JP2006002578A - Two layer structure valve seat made of iron-base sintered alloy - Google Patents

Two layer structure valve seat made of iron-base sintered alloy Download PDF

Info

Publication number
JP2006002578A
JP2006002578A JP2004176560A JP2004176560A JP2006002578A JP 2006002578 A JP2006002578 A JP 2006002578A JP 2004176560 A JP2004176560 A JP 2004176560A JP 2004176560 A JP2004176560 A JP 2004176560A JP 2006002578 A JP2006002578 A JP 2006002578A
Authority
JP
Japan
Prior art keywords
iron
valve seat
support layer
layer
shrinkage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004176560A
Other languages
Japanese (ja)
Other versions
JP4373287B2 (en
Inventor
Akiyoshi Ishibashi
章義 石橋
Koji Henmi
浩二 逸見
Takeaki Kodera
岳暁 小寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP2004176560A priority Critical patent/JP4373287B2/en
Publication of JP2006002578A publication Critical patent/JP2006002578A/en
Application granted granted Critical
Publication of JP4373287B2 publication Critical patent/JP4373287B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem that shrinkage occurs when raw powder of a two layer structure sintered iron-base valve seat is press-formed and the green compact is sintered, the shrinkage of the sintered body increases with use of highly-alloyed raw material, dimensional shrinkage of the sintered body (product blank) with respect to a die dimension increases, and a dimension of a highly-alloyed seat layer having large shrinkage and a dimension of an inexpensive material support layer having small shrinkage become different except joint surfaces if the support layer not contacting a valve is made of inexpensive material. <P>SOLUTION: The support layer 2 made of Fe-based material not contacting the valve has one or more of nonmetal powder particles and high hardness metal particles dispersed in an iron-based base consisting primarily of Fe. Powder particles for reducing compressibility at the time of press forming are added into the iron-base low alloy base of the support layer to increase springback and lower a density of the compact. This technique increases the dimensional shrinkage percentage of the compact at the time of sintering and the dimensional shrinkage percentage almost equal to a seat layer 1 is obtained. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、特に高出力型自動車エンジンやLPG、CNG等のガスエンジンに適する二層構造の鉄基焼結合金製バルブシートに関する。   The present invention relates to an iron-based sintered alloy valve seat having a two-layer structure particularly suitable for high-power automobile engines and gas engines such as LPG and CNG.

従来より、鉄基焼結合金製バルブシートを安価に製造する手段として、バルブフェイスによって繰り返し打撃及び摺動される当たり面を含む耐摩耗性が要求される部分(以下「シート層」という)と、前記のシート層とは異なる比較的安価な成分からなりシリンダヘッド圧入穴の底面に当接する部分(以下「支持層」という)の二層構造とすることが、例えば特許文献1(特開平9−151712号公報)及び非特許文献1(「設計技術者のためのやさしい自動車材料」日経BP社、1993年9月6日発行第63-65頁)などに示されている。この特許文献1に示された方法では、シート層及び支持層のそれぞれの原料粉を金型に充填して、圧縮成形して上下二層からなる一体の圧粉体とし、次いで焼結を行っている。   Conventionally, as a means for producing an iron-based sintered alloy valve seat at a low cost, a part requiring wear resistance including a contact surface repeatedly hit and slid by a valve face (hereinafter referred to as “seat layer”); For example, Patent Document 1 (Japanese Patent Application Laid-Open No. Hei 9) discloses a two-layer structure of a portion (hereinafter referred to as “support layer”) that is made of a relatively inexpensive component different from the above-described sheet layer and abuts against the bottom surface of the cylinder head press-fitting hole. -151712) and Non-Patent Document 1 ("Easy Automotive Materials for Design Engineers", Nikkei Business Publications, Inc., September 6, 1993, pp. 63-65). In the method disclosed in Patent Document 1, the raw material powder of each of the sheet layer and the support layer is filled in a mold, compression-molded into an integrated green compact consisting of two upper and lower layers, and then sintered. ing.

一方、自動車エンジンの高出力化及びLPG、CNG等の公害防止用クリーン燃料の使用に伴い、エンジンのバルブシートが受ける熱的負荷及び機械的負荷は益々増大する傾向にある。このようなバルブシートへの熱的負荷及び機械的負荷の増大に対処するために、例えば本発明者による特許文献2(特開2002−220645号公報)のごとく、プレアロイ法により合金元素を添加した鉄粉を使用した基地に、例えばFe-60〜70%Mo-0.1%以下の組成をもつ硬質粒子や固体潤滑剤を分散させる方法のように、合金元素を多量に添加する高合金化の手法がバルブシートにも用いられるようになってきている。
特開平9−151712号公報 特開2002−220645号公報 「設計技術者のためのやさしい自動車材料」日経BP社、1993年9月6日発行第63-65頁
On the other hand, with the increase in the output of automobile engines and the use of clean fuels for pollution prevention such as LPG and CNG, the thermal load and mechanical load that the engine valve seat receives tend to increase more and more. In order to cope with such an increase in thermal load and mechanical load on the valve seat, an alloying element is added by a pre-alloy method as described in Patent Document 2 (Japanese Patent Laid-Open No. 2002-220645) by the present inventor, for example. A high alloying method that adds a large amount of alloying elements, such as a method of dispersing hard particles or solid lubricants with a composition of Fe-60 to 70% Mo-0.1% or less to a base using iron powder. Has been used for valve seats.
JP-A-9-151712 JP 2002-220645 A "Easy automotive materials for design engineers", Nikkei BP, September 6, 1993, pages 63-65

しかしながら、鉄基合金基地の高合金化や鉄基合金基地と固体潤滑材などの複合化により、焼結合金原料のプレス成形時の成形性が低下している。また、圧粉体の焼結により、収縮が起こるが、その量は粉末の組成、粒度などにより異なる。上記のような高合金化原料の焼結体では収縮が増大し、金型寸法に対する焼結体(製品素材)の寸法収縮が大きくなる傾向にある。
バルブと接触しない支持層を低コストな材料とする二層構造のバルブシートを製造しようとした場合に、収縮が大きい高合金化シート層と、収縮が小さい低コスト材支持層との寸法が、接合面を除いて異なってしまうという問題が生じる。
However, due to the high alloying of the iron base alloy base and the combination of the iron base alloy base and the solid lubricant, the formability at the time of press forming the sintered alloy raw material is lowered. In addition, shrinkage occurs due to the sintering of the green compact, but the amount varies depending on the composition and particle size of the powder. In the sintered body of the high alloying raw material as described above, the shrinkage increases, and the dimensional shrinkage of the sintered body (product material) tends to increase with respect to the mold size.
When trying to manufacture a valve seat having a two-layer structure using a support layer that does not contact the valve as a low-cost material, the dimensions of the highly alloyed sheet layer with large shrinkage and the low-cost material support layer with small shrinkage are as follows: There arises a problem that it is different except for the joint surface.

Fe系焼結材料の寸法変化は組成が大きく影響することが知られている。すなわち、Cは収縮、Niは収縮、Cuは膨張に作用する。したがって、これ等の添加元素量を調整することで、焼結体(製品素材)の状態における支持層の寸法をシート層の寸法に合わせることが可能である。しかし、近年のバルブシートの熱負荷増大等により、シート層に高合金化、硬質粒子の多量分散、固体潤滑材の分散等の手段がとられるようになると、シート層焼結体(製品素材)での金型に対する寸法変化率が約0.7%以上と極めて大きくなる傾向があり、これらの添加元素量の成分調整では対応できなくなってきている。このため、焼結時のシート層と支持層との寸法変化率が大幅に異なることによるクラック発生や、仕上加工代が大きくなるために、バルブシートの生産性が低下している。
一方、Fe系材料製支持層に用いる鉄系合金粒子の粉末粒度を大きいものに限定することで成形体密度を低下させ、焼結時の収縮量を大きくして、シート層と支持層との寸法変化率を近づけることが考えられたが、一定サイズ以上の大きさに粉末粒度を限定すると、粉末製造上の工程増加により粉末自体のコストが大幅に上がり、二層構造化する本来の目的である低コスト化を達成することができない。
It is known that the dimensional change of the Fe-based sintered material is greatly affected by the composition. That is, C acts on shrinkage, Ni acts on shrinkage, and Cu acts on expansion. Therefore, it is possible to adjust the dimension of the support layer in the state of the sintered body (product material) to the dimension of the sheet layer by adjusting the amount of these additive elements. However, due to the recent increase in the heat load of valve seats and other measures such as high alloying, large dispersion of hard particles, and dispersion of solid lubricants, etc. have been taken in the seat layer, the sintered sheet layer (product material) There is a tendency that the dimensional change rate with respect to the metal mold is extremely large at about 0.7% or more, and it is not possible to cope with the adjustment of the components of these additive element amounts. For this reason, the generation of cracks due to a significant difference in the dimensional change rate between the sheet layer and the support layer during sintering, and the finishing cost increase, resulting in a decrease in the productivity of the valve seat.
On the other hand, by limiting the powder particle size of the iron-based alloy particles used for the Fe-based material support layer to a large one, the density of the compact is reduced, the shrinkage during sintering is increased, and the sheet layer and the support layer Although it was considered that the dimensional change rate was close, if the powder particle size was limited to a certain size or more, the cost of the powder itself increased significantly due to an increase in the process of powder production, and the original purpose of forming a two-layer structure. A certain cost reduction cannot be achieved.

上記課題に鑑み鋭意研究の結果、支持層の鉄基低合金基地中に、プレス成形時の圧縮性を低下させる粉末粒子を添加し、スプリングバックを増大させて成形体の密度を下げることで焼結時の成形体の寸法収縮率を大きくすることにより、シート層とほぼ均等の寸法の収縮率が得られること見出し本発明に想到した。
本発明が着目するスプリングバックは、プレス成形時に、一時的に変形した粉末原料の粒子間距離が小さくなりかつ密度が上昇し、次いでプレス圧力が解除されると粒子形状が復元され、粒子間距離が大きくなり、密度が低下する現象である。
As a result of diligent research in view of the above problems, powder particles that reduce the compressibility during press molding are added to the iron-based low alloy base of the support layer, and the density of the compact is reduced by increasing the spring back. The inventors have found that by increasing the dimensional shrinkage rate of the formed body at the time of ligation, a shrinkage rate substantially equal to that of the sheet layer can be obtained.
The springback focused on by the present invention is that the distance between particles of the powder material temporarily deformed during press molding is reduced and the density is increased, and then the particle shape is restored when the press pressure is released, and the distance between particles Is a phenomenon in which the density increases and the density decreases.

本発明は、支持層の金型基準収縮率をシート層の金型基準収縮率に合わせ込むために、支持層のスプリングバック量を多くすることを提案する。すなわち、シート層でも当然生じるスプリングバックは、硬質粒子及び固体潤滑剤により調節が困難であるために、本発明では支持層のスプリングバックを調整して収縮を多くすることを提案するのである。   The present invention proposes to increase the spring back amount of the support layer so that the mold reference shrinkage rate of the support layer matches the mold reference shrinkage rate of the sheet layer. That is, since the spring back naturally occurring in the seat layer is difficult to adjust due to the hard particles and the solid lubricant, the present invention proposes to adjust the spring back of the support layer to increase the shrinkage.

すなわち、本発明の鉄基焼結合金製バルブシートは、内燃機関のシリンダヘッドに圧入されるバルブシートのバルブと摺動する面が固体潤滑剤及び硬質粒子を含むFe系材料製シート層からなり、シリンダヘッド穴底面に当接する面が前記Fe系材料製シート層と成分構成が異なるFe系材料製支持層からなる二層構造焼結鉄基バルブシートにおいて、前記Fe系材料製支持層が、Feを主成分とする鉄系基地に、非金属粉末粒子及び高硬度金属粒子の1種又は2種以上を分散したことを特徴とする。
本発明の特徴は製造時におけるシート層と支持層との寸法変化を均一化するために支持層の圧縮性を低下させる非金属粉末粒子及び/又は高硬度金属粒子を均一に分散させて、プレス成形時のスプリングバックを大きくし、焼結時におけるシート層の寸法収縮率特性とほぼ均等の収縮特性を達成したものである。すなわち、本発明の鉄基焼結合金製バルブシートと従来のものとの成形体及び焼結体の寸法変化を繰り返し測定し、本件発明の鉄基焼結合金製バルブシート(図3)では、従来の鉄基焼結合金製バルブシート(図2)よりも、金型10に対してスプリングバックした成形体11の外径が大きく、また焼結体12の収縮も大きくなっている。なお、シート層と支持層の間の段差は誇張して図示している。
That is, the iron-based sintered alloy valve seat of the present invention comprises a sheet layer made of an Fe-based material containing a solid lubricant and hard particles on the surface of the valve seat that is press-fitted into the cylinder head of the internal combustion engine. In the two-layer structure sintered iron-based valve seat comprising a Fe-based material support layer having a component structure different from that of the Fe-based material sheet layer in contact with the bottom surface of the cylinder head hole, the Fe-based material support layer is One or more kinds of non-metallic powder particles and high-hardness metal particles are dispersed in an iron-based matrix mainly composed of Fe.
The feature of the present invention is to uniformly disperse non-metallic powder particles and / or high-hardness metal particles that lower the compressibility of the support layer in order to make the dimensional change between the sheet layer and the support layer uniform during production, and press The spring back at the time of molding is enlarged, and the dimensional shrinkage rate characteristic of the sheet layer at the time of sintering is almost equal to the shrinkage characteristic. That is, repeatedly measuring the dimensional change of the molded body and sintered body of the iron-based sintered alloy valve seat of the present invention and the conventional one, in the iron-based sintered alloy valve seat of the present invention (FIG. 3), Compared to the conventional iron-based sintered alloy valve seat (FIG. 2), the outer diameter of the molded body 11 spring-backed against the mold 10 is larger, and the shrinkage of the sintered body 12 is larger. The step between the sheet layer and the support layer is exaggerated.

本発明の鉄基焼結合金製バルブシートの支持層に配合する非金属粉末粒子は、Al2O3、滑石(タルク)等の酸化物、TiN等の窒化物、MnS等の硫化物、CaF(蛍石)等の弗化物、高硬度金属粒子は、ステライト、FeMo、FeCr等の高硬度を持つ金属粉末である。非金属粉末及び高硬度金属粒子の平均粒度は150μmより大きいと焼結した合金の強度が低下するため、150μm以下が好ましい。 Non-metallic powder particles to be blended in the support layer of the iron-based sintered alloy valve seat of the present invention include Al 2 O 3 , oxides such as talc, nitrides such as TiN, sulfides such as MnS, CaF Fluoride such as 2 (fluorite) and high-hardness metal particles are high-hardness metal powders such as stellite, FeMo, and FeCr. When the average particle size of the non-metallic powder and the high-hardness metal particles is larger than 150 μm, the strength of the sintered alloy is lowered, so that it is preferably 150 μm or less.

本発明に係る二層構造鉄基焼結合金製バルブシートの支持層の基地組成は、本来バルブシートの要求特性である高温強度、熱伝導性、低コストを考慮して鉄ベースとし、C、Ni、Cu、Cr、Moのいずれか1種又は2種以上を3〜8重量%Feとの合金としてあるいはFeと複合化された成分として含有するものである。これらの成分中C、Cr、Mo、Niは鉄中に合金され、一方Cuは微細Cuなどの使用によりFe中に合金されてもよいが、元素形態で鉄系基地にFe系合金と複合化されていても熱伝導性向上などの作用を奏する。また、製造時におけるシート層と支持層との寸法変化を均等化するために成形時の圧縮性を低下させる粉末粒子として、ステライト、FeMo、FeCr等の高硬度金属粉末、或いはAl2O3、滑石(タルク)等の酸化物、TiN等の窒化物、MnS等の硫化物、CaF(蛍石)等の弗化物などの非金属粉末粒子をいずれか1種又はこれらを組み合わせて2種以上を0.5〜5重量%含むことを特徴としている。配合する高硬度金属粉末及び非金属粉末粒子は、0.5重量%未満では焼結時の寸法変化率に十分な効果が得られない。また、5重量%より多い場合は支持層の強度低下が大きくなる。したがって、高硬度金属粉末と非金属粉末粒子の配合量は0.5〜5重量%である。 The base composition of the support layer of the valve seat made of the two-layer structure iron-based sintered alloy according to the present invention is an iron base in consideration of the high temperature strength, thermal conductivity, and low cost which are originally required characteristics of the valve seat, C, Any one or more of Ni, Cu, Cr, and Mo is contained as an alloy with 3 to 8 wt% Fe or as a component combined with Fe. Among these components, C, Cr, Mo, Ni are alloyed in iron, while Cu may be alloyed in Fe by using fine Cu, etc., but in an elemental form, it is compounded with an Fe-based alloy in an iron-based matrix. Even if it is done, there exists an effect, such as a heat conductivity improvement. Moreover, as powder particles that reduce the compressibility at the time of molding in order to equalize the dimensional change between the sheet layer and the support layer at the time of manufacture, high-hardness metal powder such as stellite, FeMo, FeCr, or Al 2 O 3 Non-metallic powder particles such as oxides such as talc, nitrides such as TiN, sulfides such as MnS, fluorides such as CaF 2 (fluorite), or a combination of two or more thereof Is contained in an amount of 0.5 to 5% by weight. If the high hardness metal powder and nonmetal powder particles to be blended are less than 0.5% by weight, a sufficient effect on the dimensional change rate during sintering cannot be obtained. On the other hand, when the amount is more than 5% by weight, the strength of the support layer is greatly reduced. Therefore, the blending amount of the high-hardness metal powder and non-metal powder particles is 0.5 to 5% by weight.

なお、本発明に係る二層構造鉄基焼結合金製バルブシートのシート層には、例えば高速度鋼粉末などの合金元素を多量に添加した基地に硬質粒子や固体潤滑材を分散させて熱的負荷及び機械的負荷の増大に対応できる鉄基焼結合金であれば特に限定せずに用いることができる。
本発明に係る二層構造鉄基焼結合金製バルブシートの製造方法において、混合粉の作製、成形、脱蝋、焼結などの条件は特許文献2(特開2002−220645号公報)のそれぞれ段落番号0033〜0036に説明された条件によることができる。
The sheet layer of the double-layer iron-based sintered alloy valve seat according to the present invention is heated by dispersing hard particles and solid lubricant in a base to which a large amount of alloy elements such as high-speed steel powder is added. Any iron-based sintered alloy that can cope with an increase in mechanical load and mechanical load can be used without particular limitation.
In the method for producing a valve seat made of a two-layer structure iron-based sintered alloy according to the present invention, conditions such as preparation, molding, dewaxing, and sintering of mixed powder are as described in Patent Document 2 (Japanese Patent Laid-Open No. 2002-220645). According to the conditions described in paragraph numbers 0033 to 0036.

実施例
本発明に係る二層構造鉄基焼結合金製バルブシートを以下の実施例によりさらに詳細に説明する。なお実施例で使用する単位「%」は、特に記載がない限り「重量%」である。
実施例及び比較例に用いるシート層に用いられた粉末は次のものであった。(1)粒度分布が150〜200メッシュにピークを有するMo:3%、Cr:0.8%及びV:3%を含有する鉄粉からなるプレアロイ粉末;(2)325メッシュアンダーのカルボニルニッケル粉;(3)325メッシュアンダーの金属Mo粉;(4)325メッシュアンダーの黒鉛粉;(5)硬質粒子として61.33%のMo及び0.03%のCを含有し残部実質的にFe及び不可避的不純物からなり150〜200メッシュにピークを有するフェロモリブデン(Fe-Mo)粉;(6)固体潤滑材として325〜400メッシュにピークを有するフッ化カルシウム(CaF2)粉。これらの原料粉末を表1に示される組成に配合し、さらにプレス時の型抜けを良くするためのステアリン酸亜鉛0.5%を加えてシート層の混合粉とした。上記(1)〜(4)は反応して鉄系合金基地を作る。
EXAMPLES The two-layer structure iron-based sintered alloy valve seat according to the present invention will be described in more detail with reference to the following examples. The unit “%” used in the examples is “% by weight” unless otherwise specified.
The powders used for the sheet layers used in Examples and Comparative Examples were as follows. (1) Prealloy powder made of iron powder containing Mo: 3%, Cr: 0.8% and V: 3% having a peak in a particle size distribution of 150 to 200 mesh; (2) Carbonyl nickel powder under 325 mesh; 3) Metal Mo powder with 325 mesh under; (4) Graphite powder with 325 mesh under; (5) Containing 61.33% Mo and 0.03% C as hard particles, the balance being substantially Fe and unavoidable impurities 150 Ferromolybdenum (Fe-Mo) powder having a peak at ˜200 mesh; (6) Calcium fluoride (CaF 2 ) powder having a peak at 325 to 400 mesh as a solid lubricant. These raw material powders were blended in the composition shown in Table 1, and 0.5% zinc stearate for improving mold release during pressing was further added to obtain a mixed powder of the sheet layer. The above (1) to (4) react to form an iron-based alloy base.

実施例の支持層に用いられた粉末は次のとおりであった。(1)粒度分布が150〜200メッシュにピークを有するCr:3%を含有する鉄粉からなるプレアロイ粉末;(2)強度を維持するためのNi粉末:2.5%;(3)C(黒鉛)粉末:0.8%;(4)プレス時の型抜けを良くするためのステアリン酸亜鉛0.5%;(5)シート層と支持層との寸法変化を均等化するためにプレス成形時の圧縮性を低下させる粉末粒子として、FeMo、FeCr、Al2O3、滑石(タルク)を単独あるいは組み合わせて1〜5%。これらの粉末を配合して、表1のように支持層の混合粉とした。 The powder used for the support layer of the examples was as follows. (1) Prealloy powder made of iron powder containing 3% of Cr having a peak in a particle size distribution of 150 to 200 mesh; (2) Ni powder for maintaining strength: 2.5%; (3) C (graphite) Powder: 0.8%; (4) Zinc stearate 0.5% to improve mold release during pressing; (5) Reduced compressibility during press molding to equalize dimensional change between sheet layer and support layer. As powder particles to be used, FeMo, FeCr, Al 2 O 3 , and talc are used alone or in combination, and 1 to 5%. These powders were blended to form a mixed powder of the support layer as shown in Table 1.

また、比較例の支持層には、実施例と同様の鉄粉に、強度を維持するためのNi:2.5%及びC:0.8%、プレス時の型抜けを良くするためのステアリン酸亜鉛0.5%を加え、高硬度金属粒子及び非金属粉末粒子を加えていないもの(比較例1)と、実施例と同様の鉄粉に寸法変化調整のための合金元素としてNiの添加量を増加させ、高硬度金属粒子及び非金属粉末粒子を加えていないもの(比較例2)とした。   Further, in the support layer of the comparative example, the same iron powder as in the examples, Ni for maintaining the strength: 2.5% and C: 0.8%, zinc stearate 0.5% for improving the mold release during pressing The amount of Ni added as an alloying element for adjusting the dimensional change to the iron powder similar to that of the example without adding high-hardness metal particles and non-metal powder particles (Comparative Example 1), Hard metal particles and non-metal powder particles were not added (Comparative Example 2).

Figure 2006002578
Figure 2006002578

表1に示すシート層と実施例及び比較例の支持層を組み合わせて、シート層及び支持層の相対割合が厚さ比でシート層/支持層=4/6となるように混合粉を金型に充填し、637MPaの圧力でプレス成形し、バルブシート用成形体を作製した。プレス機から成形体を抜出した直後に寸法を測定した。
成形体を650℃で1時間加熱して脱蝋した後、真空雰囲気1180℃で1時間焼結し、ガス冷却により焼入れを行い、最後に500℃で焼戻しを行なった。焼戻し後に寸法を測定した。このようにして、図1に示す構造の実施例及び比較例のバルブシート試験片を得た。
Combining the sheet layer shown in Table 1 with the support layers of Examples and Comparative Examples, the mixed powder was molded so that the relative ratio of the sheet layer and the support layer was sheet layer / support layer = 4/6 in the thickness ratio. And press molded at a pressure of 637 MPa to produce a molded product for a valve seat. The dimensions were measured immediately after the molded body was extracted from the press.
The molded body was dewaxed by heating at 650 ° C. for 1 hour, sintered in a vacuum atmosphere at 1180 ° C. for 1 hour, quenched by gas cooling, and finally tempered at 500 ° C. The dimensions were measured after tempering. Thus, the valve seat test piece of the Example of the structure shown in FIG. 1 and a comparative example was obtained.

それぞれの試験片のシート層及び支持層の外径寸法を前述の段階で測定し、焼結によるシート層と支持層の寸法収縮の差異(変化率)を調査した。成形金型の外径寸法を1とした時の焼結品の接合部から最も離れた部位における外径寸法収縮の割合を表2に示す。   The outer diameter dimensions of the sheet layer and the support layer of each test piece were measured in the above-described stage, and the difference (change rate) in dimensional shrinkage between the sheet layer and the support layer due to sintering was investigated. Table 2 shows the ratio of shrinkage of the outer diameter at the part farthest from the joint of the sintered product when the outer diameter of the molding die is 1.

Figure 2006002578
Figure 2006002578

表2から明らかなように、支持層のFe-Cr系合金にプレス成形時の圧縮性を低下させる粉末粒子を添加することにより、0.7〜0.9%の対金型収縮率とすることができ、対金型収縮率の大きいシート層とほぼ同等とすることが可能となる。一方、合金成分のNiを増やしたのみではシート層と同等の対金型収縮率が得られず、Ni,Mo及びCなどの合金成分を増やすだけではシート層と支持層との寸法変化を均等化することができないことが分かる。   As is apparent from Table 2, by adding powder particles that reduce the compressibility during press forming to the Fe—Cr alloy of the support layer, the shrinkage ratio against the mold can be adjusted to 0.7 to 0.9%. It can be made substantially equivalent to a sheet layer having a large mold shrinkage ratio. On the other hand, simply increasing the alloy component Ni does not provide the same mold shrinkage ratio as the sheet layer, and increasing the alloy components such as Ni, Mo, and C equalizes the dimensional change between the sheet layer and the support layer. It can be seen that it cannot be converted.

上述のように、本発明に係る二層構造鉄基焼結合金製バルブシートは、支持層にシート層と成分構成が異なりシート層に対して合金元素量が少なく安価な鉄基合金とし、かつ焼結時のシート層と支持層との寸法変化率を均等化したことで、焼結過程での亀裂の発生や、加工代の増大による生産性への影響を少なくすることができる。このように、本発明に係る二層構造鉄基焼結合金製バルブシートは、シート層において優れた耐摩耗性を維持しつつ、製造性にすぐれ安価に製造することができる。   As described above, the valve seat made of the two-layer structure iron-based sintered alloy according to the present invention is a low-cost iron-base alloy having a small amount of alloy elements with respect to the sheet layer and having a different component composition from the sheet layer in the support layer, and By equalizing the rate of dimensional change between the sheet layer and the support layer during sintering, it is possible to reduce the influence on productivity due to the occurrence of cracks in the sintering process and the increase in processing allowance. Thus, the two-layer structure iron-based sintered alloy valve seat according to the present invention is excellent in manufacturability and inexpensively while maintaining excellent wear resistance in the seat layer.

本発明の実施例および比較例にて作成したバルブシート試験片の断面図である。It is sectional drawing of the valve seat test piece created in the Example and comparative example of this invention. 従来の鉄基焼結合金製バルブシート用成形体及び焼結体の寸法変化を説明する模式図である。It is a schematic diagram explaining the dimensional change of the molded object for conventional valve seats made from an iron base sintered alloy, and a sintered compact. 本発明の鉄基焼結合金製バルブシート用成形体及び焼結体の寸法変化を説明する模式図である。It is a schematic diagram explaining the dimensional change of the molded object for valve seats made from an iron-based sintered alloy of this invention, and a sintered compact.

符号の説明Explanation of symbols

1 シート層
2 支持層
10−金型
11−成形体
12−焼結体


1 Sheet layer 2 Support layer 10-Mold 11-Molded body 12-Sintered body


Claims (6)

内燃機関のシリンダヘッドに圧入されるバルブシートのバルブと摺動する面が固体潤滑剤及び硬質粒子を含むFe系材料製シート層からなり、シリンダヘッドの穴底面に当接する面が前記Fe系材料製シート層と成分構成が異なるFe系材料製支持層からなる二層構造焼結鉄基バルブシートにおいて、前記Fe系材料製支持層が、Feを主成分とする鉄系基地に、非金属粉末粒子及び高硬度金属粒子の1種又は2種以上を分散したことを特徴とする鉄基焼結合金製バルブシート。 The surface of the valve seat that is press-fitted into the cylinder head of the internal combustion engine is made of a Fe-based material sheet layer containing solid lubricant and hard particles, and the surface that contacts the bottom surface of the cylinder head is the Fe-based material. In a two-layer structure sintered iron-based valve seat comprising a Fe-based material support layer having a component composition different from that of the sheet-made sheet layer, the Fe-based material support layer is formed on a ferrous base containing non-metallic powder as a main component. An iron-based sintered alloy valve seat in which one or more of particles and high-hardness metal particles are dispersed. 前記Fe鉄系基地は、C、Ni、Cu、Cr及びMoのいずれか1種又は2種以上を3〜8重量%含有することを特徴とする請求項1記載の鉄基焼結合金製バルブシート。 2. The iron-based sintered alloy valve according to claim 1, wherein the Fe iron-based base contains 3 to 8 wt% of one or more of C, Ni, Cu, Cr and Mo. Sheet. 前記Fe系材料製支持層に含まれる前記非金属粉末粒子及び高硬度金属粒子の1種又は2種以上の含有量が0.5〜5重量%であることを特徴とする請求項1又は2記載の鉄基焼結合金製バルブシート。 The content of one or more of the non-metallic powder particles and the high-hardness metal particles contained in the Fe-based material support layer is 0.5 to 5% by weight. The iron-based sintered alloy valve seat as described. 前記Fe系材料製支持層に含まれる非金属粉末粒子が、Al2O3、滑石(タルク)等の酸化物、TiN等の窒化物、MnS等の硫化物、CaF(蛍石)等の弗化物のいずれか1種又は2種以上であることを特徴とする請求項1から3までのいずれか1項記載の鉄基焼結合金製バルブシート。 Non-metallic powder particles contained in the support layer made of the Fe-based material are Al 2 O 3 , oxides such as talc, nitrides such as TiN, sulfides such as MnS, CaF 2 (fluorite), etc. The iron-based sintered alloy valve seat according to any one of claims 1 to 3, wherein the valve seat is one or more of fluorides. 前記Fe系材料製支持層に含まれる高硬度金属粒子が、ステライト、FeMo、FeCr等のいずれか1種又は2種以上であることを特徴とする請求項1から4までのいずれか1項記載の鉄基焼結合金製バルブシート。 5. The high hardness metal particles contained in the Fe-based material support layer are any one or two or more of stellite, FeMo, FeCr, and the like. 6. This is a valve seat made of an iron-based sintered alloy. 前記Fe系材料製シート層が高速度鋼粉末粒子を含むことを特徴とする請求項1から5までの何れか1項記載の鉄基焼結合金製バルブシート。 The iron-based sintered alloy valve seat according to any one of claims 1 to 5, wherein the Fe-based material sheet layer includes high-speed steel powder particles.
JP2004176560A 2004-06-15 2004-06-15 Double-layer iron-based sintered alloy valve seat Active JP4373287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004176560A JP4373287B2 (en) 2004-06-15 2004-06-15 Double-layer iron-based sintered alloy valve seat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004176560A JP4373287B2 (en) 2004-06-15 2004-06-15 Double-layer iron-based sintered alloy valve seat

Publications (2)

Publication Number Publication Date
JP2006002578A true JP2006002578A (en) 2006-01-05
JP4373287B2 JP4373287B2 (en) 2009-11-25

Family

ID=35771196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004176560A Active JP4373287B2 (en) 2004-06-15 2004-06-15 Double-layer iron-based sintered alloy valve seat

Country Status (1)

Country Link
JP (1) JP4373287B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8845776B2 (en) 2009-04-28 2014-09-30 Taiho Kogyo Co., Ltd. Lead-free copper-based sintered sliding material and sliding parts
JP2016079489A (en) * 2014-10-21 2016-05-16 住友電工焼結合金株式会社 Powder molding die and method for designing sizing die
US20160326919A1 (en) * 2013-12-27 2016-11-10 Nippon Piston Ring Co., Ltd. Assembly of internal combustion engine valve and valve seat
US11098619B2 (en) * 2018-11-16 2021-08-24 Mhale International GmbH Method for producing a copper-infiltrated valve seat ring
US11300018B2 (en) 2018-03-20 2022-04-12 Nittan Valve Co., Ltd. Hollow exhaust poppet valve
US11536167B2 (en) 2018-11-12 2022-12-27 Nittan Valve Co., Ltd. Method for manufacturing engine poppet valve
US11850690B2 (en) 2020-03-30 2023-12-26 Nittan Corporation Method for manufacturing engine poppet valve

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8845776B2 (en) 2009-04-28 2014-09-30 Taiho Kogyo Co., Ltd. Lead-free copper-based sintered sliding material and sliding parts
US20160326919A1 (en) * 2013-12-27 2016-11-10 Nippon Piston Ring Co., Ltd. Assembly of internal combustion engine valve and valve seat
US10287933B2 (en) * 2013-12-27 2019-05-14 Nippon Piston Ring Co., Ltd. Assembly of internal combustion engine valve and valve seat
JP2016079489A (en) * 2014-10-21 2016-05-16 住友電工焼結合金株式会社 Powder molding die and method for designing sizing die
US11300018B2 (en) 2018-03-20 2022-04-12 Nittan Valve Co., Ltd. Hollow exhaust poppet valve
US11536167B2 (en) 2018-11-12 2022-12-27 Nittan Valve Co., Ltd. Method for manufacturing engine poppet valve
US11098619B2 (en) * 2018-11-16 2021-08-24 Mhale International GmbH Method for producing a copper-infiltrated valve seat ring
US11850690B2 (en) 2020-03-30 2023-12-26 Nittan Corporation Method for manufacturing engine poppet valve

Also Published As

Publication number Publication date
JP4373287B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
JP4891421B2 (en) Powder metallurgy mixture and method for producing powder metallurgy parts using the same
JP3926320B2 (en) Iron-based sintered alloy valve seat and method for manufacturing the same
CN102046824B (en) Iron-base sintered alloy for valve sheet and valve sheet for internal combustion engine
US9212572B2 (en) Sintered valve guide and production method therefor
KR101438602B1 (en) Sintered alloy for valve seat and manufacturing method of exhaust valve seat using the same
JP4584158B2 (en) Valve seat material made of iron-based sintered alloy for internal combustion engines
JP2010500474A (en) Improved powder metallurgy composition
US10273838B2 (en) Valve seat insert for internal combustion engine having excellent wear resistance
JPH0210311B2 (en)
JP2015178650A (en) Iron-based sinter alloy valve sheet
EP3358156A1 (en) Sintered valve seat
EP2253727B1 (en) Iron-based alloy powder
JP4373287B2 (en) Double-layer iron-based sintered alloy valve seat
WO2014119720A1 (en) Highly wear-resistant valve seat for use in internal combustion engine and manufacturing method therefor
JP3186816B2 (en) Sintered alloy for valve seat
JP6392530B2 (en) Ferrous sintered alloy valve seat
JP6528899B2 (en) Method of manufacturing mixed powder and sintered body for powder metallurgy
JP3434527B2 (en) Sintered alloy for valve seat
JP4335189B2 (en) Combining valve and valve seat for internal combustion engine
JPS60147514A (en) High-temperature abrasion resistant valve seat
JP2003166025A (en) Hard-grain dispersion type sintered alloy and manufacturing method therefor
KR101363024B1 (en) Sintered steel alloy for wear resistance at high temperatures and fabrication method of valve-seat using the same
JPS61291954A (en) Sintering material having wear resistance and corrosion resistance at high temperature and its manufacture
US11634799B2 (en) Hard particle, sliding member, and production method of sintered alloy
JPH0633184A (en) Production of sintered alloy for valve seat excellent in wear resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4373287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150911

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250