JP2006004675A - Composite conductive particle powder, conductive coating containing it, and stacked ceramic capacitor - Google Patents

Composite conductive particle powder, conductive coating containing it, and stacked ceramic capacitor Download PDF

Info

Publication number
JP2006004675A
JP2006004675A JP2004177485A JP2004177485A JP2006004675A JP 2006004675 A JP2006004675 A JP 2006004675A JP 2004177485 A JP2004177485 A JP 2004177485A JP 2004177485 A JP2004177485 A JP 2004177485A JP 2006004675 A JP2006004675 A JP 2006004675A
Authority
JP
Japan
Prior art keywords
particle powder
composite
conductive particle
composite conductive
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004177485A
Other languages
Japanese (ja)
Other versions
JP4780272B2 (en
Inventor
Kazuyuki Hayashi
一之 林
Hiroko Morii
弘子 森井
Seiji Ishitani
誠治 石谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2004177485A priority Critical patent/JP4780272B2/en
Publication of JP2006004675A publication Critical patent/JP2006004675A/en
Application granted granted Critical
Publication of JP4780272B2 publication Critical patent/JP4780272B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide composite conductive particle powder having an excellent heat contraction characteristic and excellent oxidation resistance while keeping electric characteristics as an internal electrode material and has excellent dispersibility in a conductive coating; and to provide a conductive coating and a stacked ceramic capacitor containing the composite conductive particle powder. <P>SOLUTION: This composite conductive particle powder is formed of composite particle powder where particle surfaces of nickel particles are uniformly coated with a dielectric substance. The composite conductive particle powder can be provided by adding a solution of metal alkoxide in a suspension liquid prepared by dispersing nickel particle powder in an organic solvent, then drying it with air and thereafter drying it at 60-120°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、内部電極材料としての電気特性を維持しつつ熱収縮特性及び耐酸化性に優れると共に、導電性塗料中における分散性に優れた複合導電性粒子粉末、該複合導電性粒子粉末を含有する導電性塗料並びに積層セラミックコンデンサを提供する。   The present invention is a composite conductive particle powder having excellent heat shrinkage characteristics and oxidation resistance while maintaining electrical characteristics as an internal electrode material, and having excellent dispersibility in a conductive paint, and containing the composite conductive particle powder An electrically conductive paint and a multilayer ceramic capacitor are provided.

周知の通り、積層セラミックコンデンサは、セラミック誘電体層と内部電極層とを交互に複数層積層し、高温で焼成して一体化させた物であり、一般的には、内部電極材料である金属微粉末をバインダー中に分散させてペースト化し、該ペーストをセラミックスグリーンシート上に印刷し、該印刷した基材を複数層積層させて加熱圧着した後、還元雰囲気中で加熱焼成を行うことによって作製されている。   As is well known, a multilayer ceramic capacitor is a product in which a plurality of ceramic dielectric layers and internal electrode layers are alternately laminated and fired at a high temperature to integrate them, and is generally a metal that is an internal electrode material. Prepared by dispersing fine powder in a binder to form a paste, printing the paste on a ceramic green sheet, laminating multiple layers of the printed substrate, heat-pressing, and then firing in a reducing atmosphere Has been.

このような積層セラミックコンデンサの内部電極としては、従来、金、パラジウム、銀−パラジウム等の貴金属が用いられていたが、コスト低減等の観点から、近年では、ニッケル等の卑金属が用いられている。   Conventionally, noble metals such as gold, palladium and silver-palladium have been used as the internal electrodes of such multilayer ceramic capacitors, but in recent years, base metals such as nickel have been used from the viewpoint of cost reduction and the like. .

しかしながら、ニッケル粉末を用いた場合には、貴金属を用いた場合と比べて、焼成時の熱収縮率が大きく、また、耐酸化性が劣るため、焼成時にニッケル粉末の一部が酸化されてしまい、セラミック誘電体層へ拡散するという欠点を有している。   However, when nickel powder is used, the heat shrinkage rate during firing is larger than when noble metal is used, and because the oxidation resistance is inferior, part of the nickel powder is oxidized during firing. Have the disadvantage of diffusing into the ceramic dielectric layer.

即ち、積層セラミックコンデンサを作製する際の焼成温度は、セラミック誘電体の種類にもよるが、一般的に用いられているBaTiOやSrTiO等のセラミック誘電体を用いる場合には、1200℃以上が必要である。一方、ニッケル粉末は、400〜500℃より熱収縮を開始するため、セラッミック誘電体層と同時焼成した場合、積層したセラッミック誘電体層とニッケル層との間に歪みが生じ、デラミネーション、クラックが生じて積層セラミックコンデンサの性能が低下することになる。 That is, the firing temperature when producing a multilayer ceramic capacitor depends on the type of ceramic dielectric, but when a ceramic dielectric such as BaTiO 3 or SrTiO 3 that is generally used is used, it is 1200 ° C. or higher. is required. On the other hand, since nickel powder starts thermal shrinkage from 400 to 500 ° C., when it is fired simultaneously with the ceramic dielectric layer, distortion occurs between the laminated ceramic dielectric layer and the nickel layer, and delamination and cracks occur. As a result, the performance of the multilayer ceramic capacitor deteriorates.

また、近年、積層セラミックコンデンサの大容量化に伴い、より積層数を増加させる傾向にあり、一方、積層セラミックコンデンサの小型化の要求に対して、セラミック層の薄層化と共に内部電極をより薄くすることが望まれており、現在、1〜2μmである一層の厚みに対し、更なる薄層化が要求されている。   In recent years, as the capacity of multilayer ceramic capacitors has increased, the number of multilayers tends to increase. On the other hand, in response to the demand for miniaturization of multilayer ceramic capacitors, the internal electrodes have become thinner as the ceramic layers become thinner. At present, further thinning is required for a single layer thickness of 1 to 2 μm.

これまでに、ニッケル粉末の熱収縮特性改善のために、ニッケル粒子表面もしくはニッケル粒子内部にチタン酸バリウム等の複合酸化物もしくは酸化物が存在するニッケル粉末が開示されている(特許文献1乃至3)。   To date, nickel powders in which a composite oxide or oxide such as barium titanate is present on the nickel particle surface or inside the nickel particles have been disclosed in order to improve the heat shrink characteristics of the nickel powder (Patent Documents 1 to 3). ).

特開平11−124602号公報JP-A-11-124602 特開平11−343501号公報Japanese Patent Laid-Open No. 11-343501 特開2000−282102号公報JP 2000-282102 A

積層セラミック部品及び積層セラミックコンデンサの小型化且つ高性能化のために、内部電極材料としての電気特性を維持しつつ、内部電極材料であるニッケル粉末の熱収縮特性をセラミック誘電体層に近づけると共に、耐酸化性及び導電性塗料中における分散性に優れた導電性粒子粉末は、現在最も要求されているところであるが、未だ得られていない。   In order to reduce the size and increase the performance of multilayer ceramic components and multilayer ceramic capacitors, while maintaining the electrical characteristics as the internal electrode material, the thermal contraction characteristics of the nickel powder as the internal electrode material are brought closer to the ceramic dielectric layer, A conductive particle powder excellent in oxidation resistance and dispersibility in a conductive coating is currently most demanded, but has not yet been obtained.

即ち、特許文献1乃至3には、積層セラミックコンデンサの内部電極材として、粒子表面にチタン酸バリウム等の複合酸化物もしくは酸化物が存在するニッケル粉末が記載されているが、いずれの処理方法においても、ニッケル粒子表面へのチタン酸バリウム等の複合酸化物もしくは酸化物の被覆が均一ではないため、耐酸化性及び加熱焼成時の熱収縮特性の改善は不十分である。殊に、特許文献2及び3に記載の方法では、中和反応時に加熱するため増粘し、均一な被覆が困難となる。また、粒子内部にチタン酸バリウム等の複合酸化物もしくは酸化物が存在する場合には、電極材としての機能を複合酸化物もしくは酸化物が阻害するために好ましくない。   That is, Patent Documents 1 to 3 describe nickel powder in which a composite oxide such as barium titanate or an oxide is present on the particle surface as an internal electrode material of a multilayer ceramic capacitor. However, since the surface of the nickel particles is not uniformly coated with a complex oxide such as barium titanate or an oxide, the oxidation resistance and the heat shrinkage characteristics during heating and firing are insufficient. In particular, the methods described in Patent Documents 2 and 3 increase the viscosity because of heating during the neutralization reaction, making uniform coating difficult. In addition, when a composite oxide or oxide such as barium titanate is present inside the particles, the function as an electrode material is not preferable because the composite oxide or oxide inhibits the function.

そこで、本発明は、内部電極材料としての電気特性を維持しつつ、内部電極材料であるニッケル粉末の熱収縮特性をセラミック誘電体層に近づけると共に、耐酸化性及び導電性塗料中における分散性に優れた導電性粒子粉末を得ることを技術的課題とする。   Therefore, the present invention brings the thermal shrinkage characteristics of the nickel powder, which is the internal electrode material, close to the ceramic dielectric layer while maintaining the electrical characteristics as the internal electrode material, and also improves the oxidation resistance and dispersibility in the conductive paint. It is a technical subject to obtain excellent conductive particle powder.

本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、本発明の方法によってニッケル粒子の粒子表面に誘電体物質が被覆されている複合導電性粒子粉末は、ニッケル粒子表面への誘電体物質の被覆が薄く、且つ、均一であることにより、内部電極材料としての電気特性を維持しつつ、熱収縮特性をセラミック誘電体層に近づけると共に、耐酸化性及び導電性塗料中における分散性に優れた導電性粒子粉末が得られることを見いだし、本発明をなすに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the composite conductive particle powder in which the surface of the nickel particle is coated with the dielectric material by the method of the present invention is applied to the surface of the nickel particle. The thin and uniform coating of the dielectric substance maintains the electrical characteristics as the internal electrode material, while bringing the thermal shrinkage characteristics closer to the ceramic dielectric layer, and is resistant to oxidation and dispersion in the conductive paint. As a result, it was found that conductive particle powder having excellent properties can be obtained, and the present invention has been made.

即ち、本発明は、ニッケル粒子の粒子表面に誘電体物質が被覆されている複合粒子粉末からなることを特徴とする複合導電性粒子粉末である(本発明1)。   That is, the present invention is a composite conductive particle powder characterized by comprising a composite particle powder in which the surface of nickel particles is coated with a dielectric substance (Invention 1).

また、本発明は、誘電体物質が強誘電体であることを特徴とする前記複合導電性粒子粉末である(本発明2)。   In addition, the present invention provides the composite conductive particle powder, wherein the dielectric material is a ferroelectric (Invention 2).

また、本発明は、ニッケル粒子粉末を有機溶剤に分散した懸濁液中に金属アルコキシドの溶液を加えた後、風乾後、60〜120℃で乾燥させることを特徴とする本発明1又は本発明2記載の複合導電性粒子粉末の製造法である(本発明3)。   In the present invention, the metal alkoxide solution is added to a suspension in which nickel particle powder is dispersed in an organic solvent, and then air-dried and then dried at 60 to 120 ° C. 2 is a method for producing a composite conductive particle powder according to 2 (present invention 3).

また、本発明は、Ti、Zr、Ba、Sr、Mg、及びCaから選ばれる少なくとも1種以上を含む金属アルコキシドを用いることを特徴とする本発明1又は本発明2記載の複合導電性粒子粉末の製造法である(本発明4)。   Moreover, the present invention uses a metal alkoxide containing at least one selected from Ti, Zr, Ba, Sr, Mg, and Ca, and the composite conductive particle powder according to the present invention 1 or 2, (Invention 4).

また、本発明は、少なくとも導電性粒子粉末と樹脂とを含有する導電性塗料において、前記導電性粒子粉末が前記複合導電性粒子粉末であることを特徴とする導電性塗料である(本発明5)。   Further, the present invention is a conductive paint containing at least conductive particle powder and a resin, wherein the conductive particle powder is the composite conductive particle powder (Invention 5). ).

また、本発明は、セラミック誘電体層と内部電極層とが交互に積層された構造を有する積層セラミックコンデンサにおいて、内部電極層に前記複合導電性粒子粉末を含有することを特徴とする積層セラミックコンデンサである(本発明6)。   According to another aspect of the present invention, there is provided a multilayer ceramic capacitor having a structure in which ceramic dielectric layers and internal electrode layers are alternately stacked, wherein the composite electrode particles are contained in the internal electrode layer. (Invention 6).

本発明に係る複合導電性粒子粉末は、内部電極材料としての電気特性を維持しつつ、熱収縮特性及び耐酸化性に優れると共に、導電性塗料中における分散性に優れているので積層セラミックコンデンサ用電極材料として好適である。   The composite conductive particle powder according to the present invention is excellent in heat shrinkage characteristics and oxidation resistance while maintaining electrical characteristics as an internal electrode material, and has excellent dispersibility in a conductive coating material. It is suitable as an electrode material.

本発明に係る導電性塗料は、前記複合導電性粒子粉末を用いたことにより、電極材料が塗料中で均一に分散しているので、積層セラミックコンデンサ用導電性塗料として好適である。   The conductive paint according to the present invention is suitable as a conductive paint for a multilayer ceramic capacitor because the electrode material is uniformly dispersed in the paint by using the composite conductive particle powder.

本発明に係る積層セラミックコンデンサは、内部電極層を形成するための電極塗料として前記用導電性塗料を用いたことにより、クラックやデラミネーション等の構造欠陥が抑制されているので、高性能積層セラミックコンデンサとして好適である。   In the multilayer ceramic capacitor according to the present invention, structural defects such as cracks and delamination are suppressed by using the conductive paint as an electrode paint for forming an internal electrode layer. It is suitable as a capacitor.

本発明の構成をより詳しく説明すれば次の通りである。   The configuration of the present invention will be described in more detail as follows.

先ず、本発明に係る複合導電性粒子粉末について述べる。   First, the composite conductive particle powder according to the present invention will be described.

本発明に係る複合導電性粒子粉末は、被処理粒子であるニッケル粒子の粒子表面に誘電体物質が均一に被覆されている複合粒子粉末からなる。   The composite conductive particle powder according to the present invention comprises a composite particle powder in which the surface of nickel particles, which are particles to be processed, is uniformly coated with a dielectric substance.

本発明におけるニッケル粒子粉末としては、ニッケル塩蒸気と還元性ガスと気相中で反応させる乾式法で得られたもの、熱分解性のニッケル化合物溶液を噴霧して熱分解する噴霧熱分解法で得られたもの、ニッケル塩を含む水溶液を特定の条件下、還元剤で還元析出させる湿式法で得られたもののいずれでもよく、また、ニッケル粒子表面が酸化されていてもよい。   The nickel particle powder in the present invention is a powder obtained by a dry process in which a nickel salt vapor and a reducing gas are reacted in a gas phase, or a spray pyrolysis method in which a thermally decomposable nickel compound solution is sprayed to thermally decompose. Either the obtained one or a solution obtained by a wet method in which an aqueous solution containing a nickel salt is reduced and precipitated with a reducing agent under specific conditions may be used, and the nickel particle surface may be oxidized.

本発明におけるニッケル粒子粉末の平均粒子径は、0.009〜5.0μmが好ましく、より好ましくは0.025〜3.0μm、更により好ましくは0.045〜1.0μmである。   The average particle diameter of the nickel particle powder in the present invention is preferably 0.009 to 5.0 μm, more preferably 0.025 to 3.0 μm, and still more preferably 0.045 to 1.0 μm.

本発明におけるニッケル粒子粉末のBET比表面積値は0.01〜50m/gが好ましく、より好ましくは0.05〜40m/gである。 The BET specific surface area value of the nickel particle powder in the present invention is preferably 0.01 to 50 m 2 / g, more preferably 0.05 to 40 m 2 / g.

本発明におけるニッケル粒子粉末の熱収縮開始温度は、粒子サイズによっても異なるが、通常、300℃程度である。   The thermal shrinkage start temperature of the nickel particle powder in the present invention is usually about 300 ° C., although it varies depending on the particle size.

本発明におけるニッケル粒子粉末の酸化開始温度は、通常300℃程度である。   The oxidation start temperature of the nickel particle powder in the present invention is usually about 300 ° C.

本発明におけるニッケル粒子粉末の流動性は、粒子サイズによっても異なるが、通常、後述する流動性指数が40程度である。   Although the fluidity of the nickel particle powder in the present invention varies depending on the particle size, the fluidity index described later is usually about 40.

本発明における誘電体物質としては、Mg、Ca、Sr、Ba、Ti及びZrから選ばれる1種又は2種以上の酸化物もしくは複合酸化物を用いることができ、例えば、酸化マグネシウム、又は、Ca、Sr若しくはBaのチタン酸塩又はジルコン酸塩等であり、好ましくはBaTiO、SrTiO及びその固溶体で代表される強誘電体である。熱収縮特性を考慮すれば、できるかぎり誘電体粒子として積層セラミックコンデンサの誘電体層に用いるものと同じ誘電体物質を選ぶことが好ましい。殊に、近年では、積層セラミックコンデンサの高性能化を図るため、セラミック誘電体層にはチタン酸バリウム系の強誘電体が主流となっていることから、チタン酸バリウム等の複合酸化物からなるチタン酸バリウム系強誘電体を用いることが好ましい。 As the dielectric material in the present invention, one or more oxides or composite oxides selected from Mg, Ca, Sr, Ba, Ti and Zr can be used. For example, magnesium oxide or Ca , Sr or Ba titanate or zirconate, etc., preferably BaTiO 3 , SrTiO 3 and ferroelectrics represented by solid solutions thereof. In view of heat shrinkage characteristics, it is preferable to select the same dielectric material as that used for the dielectric layer of the multilayer ceramic capacitor as dielectric particles as much as possible. In recent years, in particular, in order to improve the performance of multilayer ceramic capacitors, the ceramic dielectric layer has been mainly composed of barium titanate-based ferroelectrics, so it is made of a complex oxide such as barium titanate. It is preferable to use a barium titanate ferroelectric.

誘電体物質の被覆量は、複合導電性粒子粉末に対して0.01〜30重量%が好ましい。0.01重量%未満の場合には、誘電体物質の付着量が少なすぎるため、熱収縮特性等を改善することができない。また、30重量%を超える場合には、粒子表面から脱離する誘電体物質が多くなり、導電性塗料中における分散性が低下すると共に、粒子表面に付着する誘電体物質が多すぎて導通が悪くなるため、電極材として不利となる。より好ましくは0.05〜25重量%、更により好ましくは0.10〜20重量%である。   The coating amount of the dielectric substance is preferably 0.01 to 30% by weight with respect to the composite conductive particle powder. When the amount is less than 0.01% by weight, the amount of the dielectric material attached is too small, and thus the heat shrinkage characteristics and the like cannot be improved. On the other hand, when the content exceeds 30% by weight, the dielectric material that is detached from the particle surface increases, dispersibility in the conductive coating is reduced, and there is too much dielectric material that adheres to the particle surface, leading to conduction. Since it worsens, it becomes disadvantageous as an electrode material. More preferably, it is 0.05-25 weight%, More preferably, it is 0.10-20 weight%.

本発明に係る複合導電性粒子粉末の平均粒子径は、0.01〜5.0μmが好ましい。平均粒子径が5.0μmを超える場合には、積層セラミックコンデンサを構成する内部電極の1層の厚みが厚くなり過ぎるため、小型化及び大容量化が困難となる。得られる積層セラミックコンデンサの小型化及び大容量化を考慮すれば、より好ましくは0.03〜3.0μm、更により好ましくは0.05〜1.0μmである。   The average particle size of the composite conductive particle powder according to the present invention is preferably 0.01 to 5.0 μm. When the average particle diameter exceeds 5.0 μm, the thickness of one layer of the internal electrodes constituting the multilayer ceramic capacitor becomes too thick, making it difficult to reduce the size and increase the capacity. Considering the reduction in size and increase in capacity of the obtained multilayer ceramic capacitor, the thickness is more preferably 0.03 to 3.0 μm, and still more preferably 0.05 to 1.0 μm.

本発明に係る複合導電性粒子粉末のBET比表面積値は、0.01〜50m/gが好ましく、より好ましくは0.05〜40m/gである。 The BET specific surface area value of the composite conductive particle powder according to the present invention is preferably 0.01 to 50 m 2 / g, more preferably 0.05 to 40 m 2 / g.

本発明に係る複合導電性粒子粉末の熱収縮開始温度は、700℃以上が好ましい。熱収縮開始温度が700℃未満の場合には、これを用いて得られた内部電極層が形成されたセラミックグリーンシートの積層体を焼成する際に、セラミック誘電体層との熱収縮率の差から、クラックが発生しやすくなり好ましくない。より好ましくは750℃以上、更により好ましくは800℃以上、最も好ましくは850℃以上である。   The heat shrinkage start temperature of the composite conductive particle powder according to the present invention is preferably 700 ° C. or higher. When the thermal shrinkage start temperature is less than 700 ° C., the difference in thermal shrinkage between the ceramic dielectric layer and the ceramic green sheet when the laminated body of the ceramic green sheets formed with the internal electrode layer is fired is fired. Therefore, cracks are likely to occur, which is not preferable. More preferably, it is 750 degreeC or more, More preferably, it is 800 degreeC or more, Most preferably, it is 850 degreeC or more.

本発明に係る複合導電性粒子粉末の酸化開始温度は、500℃以上であり、好ましくは550℃以上、より好ましくは600℃である。酸化開始温度が500℃未満の場合には、これを用いて得られた内部電極層が形成されたセラミックグリーンシートの積層体を焼成する際に、ニッケル粒子が酸化されてセラミック誘電体層中へ拡散し易くなるため好ましくない。   The oxidation start temperature of the composite conductive particle powder according to the present invention is 500 ° C. or higher, preferably 550 ° C. or higher, more preferably 600 ° C. When the oxidation start temperature is less than 500 ° C., the nickel particles are oxidized into the ceramic dielectric layer when firing the ceramic green sheet laminate formed with the internal electrode layer obtained by using this. Since it becomes easy to diffuse, it is not preferable.

本発明に係る複合導電性粒子粉末の流動性は、流動性指数55以上が好ましく、より好ましくは60以上、最も好ましくは65〜90である。流動性指数が55未満の場合には流動性が優れたものとは言い難く、導電性塗料中に分散する際に、均一に分散することが困難である。   The fluidity of the composite conductive particle powder according to the present invention is preferably a fluidity index of 55 or more, more preferably 60 or more, and most preferably 65 to 90. When the fluidity index is less than 55, it is difficult to say that the fluidity is excellent, and it is difficult to disperse uniformly in the conductive paint.

次に、本発明に係る導電性塗料を用いた積層セラミックコンデンサについて述べる。   Next, a multilayer ceramic capacitor using the conductive paint according to the present invention will be described.

本発明に係る導電性塗料は、本発明に係る複合導電性粒子粉末、樹脂及び溶剤から構成される。必要により、可塑剤等の添加剤などを添加してもよい。以下に、本発明に係る導電性塗料について説明する。   The conductive paint according to the present invention is composed of the composite conductive particle powder according to the present invention, a resin and a solvent. If necessary, an additive such as a plasticizer may be added. The conductive paint according to the present invention will be described below.

本発明における溶剤としては、ターピネオール、デシルアルコール、エタノール等を用いることができる。   As the solvent in the present invention, terpineol, decyl alcohol, ethanol or the like can be used.

本発明における樹脂としては、エチルセルロース等のセルロース系樹脂及びポリビニルブチラール系樹脂を用いることができる。好ましくは、エチルセルロース等のセルロース系樹脂である。   As the resin in the present invention, cellulose resins such as ethyl cellulose and polyvinyl butyral resins can be used. A cellulose resin such as ethyl cellulose is preferable.

本発明に係る積層セラミックコンデンサは、セラミック誘電体層と内部電極層とが交互に積層された積層体に外部電極を備えた構造を有する。   The multilayer ceramic capacitor according to the present invention has a structure in which external electrodes are provided on a laminate in which ceramic dielectric layers and internal electrode layers are alternately laminated.

本発明におけるセラミック誘電体層に用いられるセラミック材料としては、積層セラミックコンデンサの高性能化を図るため、BaTiO、SrTiO、酸化イットリウム及びこれらの固溶体で代表される強誘電体を用いることが好ましく、より好ましくはチタン酸バリウム等のチタン酸バリウム系強誘電体である。 As the ceramic material used for the ceramic dielectric layer in the present invention, it is preferable to use a ferroelectric represented by BaTiO 3 , SrTiO 3 , yttrium oxide and their solid solutions in order to improve the performance of the multilayer ceramic capacitor. More preferably, it is a barium titanate ferroelectric such as barium titanate.

本発明に係る積層セラミックコンデンサは、クラック発生率が3%以下であり、好ましくは2%以下、より好ましくは1%以下である。   The multilayer ceramic capacitor according to the present invention has a crack generation rate of 3% or less, preferably 2% or less, more preferably 1% or less.

次に、本発明に係る複合導電性粒子粉末の製造法について述べる。   Next, a method for producing the composite conductive particle powder according to the present invention will be described.

本発明に係る複合導電性粒子粉末は、被処理粒子粉末であるニッケル粒子粉末を水溶性の有機溶剤に分散させた懸濁液中に金属アルコキシド溶液を加え、攪拌、風乾後、60〜120℃で乾燥させることにより得ることができ、前記製造法によって、ニッケル粒子の粒子表面に誘電体物質が均一に被覆された複合導電性粒子粉末を得ることができる。   The composite conductive particle powder according to the present invention is obtained by adding a metal alkoxide solution to a suspension obtained by dispersing nickel particle powder, which is a particle powder to be treated, in a water-soluble organic solvent, stirring, air drying, and then 60 to 120 ° C. The composite conductive particle powder in which the surface of the nickel particles is uniformly coated with the dielectric substance can be obtained by the above-described manufacturing method.

本発明に用いる有機溶剤としては、一般的に用いられているものであれば何を用いてもよいが、好ましくは水溶性の有機溶剤である。具体的には、エチルアルコール、プロピルアルコール又はブチルアルコール等のアルコール系溶剤、アセトン又はメチルエチルケトン等のケトン系溶剤、メチルセロソルブ、エチルセロソルブ、プロピルセロソルブ又はブチルセロソルブ等のグリコールエーテル系溶剤、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ジプロピレングリコール又はトリプロピレングリコール、ポリプロピレングリコール等のオキシエチレン、オキシプロピレン付加重合体、エチレングリコール、プロピレングリコール又は1,2,6−ヘキサントリオール等のアルキレングリコール、グリセリン、2−ピロリドン等を好適に用いることができるが、より好ましくは、エチルアルコール、プロピルアルコール、ブチルアルコール等のアルコール系溶剤、アセトン、メチルエチルケトン等のケトン系溶剤である。   Any organic solvent may be used as long as it is generally used, but a water-soluble organic solvent is preferable. Specifically, alcohol solvents such as ethyl alcohol, propyl alcohol or butyl alcohol, ketone solvents such as acetone or methyl ethyl ketone, glycol ether solvents such as methyl cellosolve, ethyl cellosolve, propyl cellosolve or butyl cellosolve, diethylene glycol, triethylene glycol , Oxyethylene such as polyethylene glycol, dipropylene glycol or tripropylene glycol, polypropylene glycol, oxypropylene addition polymer, alkylene glycol such as ethylene glycol, propylene glycol or 1,2,6-hexanetriol, glycerin, 2-pyrrolidone, etc. Can be preferably used, but more preferably ethyl alcohol, propyl alcohol, butyl alcohol, etc. Alcohol solvents, acetone, ketone solvents such as methyl ethyl ketone.

本発明に用いる金属アルコキシドを構成する金属元素としては、誘電体を形成できるものであれば何を用いてもよいが、好ましくはバリウム、チタニウム、ストロンチウム、マグネシウム、カルシウム等である。また、アルコキシドの種類としては、メトキシド、エトキシド、プロポキシド、イソプロポキシド、オキシイソプロポキシド、ブトキシド等を用いることができる。   As the metal element constituting the metal alkoxide used in the present invention, any metal element can be used as long as it can form a dielectric, but barium, titanium, strontium, magnesium, calcium and the like are preferable. Moreover, as a kind of alkoxide, methoxide, ethoxide, propoxide, isopropoxide, oxyisopropoxide, butoxide, etc. can be used.

また、上記金属アルコキシドは、より均一な処理を行うために、前述の有機溶剤に予め分散又は溶解させて用いることが好ましい。   The metal alkoxide is preferably used after being dispersed or dissolved in advance in the above-mentioned organic solvent in order to perform a more uniform treatment.

また、上記金属アルコキシドの加水分解は、より均一に無機化合物をニッケル粒子の粒子表面に付着もしくは被覆させるために、特に水分を添加する必要はなく、有機溶剤中の水分及びニッケル粒子が有する水分により加水分解を行うことが好ましい。   In addition, the hydrolysis of the metal alkoxide does not require any particular addition of water in order to adhere or coat the inorganic compound more uniformly on the particle surface of the nickel particles, depending on the moisture in the organic solvent and the moisture of the nickel particles. Hydrolysis is preferably performed.

次に、本発明に係る導電性塗料の製造法について述べる。   Next, a method for producing a conductive paint according to the present invention will be described.

本発明に係る導電性塗料は、本発明に係る複合導電性粒子粉末を有機溶剤と樹脂に添加し、混練させることによって得ることができる。   The conductive paint according to the present invention can be obtained by adding the composite conductive particle powder according to the present invention to an organic solvent and a resin and kneading them.

本発明における分散は、三本ロールミル、ボールミル、ニーダー等を用いることができる。   For the dispersion in the present invention, a three-roll mill, a ball mill, a kneader or the like can be used.

次に、本発明に係る積層セラミックコンデンサの製造方法を詳述する。   Next, the manufacturing method of the multilayer ceramic capacitor according to the present invention will be described in detail.

セラミック誘電体に樹脂及び有機溶剤を加えてボールミル等により混練したセラミックスラリーをシート状に形成し、セラミックグリーンシートを得る。次いで、セラミックグリーンシート上に導電性塗料をスクリーン印刷等によって印刷し、内部電極層を形成する。次いで、内部電極層が形成されたセラミックグリーンシートを複数枚積層し、熱プレスして一体化したものを焼成した後、外部電極を焼き付けることによって得ることができる。   A ceramic slurry is obtained by adding a resin and an organic solvent to a ceramic dielectric and kneading them with a ball mill or the like into a sheet shape to obtain a ceramic green sheet. Next, a conductive paint is printed on the ceramic green sheet by screen printing or the like to form an internal electrode layer. Next, a plurality of ceramic green sheets on which internal electrode layers are formed can be laminated, heated and integrated to be fired, and then external electrodes can be baked.

<作用>
本発明において最も重要な点は、ニッケル粒子の粒子表面に誘電体物質が付着もしくは被覆しているしている複合導電性粒子粉末は、内部電極材料としての電気特性を維持しつつ、熱収縮特性及び耐酸化性に優れると共に、導電性塗料中における分散性に優れているという事実である。
<Action>
In the present invention, the most important point is that the composite conductive particle powder having a dielectric substance attached or coated on the particle surface of the nickel particle maintains the electrical characteristics as the internal electrode material, while maintaining the heat shrinkage characteristics. In addition, the oxidation resistance is excellent, and the dispersibility in the conductive paint is excellent.

本発明に係る複合導電性粒子粉末の熱収縮特性が優れている理由として、本発明者は、ニッケル粒子の粒子表面に誘電体物質をより均一に被覆させることができたことによるものと考えている。   The reason why the composite conductive particle powder according to the present invention has excellent heat shrinkage characteristics is that the present inventor considered that the particle surface of the nickel particles could be coated more uniformly with the dielectric substance. Yes.

本発明に係る複合導電性粒子粉末の耐酸化性が優れている理由として、本発明者は、ニッケル粒子の粒子表面を均一に誘電体物質で被覆することにより、酸素との接触を低減できたことによるものと考えている。   As the reason why the composite conductive particle powder according to the present invention is excellent in oxidation resistance, the present inventor was able to reduce the contact with oxygen by uniformly coating the particle surface of the nickel particles with a dielectric substance. I think it is due to this.

また、本発明に係る複合導電性粒子粉末を用いて得られた積層セラミックコンデンサは、クラックの発生率が低いという事実である。   In addition, it is a fact that the multilayer ceramic capacitor obtained using the composite conductive particle powder according to the present invention has a low crack generation rate.

本発明に係る積層セラミックコンデンサのクラック発生率が低い理由として、本発明者は、本発明に係る複合導電性粒子粉末を内部電極物質として用いたことにより、熱収縮の開始温度がよりセラミック誘電体層に近づいたこと及び内部電極物質とセラミック誘電体層との熱収縮率の差が少なくなったことによるものと考えている。   As the reason for the low crack generation rate of the multilayer ceramic capacitor according to the present invention, the present inventor used the composite conductive particle powder according to the present invention as an internal electrode material, so that the starting temperature of heat shrinkage is more ceramic dielectric. This is thought to be due to the closeness of the layer and the difference in thermal shrinkage between the internal electrode material and the ceramic dielectric layer being reduced.

以下、本発明における実施例を示し、本発明を具体的に説明する。   Hereinafter, the present invention will be described in detail with reference to examples.

ニッケル粒子粉末及び複合導電性粒子粉末の平均粒子径は、いずれも電子顕微鏡写真に示される粒子350個の粒子径をそれぞれ測定し、その平均値で示した。   The average particle diameters of the nickel particle powder and the composite conductive particle powder were both measured by measuring the particle diameters of 350 particles shown in the electron micrograph, and indicating the average value.

比表面積値は、BET法により測定した値で示した。   The specific surface area value was indicated by a value measured by the BET method.

複合導電性粒子に付着している誘電体物質の被覆量は、誘電体物質を構成する金属の量を、「蛍光X線分析装置3063M型」(理学電機工業株式会社製)を使用し、JIS K0119の「けい光X線分析通則」に従って測定した。   The coating amount of the dielectric material adhering to the composite conductive particles is determined using the amount of metal constituting the dielectric material by using a “fluorescence X-ray analyzer 3063M type” (manufactured by Rigaku Denki Kogyo Co., Ltd.). The measurement was carried out in accordance with K0119 "General X-ray fluorescence analysis rules".

ニッケル粒子粉末及び複合導電性粒子粉末の熱収縮開始温度は、「熱分析装置EXSTAR6000 TMA/SS(熱・応用・歪測定装置)」(セイコー電子工業株式会社製)を用いて測定を行った。   The thermal shrinkage start temperatures of the nickel particle powder and the composite conductive particle powder were measured using “Thermal analyzer EXSTAR6000 TMA / SS (thermal / application / strain measuring device)” (manufactured by Seiko Electronics Co., Ltd.).

ニッケル粒子粉末及び複合導電性粒子粉末の酸化開始温度は、「熱分析装置EXSTAR6000 TG/DTA(示差熱重量同時測定装置)」(セイコー電子工業株式会社製)を用いて測定を行った。   The oxidation start temperatures of the nickel particle powder and the composite conductive particle powder were measured using a “thermal analyzer EXSTAR6000 TG / DTA (differential thermogravimetric simultaneous measuring device)” (manufactured by Seiko Denshi Kogyo Co., Ltd.).

ニッケル粒子粉末及び複合導電性粒子粉末の流動性は、パウダテスタ(商品名、ホソカワミクロン株式会社製)を用いて、安息角(度)、圧縮度(%)、スパチュラ角(度)、凝集度の各粉体特性値を測定し、該各測定値を同一基準の数値に置き換えた各々の指数を求め、各々の指数を合計した流動性指数で示した。流動性指数が100に近いほど、流動性が優れていることを意味する。   The flowability of the nickel particle powder and the composite conductive particle powder is determined by using a powder tester (trade name, manufactured by Hosokawa Micron Co., Ltd.), each of the angle of repose (degree), the degree of compression (%), the spatula angle (degree), and the degree of aggregation. The powder characteristic value was measured, and each index was obtained by replacing each measured value with a numerical value of the same standard, and each index was expressed as a total fluidity index. The closer the fluidity index is to 100, the better the fluidity.

積層セラミックコンデンサのクラック発生率は、後述する方法によって作製した積層セラミックコンデンサを切断し、デラミネーション及び/又はクラックの発生の有無を、各試料100個ずつ金属顕微鏡を用いて目視で検査し、その発生率を求めた。   The crack generation rate of the multilayer ceramic capacitor was determined by cutting the multilayer ceramic capacitor produced by the method described later, and visually checking for the occurrence of delamination and / or cracks using a metal microscope for 100 samples. The incidence was determined.

<実施例1−1:複合導電性粒子粉末の製造>
ニッケル粒子粉末(被処理粒子1 粒子形状:球状、平均粒子径:0.22μm、BET比表面積値:3.3m/g、熱収縮開始温度:405℃、酸化開始温度:360℃、流動性指数:40)500gを、アセトン500mlに攪拌機を用いて邂逅し、ニッケル粒子粉末を含むアセトンのスラリーを得た。
<Example 1-1: Production of composite conductive particle powder>
Nickel particle powder (Processed particle 1 Particle shape: spherical, average particle diameter: 0.22 μm, BET specific surface area value: 3.3 m 2 / g, heat shrinkage start temperature: 405 ° C., oxidation start temperature: 360 ° C., fluidity Index: 40) 500 g of acetone was poured into 500 ml of acetone using a stirrer to obtain an acetone slurry containing nickel particle powder.

次に、前記ニッケル粒子粉末を含むアセトンのスラリー中に、チタニウムテトライソプロポキシド60.85gを分散させたアセトン溶液200ml及びバリウムイソプロポキシド54.80gを分散させたアセトン溶液200mlを加え、60分間攪拌・混合させた。   Next, 200 ml of an acetone solution in which 60.85 g of titanium tetraisopropoxide is dispersed and 200 ml of an acetone solution in which 54.80 g of barium isopropoxide are dispersed are added to the slurry of acetone containing the nickel particle powder, and the mixture is added for 60 minutes. Stir and mix.

得られた混合溶液をドラフト中で3時間風乾させた後、乾燥機を用いて80℃で60分間乾燥を行い、複合導電性粒子粉末を得た。   The obtained mixed solution was air-dried in a fume hood for 3 hours, and then dried at 80 ° C. for 60 minutes using a dryer to obtain composite conductive particle powder.

得られた複合導電性粒子粉末は、平均粒子径が0.26μmの球状粒子であった。BET比表面積値は4.7m/g、熱収縮開始温度は950℃、酸化開始温度は620℃、流動性は68であった。付着している誘電体物質量は9.08重量%(ニッケル粒子粉末100重量部に対してBaTiO換算で10重量部に相当する)であった。 The obtained composite conductive particle powder was a spherical particle having an average particle diameter of 0.26 μm. The BET specific surface area value was 4.7 m 2 / g, the heat shrinkage start temperature was 950 ° C., the oxidation start temperature was 620 ° C., and the fluidity was 68. The amount of the adhered dielectric material was 9.08% by weight (corresponding to 10 parts by weight in terms of BaTiO 3 with respect to 100 parts by weight of the nickel particle powder).

<実施例2:導電性塗料の製造>
前記複合導電性粒子粉末100重量部、ターピネオール115重量部及びエチルセルロースのターピネオール溶液(エチルセルロースの含有量:20重量%)100重量部とを混合し、3本ロールミルを用いて混合分散させ、導電性塗料を得た。
<Example 2: Production of conductive paint>
100 parts by weight of the composite conductive particle powder, 115 parts by weight of terpineol, and 100 parts by weight of a terpineol solution of ethyl cellulose (ethyl cellulose content: 20% by weight) are mixed and dispersed using a three-roll mill, and conductive paint Got.

<実施例3−1:積層セラミックコンデンサの製造>
誘電体(種類:BaTiO、粒子形状:粒状、平均粒子径:30nm、BET比表面積値:31.5m/g)を用いて従来法で作製したセラミックスラリーをシート状に形成し、厚さ約2.8μmのセラミックグリーンシートを得た。次いで、セラミックグリーンシート上に前記導電性塗料をスクリーン印刷によって印刷し、内部電極層を形成した。次いで、該内部電極層が形成されたセラミックグリーンシートを複数枚積層し、熱プレスして一体化したものを還元雰囲気下、1300℃で2時間焼成した後、外部電極を焼付けることによって積層セラミックコンデンサを得た。
<Example 3-1: Production of multilayer ceramic capacitor>
A ceramic slurry prepared by a conventional method using a dielectric (type: BaTiO 3 , particle shape: granular, average particle diameter: 30 nm, BET specific surface area value: 31.5 m 2 / g) is formed into a sheet shape, and the thickness A ceramic green sheet of about 2.8 μm was obtained. Next, the conductive paint was printed on the ceramic green sheet by screen printing to form an internal electrode layer. Next, a plurality of ceramic green sheets on which the internal electrode layer is formed are laminated, and the heat-integrated one is fired in a reducing atmosphere at 1300 ° C. for 2 hours, and then the external electrode is baked to obtain a laminated ceramic. A capacitor was obtained.

得られた積層セラミックコンデンサのクラック発生率は0%であった。   The crack generation rate of the obtained multilayer ceramic capacitor was 0%.

前記実施例1−1〜3−1に従って複合導電性粒子粉末、導電性塗料及び積層セラミックコンデンサを作製した。各製造条件及び得られた複合導電性粒子粉末及び積層セラミックコンデンサの諸特性を示す。   In accordance with Examples 1-1 to 31-1, composite conductive particle powder, conductive paint and multilayer ceramic capacitor were prepared. Various characteristics of each manufacturing condition and the obtained composite conductive particle powder and multilayer ceramic capacitor are shown.

被処理粒子1〜3:
被処理粒子粉末として表1に示す特性を有するニッケル粒子粉末を用意した。
Processed particles 1-3:
Nickel particle powder having the characteristics shown in Table 1 was prepared as the particle powder to be treated.

Figure 2006004675
Figure 2006004675

実施例1−2〜1−6、比較例1:
被処理粒子粉末の種類、表面処理工程における有機溶剤の種類、表面処理剤の種類及び添加量を種々変化させた以外は、前記実施例1−1と同様にして複合導電性粒子粉末を得た。
Examples 1-2 to 1-6, Comparative Example 1:
A composite conductive particle powder was obtained in the same manner as in Example 1-1 except that the type of particle powder to be treated, the type of organic solvent in the surface treatment step, the type of surface treatment agent and the amount added were variously changed. .

このときの製造条件を表2に、得られた複合導電性粒子粉末の諸特性を表3に示す。   The production conditions at this time are shown in Table 2, and the characteristics of the obtained composite conductive particle powder are shown in Table 3.

比較例2(特開平11−343501号公報 実施例6の追試実験)
ニッケル粒子粉末(粒子形状:球状、平均粒子径:0.22μm、BET比表面積値:3.3m/g、熱収縮開始温度:405℃、酸化開始温度:360℃、流動性指数:40)100gを純水1L中に加えて攪拌し、スラリー化した。30分攪拌した後、過酸化水素水100gを一括添加し、反応が終了し泡が出なくなった時点で攪拌を停止し、濾過、乾燥し、表面酸化処理ニッケル微粉末を得た。
Comparative example 2 (Japanese Unexamined Patent Publication No. 11-343501, Example 6 additional test)
Nickel particle powder (particle shape: spherical, average particle size: 0.22 μm, BET specific surface area value: 3.3 m 2 / g, heat shrinkage start temperature: 405 ° C., oxidation start temperature: 360 ° C., fluidity index: 40) 100 g was added to 1 L of pure water and stirred to form a slurry. After stirring for 30 minutes, 100 g of hydrogen peroxide solution was added all at once, and when the reaction was completed and no bubbles were generated, stirring was stopped, filtered, and dried to obtain surface-oxidized nickel fine powder.

表面酸化処理ニッケル微粉末100gを純水1L中に加えて攪拌してスラリー化し、これを60℃に加熱した後、硫酸チタン溶液(Ti:5wt%)3.9gを一括添加した。さらに水酸化ナトリウム水溶液(NaOH:1N)を加えてpHを8に調整し、1時間攪拌した。次いで、これを濾過し、リパルプを1回行った後、また濾過した。こうして得られたケーキを純水1L中に加えてスラリー化した。そして塩化バリウム2.62gを湯に溶かした溶液を一括添加した。さらに水酸化ナトリウム水溶液(NaOH:1N)を加えてpHを12以上に調整し、そのまま1時間程度攪拌した後、濾過、乾燥してBaTiO酸化物が存在する複合ニッケル微粉末を得た。 100 g of surface oxidized nickel fine powder was added to 1 L of pure water and stirred to form a slurry. After heating to 60 ° C., 3.9 g of titanium sulfate solution (Ti: 5 wt%) was added all at once. Further, an aqueous sodium hydroxide solution (NaOH: 1N) was added to adjust the pH to 8, and the mixture was stirred for 1 hour. Then, this was filtered, and after repulping once, it was filtered again. The cake thus obtained was added to 1 L of pure water to make a slurry. Then, a solution obtained by dissolving 2.62 g of barium chloride in hot water was added all at once. Further, an aqueous sodium hydroxide solution (NaOH: 1N) was added to adjust the pH to 12 or more, and the mixture was stirred as it was for about 1 hour, and then filtered and dried to obtain a composite nickel fine powder containing BaTiO 3 oxide.

得られた複合ニッケル微粉末の諸特性を表3に示す。   Table 3 shows various characteristics of the obtained composite nickel fine powder.

Figure 2006004675
Figure 2006004675

Figure 2006004675
Figure 2006004675

<積層セラミックコンデンサ>
実施例3−2〜3−6、比較例3〜7:
導電性粒子粉末の種類を種々変化させた以外は、前記実施例3−1の積層セラミックコンデンサの製造と同様にして積層を得た。
<Multilayer ceramic capacitor>
Examples 3-2 to 3-6, Comparative Examples 3 to 7:
A laminate was obtained in the same manner as in the production of the multilayer ceramic capacitor of Example 3-1, except that the type of conductive particle powder was variously changed.

このときの製造条件及び得られた積層セラミックコンデンサの諸特性を表4に示す。   Table 4 shows the manufacturing conditions and the characteristics of the obtained multilayer ceramic capacitor.

Figure 2006004675
Figure 2006004675

本発明に係る複合導電性粒子粉末は、熱収縮特性及び耐酸化性に優れると共に、導電性塗料中における分散性に優れているので積層セラミックコンデンサ用電極材料として好適である。   The composite conductive particle powder according to the present invention is suitable as an electrode material for a multilayer ceramic capacitor because it has excellent heat shrinkage characteristics and oxidation resistance and is excellent in dispersibility in a conductive paint.

本発明に係る導電性塗料は、前記複合導電性粒子粉末を用いたことにより、電極材料が塗料中で均一に分散しているので、積層セラミックコンデンサ用導電性塗料として好適である   The conductive paint according to the present invention is suitable as a conductive paint for a multilayer ceramic capacitor because the electrode material is uniformly dispersed in the paint by using the composite conductive particle powder.

本発明に係る積層セラミックコンデンサは、内部電極層を形成するための電極塗料として前記用導電性塗料を用いたことにより、クラックやデラミネーション等の構造欠陥が抑制されているので、高性能積層セラミックコンデンサとして好適である。
In the multilayer ceramic capacitor according to the present invention, structural defects such as cracks and delamination are suppressed by using the conductive paint as an electrode paint for forming an internal electrode layer. It is suitable as a capacitor.

Claims (6)

ニッケル粒子の粒子表面に誘電体物質が被覆されている複合粒子粉末からなることを特徴とする複合導電性粒子粉末。 A composite conductive particle powder comprising a composite particle powder having a surface of nickel particles coated with a dielectric substance. 誘電体物質が強誘電体であることを特徴とする請求項1記載の複合導電性粒子粉末。 2. The composite conductive particle powder according to claim 1, wherein the dielectric substance is a ferroelectric substance. ニッケル粒子粉末を有機溶剤に分散した懸濁液中に金属アルコキシドの溶液を加えた後、風乾後、60〜120℃で乾燥させることを特徴とする請求項1又は請求項2記載の複合導電性粒子粉末の製造法。 3. The composite electroconductivity according to claim 1, wherein a solution of the metal alkoxide is added to a suspension in which nickel particle powder is dispersed in an organic solvent, and then air-dried and then dried at 60 to 120 [deg.] C. Production method of particle powder. Ti、Zr、Ba、Sr、Mg、及びCaから選ばれる少なくとも1種以上を含む金属アルコキシドを用いることを特徴とする請求項1又は請求項2記載の複合導電性粒子粉末の製造法。 The method for producing a composite conductive particle powder according to claim 1 or 2, wherein a metal alkoxide containing at least one selected from Ti, Zr, Ba, Sr, Mg, and Ca is used. 少なくとも導電性粒子粉末と樹脂とを含有する導電性塗料において、前記導電性粒子粉末が請求項1又は請求項2記載の複合導電性粒子粉末であることを特徴とする導電性塗料。 The conductive paint containing at least the conductive particle powder and a resin, wherein the conductive particle powder is the composite conductive particle powder according to claim 1 or 2. セラミック誘電体層と内部電極層とが交互に積層された構造を有する積層セラミックコンデンサにおいて、内部電極層に請求項1又は請求項2記載の複合導電性粒子粉末を含有することを特徴とする積層セラミックコンデンサ。 3. A laminated ceramic capacitor having a structure in which ceramic dielectric layers and internal electrode layers are alternately laminated, wherein the internal electrode layer contains the composite conductive particle powder according to claim 1 or 2. Ceramic capacitor.
JP2004177485A 2004-06-15 2004-06-15 Composite conductive particle powder, conductive paint containing the composite conductive particle powder, and multilayer ceramic capacitor Expired - Fee Related JP4780272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004177485A JP4780272B2 (en) 2004-06-15 2004-06-15 Composite conductive particle powder, conductive paint containing the composite conductive particle powder, and multilayer ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004177485A JP4780272B2 (en) 2004-06-15 2004-06-15 Composite conductive particle powder, conductive paint containing the composite conductive particle powder, and multilayer ceramic capacitor

Publications (2)

Publication Number Publication Date
JP2006004675A true JP2006004675A (en) 2006-01-05
JP4780272B2 JP4780272B2 (en) 2011-09-28

Family

ID=35772898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004177485A Expired - Fee Related JP4780272B2 (en) 2004-06-15 2004-06-15 Composite conductive particle powder, conductive paint containing the composite conductive particle powder, and multilayer ceramic capacitor

Country Status (1)

Country Link
JP (1) JP4780272B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10083793B2 (en) 2013-04-05 2018-09-25 Murata Manufacturing Co., Ltd. Metal powder, method for producing the same, conductive paste including metal powder, and multilayer ceramic electronic component

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11124602A (en) * 1997-10-17 1999-05-11 Shoei Chem Ind Co Nickel powder and its production
JP2000232032A (en) * 1999-02-10 2000-08-22 Tdk Corp Nickel composite conductor for forming electrode and laminated ceramic capacitor
JP2001131601A (en) * 1999-11-01 2001-05-15 Mitsui Mining & Smelting Co Ltd Composite nickel fine powder
JP2001266652A (en) * 2000-01-14 2001-09-28 Mitsui Mining & Smelting Co Ltd Nickel powder and conductive paste
JP2001355003A (en) * 2000-04-11 2001-12-25 Kawatetsu Mining Co Ltd Nickel hyperfine powder and its production method
JP2002025848A (en) * 2000-07-05 2002-01-25 Murata Mfg Co Ltd Conductive paste and laminated ceramic electronic component
JP2005216634A (en) * 2004-01-28 2005-08-11 Toda Kogyo Corp Composite conductive particle powder, and conductive coating and stacked ceramic capacitor containing it

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11124602A (en) * 1997-10-17 1999-05-11 Shoei Chem Ind Co Nickel powder and its production
JP2000232032A (en) * 1999-02-10 2000-08-22 Tdk Corp Nickel composite conductor for forming electrode and laminated ceramic capacitor
JP2001131601A (en) * 1999-11-01 2001-05-15 Mitsui Mining & Smelting Co Ltd Composite nickel fine powder
JP2001266652A (en) * 2000-01-14 2001-09-28 Mitsui Mining & Smelting Co Ltd Nickel powder and conductive paste
JP2001355003A (en) * 2000-04-11 2001-12-25 Kawatetsu Mining Co Ltd Nickel hyperfine powder and its production method
JP2002025848A (en) * 2000-07-05 2002-01-25 Murata Mfg Co Ltd Conductive paste and laminated ceramic electronic component
JP2005216634A (en) * 2004-01-28 2005-08-11 Toda Kogyo Corp Composite conductive particle powder, and conductive coating and stacked ceramic capacitor containing it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10083793B2 (en) 2013-04-05 2018-09-25 Murata Manufacturing Co., Ltd. Metal powder, method for producing the same, conductive paste including metal powder, and multilayer ceramic electronic component

Also Published As

Publication number Publication date
JP4780272B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
TW419685B (en) Dielectric ceramic, method for producing the same, laminated ceramic electronic element, and method for producing the same
JP2001023852A (en) Laminated ceramic electronic component
WO2015022968A1 (en) Surface-treated metal powder, and method for producing same
JP2010067418A (en) Conductive paste and method of manufacturing the same
JP3947118B2 (en) Surface-treated metal ultrafine powder, method for producing the same, conductive metal paste, and multilayer ceramic capacitor
JP4924824B2 (en) Method for producing carbon-coated nickel powder
JP3783678B2 (en) Method for producing raw material powder for dielectric ceramic, dielectric ceramic and multilayer ceramic capacitor
JP3203238B2 (en) Composite nickel fine powder
JP4492785B2 (en) Composite conductive particle powder, conductive paint containing the composite conductive particle powder, and multilayer ceramic capacitor
JP2005167290A (en) Method of manufacturing laminated ceramic electronic component
JP5747480B2 (en) Composite oxide-coated metal powder, method for producing the same, conductive paste, and multilayer ceramic electronic component
JP2015083714A (en) Method for producing composite powder and conductive thick film paste and multilayer ceramic electronic component using composite powder obtained by the production method
JP4914065B2 (en) Nickel powder for multilayer ceramic capacitor electrode, electrode forming paste and multilayer ceramic capacitor
JP2015036440A (en) Surface-treated metal powder and method for producing the same
JP2007204315A (en) Method of manufacturing ceramic powder, ceramic powder and laminated ceramic electronic component
JP4780272B2 (en) Composite conductive particle powder, conductive paint containing the composite conductive particle powder, and multilayer ceramic capacitor
JP4310904B2 (en) Manufacturing method of Ni metal powder, conductive paste and ceramic electronic component
JP2009024204A (en) Carbide-coated nickel powder and method for producing the same
JP5986046B2 (en) Surface-treated metal powder and method for producing the same
JP5966365B2 (en) Metal powder and method for producing the same, conductive paste, and method for producing multilayer ceramic electronic component
JP5348918B2 (en) Nickel powder, base metal powder manufacturing method, conductor paste, and electronic components
JP2003317542A (en) Conductive paste and multilayer ceramic electronic component
JP6649840B2 (en) Conductor forming paste
JP3772726B2 (en) Nickel powder manufacturing method, nickel powder, nickel paste, multilayer ceramic electronic parts
WO2022114121A1 (en) Conductive paste and multilayer ceramic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4780272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees