JP2006002826A - Driving transmission device and image forming device provided with it - Google Patents

Driving transmission device and image forming device provided with it Download PDF

Info

Publication number
JP2006002826A
JP2006002826A JP2004178857A JP2004178857A JP2006002826A JP 2006002826 A JP2006002826 A JP 2006002826A JP 2004178857 A JP2004178857 A JP 2004178857A JP 2004178857 A JP2004178857 A JP 2004178857A JP 2006002826 A JP2006002826 A JP 2006002826A
Authority
JP
Japan
Prior art keywords
gear
transmission device
rotating roller
vibration
drive transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004178857A
Other languages
Japanese (ja)
Inventor
Yasunari Kawashima
康成 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004178857A priority Critical patent/JP2006002826A/en
Publication of JP2006002826A publication Critical patent/JP2006002826A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a driving transmission device and an image forming device provided with it capable of preventing transmission of vibration caused in meshing to a rotary body for forming image of a driven shaft, coping with a case where a mounting position in the axial direction of a gear is changed due to part dimensional tolerance, adjusting suppressing force in accordance with vibrating force generated at a meshing period, and improving quality of image and being suitable for miniaturization and reduction of weight. <P>SOLUTION: In this driving transmission device having a driving shaft 1 connected with a driving source like a motor, the driven shaft 3 for performing work, and a helical gear 4 as a transmission mechanism part for transmitting torque of the driving shaft 1 to the driven shaft 3, a damping rotary roller 5 turning together with rotation of a side face of the helical gear is pressed against the side face which is in the vicinity of a meshing part of the rotating driven side helical gear 4 and on which thrust force is applied. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、駆動軸と従動軸と伝達機構からなる機構系で、従動軸を精度良く回転させるための駆動伝達装置およびこれを備えた画像形成装置に関するものである。   The present invention relates to a drive transmission device for accurately rotating a driven shaft in a mechanism system including a drive shaft, a driven shaft, and a transmission mechanism, and an image forming apparatus including the drive transmission device.

従来、例えば、はす歯歯車の側面端部に切り欠き部を設け、噛み合い時の振動を吸収させるはす歯歯車、および従動ギヤ側面に対向する形でフライホイールを設け、起動時にはフライホイールが連れ回りしないようにする一方で、定速時にはフライホイールが従動ギヤと一緒に回転するようにした駆動伝達装置が知られている(例えば特許文献1および2参照)。
特許文献1では、ギヤ側面端部に切り欠きを設けることで、その周辺部の歯面強度、歯面精度が低下する。とくにギヤが樹脂で成形された場合、切り欠き部に応力が集中し、その周辺部のギヤ歯が負荷トルクによって破損する可能性がある。また、歯筋誤差の低下による振動増加が懸念される。これらの理由で当該駆動伝達装置には不向きである。
特許文献2の場合、フライホイールを付加する方法であるが、フライホイールを組み込んだ分、製品が重くなるということや、とくにカラー機になると4色分の従動ギヤに夫々フライホイールを付けるため、上記の問題が顕著化する。また、小型化という観点でも不向きである。
実開平6−28407号公報 特開2003−206993公報
Conventionally, for example, a notch is provided at the side end of a helical gear, and a flywheel is provided so as to face the helical gear that absorbs vibration during meshing and the side of the driven gear. 2. Description of the Related Art A drive transmission device is known in which a flywheel is rotated together with a driven gear at a constant speed while preventing rotation (see, for example, Patent Documents 1 and 2).
In Patent Document 1, by providing a notch at the gear side surface end portion, the tooth surface strength and tooth surface accuracy of the peripheral portion thereof are lowered. In particular, when the gear is molded of resin, stress concentrates on the notch, and there is a possibility that the gear teeth in the peripheral part may be damaged by the load torque. Moreover, there is a concern about an increase in vibration due to a decrease in tooth trace error. For these reasons, it is not suitable for the drive transmission device.
In the case of Patent Document 2, it is a method of adding a flywheel. However, since the flywheel is incorporated, the product becomes heavier, and especially in the case of a color machine, a flywheel is attached to each of the four driven gears. The above problem becomes prominent. In addition, it is not suitable for miniaturization.
Japanese Utility Model Publication No. 6-28407 JP2003-206993A

しかしながら、かかる駆動伝達装置が画像形成装置に使用される場合には、画像機器におけるギヤ伝達機構系の影響が、塗りつぶし画像での濃度ムラ(バンディング)との関連が高いため、噛み合い時の振動を従動軸の画像形成用の回転体に伝えないようにしなければならない。
そこで、本発明の目的は、上述した実情を考慮して、噛み合い時の振動を従動軸の画像形成用の回転体に伝えないようにし、また、部品寸法公差によってギヤの軸方向取り付け位置が変化した場合に対応でき、噛み合い周期で発生する加振力の大きさに応じて抑止力を調整でき、画質向上を図るとともに小型軽量に適した駆動伝達装置およびこれを備えた画像形成装置を提供することにある。
However, when such a drive transmission device is used in an image forming apparatus, the influence of a gear transmission mechanism system in an image device is highly related to density unevenness (banding) in a filled image, and therefore vibration during meshing is generated. It must not be transmitted to the rotating body for image formation of the driven shaft.
Accordingly, an object of the present invention is to prevent the vibration at the time of meshing from being transmitted to the rotating body for image formation of the driven shaft in consideration of the above-mentioned situation, and the axial mounting position of the gear varies depending on the component dimensional tolerance. A drive transmission device suitable for small size and light weight and an image forming apparatus equipped with the drive transmission device can be provided that can control the deterrence force according to the magnitude of the excitation force generated in the meshing cycle. There is.

上記の課題を解決するために、請求項1に記載の発明は、駆動源により回転駆動される駆動ギヤと、駆動ギヤと噛合して従動回転するはす歯ギヤと、を有する駆動伝達装置において、はす歯ギヤの側面であって駆動ギヤとの噛み合い部近傍のスラスト力が加わる部分に、制振用の回転ローラを押し当てて連れ回りするように構成したことを特徴とする。
請求項2の発明は、請求項1において、前記はす歯ギヤの噛み合い部近傍のスラスト力が加わる側面に前記回転ローラを押し当てるための弾性ばねを備えたことを特徴とする。
請求項3の発明は、請求項1、または2において、前記回転ローラは、予め一定の押圧力を生成するように構成された弾性体ローラであることを特徴とする。
請求項4の発明は、請求項1、2または3において、前記回転ローラを、前記はす歯ギヤの外周寄りの側面に当接させたことを特徴とする。
請求項5の発明は、請求項1、2、3または4において、前記回転ローラが連れ回りする前記従動ギヤ側面に、噛み合い周波数に対応させた凹凸が設けてあることを特徴とする。
請求項6の発明は、請求項1乃至5の何れか一項に記載の発明に於いて、前記回転ローラを、前記従動ギヤの両側面に当接させたことを特徴とする。
請求項7の発明は、請求項1乃至6において、回転ローラが駆動ギヤの起動時には前記はす歯ギヤ側面から離れ、定速時には接触して連れ回るように進退させる接離機構を備えたことを特徴とする。
請求項8の発明は、請求項1乃至7において、前記回転ローラが、前記はす歯ギヤに一定の負荷を与える構成であることを特徴とする。
請求項9の発明は、請求項1乃至8において、前記回転ローラが円錐台形状であり、前記従動ギヤ外周部側に対応する方の半径を大きくすることを特徴とする。
請求項10に記載の発明は、表面に静電潜像を形成し周方向に回転移動する像担持体と、像担持体上の静電潜像を顕像化する現像手段と、顕像化されるトナー像を記録材に転写する転写手段と、転写される記録材上のトナー像を固定する定着手段とを有する画像形成装置において、前記像担持体を駆動する従動側はす歯ギヤの噛み合い部近傍のスラスト力が加わる側面に、側面回転と連れ回る制振用の回転ローラを押し当てる構成とした駆動伝達装置を有する画像形成装置を特徴とする。
In order to solve the above-mentioned problem, the invention according to claim 1 is a drive transmission device having a drive gear that is rotationally driven by a drive source, and a helical gear that meshes with the drive gear and is driven to rotate. The present invention is characterized in that a vibration-suppressing rotary roller is pressed against a side portion of the helical gear, where a thrust force is applied in the vicinity of the meshing portion with the drive gear.
According to a second aspect of the present invention, in the first aspect, an elastic spring is provided to press the rotating roller against a side surface to which a thrust force is applied in the vicinity of the meshing portion of the helical gear.
According to a third aspect of the present invention, in the first or second aspect, the rotating roller is an elastic roller configured to generate a predetermined pressing force in advance.
According to a fourth aspect of the present invention, in the first, second, or third aspect, the rotating roller is brought into contact with a side surface near the outer periphery of the helical gear.
A fifth aspect of the present invention is characterized in that, in the first, second, third, or fourth aspect, unevenness corresponding to the meshing frequency is provided on the side surface of the driven gear that the rotating roller rotates.
According to a sixth aspect of the present invention, in the invention according to any one of the first to fifth aspects, the rotating roller is brought into contact with both side surfaces of the driven gear.
A seventh aspect of the present invention includes the contacting / separating mechanism according to any one of the first to sixth aspects, wherein the rotating roller moves away from the side surface of the helical gear when the drive gear is started, and advances and retreats so that the rotating roller contacts and rotates at a constant speed. It is characterized by.
The invention of claim 8 is characterized in that, in any of claims 1 to 7, the rotating roller applies a constant load to the helical gear.
A ninth aspect of the invention is characterized in that, in the first to eighth aspects, the rotating roller has a truncated cone shape, and a radius corresponding to the outer peripheral side of the driven gear is increased.
According to a tenth aspect of the present invention, there is provided an image carrier that forms an electrostatic latent image on the surface and rotates in the circumferential direction, a developing means that visualizes the electrostatic latent image on the image carrier, and a visualization An image forming apparatus having a transfer unit that transfers a toner image to a recording material and a fixing unit that fixes the toner image on the transferred recording material. An image forming apparatus having a drive transmission device configured to press a rotating roller for vibration suppression along with the rotation of a side surface against a side surface to which a thrust force is applied in the vicinity of the meshing portion.

本発明によれば、複写機やプリンタの感光体ドラム駆動系への応用を始め、ギヤ伝達機構部で発生する噛み合い周期の回転ムラを抑制して、従動軸を精度良く運転する幅広い分野に応用できる。
また、回転する従動側はす歯ギヤの噛み合い部近傍のスラスト力が加わる側面に、側面回転と連れ回る制振用の回転ローラを押し当てる構成としたことで、負荷トルクの大きさによって変化するスラスト力が大口径ギヤ歯部に加わったさいの弾性変形の低減と、噛み合い周期での歯面側面のスラスト方向への振動の抑制の働きがある。
According to the present invention, application to a photoconductor drum drive system of a copying machine or a printer is applied to a wide range of fields in which a driven shaft is accurately operated by suppressing rotation unevenness of a meshing cycle generated in a gear transmission mechanism. it can.
In addition, the configuration is such that the rotating roller for vibration suppression that rotates with the side surface is pressed against the side surface to which the thrust force in the vicinity of the meshing portion of the rotating driven side helical gear is pressed, so that it varies depending on the magnitude of the load torque. When the thrust force is applied to the large-diameter gear tooth portion, the elastic deformation is reduced, and the vibration in the thrust direction of the tooth side surface in the meshing period is suppressed.

以下、図面を参照して、本発明の実施の形態を詳細に説明する。図1は本発明による駆動伝達装置の構成の実施の形態を示す概略図である。図2は図1の構成の右側面図である。図3は図1の従動ギヤに発生するスラスト力を示す概略図である。図4は制振用の回転ローラによるスラスト力の抑えを示す概略図である。
図1ないし図4において、モータ等の駆動源(図示せず)に連結された駆動軸1には駆動ギヤ2の軸心部が固定される。作業を行なう従動軸3にはこの従動軸3に駆動軸1のトルクを伝達する伝達機構部としてのはす歯ギヤである従動ギヤ4が設けられる。
駆動ギヤ2と従動ギヤ4は噛み合っている。図1および図2から見られるように、回転する従動側のはす歯ギヤ4の噛み合い部近傍のスラスト力が加わる側面に押し当てるように、側面回転と連れ回る制振用の回転ローラ5を設けている。
はす歯ギヤ(この場合、従動ギヤ4)は、平歯ギヤに比べ、噛み合う歯数を増やすことで回転方向のトルク伝達を滑らかにしているが、歯を軸方向から傾けた角度(ねじれ角β)に応じてスラスト力が発生する(図3)。
とくに大口径の樹脂ギヤではこのスラスト力の影響によって、ギヤ歯面が傾き、正規の歯面位置から誤差が発生する。また、トルク伝達が滑らかになったとはいえ、噛み合い周期での振動が発生し、大口径の歯面が軸方向(スラスト方向)に振動する。
これを抑制する手段として、上述したような、回転する従動側のはす歯ギヤ4の噛み合い部近傍のスラスト力が加わる側面に、側面回転と連れ回る制振用の回転ローラ5の周面を押し当てる構成とする。
この制振用の回転ローラ5は、負荷トルクの大きさにしたがって変化するスラスト力が大口径ギヤ歯部に加わったさいの弾性変形を抑え、歯面位置の誤差を軽減させる(図4)。
また、噛み合い周期に同期して歯面側面がスラスト方向に振動するが、これを制振用の回転ローラ5によって抑制するという2つの働きがある。これにより、歯面位置が正規の位置に近づき回転ムラが小さくなるとともにスラスト振動を直接抑えることができるので効果が倍増する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram showing an embodiment of the configuration of a drive transmission device according to the present invention. FIG. 2 is a right side view of the configuration of FIG. FIG. 3 is a schematic diagram showing the thrust force generated in the driven gear of FIG. FIG. 4 is a schematic view showing suppression of thrust force by a vibration-suppressing rotary roller.
1 to 4, a shaft center portion of a drive gear 2 is fixed to a drive shaft 1 connected to a drive source (not shown) such as a motor. The driven shaft 3 that performs the work is provided with a driven gear 4 that is a helical gear as a transmission mechanism that transmits the torque of the drive shaft 1 to the driven shaft 3.
The drive gear 2 and the driven gear 4 are engaged with each other. As can be seen from FIGS. 1 and 2, a vibration-reducing rotating roller 5 that rotates with the side surface rotation is pressed against the side surface to which the thrust force is applied in the vicinity of the meshing portion of the rotating helical gear 4 on the driven side. Provided.
The helical gear (in this case, the driven gear 4) is smoother in torque transmission in the rotational direction by increasing the number of meshed teeth compared to the spur gear, but the angle at which the tooth is tilted from the axial direction (torsion angle) A thrust force is generated according to β) (FIG. 3).
In particular, in the case of a large-diameter resin gear, the gear tooth surface is inclined due to the influence of this thrust force, and an error is generated from the normal tooth surface position. Further, although torque transmission is smooth, vibration occurs at the meshing cycle, and the tooth surface having a large diameter vibrates in the axial direction (thrust direction).
As a means for suppressing this, the circumferential surface of the rotating roller 5 for vibration suppression that rotates together with the side surface rotation is provided on the side surface to which the thrust force is applied in the vicinity of the meshing portion of the rotating helical gear 4 on the driven side as described above. The structure is to be pressed.
The vibration-suppressing rotating roller 5 suppresses elastic deformation when a thrust force that changes according to the magnitude of the load torque is applied to the large-diameter gear tooth portion, and reduces the error of the tooth surface position (FIG. 4).
Further, the tooth surface side surface vibrates in the thrust direction in synchronism with the meshing cycle, and has two functions of suppressing this by the damping roller 5 for vibration suppression. As a result, the tooth surface position approaches the normal position, the rotation unevenness is reduced, and the thrust vibration can be directly suppressed, so that the effect is doubled.

図5は制振用の回転ローラの弾性支持機構の第1の実施の形態を示す概略図である。図6は制振用の回転ローラの弾性支持機構の第2の実施の形態を示す概略図である。噛み合い振動とスラスト変形を抑制する制振用の回転ローラ5は、ローラ支持機構の弾性ばねによって押し当てる構成とする。
弾性ばねの方式としては、図5のように基部6aによって支持された板ばね6、または図6のように基部7aによって支持されたスプリング(コイルばね)7など様々な弾性部材が適用できる。これらの弾性ばねによって、従動ギヤ4側面の位置が部品寸法バラツキによって変化した場合でも、適切に制振用の回転ローラ5を押し当てることが可能となる。
スラスト振動が大きくなってもその分、弾性体6、7の復元力も増加するのでスラスト振動を小さくできる。したがって、はす歯ギヤ4の噛み合い振動を、効率よく低減させることができる。
図7は制振用の回転ローラの第1の変形例を示す概略図である。図7において、噛み合い振動とスラスト変形を抑制する制振用の回転ローラは弾性体ローラ5aとしている。この場合には、予め一定の押圧になるような構成とする。
弾性体ローラ5aとしては、図のように外周部にゴムやウレタンを配置したベアリングや樹脂成形したものなどが適用できる。この弾性体ローラ5aによって、従動ギヤ側面の位置が部品寸法バラツキによって変化した場合でも、適切に制振用の回転ローラを押し当てることが可能となる。スラスト振動が大きくなってもその分、弾性体の復元力も増加するのでスラスト振動を小さくできる。
FIG. 5 is a schematic view showing a first embodiment of an elastic support mechanism for a vibration-suppressing rotary roller. FIG. 6 is a schematic view showing a second embodiment of the elastic support mechanism of the vibration-rotating rotary roller. The vibration-suppressing rotating roller 5 that suppresses meshing vibration and thrust deformation is configured to be pressed by an elastic spring of a roller support mechanism.
As an elastic spring system, various elastic members such as a leaf spring 6 supported by the base portion 6a as shown in FIG. 5 or a spring (coil spring) 7 supported by the base portion 7a as shown in FIG. 6 can be applied. With these elastic springs, even when the position of the side surface of the driven gear 4 is changed due to variations in the component dimensions, it is possible to appropriately press the rotating roller 5 for vibration suppression.
Even if the thrust vibration increases, the restoring force of the elastic bodies 6 and 7 increases accordingly, so that the thrust vibration can be reduced. Therefore, the meshing vibration of the helical gear 4 can be efficiently reduced.
FIG. 7 is a schematic view showing a first modification of the vibration-suppressing rotary roller. In FIG. 7, the rotating roller for vibration suppression that suppresses meshing vibration and thrust deformation is an elastic roller 5a. In this case, it is set as the structure which becomes a fixed press beforehand.
As the elastic body roller 5a, a bearing in which rubber or urethane is arranged on the outer peripheral portion as shown in the figure, or a resin-molded one can be applied. Even when the position of the side surface of the driven gear changes due to the variation in the component dimensions, the elastic roller 5a can appropriately press the rotating roller for vibration suppression. Even if the thrust vibration is increased, the restoring force of the elastic body is increased accordingly, so that the thrust vibration can be reduced.

図8は制振用の回転ローラの取り付け位置の第1の実施の形態を示す概略図である。図9は制振用の回転ローラの取り付け位置の第2の実施の形態を示す概略図である。噛み合い振動やスラスト変形は、このように回転軸3から離れるほど大きくなる。半径rの歯面でスラスト力Fsが働く場合、r近傍で制振用の回転ローラ5を配置する(図8)と、ローラ押し付け力は約Fsとなる。
ところが、r/2の位置に制振用の回転ローラ5を設けると(図8)、ローラ押し付け力は2Fs必要となり、回転ローラ面に負担(寿命面、支持機構)が掛かる。そこで、この振動や変形の大きなポイント(外周側)に、制振用の回転ローラ5を配置し、振動や変形を低減させる。
変化(振動や変形)が大きくなった分、抑制しやすく、また、その効果も大きい。外周側になるほど周速が増加するが、回転ローラ方式としているので、回転しないすべり接触式より有利で、高速動作にも対応が可能である。
図10ははす歯ギヤ側面に施した凹凸加工を示す概略図である。はす歯ギヤ(従動ギヤ)4の噛み合い振動は、回転速度×歯数分の周波数で発生する。この振動によってはす歯ギヤ外周がスラスト方向に振動している。
そこで、図10に示すように、この振動と同じ周波数で位相が逆になるようにはす歯ギヤ側面に一定のピッチで周方向に連続する凹凸8の加工を施す。その結果、制振用の回転ローラ5がこの凹凸面を移動するさいにスラスト方向に変位し、この変位量と弾性部材剛性値の積の力が噛み合い振動を打ち消す方向に働き、噛み合い振動を低減できる。
図11は制振用の回転ローラを従動ギヤの両側に設ける実施の形態を示す概略図である。回転方向が正回転と逆回転がある場合、スラスト力は図10のように2つの方向になる。そこで、どちらの方向にも対応可能なように従動ギヤ4側面の両側に固定部5bに支持された制振用の回転ローラ5を配置する。
これにより、回転方向が変化しても、どちらかの制振用の回転ローラが振動を抑えるように働き、正逆回転する場合においても、高精度に回転を伝達する駆動系を提供することができる。
FIG. 8 is a schematic view showing the first embodiment of the mounting position of the vibration-suppressing rotary roller. FIG. 9 is a schematic view showing a second embodiment of the mounting position of the vibration-suppressing rotary roller. The meshing vibration and the thrust deformation increase as the distance from the rotating shaft 3 increases. When the thrust force Fs is applied to the tooth surface having the radius r, the roller pressing force is about Fs when the damping rotary roller 5 is arranged near r (FIG. 8).
However, when the vibration-suppressing rotating roller 5 is provided at the r / 2 position (FIG. 8), the roller pressing force is required to be 2 Fs, and a load (life, support mechanism) is applied to the rotating roller surface. In view of this, a vibration-reducing rotating roller 5 is disposed at a point (outer peripheral side) where vibration and deformation are large to reduce vibration and deformation.
As changes (vibrations and deformations) become larger, it is easier to suppress and the effect is great. Although the peripheral speed increases as it goes to the outer peripheral side, the rotating roller system is more advantageous than the sliding contact system that does not rotate, and it can cope with high-speed operation.
FIG. 10 is a schematic diagram showing the uneven processing applied to the side surface of the helical gear. The meshing vibration of the helical gear (driven gear) 4 is generated at a frequency corresponding to the rotational speed × the number of teeth. Due to this vibration, the outer periphery of the helical gear vibrates in the thrust direction.
Therefore, as shown in FIG. 10, the side surface of the toothed gear is processed with a constant pitch in the circumferential direction so that the phase is reversed at the same frequency as this vibration. As a result, the vibration-suppressing rotating roller 5 is displaced in the thrust direction when moving on the uneven surface, and the product of the displacement amount and the elastic member rigidity value acts in a direction to cancel the meshing vibration, thereby reducing the meshing vibration. it can.
FIG. 11 is a schematic diagram showing an embodiment in which rotating rollers for vibration suppression are provided on both sides of the driven gear. When the rotation direction includes forward rotation and reverse rotation, the thrust force is in two directions as shown in FIG. Therefore, the vibration-suppressing rotating rollers 5 supported by the fixed portion 5b are arranged on both sides of the side surface of the driven gear 4 so as to be able to cope with either direction.
As a result, even if the rotation direction changes, it is possible to provide a drive system that can transmit rotation with high accuracy even when one of the vibration-suppressing rotating rollers works to suppress vibration and rotates forward and reverse. it can.

図12は制振用の回転ローラと従動ギヤの接離の関係を従動ギヤの回転速度と時間に関してグラフで示す概略図である。図13は制振用の回転ローラと従動ギヤの接離の関係を制振用の回転ローラの回転速度と時間に関してグラフで示す概略図である。
駆動系の起動時には、定常負荷トルクに加え起動加速度に応じた慣性分の負担が駆動モータに加わる。とくに短時間で起動するような場合、起動トルクが大きくなり、これに制振用の回転ローラ5の負荷トルクが加わると駆動モータの出力、容量も大きくする必要が出てくる。
そこで、起動時のモータへの負担を小さくするために、起動時は制振用の回転ローラ5を従動ギヤ4側面から離れるようにし、定常速度になってから接触して連れ回るようにする。
そのために、回転ローラ5をはす歯ギヤ側面に対して進退させる接離機構を設ける。接離機構は、例えばソレノイド等によって駆動する。
図13のように従動ギヤ起動時(時間0〜t1の区間)は、制振用の回転ローラ5が従動ギヤ4から離れているため、回転ローラ5は回らない。その後、一定速度になったt1以降に制振用の回転ローラ5と従動ギヤ4が接触し、連れ回るようになり、制振等の働きを行う。
これによって、起動時のモータへの負担が軽減され、定速時には接触して振動を抑制することができる。起動時に掛かるモータへの負担を軽減し、必要以上に大容量のモータを使用することなく、省エネルギに適している駆動系を提供することができる。
一般に、ギヤは、回転を滑らかにするためや、軸間寸法公差、ギヤの熱膨張などを考慮してバックラッシを設けて使用する。そのようななかで、外乱トルクが加わると歯面同士が飛び跳ねて分離しバックラッシの隙間分回転ムラを発生する。
FIG. 12 is a schematic diagram showing the contact / separation relationship between the vibration-suppressing rotary roller and the driven gear with respect to the rotational speed and time of the driven gear. FIG. 13 is a schematic diagram showing the contact / separation relationship between the vibration-suppressing rotary roller and the driven gear with respect to the rotational speed and time of the vibration-suppressing rotary roller.
When the drive system is started, an inertia load corresponding to the start acceleration is added to the drive motor in addition to the steady load torque. In particular, in the case of starting in a short time, the starting torque becomes large, and if the load torque of the damping roller 5 is added to this, it is necessary to increase the output and capacity of the drive motor.
Therefore, in order to reduce the burden on the motor at the time of starting, the vibration-suppressing rotating roller 5 is separated from the side surface of the driven gear 4 at the time of starting, and is brought into contact with the rotating gear 5 after reaching a steady speed.
For this purpose, a contact / separation mechanism for moving the rotating roller 5 back and forth with respect to the side surface of the toothed gear is provided. The contact / separation mechanism is driven by, for example, a solenoid.
When the driven gear is started as shown in FIG. 13 (time interval 0 to t1), the rotating roller 5 for vibration control is separated from the driven gear 4, so the rotating roller 5 does not rotate. Thereafter, the vibration-suppressing rotating roller 5 and the driven gear 4 come into contact with each other after t1 when the speed reaches a constant speed, and perform functions such as vibration suppression.
As a result, the burden on the motor at the time of startup is reduced, and vibration can be suppressed by contact at a constant speed. It is possible to provide a drive system that is suitable for energy saving without reducing the burden on the motor at the time of start-up and without using a motor with a larger capacity than necessary.
Generally, a gear is used with a backlash in order to make the rotation smooth, taking into account the dimensional tolerance between shafts, the thermal expansion of the gear, and the like. Under such circumstances, when a disturbance torque is applied, the tooth surfaces jump and separate, and rotation unevenness occurs due to the backlash gap.

図14は制振用の回転ローラによる負荷を説明する実施の形態を示す概略図である。そこで、歯面同士が離れないように制振用の回転ローラ5側から一定の負荷トルクを加える。図14のように回転ローラ5を支持する固定軸9と制振用の回転ローラ5の内周面のすべり摩擦を利用する。この例では、回転ローラ5の軸孔5Aは、固定軸9の径よりも大径となっている。
固定軸9の軸径やすべり軸受けの幅、押付力によって、回転ローラ5から加わる負荷トルクの調整が可能となる。これにより、外乱トルクによって歯面が飛び跳ねることなく常に歯面同士が接触して、高精度な回転を提供できる。
図15は制振用の回転ローラを円錐台形状のローラとした実施の形態を示す概略図である。図15において、制振用の回転ローラは、円錐台形ローラ5’とし、従動ギヤ4外周部側に対応する方の半径rbを、他方の半径raよりも大きくする(図15)。
回転ローラ5が円柱形状の場合、その厚みが小さい場合は問題ないが、厚くなるにしたがって、外周側(r2)と内周側(r1)で速度差が生じる。長期間使用すると摩耗によって回転ローラの形状が変わり、機能できない可能性がある。
そこで、回転ローラ5を円錐台形状とし、内周側、外周側に対応させた形状(r1/r2=ra/rb)とする。これにより速度差が発生しないので、長期間使用しても同じ摩耗量で回転ローラ5の形状を保つことができ、安定して働くことができる。
FIG. 14 is a schematic view showing an embodiment for explaining a load caused by a vibration-suppressing rotary roller. Therefore, a constant load torque is applied from the vibration-suppressing rotating roller 5 side so that the tooth surfaces are not separated from each other. As shown in FIG. 14, the sliding friction between the fixed shaft 9 that supports the rotating roller 5 and the inner peripheral surface of the damping roller 5 is used. In this example, the shaft hole 5 </ b> A of the rotating roller 5 has a larger diameter than the diameter of the fixed shaft 9.
The load torque applied from the rotating roller 5 can be adjusted by the shaft diameter of the fixed shaft 9, the width of the sliding bearing, and the pressing force. As a result, the tooth surfaces always come into contact with each other without the tooth surfaces jumping due to disturbance torque, and high-accuracy rotation can be provided.
FIG. 15 is a schematic view showing an embodiment in which the damping roller is a truncated cone roller. In FIG. 15, the vibration-rotating rotary roller is a truncated cone roller 5 ′, and the radius rb corresponding to the outer peripheral side of the driven gear 4 is made larger than the other radius ra (FIG. 15).
When the rotating roller 5 has a cylindrical shape, there is no problem if the thickness is small, but as the thickness increases, a speed difference occurs between the outer peripheral side (r2) and the inner peripheral side (r1). If it is used for a long period of time, the shape of the rotating roller may change due to wear and may not function.
Therefore, the rotating roller 5 is formed in a truncated cone shape and has a shape corresponding to the inner peripheral side and the outer peripheral side (r1 / r2 = ra / rb). As a result, no speed difference occurs, so that the shape of the rotating roller 5 can be maintained with the same amount of wear even when used for a long period of time, and can work stably.

図16は本発明による駆動伝達装置を備えた画像形成装置の実施の形態を示す概略図である。図16において、従動軸3に画像形成用の回転体が装着されていることとする。
まず、図16を参照して画像形成装置の概要を説明する。図16は画像形成装置の内部構造を概略的に示す縦断正面図で、画像形成装置本体10の1側に給紙カセット11が着脱自在に装着され、本体他側には排紙口12が設けられている。
給紙カセット11から排紙口12に至る用紙搬送路13の上方には感光体14が回転自在に設けられて、その周囲にはそれぞれプロセスユニットとしての帯電器15、露光器16、現像器17が配列されている。さらに感光体14の外周には転写器18、クリーニング器19、除電器20等が配列されている。
さらに用紙搬送路13に沿って上流から下流に向けて、給紙ローラ21、レジストローラ22、ヒートローラ23とプレスローラ24を有する定着器25、排紙ローラ26が配列されている。
このような構成で、帯電器15によって感光体14表面を帯電させ、その部分に露光器16からのレーザ光を走査することで静電潜像を形成する。その後、感光体(感光体ドラム)14の回転により、静電画像は現像器によってトナー画像として現像される。
一方では、給紙カセット11内の用紙が給紙ローラ21によってレジストローラ22まで引き出され、感光体ドラム14の回転運動に同期回転するレジストローラ22によって用紙は感光体ドラム下部に給紙される。
感光体14上のトナー画像は転写器18によって用紙に転写され、その用紙が定着器25を通るときに用紙上の転写画像が定着される。その後、定着後の用紙は排紙ローラ26によって、装置排紙口12より排出される。
このような製品では感光体ドラム14の軸の一定速度特性が画像品質に直接影響を与えるものであり、モータトルクをギヤによって感光体ドラム14の軸に伝え駆動している場合、モータ自体のトルク変動を抑えることはもちろんギヤ噛み合いによるトルク振動の低減は重要である。
FIG. 16 is a schematic view showing an embodiment of an image forming apparatus provided with a drive transmission device according to the present invention. In FIG. 16, it is assumed that a rotating body for image formation is attached to the driven shaft 3.
First, the outline of the image forming apparatus will be described with reference to FIG. FIG. 16 is a longitudinal front view schematically showing the internal structure of the image forming apparatus. A paper feed cassette 11 is detachably mounted on one side of the image forming apparatus main body 10 and a paper discharge port 12 is provided on the other side of the main body. It has been.
A photosensitive member 14 is rotatably provided above a paper conveyance path 13 from the paper feed cassette 11 to the paper discharge port 12, and a charger 15, an exposure device 16, and a developing device 17 as process units are provided around the photosensitive member 14. Are arranged. Further, a transfer device 18, a cleaning device 19, a static eliminator 20, and the like are arranged on the outer periphery of the photosensitive member 14.
Further, a paper feed roller 21, a registration roller 22, a fixing roller 25 having a heat roller 23 and a press roller 24, and a paper discharge roller 26 are arranged from upstream to downstream along the paper transport path 13.
With such a configuration, the surface of the photoconductor 14 is charged by the charger 15, and an electrostatic latent image is formed by scanning the laser beam from the exposure device 16 in that portion. Thereafter, the electrostatic image is developed as a toner image by the developing device by the rotation of the photosensitive member (photosensitive drum) 14.
On the other hand, the paper in the paper feeding cassette 11 is pulled out to the registration roller 22 by the paper feeding roller 21, and the paper is fed to the lower part of the photosensitive drum by the registration roller 22 that rotates in synchronization with the rotational movement of the photosensitive drum 14.
The toner image on the photoreceptor 14 is transferred to a sheet by the transfer unit 18, and the transferred image on the sheet is fixed when the sheet passes through the fixing unit 25. Thereafter, the fixed sheet is discharged from the apparatus discharge port 12 by a discharge roller 26.
In such a product, the constant speed characteristic of the shaft of the photosensitive drum 14 directly affects the image quality. When the motor torque is transmitted to the shaft of the photosensitive drum 14 by a gear and driven, the torque of the motor itself It is important to reduce torque vibration by gear meshing as well as to suppress fluctuations.

像担持体(感光体ドラム)14を駆動する従動側はす歯ギヤ4の噛み合い部近傍のスラスト力が加わる側面に、側面回転と連れ回る制振用の回転ローラ5を押し当てる構成としたことで、負荷トルクの大きさによって変化するスラスト力が大口径ギヤ歯部に加わったさいの弾性変形の低減と、噛み合い周期での歯面側面がスラスト方向に振動するのを抑制する働きがある。
この制振用の回転ローラは、(1)負荷トルクの大きさによって変化するスラスト力が大口径ギヤ歯部に加わったさいの弾性変形を抑え、歯面位置の誤差を軽減させる。また、(2)噛み合い周期で歯面側面がスラスト方向に振動するが、これを制振用の回転ローラによって抑制する、という2つの働きがある。
これにより、歯面位置が正規の位置に近づき回転ムラが小さくなるとともにスラスト振動を直接抑えることができるので効果が倍増する。
とくにギヤの噛み合い周波数(歯数)は、濃度ムラであるバンディングとして人間の目にとって目立つ周波数帯である。この周波数の振動を抑えることで、画質向上が可能となる。
また、フライホイール等に比べ、小型、軽量で回転ローラを構成することができるので、駆動機構部の省スペース化が図られ、製品の小型化にも貢献する。
ここまで、感光体ドラムに適用した場合について説明したが、同様に感光体ベルトを駆動する駆動ローラの伝達機構部や、中間転写ベルト方式での駆動ローラの伝達機構部にも適用できることは言うまでも無い。
The configuration is such that the vibration-suppressing rotating roller 5 that rotates with the side surface is pressed against the side surface to which the thrust force in the vicinity of the meshing portion of the driven side helical gear 4 that drives the image carrier (photosensitive drum) 14 is applied. Thus, there is a function of reducing elastic deformation when a thrust force that varies depending on the magnitude of the load torque is applied to the large-diameter gear tooth portion, and suppressing vibration of the tooth surface side surface in the meshing cycle in the thrust direction.
This vibration-suppressing rotary roller (1) suppresses elastic deformation when a thrust force that changes depending on the magnitude of the load torque is applied to the large-diameter gear tooth portion, and reduces errors in the tooth surface position. Further, (2) the tooth side surface vibrates in the thrust direction at the meshing cycle, and this has two functions of suppressing this by the vibration-suppressing rotating roller.
As a result, the tooth surface position approaches the normal position, the rotation unevenness is reduced, and the thrust vibration can be directly suppressed, so that the effect is doubled.
Particularly, the meshing frequency (number of teeth) of the gear is a frequency band that is conspicuous for human eyes as banding with uneven density. By suppressing the vibration at this frequency, the image quality can be improved.
In addition, since the rotating roller can be configured with a smaller size and lighter weight than a flywheel or the like, the drive mechanism can be saved in space, contributing to the downsizing of the product.
Up to this point, the case where the present invention is applied to the photosensitive drum has been described. However, it can be applied to the transmission mechanism portion of the driving roller for driving the photosensitive belt and the transmission mechanism portion of the driving roller in the intermediate transfer belt method. There is no.

本発明による駆動伝達装置の構成の実施の形態を示す概略図。Schematic which shows embodiment of the structure of the drive transmission device by this invention. 図1の構成の右側面図。The right view of the structure of FIG. 図1の従動ギヤに発生するスラスト力を示す概略図。Schematic which shows the thrust force which generate | occur | produces in the driven gear of FIG. 制振用の回転ローラによるスラスト力の抑えを示す概略図。Schematic which shows suppression of the thrust force by the rotating roller for vibration suppression. 制振用の回転ローラの弾性支持機構の第1の実施の形態を示す概略図。Schematic which shows 1st Embodiment of the elastic support mechanism of the rotating roller for vibration suppression. 制振用の回転ローラの弾性支持機構の第2の実施の形態を示す概略図。Schematic which shows 2nd Embodiment of the elastic support mechanism of the rotating roller for vibration suppression. 制振用の回転ローラの第1の変形例を示す概略図。Schematic which shows the 1st modification of the rotating roller for vibration suppression. 制振用の回転ローラの取り付け位置の第1の実施の形態を示す概略図。Schematic which shows 1st Embodiment of the attachment position of the rotating roller for vibration suppression. 制振用の回転ローラの取り付け位置の第2の実施の形態を示す概略図。Schematic which shows 2nd Embodiment of the attachment position of the rotating roller for vibration suppression. はす歯ギヤ側面に施した凹凸加工を示す概略図。Schematic which shows the uneven | corrugated process given to the helical gear side surface. 制振用の回転ローラを従動ギヤの両側に設ける実施の形態を示す概略図。Schematic which shows embodiment which provides the rotating roller for vibration suppression on the both sides of a driven gear. 制振用の回転ローラと従動ギヤの接離の関係を従動ギヤの回転速度と時間に関してグラフで示す概略図。Schematic which shows the relationship between the rotation speed of a driven gear, and time with the graph of the relationship between the rotation roller for vibration suppression, and a driven gear. 制振用の回転ローラと従動ギヤの接離の関係を制振用の回転ローラの回転速度と時間に関してグラフで示す概略図。Schematic which shows the relationship of the separation / rotation of the rotation roller for vibration suppression and a driven gear with a graph regarding the rotational speed and time of the rotation roller for vibration suppression. 制振用の回転ローラによる負荷を説明する実施の形態を示す概略図。Schematic which shows embodiment which demonstrates the load by the rotating roller for vibration suppression. 制振用の回転ローラを円錐台形状のローラとした実施の形態を示す概略図。Schematic which shows embodiment which made the rotation roller for vibration suppression into the roller of truncated cone shape. 本発明による駆動伝達装置を備えた画像形成装置の実施の形態を示す概略図。1 is a schematic diagram showing an embodiment of an image forming apparatus including a drive transmission device according to the present invention.

符号の説明Explanation of symbols

1 駆動軸、2 駆動ギヤ、3 従動軸、4 従動ギヤ(伝達機構部、はす歯ギヤ)、5 制振用の回転ローラ、5a 弾性体ローラ、5b ローラ支持機構(固定部)、5’ 円錐台形ローラ、6 弾性ばね(板ばね)、6a ローラ支持機構(固定部)、7 弾性ばね(コイルばね)、7a ローラ支持機構(固定部)、8 凹凸、9 固定軸、10 画像形成装置本体、14 像担持体(感光体、感光体ドラム)、17 現像手段(現像器)、18 転写手段(転写器)、
25 定着手段(定着器)
DESCRIPTION OF SYMBOLS 1 Drive shaft, 2 Drive gear, 3 Drive shaft, 4 Drive gear (Transmission mechanism part, helical gear), Damping rotary roller, 5a Elastic roller, 5b Roller support mechanism (fixed part), 5 ' Frustoconical roller, 6 elastic spring (plate spring), 6a roller support mechanism (fixed part), 7 elastic spring (coil spring), 7a roller support mechanism (fixed part), 8 irregularities, 9 fixed shaft, 10 image forming apparatus main body , 14 Image bearing member (photosensitive member, photosensitive drum), 17 developing means (developing device), 18 transferring means (transfer device),
25 Fixing means (fixing device)

Claims (10)

駆動源により回転駆動される駆動ギヤと、駆動ギヤと噛合して従動回転するはす歯ギヤと、を有する駆動伝達装置において、はす歯ギヤの側面であって駆動ギヤとの噛み合い部近傍のスラスト力が加わる部分に、制振用の回転ローラを押し当てて連れ回りするように構成したことを特徴とする駆動伝達装置。   In a drive transmission device having a drive gear that is rotationally driven by a drive source, and a helical gear that meshes with the drive gear and rotates following the drive gear, the side surface of the helical gear near the meshing portion with the drive gear A drive transmission device characterized in that a vibration-suppressing rotating roller is pressed against a portion to which a thrust force is applied and is rotated. 前記はす歯ギヤの噛み合い部近傍のスラスト力が加わる側面に前記回転ローラを押し当てるための弾性ばねを備えたことを特徴とする請求項1記載の駆動伝達装置。   2. The drive transmission device according to claim 1, further comprising an elastic spring for pressing the rotating roller against a side surface to which a thrust force is applied in the vicinity of the meshing portion of the helical gear. 前記回転ローラは、予め一定の押圧力を生成するように構成された弾性体ローラであることを特徴とする請求項1、または2記載の駆動伝達装置。   The drive transmission device according to claim 1, wherein the rotating roller is an elastic roller configured to generate a predetermined pressing force in advance. 前記回転ローラを、前記はす歯ギヤの外周寄りの側面に当接させたことを特徴とする請求項1、2または3記載の駆動伝達装置。   4. The drive transmission device according to claim 1, wherein the rotating roller is brought into contact with a side surface of the helical gear near the outer periphery. 前記回転ローラが連れ回りする前記従動ギヤ側面に、噛み合い周波数に対応させた凹凸が設けてあることを特徴とする請求項1、2、3または4記載の駆動伝達装置。   5. The drive transmission device according to claim 1, wherein unevenness corresponding to a meshing frequency is provided on a side surface of the driven gear which the rotating roller rotates. 前記回転ローラを、前記従動ギヤの両側面に当接させたことを特徴とする請求項1乃至5の何れか一項に記載の駆動伝達装置。   The drive transmission device according to any one of claims 1 to 5, wherein the rotating roller is brought into contact with both side surfaces of the driven gear. 前記回転ローラが駆動ギヤの起動時には前記はす歯ギヤ側面から離れ、定速時には接触して連れ回るように進退させる接離機構を備えたことを特徴とする請求項1乃至6の何れか一項に記載の駆動伝達装置。   7. The contact mechanism according to claim 1, further comprising a contact / separation mechanism configured to move away from the side surface of the helical gear when the drive gear is started, and to advance and retract so as to contact and rotate at a constant speed. The drive transmission device according to item. 前記回転ローラが、前記はす歯ギヤに一定の負荷を与える構成であることを特徴とする請求項1乃至7の何れか一項に記載の駆動伝達装置。   The drive transmission device according to any one of claims 1 to 7, wherein the rotating roller is configured to apply a constant load to the helical gear. 前記回転ローラが円錐台形状であり、前記従動ギヤ外周部側に対応する方の半径を大きくすることを特徴とする請求項1乃至8の何れか一項に記載の駆動伝達装置。   The drive transmission device according to any one of claims 1 to 8, wherein the rotating roller has a truncated cone shape and has a larger radius corresponding to the outer peripheral side of the driven gear. 表面に静電潜像を形成し周方向に回転移動する像担持体と、像担持体上の静電潜像を顕像化する現像手段と、顕像化されるトナー像を記録材に転写する転写手段と、転写される記録材上のトナー像を固定する定着手段とを有する画像形成装置において、前記像担持体を駆動する従動側はす歯ギヤの噛み合い部近傍のスラスト力が加わる側面に、側面回転と連れ回る制振用の回転ローラを押し当てる構成とした駆動伝達装置を有することを特徴とする画像形成装置。

1
An image carrier that forms an electrostatic latent image on the surface and rotates in the circumferential direction, a developing unit that visualizes the electrostatic latent image on the image carrier, and a toner image that is visualized is transferred to a recording material And a fixing unit that fixes the toner image on the recording material to be transferred. A side surface to which a thrust force is applied in the vicinity of the meshing portion of the driven side helical gear that drives the image carrier. An image forming apparatus comprising a drive transmission device configured to press against a vibration-suppressing rotating roller that rotates with the side surface.

1
JP2004178857A 2004-06-16 2004-06-16 Driving transmission device and image forming device provided with it Pending JP2006002826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004178857A JP2006002826A (en) 2004-06-16 2004-06-16 Driving transmission device and image forming device provided with it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004178857A JP2006002826A (en) 2004-06-16 2004-06-16 Driving transmission device and image forming device provided with it

Publications (1)

Publication Number Publication Date
JP2006002826A true JP2006002826A (en) 2006-01-05

Family

ID=35771384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004178857A Pending JP2006002826A (en) 2004-06-16 2004-06-16 Driving transmission device and image forming device provided with it

Country Status (1)

Country Link
JP (1) JP2006002826A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157451A (en) * 2006-12-19 2008-07-10 Hispano Suiza Gear with integral overcouple protection
JP2011242472A (en) * 2010-05-14 2011-12-01 Ricoh Co Ltd Image carrier drive device and image forming apparatus
JP2021110847A (en) * 2020-01-10 2021-08-02 ブラザー工業株式会社 Image forming apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157451A (en) * 2006-12-19 2008-07-10 Hispano Suiza Gear with integral overcouple protection
JP2011242472A (en) * 2010-05-14 2011-12-01 Ricoh Co Ltd Image carrier drive device and image forming apparatus
JP2021110847A (en) * 2020-01-10 2021-08-02 ブラザー工業株式会社 Image forming apparatus
JP7452017B2 (en) 2020-01-10 2024-03-19 ブラザー工業株式会社 image forming device

Similar Documents

Publication Publication Date Title
JP5267219B2 (en) Deceleration device, rotating body driving device, image carrier driving device, and image forming apparatus
JP4977499B2 (en) Image forming apparatus
JP5532756B2 (en) Image forming apparatus
JP2011073881A (en) Recording medium conveying device and image forming device including the same
JP2018017889A (en) Image forming apparatus
JPH09222826A (en) Rotary drum driving device for image forming device
JP2016090793A (en) Image formation apparatus
JP4908950B2 (en) Image forming apparatus
JP2006002826A (en) Driving transmission device and image forming device provided with it
JP2010084881A (en) Drive transmission device and image forming apparatus including the same
JP4496136B2 (en) RECORDED MEDIUM CONVEYING DEVICE, TRANSFER DEVICE, AND IMAGE FORMING DEVICE
US11022921B2 (en) Image forming apparatus
JP2008014438A (en) Gear and image formation device
JP2016080040A (en) Gear drive transmission device and image formation device
JP2008216969A (en) Belt unit, transfer belt unit, and image forming apparatus
JP2006300230A (en) Driving device of rotary body and image recording device comprising the same
JP2014119102A (en) Rotational force transmission device and image formation apparatus
JP6398933B2 (en) Drive transmission mechanism and image forming apparatus having the same
JP2003206993A (en) Driving transmission device and image forming device provided with it
JP2012229708A (en) Planetary gear train, rotary drive device and image forming apparatus
JP2004156731A (en) Rotary driving device and image forming device using the device
JP2004156746A (en) Drive transmission device and image forming device using the same
JPH0545949A (en) Image forming device
JP6971663B2 (en) Anti-vibration mount and image forming device
JPH02156280A (en) Image forming device