JP2006004920A - Hydrophilic porous material, manufacturing method of the same, humidifying member for polymer electrolyte fuel cell, and separator for solid polymer fuel cell - Google Patents

Hydrophilic porous material, manufacturing method of the same, humidifying member for polymer electrolyte fuel cell, and separator for solid polymer fuel cell Download PDF

Info

Publication number
JP2006004920A
JP2006004920A JP2005142532A JP2005142532A JP2006004920A JP 2006004920 A JP2006004920 A JP 2006004920A JP 2005142532 A JP2005142532 A JP 2005142532A JP 2005142532 A JP2005142532 A JP 2005142532A JP 2006004920 A JP2006004920 A JP 2006004920A
Authority
JP
Japan
Prior art keywords
porous material
hydrophilic porous
pefc
polymer electrolyte
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005142532A
Other languages
Japanese (ja)
Other versions
JP4849824B2 (en
Inventor
Masahiro Yasuda
正弘 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2005142532A priority Critical patent/JP4849824B2/en
Publication of JP2006004920A publication Critical patent/JP2006004920A/en
Application granted granted Critical
Publication of JP4849824B2 publication Critical patent/JP4849824B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrophilic porous material excellent in a water-retaining property, permeability, strength, and conductivity, with little generation of cation, which can be suitably used for a humidifying member 50 of an inside humidification type polymer electrolyte fuel cell 20 or a separator 60. <P>SOLUTION: The hydrophilic porous material is composed of a sintered compact of carbon (graphite powder) and ceramic powder with a low melting point, wherein an average diameter of pores is 0.1 to 3 μm, a porosity is 10 to 40%, and a content of ash is 10 to 40 wt.%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、内部加湿方式の固体高分子型燃料電池における加湿部材、セパレータ等に好適に用いることができる親水性多孔質材、この親水性多孔質材の製造方法、高分子電解質型燃料電池用加湿部材、及び、高分子電解質型燃料電池用セパレータに関する。 The present invention relates to a hydrophilic porous material that can be suitably used for a humidifying member, a separator, and the like in a solid polymer fuel cell of an internal humidification method, a method for producing the hydrophilic porous material, and a polymer electrolyte fuel cell. The present invention relates to a humidifying member and a polymer electrolyte fuel cell separator.

近年、電解質としてプロトン導電性の固体高分子膜を用いた高分子電解質型燃料電池(以下、PEFCともいう)の開発が進められている。
図1は、PEFCを構成する単セルの構造を模式的に示した断面図である。
図1に示した通り、PEFCの単セル10では、固体高分子電解質膜11の両面に空気極12(正極)と燃料極13(負極)とがそれぞれ配置されて膜電極接合体14を構成しており、空気極12と燃料極13の外側には、セパレータ15がそれぞれ当接されている。
なお、このようなPEFCの単セル10から得られる電位差(電圧)は小さいため、実際に使用する場合は、PEFCの単セル10を複数積層してスタックを形成し、大きな電位差(電圧)が得られるようにする。
In recent years, development of a polymer electrolyte fuel cell (hereinafter also referred to as PEFC) using a proton conductive solid polymer membrane as an electrolyte has been advanced.
FIG. 1 is a cross-sectional view schematically showing the structure of a single cell constituting a PEFC.
As shown in FIG. 1, in a single cell 10 of PEFC, an air electrode 12 (positive electrode) and a fuel electrode 13 (negative electrode) are arranged on both surfaces of a solid polymer electrolyte membrane 11 to form a membrane electrode assembly 14. The separators 15 are in contact with the outer sides of the air electrode 12 and the fuel electrode 13, respectively.
Since the potential difference (voltage) obtained from such a PEFC single cell 10 is small, when actually used, a plurality of PEFC single cells 10 are stacked to form a stack to obtain a large potential difference (voltage). To be able to.

PEFCでは、燃料極13に燃料ガスを供給し、空気極12に空気を供給すると、燃料極13においては、下記反応式(1)に示す反応が起こり、空気極12においては、下記反応式(2)に示す反応が起こる。
その結果、PEFC全体では、下記反応式(3)に示す反応が起こることとなる。
In PEFC, when fuel gas is supplied to the fuel electrode 13 and air is supplied to the air electrode 12, the reaction shown in the following reaction formula (1) occurs in the fuel electrode 13, and the following reaction formula ( The reaction shown in 2) occurs.
As a result, the reaction shown in the following reaction formula (3) occurs in the entire PEFC.

2H→4H+4e・・・(1) 2H 2 → 4H + + 4e (1)

+4H+4e→2HO・・・(2) O 2 + 4H + + 4e → 2H 2 O (2)

2H+O→2HO・・・(3) 2H 2 + O 2 → 2H 2 O (3)

このように、PEFCでは、燃料極13において反応式(1)で表される反応により電子(4e)が生成し、この電子が外部負荷回路を経由して空気極12に移動する際に、外部負荷回路において行う仕事が電力として取り出される。
また同時に、PEFCでは、燃料極13において反応式(1)で表される反応により水素イオン(4H)が生成し、この水素イオンが固体高分子電解質膜11を経由して空気極12に移動し、酸素と反応する。その結果、PEFCでは、上記反応式(2)及び(3)に示したように、発電に伴って水素と酸素とが反応して、空気極12において水が生成することとなる。
Thus, in the PEFC, electrons (4e ) are generated in the fuel electrode 13 by the reaction represented by the reaction formula (1), and when the electrons move to the air electrode 12 via the external load circuit, Work performed in the external load circuit is taken out as electric power.
At the same time, in the PEFC, hydrogen ions (4H + ) are generated in the fuel electrode 13 by the reaction represented by the reaction formula (1), and the hydrogen ions move to the air electrode 12 through the solid polymer electrolyte membrane 11. Reacts with oxygen. As a result, in PEFC, as shown in the above reaction formulas (2) and (3), hydrogen and oxygen react with power generation, and water is generated in the air electrode 12.

ここで、固体高分子電解質膜11内における水素イオンの移動を円滑に進めるためには、固体高分子電解質膜11が充分な水分を保持していることが重要であり、固体高分子電解質膜11を飽和状態まで含水させることで最大のプロトン導電性が得られることが分かっている。
固体高分子電解質膜11を充分に含水させるためには、通常、空気極12において生成する水分では不充分であるため、セル外部で燃料ガスを加湿し、固体高分子電解質膜11に水分を供給する方法が用いられる。
Here, in order to facilitate the movement of hydrogen ions in the solid polymer electrolyte membrane 11, it is important that the solid polymer electrolyte membrane 11 retains sufficient moisture, and the solid polymer electrolyte membrane 11 It has been found that the maximum proton conductivity can be obtained by hydrating the water to a saturated state.
In order to sufficiently hydrate the solid polymer electrolyte membrane 11, the water generated in the air electrode 12 is usually insufficient, so the fuel gas is humidified outside the cell and the moisture is supplied to the solid polymer electrolyte membrane 11. Is used.

しかしながら、システムの簡素化やエネルギー効率の観点から、PEFCの運転を加湿装置なしで行いたいという要求が高まってきていた。また、PEFCの高出力化につれ、水素イオンの移動に伴う燃料極13側からの水の持ち去り(電気浸透現象)が起こり、特に燃料極13側の固体高分子電解質膜11内が乾燥し、電気抵抗が増大する結果、PEFCの出力密度が低下することになるという問題があった。 However, from the viewpoints of system simplification and energy efficiency, there has been an increasing demand to operate the PEFC without a humidifier. Further, as PEFC increases in power, water removal from the fuel electrode 13 side (electroosmosis phenomenon) accompanying the movement of hydrogen ions occurs, and the solid polymer electrolyte membrane 11 on the fuel electrode 13 side in particular dries. As a result of the increase in electrical resistance, there is a problem that the output density of PEFC is reduced.

これに対して、特許文献1には、セパレータ15を親水性多孔質材により形成し、セパレータの内部にPEFCを冷却するための冷却水を流すことにより、冷却水を固体高分子電解質膜11の加湿に利用する内部加湿方式のPEFCが開示されている。また、内部加湿方式のPEFCとしては、セパレータの内部に冷却水を流す構成以外にも、図2に示したような、親水性多孔質材により形成した加湿部材とセパレータとを併用し、加湿部材とセパレータとの間に冷却水を流す構造のものも知られている。このような内部加湿方式のPEFCでは、親水性多孔質材が有する水の輸送特性(毛管現象)を利用して燃料極13に水を供給する。 On the other hand, in Patent Document 1, the separator 15 is formed of a hydrophilic porous material, and cooling water for cooling the PEFC is allowed to flow inside the separator, whereby the cooling water is supplied to the solid polymer electrolyte membrane 11. An internal humidification type PEFC used for humidification is disclosed. Further, as the internal humidification type PEFC, in addition to the configuration in which cooling water is allowed to flow inside the separator, a humidifying member formed of a hydrophilic porous material and a separator as shown in FIG. A structure in which cooling water is allowed to flow between the separator and the separator is also known. In such an internal humidification type PEFC, water is supplied to the fuel electrode 13 by utilizing the water transport characteristic (capillary phenomenon) of the hydrophilic porous material.

内部加湿方式のPEFCの加湿部材や加湿機能を備えたセパレータに使用される親水性多孔質材は、保水性及び透過性に優れ、ある程度の強度を有するとともに、セル外部から燃料ガス、空気、冷却水等をセル内部に供給するための複数の溝を、加湿部材や加湿機能を備えたセパレータに形成できるように成形性及び加工性に優れたものである必要がある。また、スタックを組んで使用した際に電力の損失が発生しないように導電性に優れたものである必要がある。もちろん、安価に製造できることが望ましい。 The hydrophilic porous material used in the internal humidifying PEFC humidifying member and the separator with the humidifying function is excellent in water retention and permeability, has a certain level of strength, fuel gas, air, cooling from the outside of the cell It is necessary to have excellent moldability and workability so that a plurality of grooves for supplying water or the like into the cell can be formed in a humidifying member or a separator having a humidifying function. Moreover, it is necessary to have excellent conductivity so that power loss does not occur when the stack is used. Of course, it is desirable that it can be manufactured at low cost.

従来、親水性多孔質材として、例えば、フェノール樹脂、ボリカルボジイミド樹脂を原材料とするアモルファスカーボンや、コークス粉末、バインダーピッチを原材料とする特殊炭素材、炭素繊維を抄造しフェノール樹脂で焼き固めた多孔質材等の親水性多孔質材が使用されている。 Conventionally, as a porous porous material, for example, amorphous carbon made from phenol resin or polycarbodiimide resin, special carbon material made from coke powder or binder pitch, carbon fiber made from paper, and porous made by baking with phenol resin A hydrophilic porous material such as a material is used.

また、アモルファスカーボンからなる加湿部材や加湿機能を備えたセパレータを作製する場合、予め、溝のパターンが形成された型を使用した射出成形により、フェノール樹脂、ポリカルボジイミド等からなる原材料粉末を所定の形状にする。そして、射出成形後の成形体は電気抵抗が高いので、通常、焼成、黒鉛化等の処理を施すことにより電気抵抗を低下させる。
また、難黒鉛化性の原材料を使用することにより、焼成黒鉛化処理を施しても、黒鉛化が必要以上に進行しないため、親水性を確保することができ、加湿部材や加湿機能を備えたセパレータとして使用したときに充分に水分の輸送を行うことができ、燃料ガスを充分に加湿することができる。
In addition, when producing a humidifying member made of amorphous carbon or a separator having a humidifying function, a raw material powder made of phenol resin, polycarbodiimide or the like is predetermined by injection molding using a mold in which a groove pattern is formed in advance. Shape. And since the molded object after injection molding has high electrical resistance, normally, electrical resistance is reduced by giving processes, such as baking and graphitization.
In addition, by using a non-graphitizable raw material, even if a calcination graphitization treatment is performed, graphitization does not proceed more than necessary, so that hydrophilicity can be secured, and a humidifying member and a humidifying function are provided. Water can be sufficiently transported when used as a separator, and fuel gas can be sufficiently humidified.

また、炭素繊維を原材料に使用した加湿部材や加湿機能を備えたセパレータを作製する場合、炭素繊維を水中に分散し、抄造し、シート状にした後、フェノール樹脂を含浸処理し、150℃程度で硬化処理した後、必要に応じて、黒鉛化する。この場合も、アモルファスカーボンの場合と同じく、難黒鉛化性の原材料を使用することにより、黒鉛化が必要以上に進行しないため、親水性を確保することができ、加湿部材や加湿機能を備えたセパレータとして使用したときに充分に水分の輸送を行うことができ、燃料ガスを充分に加湿することができる。 Moreover, when producing a humidifying member using carbon fiber as a raw material or a separator having a humidifying function, the carbon fiber is dispersed in water, made into a sheet, impregnated with a phenol resin, and about 150 ° C. After the curing treatment with, it is graphitized if necessary. Also in this case, as in the case of amorphous carbon, by using a non-graphitizable raw material, graphitization does not proceed more than necessary, so that hydrophilicity can be ensured and a humidifying member and a humidifying function are provided. Water can be sufficiently transported when used as a separator, and fuel gas can be sufficiently humidified.

しかしながら、これらの方法で作製した親水性多孔質材では、燃料電池の運転中、空気極で大量にプロトンを消費し、水素ガスの供給が追い付かない場合、空気極では、プロトンを消費する代わりに、カーボンを腐食する。
しかも、この場合、原材料として使用した樹脂中に含まれるアミンやアンモニアが遊離、溶出し、電解質膜のスルホン基と結合して電解質膜の機能を低下させることとなる。
However, the hydrophilic porous material produced by these methods consumes a large amount of protons at the air electrode during operation of the fuel cell, and if the supply of hydrogen gas cannot catch up, the air electrode instead of consuming protons. Corrodes carbon.
In addition, in this case, amine and ammonia contained in the resin used as the raw material are liberated and eluted, and combined with the sulfone group of the electrolyte membrane to lower the function of the electrolyte membrane.

一方、コークス粉末及びバインダーピッチを原材料とする特殊炭素材からなる加湿部材や、加湿機能を備えたセパレータを作製する場合、コークス粉末をバインダーピッチとともに約200℃で混練し、得られた塊状物を再度粉砕した後、冷間等方圧成形(CIP成形)等の方法で成形し、約1000℃で焼成する。その後、2500〜3000℃で処理することにより黒鉛化した後、溝の加工を施して必要な形状を得る。
しかしながら、黒鉛化が進行した場合、親水性が失われてしまうため、このような特殊炭素材からなる加湿部材や、加湿機能を備えたセパレータでは、水分の輸送を充分に行うことができず、燃料ガスを充分に供給することができないという問題があった。
特開平6−231793号公報
On the other hand, when producing a humidifying member made of a special carbon material that uses coke powder and binder pitch as raw materials or a separator having a humidifying function, the coke powder is kneaded with the binder pitch at about 200 ° C., and the resulting mass is obtained. After pulverizing again, it is molded by a method such as cold isostatic pressing (CIP molding) and fired at about 1000 ° C. Then, after graphitizing by processing at 2500 to 3000 ° C., a groove is processed to obtain a necessary shape.
However, when graphitization proceeds, hydrophilicity is lost, so a humidifying member made of such a special carbon material or a separator having a humidifying function cannot sufficiently transport moisture, There was a problem that fuel gas could not be supplied sufficiently.
JP-A-6-231793

本発明は、このような問題を解決するためになされたものであり、保水性、透過性及び導電性に優れ、陽イオンの発生が少なく、内部加湿方式のPEFCの加湿部材や、セパレータに好適に使用することができる親水性多孔質材、この親水性多孔質材の製造方法、この親水性多孔質材を用いた高分子電解質型燃料電池用加湿部材、及び、この親水性多孔質材を用いた高分子電解質型燃料電池用セパレータを提供することを目的とするものである。 The present invention has been made in order to solve such problems, and is excellent in water retention, permeability and electrical conductivity, generates little cations, and is suitable for a humidifying member of PEFC of an internal humidification method or a separator. Hydrophilic porous material that can be used in the present invention, a method for producing the hydrophilic porous material, a humidifying member for a polymer electrolyte fuel cell using the hydrophilic porous material, and the hydrophilic porous material An object of the present invention is to provide a separator for a polymer electrolyte fuel cell used.

本発明の親水性多孔質材は、炭素を主成分とする焼結体からなり、
平均気孔半径が0.1〜3μm、気孔率が10〜40%で、かつ、灰分の含有量が10〜40重量%であることを特徴とする。
The hydrophilic porous material of the present invention comprises a sintered body containing carbon as a main component,
The average pore radius is 0.1 to 3 μm, the porosity is 10 to 40%, and the ash content is 10 to 40% by weight.

本発明の親水性多孔質材の製造方法は、平均粒子径5〜30μmの黒鉛粉末、及び、上記黒鉛粉末の平均粒子径の1/5以下の平均粒子径を有する低融点セラミック粉末の混合と、成形、乾燥及び焼成とを行い、灰分の含有量が10〜40重量%の親水性多孔質材を製造することを特徴とする。 The method for producing the hydrophilic porous material of the present invention comprises mixing graphite powder having an average particle diameter of 5 to 30 μm and low melting point ceramic powder having an average particle diameter of 1/5 or less of the average particle diameter of the graphite powder. It is characterized in that a hydrophilic porous material having an ash content of 10 to 40% by weight is produced by molding, drying and firing.

本発明の高分子電解質型燃料電池用加湿部材は、本発明の親水性多孔質材を用いてなることを特徴とする。 The humidifying member for a polymer electrolyte fuel cell of the present invention is characterized by using the hydrophilic porous material of the present invention.

本発明の高分子電解質型燃料電池用セパレータは、本発明の親水性多孔質材を用いてなることを特徴とする。 The separator for a polymer electrolyte fuel cell of the present invention is characterized by using the hydrophilic porous material of the present invention.

本発明の親水性多孔質材は、炭素を主成分とする焼結体からなるため、導電性に優れ、ある程度の強度を有するともに、切削加工が容易で、加工性に優れている。
また、上記親水性多孔質材では、平均気孔半径が0.1〜3μmであるため、水の透過と保水とをバランスよく行うことができる。
また、上記親水性多孔質材では、気孔率が10〜40%であるため、高分子電解質型燃料電池に使用した場合には、燃料ガスに適正な水分を供給することができる。
また、上記親水性多孔質材では、灰分の含有量が10〜40重量%であるため、優れた強度と導電性とが同時に確保されている。
従って、本発明の親水性多孔質材は、保水性、透過性、強度及び導電性に優れ、陽イオンの発生が少なく、内部加湿方式のPEFCの加湿部材や、セパレータに好適に使用することができる。
Since the hydrophilic porous material of the present invention is made of a sintered body containing carbon as a main component, it is excellent in conductivity, has a certain degree of strength, is easy to cut, and has excellent workability.
Moreover, in the said hydrophilic porous material, since an average pore radius is 0.1-3 micrometers, permeation | transmission of water and water retention can be performed with sufficient balance.
Moreover, since the porosity of the hydrophilic porous material is 10 to 40%, it is possible to supply appropriate moisture to the fuel gas when used in a polymer electrolyte fuel cell.
Moreover, in the said hydrophilic porous material, since content of ash is 10 to 40 weight%, the outstanding intensity | strength and electroconductivity are ensured simultaneously.
Therefore, the hydrophilic porous material of the present invention is excellent in water retention, permeability, strength, and conductivity, generates less cations, and can be suitably used for a humidifying member of PEFC using an internal humidification method or a separator. it can.

本発明の親水性多孔質材の製造方法では、平均粒子径5〜30μmの黒鉛粉末と、上記黒鉛粉末の平均粒子径の1/5以下の平均粒子径を有する低融点セラミックとを混合し、さらに、成形、乾燥及び焼成を行うことにより、灰分の含有量が10〜40重量%の親水性多孔質材を製造するため、得られた親水性多孔質材では、黒鉛粒子の周囲に低融点セラミックからなる被覆層が形成されることとなり、この被覆層が親水性及び保水性を有することとなるため、上述した本発明の親水性多孔質材を好適に製造することができる。 In the method for producing a hydrophilic porous material of the present invention, a graphite powder having an average particle diameter of 5 to 30 μm and a low melting point ceramic having an average particle diameter of 1/5 or less of the average particle diameter of the graphite powder are mixed, Furthermore, in order to produce a hydrophilic porous material having an ash content of 10 to 40% by weight by molding, drying and firing, the obtained hydrophilic porous material has a low melting point around the graphite particles. Since a coating layer made of ceramic is formed, and this coating layer has hydrophilicity and water retention, the above-described hydrophilic porous material of the present invention can be suitably produced.

本発明の高分子電解質型燃料電池用加湿部材、及び、本発明の高分子電解質型燃料電池用セパレータによれば、親水性及び保水性、透過性及び導電性に優れ、ある程度の強度を有するとともに、加工性に優れた本発明の親水性多孔質材を用いているので、高分子電解質型燃料電池に供給される燃料ガスを冷却水により充分に加湿させることができる。これにより、高分子電解質型燃料電池を大出力で運転しても、固体高分子電解質膜が乾燥して電気抵抗が増大しないので、高分子電解質型燃料電池から高出力を得ることができる。 According to the humidifying member for a polymer electrolyte fuel cell of the present invention and the separator for a polymer electrolyte fuel cell of the present invention, it has excellent hydrophilicity, water retention, permeability and conductivity, and has a certain level of strength. Since the hydrophilic porous material of the present invention having excellent processability is used, the fuel gas supplied to the polymer electrolyte fuel cell can be sufficiently humidified with cooling water. As a result, even when the polymer electrolyte fuel cell is operated at a high output, the solid polymer electrolyte membrane is dried and the electrical resistance does not increase, so that a high output can be obtained from the polymer electrolyte fuel cell.

まず、本発明の親水性多孔質材について説明する。
本発明の親水性多孔質材は、炭素を主成分とする焼結体からなり、
平均気孔半径が0.1〜3μm、気孔率が10〜40%で、かつ、灰分の含有量が10〜40重量%であることを特徴とする。
First, the hydrophilic porous material of the present invention will be described.
The hydrophilic porous material of the present invention comprises a sintered body containing carbon as a main component,
The average pore radius is 0.1 to 3 μm, the porosity is 10 to 40%, and the ash content is 10 to 40% by weight.

本発明の親水性多孔質材では、平均気孔半径が0.1〜3μmであるため、水分の透過と保水とをバランスよく行うことができる。
平均気孔半径が0.1μm未満であると、水の透過速度が遅くなるため、親水性多孔質材をPEFCのセパレータ等に適用した場合に、燃料電池内部の電解質膜を充分に加湿することができず、一方、3μmを超えると、親水性多孔質材が水分を保持することができず、親水性多孔質材をPEFCのセパレータ等に適用した場合に、冷却水がガス流路に多量に流れ込んだり、運転を停止した場合や、冷却水の圧力が下がった場合に、親水性多孔質材の内部の水分が抜けてしまったりするため、電解質膜の加湿を行うことができない。
In the hydrophilic porous material of the present invention, since the average pore radius is 0.1 to 3 μm, the permeation of water and the water retention can be performed in a well-balanced manner.
When the average pore radius is less than 0.1 μm, the permeation rate of water becomes slow. Therefore, when the hydrophilic porous material is applied to a PEFC separator or the like, the electrolyte membrane inside the fuel cell can be sufficiently humidified. On the other hand, when the thickness exceeds 3 μm, the hydrophilic porous material cannot retain moisture, and when the hydrophilic porous material is applied to a PEFC separator or the like, a large amount of cooling water enters the gas flow path. When the water flows in, stops operation, or when the cooling water pressure drops, the moisture inside the hydrophilic porous material is lost, so that the electrolyte membrane cannot be humidified.

また、本発明の親水性多孔質材では、気孔率が10〜40%であるため、PEFCの加湿部材等に適用した場合、燃料ガスに適正な水分を供給することができる。
気孔率が10%未満であると、燃料ガスに供給される水分が不足し、電解質膜を充分に加湿することができない。一方、気孔率が40%を超えると、水分の供給が過剰になるため、燃料ガスの流路を閉塞し、発電させることが不可能となる。
Moreover, since the porosity of the hydrophilic porous material of the present invention is 10 to 40%, it is possible to supply appropriate moisture to the fuel gas when applied to a humidified member of PEFC.
When the porosity is less than 10%, the water supplied to the fuel gas is insufficient, and the electrolyte membrane cannot be sufficiently humidified. On the other hand, if the porosity exceeds 40%, the supply of moisture becomes excessive, so that it becomes impossible to generate power by closing the flow path of the fuel gas.

さらに、本発明の親水性多孔質材では、灰分の含有量が10〜40重量%であるため、必要な強度を維持しつつ導電性を確保することができる。
灰分が10%未満であると、黒鉛粒子同士の結合強度が減少するため、強度が低下する。一方、灰分が40%を超えると、必要な強度は確保することができるものの、黒鉛粒子間に存在するバインダ成分の量が増加するため、導電性を確保することができない。
Furthermore, in the hydrophilic porous material of this invention, since content of ash is 10 to 40 weight%, electroconductivity can be ensured, maintaining required intensity | strength.
If the ash content is less than 10%, the bonding strength between the graphite particles decreases, so the strength decreases. On the other hand, if the ash content exceeds 40%, the required strength can be ensured, but the amount of the binder component present between the graphite particles increases, so that the conductivity cannot be ensured.

本発明の親水性多孔質材は、黒鉛を主成分とする焼結体からなるものであり、黒鉛材料としては、例えば、人造黒鉛、天然黒鉛、キッシュ黒鉛等が挙げられる。これらのなかでは、人造黒鉛が望ましい。
上記黒鉛からなる粒子の平均粒子径の望ましい下限は7μmであり、望ましい上限は35μmである。7μm未満であると、得られる親水性多孔質材の導電性及び加工性が充分でなかったり、気孔率が小さくなり過ぎて透過性が充分でなかったりすることがある。一方、35μmを超えると、得られる親水性多孔質材の気孔率が大きくなり過ぎ、内部加湿方式のPEFCの加湿部材やセパレータとして用いられた際に、燃料ガスを過度に加湿してしまうことがある。
なお、黒鉛粒子の平均粒子径は、黒鉛粉末が微粒子の凝集体であり、凝集体の表面に被覆層が形成される場合には、凝集体の平均粒子径を意味する。
The hydrophilic porous material of the present invention is composed of a sintered body mainly composed of graphite. Examples of the graphite material include artificial graphite, natural graphite, quiche graphite, and the like. Among these, artificial graphite is desirable.
A desirable lower limit of the average particle diameter of the graphite particles is 7 μm, and a desirable upper limit is 35 μm. If the thickness is less than 7 μm, the resulting hydrophilic porous material may not have sufficient conductivity and workability, or the porosity may be too small and the permeability may be insufficient. On the other hand, when it exceeds 35 μm, the porosity of the obtained hydrophilic porous material becomes too large, and the fuel gas may be excessively humidified when used as a humidifying member or separator of an internal humidification type PEFC. is there.
The average particle diameter of the graphite particles means the average particle diameter of the aggregate when the graphite powder is an aggregate of fine particles and a coating layer is formed on the surface of the aggregate.

また、上記親水性多孔質材は、導電性に優れるものであることが望ましく、具体的には、固有抵抗値が、10mΩ・cm以下であることが望ましい。
上記固有抵抗値が、10mΩ・cmを超えると、本発明の親水性多孔質材を高分子電解質型燃料電池用加湿部材等に用いた場合に、所望の導電性を確保することができない場合があるからである。
The hydrophilic porous material is preferably excellent in electrical conductivity, and specifically has a specific resistance value of 10 mΩ · cm or less.
When the specific resistance value exceeds 10 mΩ · cm, when the hydrophilic porous material of the present invention is used for a humidifying member for a polymer electrolyte fuel cell, the desired conductivity may not be ensured. Because there is.

また、上記親水性多孔質材は、ある程度の強度を有するものであることが望ましく、具体的には、曲げ強度が30MPa以上であることが望ましい。
上記曲げ強度が、30MPa未満であると、本発明の親水性多孔質材を高分子電解質型燃料電池用加湿部材等に用いた場合に、所望の強度を確保することができない場合があるからである。
The hydrophilic porous material preferably has a certain level of strength, and specifically, the bending strength is preferably 30 MPa or more.
When the bending strength is less than 30 MPa, when the hydrophilic porous material of the present invention is used for a humidifying member for a polymer electrolyte fuel cell, a desired strength may not be ensured. is there.

このような構成からなる本発明の親水性多孔質材は、例えば、後述する本発明の親水性多孔質材の製造方法により製造することができる。 The hydrophilic porous material of this invention which consists of such a structure can be manufactured with the manufacturing method of the hydrophilic porous material of this invention mentioned later, for example.

次に、本発明の親水性多孔質材の製造方法について説明する。
本発明の親水性多孔質材の製造方法は、平均粒子径5〜30μmの黒鉛粉末、及び、上記黒鉛粉末の平均粒子径の1/5以下の平均粒子径を有する低融点セラミック粉末の混合と、成形、乾燥及び焼成とを行い、灰分の含有量が10〜40重量%の親水性多孔質材を製造することを特徴とする。
Next, the manufacturing method of the hydrophilic porous material of this invention is demonstrated.
The method for producing the hydrophilic porous material of the present invention comprises mixing graphite powder having an average particle diameter of 5 to 30 μm and low melting point ceramic powder having an average particle diameter of 1/5 or less of the average particle diameter of the graphite powder. It is characterized in that a hydrophilic porous material having an ash content of 10 to 40% by weight is produced by molding, drying and firing.

以下、工程順に、上記親水性多孔質材の製造方法について説明する。
本発明の製造方法では、まず、平均粒子径5〜30μmの黒鉛粉末、及び、前記黒鉛粉末の平均粒子径の1/5以下の平均粒子径を有する低融点セラミック粉末の混合粉末を調製する。
Hereinafter, the manufacturing method of the said hydrophilic porous material is demonstrated in order of a process.
In the production method of the present invention, first, a mixed powder of graphite powder having an average particle diameter of 5 to 30 μm and low melting point ceramic powder having an average particle diameter of 1/5 or less of the average particle diameter of the graphite powder is prepared.

上記黒鉛粉末としては特に限定されず、例えば、人造黒鉛、天然黒鉛、キッシュ黒鉛等の粉末が挙げられる。
上記黒鉛粉末の平均粒子径は、その下限が5μmで、その上限が30μmである。
上記平均粒子径が5μm未満であると、製造した親水性多孔質材において、保水性は向上するものの、水の透過量が少なくなりすぎ、親水性多孔質材として適さない。
一方、上記平均粒子径が30μmを超えると、水の透過量が多くなりすぎるため、保水性が低下し、親水性多孔質材として適さない。
上記黒鉛粒子の平均粒子径の望ましい下限は8μmであり、望ましい上限は25μmである。
The graphite powder is not particularly limited, and examples thereof include artificial graphite, natural graphite, quiche graphite and the like.
The average particle diameter of the graphite powder has a lower limit of 5 μm and an upper limit of 30 μm.
When the average particle diameter is less than 5 μm, the water retention is improved in the produced hydrophilic porous material, but the amount of water permeation is too small and it is not suitable as the hydrophilic porous material.
On the other hand, when the average particle diameter exceeds 30 μm, the water permeation amount is excessively increased, so that the water retention is lowered and it is not suitable as a hydrophilic porous material.
A desirable lower limit of the average particle diameter of the graphite particles is 8 μm, and a desirable upper limit is 25 μm.

上記低融点セラミック粉末としては特に限定されず、例えば、カオリン、長石、アノーサイト、B、NaO等の粉末や焼結助剤を含むSiO、Al等の粉末が挙げられる。
上記低融点セラミック粉末の平均粒子径は、上記黒鉛粉末の平均粒子径の1/5以下である。
このような平均粒子径を有する低融点セラミック粉末を用いることにより、製造した親水性多孔質材において、黒鉛粒子の周囲が低融点セラミックで均等にコーティングされることとなり、その結果、上記親水性多孔質材が充分な保水性を有することとなる。
The low melting point ceramic powder is not particularly limited, and examples thereof include powders such as kaolin, feldspar, anorthite, B 2 O 3 and Na 2 O, and powders such as SiO 2 and Al 2 O 3 containing a sintering aid. Can be mentioned.
The average particle size of the low melting point ceramic powder is 1/5 or less of the average particle size of the graphite powder.
By using the low melting point ceramic powder having such an average particle diameter, the periphery of the graphite particles is uniformly coated with the low melting point ceramic in the manufactured hydrophilic porous material. The material will have sufficient water retention.

また、本発明の製造方法において、上記低融点セラミック粉末は、バインダとして機能することとなる。
勿論、上記低融点セラミックとは別に、上記黒鉛粉末及び上記低融点セラミック粉末にバインダ樹脂を混合してもよい。
上記バインダ樹脂としては、例えば、フェノール樹脂、ポリビニルアルコール、ポリ酢酸ビニル、フラン樹脂、ポリアクリロニトリル、ポリアセタール、ブタジエンゴム等が挙げられる。
Moreover, in the manufacturing method of this invention, the said low melting-point ceramic powder will function as a binder.
Of course, apart from the low melting point ceramic, a binder resin may be mixed into the graphite powder and the low melting point ceramic powder.
Examples of the binder resin include phenol resin, polyvinyl alcohol, polyvinyl acetate, furan resin, polyacrylonitrile, polyacetal, and butadiene rubber.

上記低融点セラミック粉末の上記黒鉛粉末に対する配合量の望ましい下限は8重量%であり、望ましい上限は35重量%である。8重量%未満であると、得られた親水性多孔質材において、黒鉛粒子の被覆層の厚さが薄くなり過ぎ、親水性多孔質材の親水性及び保水性が充分でなかったり、親水性多孔質材を用いて内部加湿方式のPEFCの加湿部材やセパレータを作製した際に、充分な強度を得ることができなかったりすることがある。一方、35重量%を超えると、黒鉛粒子の被覆層の厚さが厚くなり過ぎ、親水性多孔質材を用いて内部加湿方式のPEFCの加湿部材やセパレータを作製し、これを使用した際に、燃料ガスを充分に加湿することができないことがある。 A desirable lower limit of the blending amount of the low melting point ceramic powder with respect to the graphite powder is 8% by weight, and a desirable upper limit is 35% by weight. When the content is less than 8% by weight, the thickness of the coating layer of the graphite particles in the obtained hydrophilic porous material becomes too thin, and the hydrophilicity and water retention of the hydrophilic porous material are not sufficient. When an internal humidification type PEFC humidification member or separator is produced using a porous material, sufficient strength may not be obtained. On the other hand, if it exceeds 35% by weight, the coating layer of the graphite particles becomes too thick, and when a humidified member or separator of PEFC of an internal humidification method is produced using a hydrophilic porous material, it is used. The fuel gas may not be sufficiently humidified.

また、上記混合粉末において、上記黒鉛粉末及び上記低融点セラミックの灰分の含有量は、その下限が10重量%で、その上限が40重量%である。
上記含有量が10重量%未満の場合、低融点セラミックのバインダとしての機能が不充分なため、製造した親水性多孔質材の強度が低下することとなる。
一方、上記含有量が40重量%を超えると、製造した親水性多孔質材において、強度は確保することができるものの、黒鉛粒子間に多量の低融点セラミックが存在することとなり、導電性を確保することができなくなる。
In the mixed powder, the lower limit of the ash content of the graphite powder and the low-melting-point ceramic is 10% by weight, and the upper limit is 40% by weight.
When the content is less than 10% by weight, the function of the low-melting-point ceramic as a binder is insufficient, so that the strength of the manufactured hydrophilic porous material is lowered.
On the other hand, if the content exceeds 40% by weight, the produced hydrophilic porous material can ensure the strength, but a large amount of low-melting-point ceramic exists between the graphite particles to ensure conductivity. Can not do.

本発明の製造方法では、上記混合粉末を調製した後、成形、乾燥及び焼成を行う。
具体儀には、まず、混合粉末に、界面活性剤及び水を加えて分散、混合して水分を調整した混合組成物を調製する。
上記界面活性剤としては、例えば、陰イオン性界面活性剤、陽イオン性界面活性剤、両性界面活性剤、非イオン性界面活性剤が挙げられる。これらの中では非イオン性界面活性剤が望ましい。
上記非イオン性界面活性剤としては特に限定されず、例えば、ポリオキシエチレン型、ソルビタンエステル、グリセリンエステル、アルカノールアミド等が挙げられる。
In the production method of the present invention, after the mixed powder is prepared, it is molded, dried and fired.
Specifically, first, a mixed composition is prepared by adding a surfactant and water to a mixed powder to disperse and mix to adjust moisture.
Examples of the surfactant include an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant. Of these, nonionic surfactants are desirable.
The nonionic surfactant is not particularly limited, and examples thereof include polyoxyethylene type, sorbitan ester, glycerin ester, alkanolamide and the like.

その後、上記混合組成物について、圧縮成形、乾燥及び焼成を行う。
上記混合組成物を圧縮成形する方法としては特に限定されず、従来公知の圧縮成形方法を用いることができる。
具体的な圧縮成形方法としては、例えば、圧縮成形型中に、上記混合組成物を充填し、油圧プレス等を用いて、1〜100MPa程度の圧力で成形する方法等を用いることができる。
Thereafter, the mixed composition is subjected to compression molding, drying and firing.
The method for compression molding the mixed composition is not particularly limited, and a conventionally known compression molding method can be used.
As a specific compression molding method, for example, a method of filling the above-mentioned mixed composition in a compression mold and molding it at a pressure of about 1 to 100 MPa using a hydraulic press or the like can be used.

また、上記圧縮成形で作製する成形体の形状としては特に限定されないが、後に切削加工を行わない場合には、後の乾燥、焼成工程における若干の寸法変化を考慮して、所望の形状とほぼ同じ形状とすることが望ましい。 In addition, the shape of the molded body produced by the compression molding is not particularly limited. However, in the case where cutting is not performed later, the desired shape is approximately considered in consideration of slight dimensional changes in the subsequent drying and firing processes. It is desirable to have the same shape.

また、上記乾燥、焼成工程におけるそれぞれの望ましい処理は、以下の通りである。
すなわち、望ましい乾燥処理は、急激な乾燥による割れを防止するため圧縮成形した成形体を数日間自然乾燥(室温、大気中)した後、100℃以上の温度で数時間充分に乾燥する方法であり、望ましい焼成処理は、乾燥を終えた成形体を50℃/時間程度の条件にて900〜1600℃程度の温度で焼成する方法である。
このような工程を経る本発明の親水性多孔質材の製造方法では、上述した本発明の親水性多孔質材を好適に製造することができる。
Moreover, each desirable process in the said drying and baking process is as follows.
That is, a desirable drying treatment is a method in which a compact that has been compression-molded to prevent cracking due to rapid drying is naturally dried for several days (room temperature, in air) and then sufficiently dried for several hours at a temperature of 100 ° C. or higher. A desirable firing treatment is a method of firing the dried molded body at a temperature of about 900 to 1600 ° C. under a condition of about 50 ° C./hour.
In the method for producing the hydrophilic porous material of the present invention that undergoes such steps, the above-described hydrophilic porous material of the present invention can be suitably produced.

次に、本発明の高分子電解質型燃料電池用加湿部材について説明する。
上記高分子電解質型燃料電池用加湿部材(PEFC用加湿部材)は、上述した本発明の親水性多孔質材を用いてなることを特徴とする。
Next, the humidifying member for a polymer electrolyte fuel cell of the present invention will be described.
The polymer electrolyte fuel cell humidifying member (PEFC humidifying member) is characterized by using the above-described hydrophilic porous material of the present invention.

図2は、本発明のPEFC用加湿部材を用いたPEFCの単セルの構造の一例を模式的に示した断面図である。図3は、本発明のPEFC用加湿部材の燃料極側の面の一例を模式的に示した平面図である。 FIG. 2 is a cross-sectional view schematically showing an example of the structure of a single cell of PEFC using the humidifying member for PEFC of the present invention. FIG. 3 is a plan view schematically showing an example of the surface on the fuel electrode side of the humidifying member for PEFC of the present invention.

図2に示したPEFCの単セル20では、固体高分子電解質膜21の両面に空気極22(正極)と燃料極23(負極)とがそれぞれ配置されて膜電極接合体24を構成しており、燃料極23の外側にPEFC用加湿部材50が当接され、空気極22の外側にセパレータ60が当接されている。
図2では、PEFC用加湿部材50は、燃料極23とセパレータ60との間に設けられているが、固体高分子電解質膜21を加湿する目的であれば、空気極22とセパレータ60との間に設けられていてもよい。
In the PEFC single cell 20 shown in FIG. 2, an air electrode 22 (positive electrode) and a fuel electrode 23 (negative electrode) are arranged on both surfaces of a solid polymer electrolyte membrane 21 to constitute a membrane electrode assembly 24. The PEFC humidifying member 50 is in contact with the outside of the fuel electrode 23, and the separator 60 is in contact with the outside of the air electrode 22.
In FIG. 2, the PEFC humidifying member 50 is provided between the fuel electrode 23 and the separator 60. However, for the purpose of humidifying the solid polymer electrolyte membrane 21, the PEFC humidifying member 50 is provided between the air electrode 22 and the separator 60. May be provided.

図2及び図3に示したように、PEFC用加湿部材50は、燃料極23と接する側の面に燃料ガスの流路となる燃料ガス溝51が設けられ、高分子電解質型燃料電池用セパレータ(PEFC用セパレータ)60の冷却水溝61が設けられた面と接する側の面が平面となった板状体である。 As shown in FIGS. 2 and 3, the humidifying member 50 for PEFC is provided with a fuel gas groove 51 serving as a fuel gas flow path on the surface in contact with the fuel electrode 23, and is a polymer electrolyte fuel cell separator. (PEFC separator) 60 is a plate-like body having a flat surface on the side in contact with the surface on which the cooling water groove 61 is provided.

燃料ガス溝51は、図3の横方向に設けられた2本の横溝51aと、図3の縦方向に設けられ、両端が2本の横溝51aに繋がった多数の平行な縦溝51bとからなる。燃料ガス溝51の両端には、燃料ガスを各セルの燃料ガス溝51に供給するための燃料ガス孔52と、燃料ガスを各セルの燃料ガス溝51から排出させるための燃料ガス孔53とが設けられている。
PEFC用加湿部材50では、外部より燃料ガスが燃料ガス孔52を通じて燃料ガス孔51に連続的に供給され、使用後の燃料ガスが燃料ガス孔53を通じて連続的に排出される。なお、上記燃料ガスは、水素又は水素を生成しやすい常温で気体の物質である。
The fuel gas groove 51 includes two horizontal grooves 51a provided in the horizontal direction in FIG. 3 and a number of parallel vertical grooves 51b provided in the vertical direction in FIG. 3 and both ends connected to the two horizontal grooves 51a. Become. At both ends of the fuel gas groove 51, a fuel gas hole 52 for supplying the fuel gas to the fuel gas groove 51 of each cell, and a fuel gas hole 53 for discharging the fuel gas from the fuel gas groove 51 of each cell, Is provided.
In the PEFC humidifying member 50, the fuel gas is continuously supplied from the outside to the fuel gas hole 51 through the fuel gas hole 52, and the used fuel gas is continuously discharged through the fuel gas hole 53. The fuel gas is hydrogen or a gaseous substance that easily generates hydrogen at room temperature.

燃料ガス溝51の断面形状としては特に限定されず、例えば、凹形等が挙げられる。
燃料ガス溝51の深さとしては特に限定されないが、PEFC用加湿部材50の厚さの半分以下であることが望ましい。PEFC用加湿部材50の強度を、単セルを複数積層したスタック構造としても変形や破損を生じないものとするためである。
The cross-sectional shape of the fuel gas groove 51 is not particularly limited, and examples thereof include a concave shape.
The depth of the fuel gas groove 51 is not particularly limited, but is preferably half or less than the thickness of the PEFC humidifying member 50. This is because the strength of the PEFC humidifying member 50 does not cause deformation or breakage even in a stack structure in which a plurality of single cells are stacked.

PEFC用加湿部材に設けられる燃料ガス溝のパターンとしては特に限定されず、例えば、図4に示したような1本の蛇行した燃料ガス溝56がPEFC用加湿部材70の中央部全体に設けられたもの等であってもよい。
なお、上記燃料ガス溝は、PEFC用加湿部材の中央部に均一に設けられていることが望ましい。燃料極と燃料ガスとの接触面積を充分に確保し、燃料極に均一に燃料ガスを供給するためである。
The pattern of the fuel gas groove provided in the PEFC humidifying member is not particularly limited. For example, one meandering fuel gas groove 56 as shown in FIG. 4 is provided in the entire central portion of the PEFC humidifying member 70. May be used.
The fuel gas groove is desirably provided uniformly in the center of the humidifying member for PEFC. This is to ensure a sufficient contact area between the fuel electrode and the fuel gas and to supply the fuel gas uniformly to the fuel electrode.

また、図示していないが、PEFC用加湿部材50の外周部には、空気及び冷却水を各セルの空気溝及び冷却水溝に供給するための空気孔及び冷却水孔と、空気及び冷却水を各セルの空気溝及び冷却水溝から排出させるための空気孔及び冷却水孔が設けられる。
PEFC用加湿部材50は、本発明の親水性多孔質材を用いてなるものであるが、燃料ガス孔、冷却水孔及び空気孔が設けられている外周部は、気密性の高い材料により構成されていることが望ましい。各セルに対して燃料ガス、冷却水及び空気を充分に供給し、排出させるためである。
上記気密性の高い材料としては特に限定されず、例えば、カーボン系材料、金属系材料等が挙げられる。なかでも、本発明の親水性多孔質材の細孔をフェノール樹脂、エポキシ樹脂等の樹脂により目埋めしたものであることが望ましい。これにより、PEFC用加湿部材50の外周部と中央部とを一体的に作製することができるので、これらを別個に作製して貼り合わせるといった作業を行う必要がなくなり、工程を簡素化することができる。
Moreover, although not shown in figure, in the outer peripheral part of the humidification member 50 for PEFC, the air hole and cooling water hole for supplying air and cooling water to the air groove and cooling water groove of each cell, and air and cooling water Are provided with an air hole and a cooling water hole for discharging the air from the air groove and the cooling water groove of each cell.
The humidifying member 50 for PEFC is formed using the hydrophilic porous material of the present invention, and the outer peripheral portion provided with fuel gas holes, cooling water holes and air holes is made of a highly airtight material. It is desirable that This is because fuel gas, cooling water and air are sufficiently supplied to each cell and discharged.
The material having high airtightness is not particularly limited, and examples thereof include carbon-based materials and metal-based materials. Among these, the pores of the hydrophilic porous material of the present invention are preferably filled with a resin such as a phenol resin or an epoxy resin. Thereby, since the outer peripheral part and center part of the humidification member 50 for PEFC can be produced integrally, it is not necessary to perform the operation | work of producing and bonding these separately, and can simplify a process. it can.

PEFC用加湿部材50の大きさとしては、単セル20の大きさに合わせた大きさであることが好ましく、通常、燃料極23及び空気極22と同一の大きさにする。
PEFC用加湿部材50の厚さとしては特に限定されないが、単セル20を薄型化及び軽量化するために、PEFC用加湿部材50に必要とされる強度を確保することができる範囲で薄いことが望ましい。
なお、PEFC用加湿部材50は、通常、中央部に設けられた燃料ガス溝51を仕切る凸部、及び、外周部を均一の厚さにし、これらにより燃料極23及び空気極22と当接し接着することが望ましいが、燃料極23及び空気極22や固体高分子電解質膜21を小さくする場合には、外周部の厚さを中央部の厚さよりも厚くしてもよい。
The size of the humidifying member 50 for PEFC is preferably the same as the size of the unit cell 20 and is usually the same size as the fuel electrode 23 and the air electrode 22.
The thickness of the PEFC humidifying member 50 is not particularly limited, but may be thin as long as the strength required for the PEFC humidifying member 50 can be secured in order to reduce the thickness and weight of the single cell 20. desirable.
Note that the PEFC humidifying member 50 usually has a convex portion that partitions the fuel gas groove 51 provided in the center portion and an outer peripheral portion with a uniform thickness so that the fuel electrode 23 and the air electrode 22 are in contact with and adhered to each other. However, when the fuel electrode 23, the air electrode 22, and the solid polymer electrolyte membrane 21 are made smaller, the thickness of the outer peripheral portion may be made larger than the thickness of the central portion.

PEFC用加湿部材50は、水浸透型の部材であるので、PEFC用セパレータ60と接する側の表面から冷却水を吸水して水分を内部に保持し、PEFCの発電に伴う熱(70〜100℃)により、燃料極23側の表面から内部に保持した水分を蒸発させることができる。これにより、図2に示したPEFCでは、燃料ガス溝51を流れる燃料ガスは連続的に加湿され、固体高分子電解質膜21が乾燥して電気抵抗を増大させることなく高出力を得ることができる。 Since the PEFC humidifying member 50 is a water permeation type member, it absorbs cooling water from the surface on the side in contact with the PEFC separator 60 and retains moisture therein, and heat (70 to 100 ° C.) generated by the PEFC power generation ), The moisture retained inside can be evaporated from the surface on the fuel electrode 23 side. Thereby, in the PEFC shown in FIG. 2, the fuel gas flowing through the fuel gas groove 51 is continuously humidified, and the solid polymer electrolyte membrane 21 is dried and high output can be obtained without increasing the electric resistance. .

また、PEFC用セパレータ60は、PEFC用加湿部材50と接する側の面に冷却水の流路となる冷却水溝61が設けられ、空気極22と接する側の面に空気(酸素)の流路となる空気溝62が設けられた板状体である。
冷却水溝61と空気溝62とは、PEFC用セパレータ60の上下面で互いに直交する方向に設けられることが望ましい。PEFC用セパレータ60に必要とされる強度を確保するうえで効果的であるとともに、単セルを複数積層したスタック構造とする際に、後述する冷却水孔及び空気孔に接続されるパイプを配設しやすくなるからである。
In addition, the PEFC separator 60 is provided with a cooling water groove 61 serving as a cooling water channel on the surface in contact with the PEFC humidifying member 50, and an air (oxygen) channel on the surface in contact with the air electrode 22. This is a plate-like body provided with air grooves 62.
The cooling water groove 61 and the air groove 62 are desirably provided in directions orthogonal to each other on the upper and lower surfaces of the PEFC separator 60. It is effective in ensuring the strength required for the PEFC separator 60, and when a stack structure in which a plurality of single cells are stacked, pipes connected to cooling water holes and air holes, which will be described later, are provided. It is easy to do.

また、図示していないが、冷却水溝61および空気溝62の両端には、冷却水及び空気を各セルの冷却水溝61及び空気溝62に供給するための冷却水孔及び空気孔と、冷却水及び空気を各セルの冷却水溝61及び空気溝62から排出させるための冷却水孔及び空気孔とが設けられている。また、PEFC用セパレータ60の外周部には、燃料ガスを各セルの燃料ガス溝51に供給するための燃料ガス孔と、燃料ガスを各セルの燃料ガス溝51から排出させるための燃料ガス孔とが設けられている。
PEFC用セパレータ60では、外部より冷却水及び空気が、冷却水孔及び空気孔を通じて冷却溝61及び空気溝62に連続的に供給され、使用後の冷却水及び空気が、冷却水孔及び空気孔を通じて連続的に排出される。
Although not shown, cooling water holes and air holes for supplying cooling water and air to the cooling water grooves 61 and the air grooves 62 of each cell are provided at both ends of the cooling water grooves 61 and the air grooves 62, respectively. Cooling water holes and air holes for discharging the cooling water and air from the cooling water groove 61 and the air groove 62 of each cell are provided. In addition, a fuel gas hole for supplying fuel gas to the fuel gas groove 51 of each cell and a fuel gas hole for discharging the fuel gas from the fuel gas groove 51 of each cell are formed in the outer peripheral portion of the PEFC separator 60. And are provided.
In the PEFC separator 60, cooling water and air are continuously supplied from the outside to the cooling groove 61 and the air groove 62 through the cooling water hole and the air hole, and the cooling water and air after use are supplied to the cooling water hole and the air hole. It is discharged continuously through.

なお、図2では、冷却水溝61は、PEFC用セパレータ60に設けられているが、PEFC用セパレータ60に設ける代りに、PEFC用加湿部材50に設ける構成としてもよい。 In FIG. 2, the cooling water groove 61 is provided in the PEFC separator 60, but instead of being provided in the PEFC separator 60, the cooling water groove 61 may be provided in the PEFC humidifying member 50.

次に、本発明の高分子電解質型燃料電池用加湿部材を製造する方法について説明する。
(1)上述した本発明の親水性多孔質材の製造方法により、所望のPEFC用加湿部材の形状、又は、所望のPEFC用加湿部材の中央部の形状にした本発明の親水性多孔質材を作製する。
本発明の親水性多孔質材の形状は、成形する際の成形型の形状を調整し、必要に応じて、更に、切削加工、穴あけ加工、レーザ加工等を行うことにより調整することができる。
Next, a method for producing the humidifying member for a polymer electrolyte fuel cell of the present invention will be described.
(1) The hydrophilic porous material of the present invention having the desired shape of the humidifying member for PEFC or the shape of the central portion of the desired humidifying member for PEFC by the above-described method for producing the hydrophilic porous material of the present invention. Is made.
The shape of the hydrophilic porous material of the present invention can be adjusted by adjusting the shape of the molding die at the time of molding, and further performing cutting, drilling, laser processing or the like as necessary.

(2)次に、セル外部へ燃料ガスのリークを防ぐ必要のある場合は、本発明の親水性多孔質材の外周部にのみ樹脂を含浸して硬化させる。また、PEFC用加湿部材の中央部のみを本発明の親水性多孔質材により作製した場合には、樹脂板、金属板等を接着剤等により貼り合わせて外周部を形成する。
以上、(1)及び(2)の工程により、本発明の高分子電解質型燃料電池用加湿部材を製造することができる。
(2) Next, when it is necessary to prevent leakage of fuel gas to the outside of the cell, only the outer peripheral portion of the hydrophilic porous material of the present invention is impregnated and cured. Moreover, when only the center part of the humidification member for PEFC is produced with the hydrophilic porous material of this invention, a resin plate, a metal plate, etc. are bonded together with an adhesive agent etc., and an outer peripheral part is formed.
As described above, the humidifying member for the polymer electrolyte fuel cell of the present invention can be produced by the steps (1) and (2).

次に、本発明の高分子電解質型燃料電池用セパレータについて説明する。
本発明の高分子電解質型燃料電池用セパレータは、本発明の親水性多孔質材を用いてなることを特徴とする。
本発明の高分子電解質型燃料電池用セパレータの構造は、一方の面に燃料ガス溝が形成され、他方の面に空気溝が形成されている以外は、上述した高分子電解質型燃料電池用加湿部材と同様であり、高分子電解質型燃料電池の単セルにおいて、燃料極23と空気極22との間に設けられるものである。なお、燃料ガス溝と空気溝とは、高分子電解質型燃料電池用セパレータの上下面で互いに直交する方向に設けられていることが望ましい。
高分子電解質型燃料電池用セパレータに必要とされる強度を確保するうえで効果的であるとともに、単セルを複数積層したスタック構造とする際に、燃料ガス孔及び空気孔に接続されるパイプを配設しやすくなるからである。
Next, the separator for a polymer electrolyte fuel cell of the present invention will be described.
The separator for a polymer electrolyte fuel cell of the present invention is characterized by using the hydrophilic porous material of the present invention.
The structure of the polymer electrolyte fuel cell separator of the present invention is the above-described humidification for polymer electrolyte fuel cell, except that a fuel gas groove is formed on one surface and an air groove is formed on the other surface. It is the same as the member, and is provided between the fuel electrode 23 and the air electrode 22 in a single cell of the polymer electrolyte fuel cell. It is desirable that the fuel gas groove and the air groove are provided in directions orthogonal to each other on the upper and lower surfaces of the polymer electrolyte fuel cell separator.
It is effective in ensuring the strength required for a polymer electrolyte fuel cell separator, and when connecting to a stack structure in which a plurality of single cells are stacked, pipes connected to fuel gas holes and air holes are provided. It is because it becomes easy to arrange.

また、本発明の高分子電解質型燃料電池用セパレータは、図2に示した高分子電解質型燃料電池用セパレータ60のように、本発明の高分子電解質型燃料電池用加湿部材と併用されるものであってもよいが、内部に冷却水の流路が形成され、加湿機能を備えたものであることが望ましい。
これにより、加湿部材を用いることなく、冷却水により固体高分子電解質膜を加湿することができ、このような構造とすることにより、内部の冷却水が燃料ガスと空気の接触を防止する機能を持たせることができる。
また、このような高分子電解質型燃料電池用セパレータを作製する場合には、複数の構成部材を作成した後、それらを貼り合わせることにより作製してもよい。
In addition, the polymer electrolyte fuel cell separator of the present invention is used in combination with the polymer electrolyte fuel cell humidifying member of the present invention, like the polymer electrolyte fuel cell separator 60 shown in FIG. However, it is desirable that a cooling water flow path is formed inside and has a humidifying function.
Thereby, the solid polymer electrolyte membrane can be humidified with cooling water without using a humidifying member, and by having such a structure, the function of preventing the internal cooling water from contacting the fuel gas and the air. You can have it.
Moreover, when producing such a polymer electrolyte fuel cell separator, after producing a plurality of constituent members, they may be produced by bonding them together.

本発明の高分子電解質型燃料電池用セパレータによれば、親水性及び保水性、透過性、導電性に優れ、ある程度の強度を有するとともに、加工性に優れた本発明の親水性多孔質材を用いているため、高分子電解質型燃料電池に供給される燃料ガスを冷却水や空気極で形成する水により、充分に加湿することができる。
これにより、高分子電解質型燃料電池を大出力で運転しても、固体高分子電解膜が乾燥して電気抵抗が増大しないので、高分子電解質型燃料電池から高出力を得ることができる。
According to the polymer electrolyte fuel cell separator of the present invention, the hydrophilic porous material of the present invention is excellent in hydrophilicity, water retention, permeability and conductivity, has a certain degree of strength and excellent workability. Therefore, the fuel gas supplied to the polymer electrolyte fuel cell can be sufficiently humidified by cooling water or water formed by the air electrode.
As a result, even when the polymer electrolyte fuel cell is operated at a high output, the solid polymer electrolyte membrane is dried and the electrical resistance does not increase, so that a high output can be obtained from the polymer electrolyte fuel cell.

以下に実施例を揚げて本発明を更に詳しく説明するが、本発明はこれらの実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited only to these examples.

(実施例1)
流動式混合機を使用し、平均粒子径25μmの人造黒鉛粉(エス・イーシー社製、商品名:SGP)70重量%、平均粒子径2μmのカオリン系粘土30重量%の混合粉末、水及び界面活性剤(ポリオキシエチレンアルキルエーテル、花王社製、エマルゲン709(商品名))を添加し、縦型高速混合機(三井鉱山社製、へンシェルミキサー)を用いて、分散、混合し、さらに、加熱することにより、水分を調整した混合組成物を調製した。
(Example 1)
Using a fluid mixer, 70% by weight of artificial graphite powder (trade name: SGP, manufactured by S.E.C.) with an average particle size of 25 μm, mixed powder of 30% by weight of kaolin clay with an average particle size of 2 μm, water and interface An activator (polyoxyethylene alkyl ether, Kao Corporation, Emulgen 709 (trade name)) is added, dispersed and mixed using a vertical high-speed mixer (Mitsui Mining Co., Ltd., Henschel mixer), and further By heating, a mixed composition with adjusted water content was prepared.

次に、図4に示した燃料ガス溝51のパターンが形成された成形型を用いて、20MPaで成形し、75mm×75mm×3mmの成形体を得た。この成形体を乾燥し、さらに、不活性ガス雰囲気下50℃/時間で1000℃まで焼成し、親水性多孔質材を作製した。
次いで、親水性多孔質材の6面を加工することにより、70mm×70mm×2mmの平板状で、片面に深さ0.5mm、幅2mm、長さ(総延長)200mmの図4に示したパターンの燃料ガス溝が設けられたPEFC用加湿部材を作製した。
なお、ここで作製したPEFC用加湿部材用の灰分は、30.4重量%である。灰分の測定は、JIS M 8511「天然黒鉛の工業分析及び試験方法」に準拠した方法により行った。
Next, using a molding die in which the pattern of the fuel gas groove 51 shown in FIG. 4 was formed, molding was performed at 20 MPa to obtain a molded body of 75 mm × 75 mm × 3 mm. The molded body was dried and further fired to 1000 ° C. in an inert gas atmosphere at 50 ° C./hour to produce a hydrophilic porous material.
Next, by processing six surfaces of the hydrophilic porous material, a flat plate shape of 70 mm × 70 mm × 2 mm is shown in FIG. 4 having a depth of 0.5 mm, a width of 2 mm, and a length (total extension) of 200 mm on one surface. A humidified member for PEFC provided with a patterned fuel gas groove was produced.
In addition, the ash content for the humidification member for PEFC produced here is 30.4 weight%. The ash was measured by a method based on JIS M 8511 “Industrial analysis and test method of natural graphite”.

(実施例2、3)
混合粉末に配合する人造黒鉛粉及びカオリン系粘土の平均粒子径及び配合量を下記表1に示したように変更した以外は、実施例1と同様にしてPEFC用加湿部材を作製した。
(Examples 2 and 3)
A humidified member for PEFC was prepared in the same manner as in Example 1 except that the average particle diameter and the blending amount of the artificial graphite powder and kaolin-based clay blended in the mixed powder were changed as shown in Table 1 below.

(比較例1〜8)
混合粉末に配合する人造黒鉛粉及びカオリン系粘土の平均粒子径及び配合量を下記表1に示したように変更した以外は、実施例1と同様にしてPEFC用加湿部材を作製した。
(Comparative Examples 1-8)
A humidified member for PEFC was prepared in the same manner as in Example 1 except that the average particle diameter and the blending amount of the artificial graphite powder and kaolin-based clay blended in the mixed powder were changed as shown in Table 1 below.

Figure 2006004920
Figure 2006004920

各実施例及び比較例で作製した親水性多孔質材からなるPEFC用加湿部材について、下記の評価を行った。結果を表2に示した。
(特性評価)
各実施例及び比較例で作製した親水性多孔質材からなるPEFC加湿部材の気孔率及び平均気孔半径を、Thermo Finnigan社製 Pascal240を使用し、JIS R 1655「ファインセラミックスの水銀圧入法による成形体気孔径分布試験方法」に準拠した水銀圧入法により、大気圧から圧力190MPaまでで測定した。
尚、測定パラメーターである水銀の接触角は141.3°、水銀の表面張力480Dyne/cmの値を使用し、平均気孔半径は全累積気孔容量の50%に相当する気孔半径の値を算出することによって得た。
The following evaluation was performed about the humidification member for PEFC which consists of a hydrophilic porous material produced by each Example and the comparative example. The results are shown in Table 2.
(Characteristic evaluation)
The porosity and average pore radius of the PEFC humidifying member made of the hydrophilic porous material prepared in each of the examples and comparative examples were measured using JIS R 1655 “fine ceramics molded by mercury intrusion method using Pascal 240 manufactured by Thermo Finnigan. The measurement was performed from atmospheric pressure to a pressure of 190 MPa by a mercury intrusion method in accordance with the “pore size distribution test method”.
The measurement parameter mercury contact angle is 141.3 ° and the surface tension of mercury is 480 Dyne / cm, and the average pore radius is calculated as the value of the pore radius corresponding to 50% of the total cumulative pore volume. Was obtained by

(導電性評価)
各実施例及び比較例で作製した親水性多孔質材からなるPEFC加湿部材をそれぞれ切断した供試体を作製し、この供試体を用いて、JIS R 7222「黒鉛素材の物理特性測定方法」に記載された固有抵抗の測定方法のうち、電圧降下法により固有抵抗を測定し、導電性を評価した。
(Conductivity evaluation)
Samples obtained by cutting PEFC humidified members made of hydrophilic porous materials prepared in each Example and Comparative Example were prepared, and described in JIS R 7222 “Method for Measuring Physical Properties of Graphite Material” using this sample. Among the measured specific resistance methods, the specific resistance was measured by the voltage drop method to evaluate the conductivity.

(曲げ強度の測定)
各実施例及び比較例で作製した親水性多孔質材からなるPEFC加湿部材をそれぞれ切断した供試体を作製し、この供試体を用いて、JIS R 7222「黒鉛素材の物理特性測定方法」に準拠した方法により曲げ強度を測定した。
(Measurement of bending strength)
Samples obtained by cutting each PEFC humidified member made of a hydrophilic porous material prepared in each of Examples and Comparative Examples were prepared, and this sample was used to comply with JIS R 7222 “Method for Measuring Physical Properties of Graphite Material”. The bending strength was measured by the method described above.

(加湿能力の評価)
各実施例及び比較例で作製したPEFC用加湿部材の燃料ガス溝が形成された面(上面)に、不透過板をそれぞれ貼り付け、PEFC用加湿部材の上面側を密封した。なお、不透過板には、それぞれPEFC用加湿部材の燃料ガス溝の両端と一致するように乾燥窒素ガス導入口及び乾燥窒素ガス排出口が取り付けられている。
次に、不浸透板を貼り付けた加湿部材の下面側を70℃の温水側に浸し、乾燥窒素ガス導入口より乾燥窒素ガスを流量100ml/min(1気圧、25℃)にして導入し、PEFC用加湿部材の燃料ガス溝を通して加湿窒素ガス排出口より排出される窒素ガスをサンプリングした。加湿窒素ガス排出口より排出される窒素ガスは、PEFC用加湿部材の表面より蒸発した水分を含んで加湿されており、この窒素ガスの露点を測定することにより、PEFC加湿部材の加湿能力を評価した。
(Evaluation of humidification capacity)
An impervious plate was attached to the surface (upper surface) on which the fuel gas groove of the PEFC humidifying member produced in each example and comparative example was formed, and the upper surface side of the PEFC humidifying member was sealed. The impervious plate is provided with a dry nitrogen gas inlet and a dry nitrogen gas outlet so as to coincide with both ends of the fuel gas groove of the humidifying member for PEFC.
Next, the lower surface side of the humidifying member with the impervious plate attached is immersed in the hot water side at 70 ° C., and the dry nitrogen gas is introduced at a flow rate of 100 ml / min (1 atm, 25 ° C.) from the dry nitrogen gas inlet The nitrogen gas discharged from the humidified nitrogen gas outlet through the fuel gas groove of the humidifying member for PEFC was sampled. The nitrogen gas discharged from the humidified nitrogen gas discharge port is humidified by containing moisture evaporated from the surface of the humidifying member for PEFC, and the humidifying capacity of the PEFC humidifying member is evaluated by measuring the dew point of this nitrogen gas. did.

Figure 2006004920
Figure 2006004920

表2に示した結果から明らかなように、実施例1〜3に係るPEFC用加湿部材は、加湿性能(露点)が60℃以上となっており、PEFC用加湿部材として用いた場合に、所望の親水性及び保水性を有することとなる。
一方、比較例1、7、8に係るPEFC用加湿部材では、気孔率が高いこと及び/又は平均気孔半径が大きいことによる水漏れが発生しており、比較例5に係るPEFC用加湿部材では、割れによる水漏れが発生しており、比較例2〜4、6に係るPEFC用加湿部材は、濡れにくく、親水性及び保水性が充分でなかった。
As is clear from the results shown in Table 2, the humidification member for PEFC according to Examples 1 to 3 has a humidification performance (dew point) of 60 ° C. or higher, and is desirable when used as a humidification member for PEFC. It will have hydrophilicity and water retention.
On the other hand, in the humidifying member for PEFC according to Comparative Examples 1, 7, and 8, water leakage occurred due to the high porosity and / or the large average pore radius. In the humidifying member for PEFC according to Comparative Example 5, Water leakage due to cracking occurred, and the humidified member for PEFC according to Comparative Examples 2 to 4 and 6 was not easily wetted, and hydrophilicity and water retention were not sufficient.

PEFCを構成する単セルの構造を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the single cell which comprises PEFC. 本発明の高分子電解質型燃料電池用加湿部材を用いたPEFCの単セルの構造の一例を模式的に示した断面図である。It is sectional drawing which showed typically an example of the structure of the single cell of PEFC using the humidification member for polymer electrolyte fuel cells of this invention. 本発明の高分子電解質型燃料電池用加湿部材の燃料極側の面の一例を模式的に示した平面図である。It is the top view which showed typically an example of the surface by the side of the fuel electrode of the humidification member for polymer electrolyte fuel cells of this invention. 本発明の高分子電解質型燃料電池用加湿部材の燃料極側の面の別の一例を模式的に示した平面図である。It is the top view which showed typically another example of the surface by the side of the fuel electrode of the humidification member for polymer electrolyte fuel cells of this invention.

符号の説明Explanation of symbols

10、20 単セル
11、21 固体高分子電解質膜
12、22 空気極
12、23 燃料極
14、24 膜電極接合体
50、70 高分子電解質型燃料電池用加湿部材
51、56 燃料ガス溝
60 高分子電解質型燃料電池用セパレータ
61 冷却水溝
62 空気溝
10, 20 Single cell 11, 21 Solid polymer electrolyte membrane 12, 22 Air electrode 12, 23 Fuel electrode 14, 24 Membrane electrode assembly 50, 70 Humidifying member 51, 56 for polymer electrolyte fuel cell Fuel gas groove 60 High Molecular electrolyte fuel cell separator 61 Cooling water groove 62 Air groove

Claims (4)

炭素を主成分とする焼結体からなり、
平均気孔半径が0.1〜3μm、気孔率が10〜40%で、かつ、灰分の含有量が10〜40重量%であることを特徴とする親水性多孔質材。
It consists of a sintered body mainly composed of carbon,
A hydrophilic porous material having an average pore radius of 0.1 to 3 μm, a porosity of 10 to 40%, and an ash content of 10 to 40% by weight.
平均粒子径5〜30μmの黒鉛粉末、及び、前記黒鉛粉末の平均粒子径の1/5以下の平均粒子径を有する低融点セラミック粉末の混合と、成形、乾燥及び焼成とを行い、灰分の含有量が10〜40重量%の親水性多孔質材を製造することを特徴とする親水性多孔質材の製造方法。 Mixing, molding, drying and firing of graphite powder having an average particle diameter of 5 to 30 μm and low melting point ceramic powder having an average particle diameter of 1/5 or less of the average particle diameter of the graphite powder, and containing ash A method for producing a hydrophilic porous material, comprising producing a hydrophilic porous material in an amount of 10 to 40% by weight. 請求項1記載の親水性多孔質材を用いてなることを特徴とする高分子電解質型燃料電池用加湿部材。 A humidifying member for a polymer electrolyte fuel cell, comprising the hydrophilic porous material according to claim 1. 請求項1記載の親水性多孔質材を用いてなることを特徴とする高分子電解質型燃料電池用セパレータ。 A separator for a polymer electrolyte fuel cell, comprising the hydrophilic porous material according to claim 1.
JP2005142532A 2004-05-17 2005-05-16 Hydrophilic porous material, method for producing hydrophilic porous material, humidifying member for polymer electrolyte fuel cell, and separator for polymer electrolyte fuel cell Active JP4849824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005142532A JP4849824B2 (en) 2004-05-17 2005-05-16 Hydrophilic porous material, method for producing hydrophilic porous material, humidifying member for polymer electrolyte fuel cell, and separator for polymer electrolyte fuel cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004146600 2004-05-17
JP2004146600 2004-05-17
JP2005142532A JP4849824B2 (en) 2004-05-17 2005-05-16 Hydrophilic porous material, method for producing hydrophilic porous material, humidifying member for polymer electrolyte fuel cell, and separator for polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2006004920A true JP2006004920A (en) 2006-01-05
JP4849824B2 JP4849824B2 (en) 2012-01-11

Family

ID=35773105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005142532A Active JP4849824B2 (en) 2004-05-17 2005-05-16 Hydrophilic porous material, method for producing hydrophilic porous material, humidifying member for polymer electrolyte fuel cell, and separator for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4849824B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007380A (en) * 2006-06-30 2008-01-17 Tokai Carbon Co Ltd Porous graphite and method for producing the same
JP2008166089A (en) * 2006-12-28 2008-07-17 Toshiba Fuel Cell Power Systems Corp Polymer electrolyte fuel cell
US7871733B2 (en) 2006-12-04 2011-01-18 Toyota Jidosha Kabushiki Kaisha Fuel cells having a water guide element
JP2011051867A (en) * 2009-09-04 2011-03-17 Toyo Tanso Kk Ceramic carbon composite, method of manufacturing the same, ceramic applied ceramic carbon composite and method of manufacturing the same
JP2011082126A (en) * 2009-10-09 2011-04-21 Chung-Hsin Electric & Machinery Manufacturing Corp Fuel cell structure with porous metal plate
US20120082603A1 (en) * 2007-08-03 2012-04-05 Ramberg Charles E Porous Bodies and Methods
US9511345B1 (en) 2009-04-08 2016-12-06 Errcive, Inc. Substrate fabrication
US9833932B1 (en) 2010-06-30 2017-12-05 Charles E. Ramberg Layered structures
JPWO2019077753A1 (en) * 2017-10-20 2020-11-05 日立化成株式会社 Hydrophilic carbon molded product and its manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1045483A (en) * 1996-08-01 1998-02-17 Mitsubishi Chem Corp Porous carbon compact and its production
JPH11172484A (en) * 1997-12-08 1999-06-29 Permelec Electrode Ltd Gas diffusion electrode structural body and its production
JP2005071635A (en) * 2003-08-26 2005-03-17 Ibiden Co Ltd Porous graphite plate, manufacturing method of porous graphite plate, and separator for polyelectrolyte fuel cell
JP2005119923A (en) * 2003-10-17 2005-05-12 Ibiden Co Ltd Hydrophilic porous carbon material, humidifying member for polymer electrolyte type fuel cell and separator for polymer electrolyte type fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1045483A (en) * 1996-08-01 1998-02-17 Mitsubishi Chem Corp Porous carbon compact and its production
JPH11172484A (en) * 1997-12-08 1999-06-29 Permelec Electrode Ltd Gas diffusion electrode structural body and its production
JP2005071635A (en) * 2003-08-26 2005-03-17 Ibiden Co Ltd Porous graphite plate, manufacturing method of porous graphite plate, and separator for polyelectrolyte fuel cell
JP2005119923A (en) * 2003-10-17 2005-05-12 Ibiden Co Ltd Hydrophilic porous carbon material, humidifying member for polymer electrolyte type fuel cell and separator for polymer electrolyte type fuel cell

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007380A (en) * 2006-06-30 2008-01-17 Tokai Carbon Co Ltd Porous graphite and method for producing the same
US7871733B2 (en) 2006-12-04 2011-01-18 Toyota Jidosha Kabushiki Kaisha Fuel cells having a water guide element
JP2008166089A (en) * 2006-12-28 2008-07-17 Toshiba Fuel Cell Power Systems Corp Polymer electrolyte fuel cell
US20120082603A1 (en) * 2007-08-03 2012-04-05 Ramberg Charles E Porous Bodies and Methods
US8623287B2 (en) * 2007-08-03 2014-01-07 Errcive, Inc. Porous bodies and methods
US9511345B1 (en) 2009-04-08 2016-12-06 Errcive, Inc. Substrate fabrication
JP2011051867A (en) * 2009-09-04 2011-03-17 Toyo Tanso Kk Ceramic carbon composite, method of manufacturing the same, ceramic applied ceramic carbon composite and method of manufacturing the same
JP2011082126A (en) * 2009-10-09 2011-04-21 Chung-Hsin Electric & Machinery Manufacturing Corp Fuel cell structure with porous metal plate
US9833932B1 (en) 2010-06-30 2017-12-05 Charles E. Ramberg Layered structures
JPWO2019077753A1 (en) * 2017-10-20 2020-11-05 日立化成株式会社 Hydrophilic carbon molded product and its manufacturing method
JP7173029B2 (en) 2017-10-20 2022-11-16 昭和電工マテリアルズ株式会社 Hydrophilic carbon molded article and method for producing the same

Also Published As

Publication number Publication date
JP4849824B2 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
JP4849824B2 (en) Hydrophilic porous material, method for producing hydrophilic porous material, humidifying member for polymer electrolyte fuel cell, and separator for polymer electrolyte fuel cell
JP4916088B2 (en) Porous carbon body for fuel cell having electrically conductive hydrophilic agent
CA1164934A (en) Separator plate for electrochemical cells
RU2182387C2 (en) Bipolar separator plate of fuel cell with proton-exchange membrane
KR100824844B1 (en) Nickel foam and felt-based anode for solid oxide fuel cells
US6413663B1 (en) Fluid permeable flexible graphite fuel cell electrode
JP5019195B2 (en) Method for producing separator material for fuel cell
JP3573444B2 (en) Carbonaceous separator member for polymer electrolyte fuel cell and method of manufacturing the same
JP5683458B2 (en) Gas diffusion layer
JP4868702B2 (en) Humidifying member for polymer electrolyte fuel cell and separator for polymer electrolyte fuel cell
JP2004079233A (en) Process for production of fuel cell separator, and fuel cell separator
CN106935885B (en) High-porosity porous carbon filled fuel cell flow field structure and preparation method thereof
KR101402391B1 (en) Method for producing separator material for solid polymer fuel cell
US6913844B2 (en) Method for humidifying reactant gases for use in a fuel cell
CN108604694A (en) Fuel-cell electrolyte managing device
JP4508574B2 (en) Fuel cell separator and method for producing fuel cell separator
JP2004139885A (en) Fuel cell separator and manufacturing method of the same
JP4656823B2 (en) Porous graphite plate, method for producing porous graphite plate, separator for polymer electrolyte fuel cell
KR20200099332A (en) Sealing composition for separator of fuel cell
JP4357228B2 (en) Method for producing hydrophilic porous carbon material, separator for polymer electrolyte fuel cell
KR100779741B1 (en) The reinforced matrix containing sintering aids for molten carbonate fuel cell
JP4702118B2 (en) Manufacturing method of fuel cell separator
JP2001250566A (en) Separator for fuel cell and method of manufacturing the same
JP2002254464A (en) Mold for press molding and its production method
JPH0569266B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110928

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111018

R150 Certificate of patent or registration of utility model

Ref document number: 4849824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250