the same as those in the first embodiment.

図11のように、永久磁石4とアーチ型磁極片15は磁気的な力により密着している。そのために永久磁石4で発生された磁束はアーチ型磁極片15を通過して、アーチ型磁極片15のアーチ型の曲面から放射される際に被検査体の表層部分に集束されるように偏向され、実施例1と同様な作用効果を発揮する。   As shown in FIG. 11, the permanent magnet 4 and the arched pole piece 15 are in close contact with each other by magnetic force. Therefore, the magnetic flux generated by the permanent magnet 4 passes through the arched pole piece 15 and is deflected so as to be focused on the surface layer portion of the object to be inspected when radiated from the arched curved surface of the arched pole piece 15. Thus, the same effects as those of the first embodiment are exhibited.

(実施例3)
更には、実施例2のアーチ型磁極片15の代わりに、一端面が永久磁石4のコイル2寄りの磁極面の面積と同じく、他端面がその磁極面の面積よりも狭い面積とされた磁極片
16を用意し、その磁極片16の一端面を、図12のように、永久磁石4のコイル2寄りの磁極面に過不足無く対面させて磁気的に吸着して設ける。その磁極片16の下方にはコイル2が配置されている。その磁極片16の材質は透磁率が磁極片の周囲の雰囲気のそれよりも高い材質で構成されている。その他の構成は実施例1と同じである。
Example 3
Further, instead of the arched pole piece 15 of the second embodiment, the magnetic pole whose one end face is the same as the area of the magnetic pole face near the coil 2 of the permanent magnet 4 and whose other end face is smaller than the area of the magnetic pole face. A piece 16 is prepared, and one end surface of the magnetic pole piece 16 is provided to be magnetically attracted by facing the magnetic pole surface near the coil 2 of the permanent magnet 4 without excess or deficiency as shown in FIG. The coil 2 is disposed below the pole piece 16. The magnetic pole piece 16 is made of a material whose permeability is higher than that of the atmosphere around the magnetic pole piece. Other configurations are the same as those of the first embodiment.

このような実施例においても、永久磁石4から発せられた磁束は磁極片16を通過する際に磁極片16内で集束して、集束された磁束が磁極片16の狭い面積の他端面からコイル側に放射されて被検査体の表層部に達するので、実施例1と同様な作用効果が得られる。   Also in such an embodiment, the magnetic flux generated from the permanent magnet 4 is focused in the magnetic pole piece 16 when passing through the magnetic pole piece 16, and the focused magnetic flux is coiled from the other end surface of the magnetic pole piece 16 having a small area. Since it is radiated to the surface and reaches the surface layer portion of the object to be inspected, the same effects as those of the first embodiment can be obtained.

本発明は、電磁超音波センサをセンサとする非破壊検査装置に用途がある。   The present invention has application in a nondestructive inspection apparatus using an electromagnetic ultrasonic sensor as a sensor.

本発明の実施例1による電磁超音波センサの説明図にして、(a)図はそのセンサの縦断面図、(b)図はそのセンサのコイルと永久磁石との配置を示す斜視図である。It is explanatory drawing of the electromagnetic ultrasonic sensor by Example 1 of this invention, (a) A figure is the longitudinal cross-sectional view of the sensor, (b) A figure is a perspective view which shows arrangement | positioning of the coil and permanent magnet of the sensor. . 電磁超音波センサによる超音波の送受信原理を表す説明図にして、(a)図は送信原理を、(b)図は受信原理を表した概念図である。It is explanatory drawing showing the transmission-and-reception principle of the ultrasonic wave by an electromagnetic ultrasonic sensor, (a) A figure is a transmission principle, (b) A conceptual diagram showing a reception principle. 電磁超音波センサによる金属製構造物内のローレンツ力発生領域を表す模式図である。It is a schematic diagram showing the Lorentz force generation | occurrence | production area | region in the metal structures by an electromagnetic ultrasonic sensor. 電磁超音波センサの永久磁石による磁束分布の一例を表す模式図である。It is a schematic diagram showing an example of the magnetic flux distribution by the permanent magnet of an electromagnetic ultrasonic sensor. 図2の電磁超音波センサを用いた超音波伝播の指向性の一例を表す図である。It is a figure showing an example of the directivity of ultrasonic propagation using the electromagnetic ultrasonic sensor of FIG. 本発明の実施例1による電磁超音波計測装置の構成を表すブロック図である。It is a block diagram showing the structure of the electromagnetic ultrasonic measurement apparatus by Example 1 of this invention. 本発明の実施例1による電磁超音波センサに採用されたアーチ型永久磁石の磁束分布の一例を表す模式図である。It is a schematic diagram showing an example of magnetic flux distribution of the arch type permanent magnet employ | adopted for the electromagnetic ultrasonic sensor by Example 1 of this invention. 本発明の実施例1による電磁超音波センサの金属製構造物内のローレンツ力発生領域を表す模式図である。It is a schematic diagram showing the Lorentz force generation | occurrence | production area | region in the metal structure of the electromagnetic ultrasonic sensor by Example 1 of this invention. 本発明の実施例1による電磁超音波センサによる超音波伝播の指向性の一例を表す図である。It is a figure showing an example of the directivity of the ultrasonic propagation by the electromagnetic ultrasonic sensor by Example 1 of this invention. 電磁超音波センサによる表面欠陥に対する超音波探傷の際の受信波形の例示図にして、(a)図は図2に示した電磁超音波センサを用いた場合を、(b)図は本発明の実施例1による電磁超音波センサを用いた場合の例を表している。FIG. 5 is a view showing an example of a received waveform at the time of ultrasonic flaw detection with respect to a surface defect by an electromagnetic ultrasonic sensor, where (a) shows the case where the electromagnetic ultrasonic sensor shown in FIG. 2 is used, and (b) shows the present invention. The example at the time of using the electromagnetic ultrasonic sensor by Example 1 is represented. 本発明の実施例2による電磁超音波センサのアーチ型磁極片と永久磁石とコイルとの配置関係を表した配置図である。It is the arrangement figure showing arrangement relation of an arch type magnetic pole piece of an electromagnetic ultrasonic sensor by Example 2 of the present invention, a permanent magnet, and a coil. 本発明の実施例3による電磁超音波センサのアーチ型磁極片と永久磁石とコイルとの配置関係を表した配置図である。It is the arrangement figure showing arrangement relation of an arch type magnetic pole piece of an electromagnetic ultrasonic sensor by Example 3 of the present invention, a permanent magnet, and a coil.

符号の説明Explanation of symbols

1…アーチ型永久磁石、2,2a,2b…コイル、3…金属製構造物、4,4a,4b…永久磁石、5a,5b,6,14…電磁超音波センサ、7…送信用マッチング回路、8…電力増幅器、9…パルサレシーバ、10…コンピュータ、11…モニタ、12…受信信号増幅器、13…受信用マッチング回路、15…アーチ型磁極片、16…磁極片。
DESCRIPTION OF SYMBOLS 1 ... Arch type permanent magnet, 2, 2a, 2b ... Coil, 3 ... Metal structure, 4, 4a, 4b ... Permanent magnet, 5a, 5b, 6, 14 ... Electromagnetic ultrasonic sensor, 7 ... Matching circuit for transmission , 8 ... power amplifier, 9 ... pulser receiver, 10 ... computer, 11 ... monitor, 12 ... reception signal amplifier, 13 ... matching circuit for reception, 15 ... arch type pole piece, 16 ... pole piece.

Claims (4)

磁束の発生手段と、前記磁束と交差するように配置され、通電されるコイルとを備えた電磁超音波センサにおいて、
前記磁束の発生手段に、前記磁束を集束する手段を備えたことを特徴とする電磁超音波センサ。
In an electromagnetic ultrasonic sensor comprising a magnetic flux generating means and a coil that is arranged to cross the magnetic flux and is energized,
An electromagnetic ultrasonic sensor characterized in that the magnetic flux generating means includes means for converging the magnetic flux.
請求項1において、前記磁束の発生手段は永久磁石であり、前記磁束を集束する手段は前記永久磁石の前記コイルに対向する面を前記永久磁石の中央部で凹んだアーチ型に成型して構成されていることを特徴とする電磁超音波センサ。   2. The magnetic flux generating means according to claim 1, wherein said magnetic flux generating means is a permanent magnet, and said magnetic flux converging means is formed by molding a surface of said permanent magnet facing said coil into an arch shape recessed at a central portion of said permanent magnet. An electromagnetic ultrasonic sensor. 請求項1において、前記磁束の発生手段は永久磁石であり、前記磁束を集束する手段は、前記永久磁石の前記コイル側の磁極面に装着され、中央部が凹んだアーチ型の磁極片であることを特徴とする電磁超音波センサ。   2. The magnetic flux generating means according to claim 1, wherein said magnetic flux generating means is a permanent magnet, and said magnetic flux converging means is an arch-shaped magnetic pole piece attached to a magnetic pole surface of said permanent magnet on said coil side and having a recessed central portion. An electromagnetic ultrasonic sensor. 請求項1において、前記磁束の発生手段は永久磁石であり、前記磁束を集束する手段は、前記永久磁石の前記コイル側の磁極面に装着され、前記コイル側の面が前記磁極面よりも狭く形成された磁極片であることを特徴とする電磁超音波センサ。
2. The magnetic flux generating means according to claim 1, wherein the magnetic flux generating means is a permanent magnet, and the magnetic flux converging means is mounted on the coil side magnetic pole surface of the permanent magnet, and the coil side surface is narrower than the magnetic pole surface. An electromagnetic ultrasonic sensor characterized by being a formed magnetic pole piece.
JP2004177720A 2004-06-16 2004-06-16 Electromagnetic ultrasonic sensor Expired - Fee Related JP4270036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004177720A JP4270036B2 (en) 2004-06-16 2004-06-16 Electromagnetic ultrasonic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004177720A JP4270036B2 (en) 2004-06-16 2004-06-16 Electromagnetic ultrasonic sensor

Publications (2)

Publication Number Publication Date
JP2006005508A true JP2006005508A (en) 2006-01-05
JP4270036B2 JP4270036B2 (en) 2009-05-27

Family

ID=35773541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004177720A Expired - Fee Related JP4270036B2 (en) 2004-06-16 2004-06-16 Electromagnetic ultrasonic sensor

Country Status (1)

Country Link
JP (1) JP4270036B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101256500B1 (en) 2011-12-26 2013-04-19 주식회사 포스코 Electromagnetic acoustic transducer equipped with orbiting coil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101256500B1 (en) 2011-12-26 2013-04-19 주식회사 포스코 Electromagnetic acoustic transducer equipped with orbiting coil

Also Published As

Publication number Publication date
JP4270036B2 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
Isla et al. EMAT phased array: A feasibility study of surface crack detection
KR100561215B1 (en) Magnetostrictive Transducer for Generating and Sensing Elastic Ultrasonic waves, and Apparatus for Structural Diagnosis Using It
JP5129566B2 (en) Flexible electromagnetic acoustic transducer sensor
US7546770B2 (en) Electromagnetic acoustic transducer
US7426867B2 (en) Electromagnetic acoustic transducers for use in ultrasound inspection systems
JP3377395B2 (en) Focused electromagnetic ultrasonic transducer and electromagnetic ultrasonic inspection method
KR100573736B1 (en) Transducer for Generating and Sensing Torsional Waves, and Apparatus and Method for Structural Diagnosis Using It
JP6818977B2 (en) Electromagnetic ultrasonic sensor
Xie et al. Directivity analysis of meander-line-coil EMATs with a wholly analytical method
KR20100137770A (en) Magnetostrictive transducer, apparatus of monitoring structural health having the same and method of monitoring structural health
JP2015206782A (en) Residual stress evaluation method and residual stress evaluation device
KR20130065925A (en) Magnetostrictive phased array transducer for the transduction of shear horizontal bulkwave
CN103207239B (en) A kind of integrated adjustable magnetostriction longitudinal wave guide probe
US7434467B2 (en) Electromagnetic ultrasound converter
JP4270036B2 (en) Electromagnetic ultrasonic sensor
JP2006329868A (en) Electromagnetic ultrasonic flaw detection method and apparatus thereof
JP3886843B2 (en) Electromagnetic ultrasonic transducer
KR20130064171A (en) Magnetostrictive transducer for omni-directional shear horizontal wave transduction
KR100573735B1 (en) Apparatus for non-contact generation and measurement of bending vibration in non-ferromagnetic pipes
US20060236764A1 (en) Electromagnetic ultrasound probe
JP2009145056A (en) Electromagnetic ultrasonic probe and electromagnetic ultrasonic flaw detector
JP2009276184A (en) Electromagnetic ultrasonic sensor
JP2009300316A (en) Electromagnetic ultrasonic sensor
JPS60105960A (en) Electromagnetical ultrasonic transducer
JP2538596B2 (en) Electromagnetic ultrasonic transducer

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees