JP2006002266A - Three-dimensional woven fabric, metal fiber three-dimensional woven fabric and method for producing the same - Google Patents

Three-dimensional woven fabric, metal fiber three-dimensional woven fabric and method for producing the same Download PDF

Info

Publication number
JP2006002266A
JP2006002266A JP2004177562A JP2004177562A JP2006002266A JP 2006002266 A JP2006002266 A JP 2006002266A JP 2004177562 A JP2004177562 A JP 2004177562A JP 2004177562 A JP2004177562 A JP 2004177562A JP 2006002266 A JP2006002266 A JP 2006002266A
Authority
JP
Japan
Prior art keywords
dimensional
weaving
woven
fiber
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004177562A
Other languages
Japanese (ja)
Other versions
JP4359537B2 (en
Inventor
Akihisa Higuchi
明久 樋口
Manabu Yoshino
学 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Government
Original Assignee
Tokyo Metropolitan Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Government filed Critical Tokyo Metropolitan Government
Priority to JP2004177562A priority Critical patent/JP4359537B2/en
Publication of JP2006002266A publication Critical patent/JP2006002266A/en
Application granted granted Critical
Publication of JP4359537B2 publication Critical patent/JP4359537B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Woven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that conventional three-dimensional structure fabrics obtain the three-dimensional structures by the shrinkage of shrinking yarns, but restrict their uses due to the characteristics of the shrinking yarns. <P>SOLUTION: The three-dimensional woven fabric is obtained by shrinking outer woven fabric layers 1, 2 to stand up a standing woven fabric layer 3, and then removing the shrinking yarns. Thereby, the uses of the base yarns are not restricted by the shrinkable fibers. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、立体製織体、金属繊維立体製織体及びそれらの製造方法、特に加熱などによって収縮作用を有する収縮繊維を用いて、製織繊維の一部を屈曲させ、起立した立体製織体を得るための構造及び製法の改良に関する。   The present invention provides a three-dimensional woven body, a metal fiber three-dimensional woven body, and a production method thereof, in particular, a shrinkable fiber having a shrinking action by heating or the like to bend a part of the woven fiber to obtain an upright three-dimensional woven body. The present invention relates to improvements in the structure and manufacturing method.

従来より、繊維の熱収縮性を利用して立体製織体を作ることが行われ、主として通気性、クッション性などに優れた立体構造布として利用されていた。特許文献1には、この種のクッション性織物が開示されており、熱収縮性の大きい合成樹脂繊維と、これより熱収縮性が小さいか又は熱収縮性のない合成樹脂繊維とを経又は緯あるいは経緯に組み合わせて織成した織り地を適当温度条件で熱処理し、熱収縮性繊維の熱収縮により熱収縮性の小さいか熱収縮性のない合成繊維の屈曲による弾性部を形成している。この結果、従来においては、衣料、サポータその他のスポーツ用品、包帯等の医療用品、更に土木、建築その他の産業用資材として広範囲に使用しうるクッション性織物が得られた。このような従来におけるクッション性織物を更に改良した立体構造布が特許文献2に示されており、高収縮糸を経糸として用い、緯糸には主としてモノフィラメントからなる繊維を用いることによって、収縮時の屈曲に方向性を与え、均一な厚みを有し、反発力が大きく弾力性に富み、通気性、クッション性、洗濯耐久性等に優れた立体構造布を提供している。この特許文献2によれば、前述した立体構造布は、寝具、座布団、マットあるいは靴中敷き等として広く利用されている。   Conventionally, a three-dimensional woven body has been made by utilizing the heat shrinkability of a fiber, and it has been mainly used as a three-dimensional structure fabric excellent in air permeability, cushioning properties and the like. Patent Document 1 discloses a cushion fabric of this type, which is obtained through a synthetic resin fiber having a large heat shrinkability and a synthetic resin fiber having a smaller heat shrinkage or no heat shrinkability. Alternatively, a woven fabric woven in combination with the background is heat-treated at an appropriate temperature condition, and an elastic portion is formed by bending a synthetic fiber having a small heat shrinkage or no heat shrinkability due to heat shrinkage of the heat shrinkable fiber. As a result, conventionally, cushioning fabrics that can be used in a wide range as clothing, supporters and other sports equipment, medical supplies such as bandages, civil engineering, construction and other industrial materials have been obtained. A three-dimensional structure fabric obtained by further improving such a conventional cushioning fabric is disclosed in Patent Document 2, and a high-shrinkage yarn is used as a warp yarn, and a weft yarn is mainly composed of monofilament, so that it is bent at the time of shrinkage. The three-dimensional structure cloth has a uniform thickness, a uniform thickness, a large repulsive force, a high elasticity, and an excellent breathability, cushioning property, washing durability and the like. According to Patent Document 2, the above-described three-dimensional structure cloth is widely used as a bedding, a cushion, a mat, a shoe insole, or the like.

特開平1−321948号公報JP-A-1-321948 特開平6−128837号公報JP-A-6-128837

しかしながら、上記従来の立体製織体では、熱収縮糸自体が製織体の一方の基繊維として用いられ、この結果、立体製織体自体の特性が収縮糸の特性によって制約されてしまうという問題があった。   However, in the conventional three-dimensional weaving body, the heat shrink yarn itself is used as one base fiber of the weaving body, and as a result, there is a problem that the characteristics of the three-dimensional weaving body itself are restricted by the properties of the shrink yarn. .

すなわち、従来における収縮糸としては主としてポリエステル系高収縮糸が用いられるが、これらの繊維は、熱収縮性を有するが、一方において、立体製織体に求められるその他の特性においては必ずしも最適とは言えない場合が多かった。   That is, polyester-based high-shrinkage yarns are mainly used as conventional shrinkage yarns, but these fibers have heat-shrinkability, but on the other hand, they are not necessarily optimal in other properties required for a three-dimensional weave. There were often no cases.

極端な場合、金属繊維によって立体製織体を作る場合、従来の構造によればポリエステル系高収縮糸が最終的な製品である立体製織体の一方の基繊維を構成するので、他方の繊維として金属繊維を用いた場合においても全体の立体製織体としては所望の耐熱性、導電性などを得ることができないといった問題があった。   In extreme cases, when making a three-dimensional woven body with metal fibers, according to the conventional structure, the polyester-based high-shrinkage yarn constitutes one base fiber of the three-dimensional woven body which is the final product. Even when fibers are used, there is a problem that the desired heat resistance, conductivity, etc. cannot be obtained as a whole three-dimensional weave.

このように、基繊維の特性を重視する場合、立体製織体と収縮糸との特性が相容れない場合は多く、例えば天然素材のみで立体製織体を作る場合などにもポリエステル系高収縮糸がじゃまになることが多かった。   In this way, when emphasizing the characteristics of the base fiber, there are many cases where the characteristics of the three-dimensional woven fabric and the shrink yarn are incompatible, and for example, when making a three-dimensional woven fabric using only natural materials, polyester-based high-shrink yarn is an obstacle. It was often.

前述した金属繊維立体構造体は、例えば表面燃焼バーナー用マットや断熱材、各種フィルター、オートバイ等の断熱マフラーあるいは電池の導電性基盤材などとして広範囲に利用される。特に表面燃焼バーナー用マットはボイラー吸収式冷温水器、乾燥炉、ガラス徐冷路、食品加熱用バーナーなどとして広く用いられ、低NOX・CO性、低騒音性、高放射効率などを有し、幅広い分野で利用されその需要は極めて大きい。   The above-described metal fiber three-dimensional structure is widely used, for example, as a surface combustion burner mat, a heat insulating material, various filters, a heat insulating muffler for a motorcycle, or a conductive base material for a battery. In particular, the surface combustion burner mat is widely used as a boiler absorption chiller / heater, drying furnace, glass slow cooling path, food heating burner, etc., and has low NOX / CO properties, low noise properties, high radiation efficiency, etc. It is used in a wide range of fields and its demand is extremely large.

従来この種の金属繊維立体構造体は図1の写真で示すように、金属短繊維の不織布積層体からなる。この不織布積層体は、厚みを確保するため、金属短繊維をランダムに重ねて積層した不織布状の構造であり、積層密度にばらつきがあり、これを表面燃焼バーナー用マットとして用いると、表面温度にむらが生じ、燃焼時に金属製かすが飛散するなどの問題が生じ、被加熱物に不良品を発生させ、また耐久性が短く高価であるなど種々の問題があった。   Conventionally, this type of metal fiber three-dimensional structure is composed of a nonwoven fabric laminate of short metal fibers, as shown in the photograph of FIG. This non-woven fabric laminate is a non-woven fabric structure in which short metal fibers are randomly stacked in order to ensure thickness, and the stacking density varies, and if this is used as a mat for a surface combustion burner, the surface temperature There were various problems such as unevenness, metal debris scattering during combustion, generation of defective products on the object to be heated, short durability and high cost.

したがって、従来においては、このような金属繊維積層体を不織布のような形状でなく、製織した立体構造とすることが強く要望されていた。   Therefore, in the past, there has been a strong demand for such a metal fiber laminate to have a woven three-dimensional structure rather than a non-woven fabric shape.

本発明の立体製織体は、一対の外側製織層と、両外側製織層間に配置され少なくとも一部が各外側製織層に接結された起立製織層とを含み、外側製織層は基繊維と収縮繊維との交撚糸から製織され、収縮繊維の収縮作用により起立製織層を両外側製織層間で起立させ、また起立後に収縮繊維が除去されていることを特徴とする。   The three-dimensional weaving body of the present invention includes a pair of outer weaving layers and a standing weaving layer disposed between the outer weaving layers and at least partially connected to each outer weaving layer. It is woven from twisted yarns with fibers, the standing woven layer is erected between both outer woven layers by the shrinking action of the shrinking fibers, and the shrinking fibers are removed after the erection.

また、外側製織層及び起立製織層を形成する基繊維は金属繊維からなることを特徴とする。   The base fiber forming the outer woven layer and the standing woven layer is made of metal fiber.

また、収縮繊維は水溶性収縮繊維からなることを特徴とする。   Further, the shrinkable fiber is characterized by comprising a water-soluble shrinkable fiber.

本発明の立体製織体の製造方法は、基繊維と収縮繊維との交撚糸を製織することによって一対の外側製織層を形成する工程と、一対の外側製織層間に配置され、少なくとも一部が各外側製織体に接結される起立製織層を形成する工程と、外側製織層の収縮繊維を収縮させ起立製織層を起立して立体製織体を形成する工程と、立体製織体から収縮繊維を除去する工程と、からなることを特徴とする。   The method for producing a three-dimensional weaving body of the present invention includes a step of forming a pair of outer weaving layers by weaving a twisted yarn of a base fiber and a shrink fiber, and a pair of outer weaving layers. Forming a standing weaving layer connected to the outer weaving body, shrinking the shrinking fibers of the outer weaving layer to stand the standing weaving layer to form a three-dimensional weaving body, and removing the shrinking fibers from the three-dimensional weaving body And a step of performing.

また、外側製織層を加熱することによって収縮繊維を収縮させることを特徴とする。   Further, the shrinkable fiber is contracted by heating the outer woven layer.

また、収縮繊維を溶解洗浄することによって立体製織体から収縮繊維を除去することを特徴とする。   In addition, the shrinkable fiber is removed from the three-dimensional weave by dissolving and washing the shrinkable fiber.

本発明は、立体製織体の基繊維として任意の素材を用い、例えば、断熱あるいは導電性を求める製織体に対しては金属繊維を基繊維として用い、あるいは必要に応じて天然繊維を基繊維として用いあるいはその他の必要な用途に応じて任意に基繊維を選び、この基繊維の一部に収縮繊維を撚糸し、この収縮糸を加熱その他によって収縮させ所望の起立した立体構造を得た後、収縮作用に用いた収縮糸を適当な溶媒あるいは加熱によって除去し、必要な基繊維のみを残して立体製織体を得たものである。   The present invention uses an arbitrary material as a base fiber of a three-dimensional weaving body. For example, a metal fiber is used as a base fiber for a weaving body that requires heat insulation or conductivity, or a natural fiber is used as a base fiber as necessary. After selecting a base fiber arbitrarily according to use or other necessary uses, twisting a shrink fiber to a part of this base fiber, and shrinking the shrink yarn by heating or the like to obtain a desired standing three-dimensional structure, The shrink yarn used for the shrinking action was removed by an appropriate solvent or heating, and only the necessary base fiber was left to obtain a three-dimensional weave.

したがって、得られた立体製織体はその素材が金属、天然繊維、無機繊維あるいは所望の特性を有する基繊維のみからなり、収縮糸成分が残らないので、立体製織体として所望の用途に用いることができるという利点を有する。   Therefore, the obtained three-dimensional weaving body is made only of metal, natural fiber, inorganic fiber or base fiber having desired characteristics, and no shrink yarn component remains, so that it can be used for a desired use as a three-dimensional weaving body. It has the advantage of being able to.

図2には本発明にかかる立体製織体の基本構造が示されており、一対の外側製織層1,2は二重円の外側円が経糸を示し、またその中側円が符号4で示されるごとく緯糸を示す。一方、両外側製織層1,2間に配置された起立製織層3は外側の楕円が経糸を、また内側の円4が緯糸を示している。図示した立体製織体の基本構造において外側製織層1,2と起立製織層3とは適当な間隔をもって接結されており、図から明らかなように、一対の外側製織層1,2が収縮することによって、起立製織層3は約45度の角度で屈曲起立し、所望の厚みを提供している。   FIG. 2 shows the basic structure of the three-dimensional woven fabric according to the present invention. In the pair of outer woven layers 1, 2, the outer circle of the double circle indicates the warp and the inner circle thereof is denoted by reference numeral 4. Shows the weft. On the other hand, in the standing weaving layer 3 arranged between the outer weaving layers 1 and 2, the outer ellipse indicates the warp and the inner circle 4 indicates the weft. In the basic structure of the illustrated three-dimensional weaving body, the outer weaving layers 1 and 2 and the standing weaving layer 3 are connected at an appropriate interval, and as is apparent from the figure, the pair of outer weaving layers 1 and 2 contracts. Thus, the standing woven layer 3 is bent upright at an angle of about 45 degrees to provide a desired thickness.

このような外側製織層の収縮作用を得るため、本発明においては、外側製織層はその基繊維に対して収縮繊維が撚り込まれ、両者の交撚糸から製織されている。より具体的には、図2の場合、一対の外側製織層の経糸には金属基繊維と溶解性収縮繊維との交撚糸が用いられ、一方、起立製織層3の経糸には金属基繊維と溶解性非収縮繊維の交撚糸が用いられている。本実施形態において起立製織層の基繊維は金属基繊維のみでも良いが、溶解性非収縮繊維を交撚することで金属基繊維を製織する際の製織性を改善することができる。   In order to obtain such a shrinking action of the outer weaving layer, in the present invention, the shrinking fibers are twisted into the base fiber of the outer weaving layer, and the two weft yarns are woven. More specifically, in the case of FIG. 2, a warp of a metal base fiber and a soluble shrinkable fiber is used for the warp of the pair of outer woven layers, while the metal base fiber is used for the warp of the standing woven layer 3. Dissolved non-shrinkable fibers are used. In the present embodiment, the base fiber of the standing woven layer may be only the metal base fiber, but the weaving property when weaving the metal base fiber can be improved by twisting the soluble non-shrinkable fiber.

そして、各層の緯糸は金属基繊維と溶解性収縮繊維との交撚糸で構成され、前述したように起立製織層3を両外側製織層1,2に一定の間隔で経方向に交互に接結した組織で製織している。本実施形態において、各層の緯糸は金属基繊維のみでもよいが、溶解性収縮繊維と交撚することにより、金属基繊維を緯方向に収縮する際の高密度化を図ることができる。   The wefts of each layer are composed of woven yarns of metal base fibers and soluble shrinkable fibers, and as described above, the standing woven layer 3 is alternately connected to the outer woven layers 1 and 2 in the warp direction at regular intervals. Weaving with the organization. In this embodiment, the wefts of each layer may be only metal base fibers, but by twisting with soluble shrinkable fibers, it is possible to increase the density when shrinking the metal base fibers in the weft direction.

そして、この接結を含む製織が完了した後、溶解性収縮繊維には、熱水処理が施され、このときの加熱によって収縮糸が収縮し、この結果、この収縮力によって両外側製織層1,2が経糸方向に収縮することにより、起立製織層が接結された外側製織層1,2の方向に立ち上がると共に、緯糸方向にも収縮される。この結果、図2に示されるような基本構造が得られる。そして、この後、立体製織体には沸騰水あるいは溶媒による溶解洗浄処理が行われ、あるいは加熱燃焼処理が施され、この結果溶解性収縮繊維が立体製織体から除去される。この結果、最終的な立体製織体はほぼ基繊維100%の組成で、起立による厚みを有し経緯方向とも高密度化された立体製織体となる。   Then, after the weaving including the binding is completed, the soluble shrinkable fiber is subjected to a hot water treatment, and the shrinkable yarn is shrunk by heating at this time. , 2 contracts in the warp direction and rises in the direction of the outer weaving layers 1 and 2 to which the upright weaving layers are connected, and also contracts in the weft direction. As a result, a basic structure as shown in FIG. 2 is obtained. Thereafter, the three-dimensional weaving body is subjected to a dissolution washing process using boiling water or a solvent, or is subjected to a heat combustion process. As a result, the soluble shrinkable fibers are removed from the three-dimensional weaving body. As a result, the final three-dimensional weaving body is a three-dimensional weaving body having a composition of almost 100% base fiber, having a thickness due to standing and having a high density in the weft direction.

以上説明したように、本発明によれば、例えば金属繊維に水溶性収縮繊維を撚り合わせ、この交撚糸を用いて多層の組織に製織し、熱水や燃焼処理をすることにより金属基繊維のみの立体製織体を得ることができる。もちろん、多層組織は一対の外側製織層間に一層の起立製織層を接結するばかりでなく、このような基本的な3層構造を順次積層することも可能であり、更に外側製織層と起立製織層とを交互に複数層を積層することも好適である。   As described above, according to the present invention, for example, a water-soluble shrinkable fiber is twisted onto a metal fiber, and this intertwisted yarn is used to weave into a multi-layered structure. A three-dimensional weave can be obtained. Of course, in the multilayer structure, not only a single standing weaving layer is connected between a pair of outer weaving layers, but also such a basic three-layer structure can be sequentially laminated. Further, the outer weaving layer and the standing weaving layer can be laminated. It is also preferable to laminate a plurality of layers alternately with the layers.

このようにして織りあがった製織体は、基繊維、例えば金属繊維と水溶性収縮繊維の交撚糸の収縮力、起立製織層の外側製織層との接結間距離、金属繊維の剛軟度の差、組織の層数などにより、厚み、密度、空隙を制御できる立体製織体となる。これらの立体製織体の物理性能は均一密度、耐熱性、断熱性、均一燃焼、高放射効率、吸着性、嵩高性、クッション性などにおいて良好であり、極めて機能性の高い立体製織体となる。   The woven fabric woven in this way has a base fiber, for example, a shrinkage force of a twisted yarn of a metal fiber and a water-soluble shrinkable fiber, a connecting distance between the standing woven layer and an outer woven layer, and a bending resistance of the metal fiber. A three-dimensional weaving body in which the thickness, density and voids can be controlled by the difference, the number of layers of the structure, and the like. The physical performance of these three-dimensional weaves is good in uniform density, heat resistance, heat insulation, uniform combustion, high radiation efficiency, adsorptivity, bulkiness, cushioning properties, etc., and it becomes a three-dimensional weaving body with extremely high functionality.

図3は、本発明にかかる立体製織体の起立変化状態を示している。図3の上部には、外側製織層1,2が収縮する前の状態を示しており、図から明らかなように、一対の外側製織層1,2の間に起立製織層3が適当な間隔で接結されて配置されている。この状態で、両側の外側製織層1,2が加熱などによって収縮作用を起こすと、あいだの起立製織層は各接結点8,9において収縮する外側製織層1,2により引っ張られ、図3の下部に示すように接結点8,9を中心として回転起立する。このとき、基繊維と収縮繊維との交撚糸が50%収縮するとすれば、起立製織層3は理論上60度の角度(符号7)で立ち上がることとなる。図3においては、符号5で示される外側製織層1,2の長さが符号6で示されるごとく半分に収縮している。実際上、金属繊維と収縮繊維の交撚糸の収縮力は、全てが起立製織層3の立体化に寄与できるとは限らないが、他の糸応力に対するロスを考慮しても起立製織層3は少なくとも45度の立ち上がり角度を確保可能である。したがって、外側製織層1,2の収縮率は50%以上であることが好適であり、またこのときの立ち上がり角度は少なくとも45度以上とすることが好適であり、外部から加えられる圧力に対して充分な応力を持つためには、立ち上がり角度を60度前後とすることが好適である。   FIG. 3 shows the standing change state of the three-dimensional woven fabric according to the present invention. The upper part of FIG. 3 shows a state before the outer weaving layers 1 and 2 are contracted. As is clear from the figure, the standing weaving layer 3 is placed at an appropriate interval between the pair of outer weaving layers 1 and 2. It is connected and arranged at. In this state, when the outer weaving layers 1 and 2 on both sides are contracted by heating or the like, the standing weaving layers are pulled by the outer weaving layers 1 and 2 contracting at the respective connection points 8 and 9, and FIG. As shown in the lower part of FIG. At this time, if the twisted yarn of the base fiber and the shrink fiber is shrunk by 50%, the standing woven layer 3 theoretically rises at an angle of 60 degrees (symbol 7). In FIG. 3, the length of the outer woven layers 1 and 2 indicated by reference numeral 5 is shrunk in half as indicated by reference numeral 6. In practice, the shrinkage force of the twisted yarn of the metal fiber and the shrinkable fiber may not all contribute to the three-dimensional structure of the standing woven layer 3, but the standing woven layer 3 is not limited even if the loss to other yarn stresses is taken into consideration. A rising angle of at least 45 degrees can be secured. Accordingly, the shrinkage rate of the outer weaving layers 1 and 2 is preferably 50% or more, and the rising angle at this time is preferably at least 45 degrees or more with respect to the pressure applied from the outside. In order to have sufficient stress, it is preferable that the rising angle is around 60 degrees.

立体製織体の経糸や緯糸に用いる基繊維は耐熱性が必要な表面燃焼用バーナーなどに用いる場合は、耐熱ステンレス糸など金属繊維を用い、炉内材などの断熱性を重視する場合は、炭素、アルミナ、セラミックス繊維などの無機繊維を用いる。立体製織体の厚みは、外側製織層を形成する金属繊維と収縮繊維との交撚糸の収縮力と起立製織層が両側の外側製織層と接結する距離に比例する。更に厚みを必要とする場合には、起立製織層を多重化することが好適である。例えば、起立製織層を五層とし、金属繊維と収縮繊維との交撚糸を、上下2層の外側製織層及び起立製織層の中心層の経糸に用い、二層目及び四層目の起立製織層の経糸に金属繊維と非収縮繊維の交撚糸を用い、各層の緯糸は金属繊維と収縮繊維との交撚糸で構成し、前記起立製織層の二層目の起立製織層を一方の外側製織層と中心起立製織層とに対して一定の間隔で経方向に交互に接結した組織で構成する。更に、四層目の起立製織層を反対側の外側製織層と中心起立製織層とに対して一定の間隔で経方向に交互に接結した組織を用いて製織し、熱水処理後、金属繊維と収縮繊維の交撚糸の収縮力により、二層目と四層目の起立製織層が立ち上がり、二層の立体製織体を得ることができる。   The base fiber used for the warp and weft of the three-dimensional weave is a metal fiber such as a heat-resistant stainless steel thread when used for a surface combustion burner that requires heat resistance. Inorganic fibers such as alumina and ceramic fibers are used. The thickness of the three-dimensional woven body is proportional to the shrinkage force of the twisted yarn of the metal fibers and the shrinkable fibers forming the outer woven layer and the distance at which the standing woven layer is in contact with the outer woven layers on both sides. When the thickness is further required, it is preferable to multiplex the standing woven layer. For example, the upright weaving layers are five layers, and the twisted yarns of metal fibers and shrink fibers are used as the upper and lower outer weaving layers and the center layer of the upright weaving layers, and the second and fourth layers of upright weaving. The warp yarn of each layer is made of a twisted yarn of metal fibers and non-shrinkable fibers, and the weft yarn of each layer is composed of a twisted yarn of metal fibers and shrinkable fibers. It is composed of a structure in which the layers and the central standing weaving layer are alternately connected in the warp direction at regular intervals. Further, weaving the fourth standing weaving layer using a structure alternately connected to the opposite outer weaving layer and the central standing weaving layer at a certain interval in the warp direction, after hydrothermal treatment, metal Due to the shrinkage force of the twisted yarn of the fibers and the shrinkable fibers, the second and fourth upright weaving layers rise and a two-layered three-dimensional weave can be obtained.

更に、緯糸に金属繊維と収縮繊維の交撚糸を高密度化のために用いる際、この緯糸に金属繊維の束あるいは短冊状の金属不織布を織り込むことにより、厚みや緻密性を有した細密充填型金属繊維立体製織体を得ることができる。図4,5には、このような細密充填型立体製織体の基本構造が示され、外側製織層1,2と起立製織層3との間に、それぞれ密度の異なる金属繊維束あるいは金属不織布24,25が織り込まれ、細密充填された金属繊維立体製織体が得られている。   In addition, when weaving metal yarns and shrinking yarns to increase the density of weft yarn, weaving a bundle of metal fibers or a strip-shaped metal nonwoven fabric into this weft yarn to provide a finely packed type with thickness and density A metal fiber three-dimensional weave can be obtained. 4 and 5 show the basic structure of such a densely packed three-dimensional woven body, and metal fiber bundles or metal nonwoven fabrics 24 having different densities between the outer woven layers 1 and 2 and the standing woven layer 3, respectively. , 25 are woven into a finely packed metal fiber solid weave.

本実施形態における各製織層を作る製織においては、金属繊維と水溶性収縮繊維の交撚糸と金属繊維と水溶性非収縮繊維の交撚糸は、別々のビームに巻いて用いる。用いる織機等は、少なくとも2種類の経糸を使用することから、二重以上の送り出し装置を有し、各経糸原料に適した張力で送り出す必要があるため、独立して制御が可能である電動送り出し装置が望ましい。さらに、金属繊維と水溶性収縮繊維の交撚糸は、非常に伸度が低く、製織時の張力むらが厚さや製織不良を引き起こす原因となることから、精度の高い張力制御が必要であり、マイクロコンピュータ制御による電動送り出し制御装置を有していることが望ましい。また、開口装置は、多層織物組織の製織が可能で、多種の経糸を確実に開口するため、ドビー機であることが望ましい。   In the weaving for forming each weaving layer in the present embodiment, a metal fiber and a water-soluble shrinkable fiber stranded yarn and a metal fiber and a water-soluble non-shrinkable woven yarn are wound around separate beams. Since the weaving machine used uses at least two types of warp, it has a double or more feeding device, and it is necessary to feed with a tension suitable for each warp raw material, so electric feeding that can be controlled independently A device is desirable. Furthermore, the twisted yarn of metal fiber and water-soluble shrinkable fiber has very low elongation, and uneven tension during weaving can cause thickness and poor weaving. It is desirable to have a computer controlled electric delivery control device. Further, the opening device is preferably a dobby machine in order to be able to weave a multi-layered woven structure and to reliably open a variety of warps.

本発明において特徴的なことは、前述した外側製織層1,2の収縮により起立製織層3が起立して製織体の立体化が行われた後、収縮繊維が、溶解あるいは焼結、燃焼によって立体製織体から取り除かれることである。   What is characteristic in the present invention is that after the standing weaving layer 3 is erected by the shrinkage of the outer weaving layers 1 and 2 and the woven body is three-dimensionalized, the shrinking fibers are melted, sintered, or burned. It is to be removed from the three-dimensional weave.

このために、本発明においては、前記収縮繊維は水溶性収縮繊維などの溶解性あるいは可燃性収縮繊維からなる。   For this reason, in the present invention, the shrink fibers are made of soluble or combustible shrink fibers such as water-soluble shrink fibers.

前述した水溶性収縮繊維としては、例えば水溶性ビニロン高収縮糸が好適であり、収縮糸が加熱によって収縮した後に、溶解洗浄によって容易に収縮繊維を除去することができ、これによってほぼ基繊維のみの立体製織体を得ることができる。   As the above-mentioned water-soluble shrinkable fibers, for example, water-soluble vinylon highly shrinkable yarns are suitable. After the shrinkable yarns are shrunk by heating, the shrinkable fibers can be easily removed by dissolving and washing, so that only the base fibers are obtained. A three-dimensional weave can be obtained.

前述した水溶性ビニロン高収縮糸の場合、約70℃の熱水で収縮が起こり、更に100℃の沸騰水洗浄によって容易に溶解することが可能となる。もちろん、収縮繊維として、ポリエステル高収縮糸、ポリウレタン糸、ウーリー糸あるいは強撚糸(強い撚り糸を糊などで固めた糸)なども所定の溶媒にて溶解除去することが可能である。   In the case of the above-described water-soluble vinylon highly shrinkable yarn, shrinkage occurs in hot water at about 70 ° C., and it can be easily dissolved by washing with boiling water at 100 ° C. Of course, it is also possible to dissolve and remove polyester highly shrinkable yarns, polyurethane yarns, wooly yarns or strong twisted yarns (yarns obtained by solidifying strong twisted yarns with glue or the like) with a predetermined solvent.

また、収縮繊維の種類によっては、水溶解あるいは溶媒溶解ばかりでなく、燃焼によって収縮繊維を飛散させることも好適である。   In addition, depending on the type of shrinkable fiber, not only water dissolution or solvent dissolution, but also the shrinkable fiber is preferably scattered by combustion.

さらに、熱水処理により得られたほぼ金属繊維100%の立体製織体に、焼結処理を施すことで立体製織体組成が変化し、耐熱特性や断熱性、高密度化などが向上した金属繊維立体製織体とすることができる。   Furthermore, by applying a sintering process to a three-dimensional weave made of almost 100% metal fibers obtained by hydrothermal treatment, the composition of the three-dimensional weave is changed, and the heat-resistant properties, heat insulation, densification, etc. are improved. It can be set as a three-dimensional woven fabric.

このように得られた金属繊維立体製織体は従来の金属短繊維をランダムに重ねて積層した不織布状の構造体と比較して、積層密度にバラツキが無く、表面温度にむらが生じないので、燃焼時に金属繊維カスが飛散しないという利点がある。また、耐久性に優れ、多軸状で厚みを有し、たて・よこ方向とも高密度化された構造を有している。このため、均一密度、耐熱性、断熱性、均一燃焼、高放射効率、吸着性、嵩高性、クッシュン性などに好成績を得ることができ、表面燃焼バーナー用マットなどの従来これらの性能が不足していた分野への利用のほか、断熱材や各種フィルターなど新たな活用分野を広めるものである。   Compared with the nonwoven fabric structure in which the metal fiber three-dimensional woven fabric obtained in this manner is laminated and laminated with random metal short fibers, the lamination density does not vary and the surface temperature does not vary. There is an advantage that metal fiber residue does not scatter during combustion. Moreover, it has excellent durability, a multiaxial shape, a thickness, and a structure in which the vertical and horizontal directions are densified. For this reason, good results can be obtained in uniform density, heat resistance, heat insulation, uniform combustion, high radiation efficiency, adsorptivity, bulkiness, cushion properties, etc., and these performances such as surface combustion burner mats are insufficient in the past. In addition to its use in existing fields, it will expand new fields of use such as insulation and various filters.

以下、本発明の実施例を具体的に説明する。   Examples of the present invention will be specifically described below.

外側製織層の経糸には、金属基繊維として、線径0.06mmで耐熱最高温度1350℃の耐熱金属糸に、水溶性収縮繊維として、繊度84dtexで熱水70℃における最大収縮率65%、溶解温度100℃の水溶性ビニロン高収縮糸や、繊度110dtexで溶解温度30℃の水溶性ビニロン非収縮糸を、撚り合わせた交撚糸を使用した。緯糸は、高密度化を図るため、金属基繊維と水溶性収縮繊維の交撚糸を用いた。   For the warp yarn of the outer woven layer, the metal base fiber is a heat resistant metal yarn having a wire diameter of 0.06 mm and a heat resistant maximum temperature of 1350 ° C. A twisted yarn obtained by twisting a water-soluble vinylon highly shrinkable yarn having a melting temperature of 100 ° C. and a water-soluble vinylon non-shrinkable yarn having a fineness of 110 dtex and a melting temperature of 30 ° C. was used. In order to increase the density of the weft, a twisted yarn of a metal base fiber and a water-soluble shrinkable fiber was used.

金属繊維と水溶性収縮繊維の撚糸は、交撚糸を熱水処理後50%以上の収縮力で収縮させるため、積極的に撚りをかけられるリング加撚機構の合撚糸機を使用して、金属繊維1本と水溶性繊維数本の糸を1m当たり541回の撚り数で撚り合わせた。   The twisted yarn of metal fiber and water-soluble shrinkable fiber uses a twisting machine with a ring twisting mechanism that can be actively twisted in order to shrink the cross-twisted yarn with a shrinkage force of 50% or more after hydrothermal treatment. One fiber and several water-soluble fibers were twisted together at a twist number of 541 per meter.

本発明において、1m当たりの撚り数は300〜800回が好適である。   In the present invention, the number of twists per meter is preferably 300 to 800 times.

実施例1において、各経糸を、多層製織の層の違い、繊度の違い、糸種の違いにより、4本のビームにわけ、適宜のテンションを掛けながら、キンクの発生を抑制するため、ボビン転がし方式で整経を行い、できた各ビームの経糸を、織機の綜絖に順通しの状態に通し、これをさらに筬へ引き込み、織機に織り付け製織準備した。   In Example 1, each warp is divided into four beams according to the difference in the layers of the multi-layer weaving, the difference in the fineness, and the difference in the yarn type. In order to suppress the occurrence of kinks while applying appropriate tension, bobbin rolling is performed. Warping was carried out by the method, and the warp yarns of each beam were passed through the loom's cocoons in a continuous state, and this was further drawn into the cocoons, and woven into the loom to prepare for weaving.

織物組織として、三層の多層組織で、起立製織層には架橋構造を強固にするため平組織とし、外側製織層には経糸収縮力の向上を図るため平組織より組織点の少ない1/3斜文組織を用いて、接結組織より各層を部分的に接結した。収縮後の織物バランスを考慮して、外側製織層と起立製織層の構成比率を1:2とし、ドビー機により開口し製織した。   As a woven fabric structure, it is a three-layered multilayer structure. The standing woven layer has a flat structure to strengthen the cross-linked structure, and the outer woven layer has a structure point of 1/3 that has fewer structure points than the plain structure in order to improve warp shrinkage. Each layer was partially connected from the connected structure using the oblique structure. Considering the balance of the woven fabric after shrinkage, the composition ratio of the outer woven layer and the standing woven layer was 1: 2, and it was opened and woven by a dobby machine.

本発明において、織物組織は、平組織、斜文組織、朱子組織などの交錯組織を用いることができ、また、構成比率は、1:1〜1:5が好適である。   In the present invention, the weave structure can be a cross structure such as a plain structure, an oblique structure and a satin structure, and the composition ratio is preferably 1: 1 to 1: 5.

使用した織機は、図6に示すような、マイクロコンピュータ制御の四重電動送り出し装置および電子ドビーコントローラ付きのドビー開口装置を有した片側レピア織機である。金属基繊維と水溶性収縮繊維との交撚糸の張力にあうように送り出し装置を調整した。製織時には、厚さが少ない織物であるが、熱水処理後は、図3の説明図に示すように、収縮力を有した水溶性収縮繊維の応力により外側製織層が収縮し、収縮しない起立製織層が接結間ごとに立ち上がり多軸状の嵩高い織物を得ることができる。つまり、製織時には、図3上部に示した織物構造であるが、製織後、起立製織層が立ち上がり、多軸構造に変化した織物が得られる。これらに基づいて、製造した多軸構造の織物は、一般織物の断面に比較して、多軸状で厚みや立体性の高い織物とすることができた。   The loom used was a one-side rapier loom having a microcomputer-controlled quadruple electric feeding device and a dobby opening device with an electronic dobby controller as shown in FIG. The feeding device was adjusted so as to meet the tension of the twisted yarn of the metal base fiber and the water-soluble shrinkable fiber. At the time of weaving, the woven fabric has a small thickness. However, after the hot water treatment, as shown in the explanatory diagram of FIG. 3, the outer weaving layer shrinks due to the stress of the water-soluble shrinkable fiber having a shrinking force and does not shrink. The weaving layer rises at every bonding, and a multiaxial bulky woven fabric can be obtained. That is, at the time of weaving, the fabric structure shown in the upper part of FIG. 3 is obtained, but after weaving, the standing weaving layer rises and a fabric having a multiaxial structure is obtained. Based on these, the manufactured multi-axial woven fabric could be a multi-axial woven fabric having a high thickness and three-dimensionality as compared with the cross section of a general woven fabric.

実施例1の緯糸には、金属基繊維と水溶性収縮繊維の交撚糸2本諸糸を用い、緯糸密度が1cm当たり30本であれば、外側製織層をたて方向に50%以上収縮でき、立体的で高密度、圧縮に対する形状安定性や回復性に優れた立体製織体が得られた。   For the wefts of Example 1, two knitted yarns of metal base fibers and water-soluble shrink fibers were used. If the weft density was 30 per cm, the outer weaving layer could be shrunk by 50% or more in the warp direction. As a result, a three-dimensional weave was obtained that was three-dimensional, high-density, and excellent in shape stability and recoverability against compression.

本発明において、前記織物密度は、1cm当たり10〜120本が好適であった。   In the present invention, the fabric density is preferably 10 to 120 per cm.

実施例1における起立のための収縮を起こす熱水処理を施す際、図7に示すように、2枚の板20,21で製織層30を挟み込むことにより、得られる立体製織体の表面形状に平滑性を持たせることができる。すなわち、図7の初期状態において、2枚の板20,21の間隙は製織層30よりも大きく開いており、その間隙は予想される立体製織体の最終厚さとほぼ同等に設定されている。   When performing the hot water treatment for causing shrinkage for standing in Example 1, the surface shape of the resulting three-dimensional weaving body is obtained by sandwiching the weaving layer 30 between the two plates 20 and 21, as shown in FIG. Smoothness can be imparted. That is, in the initial state of FIG. 7, the gap between the two plates 20 and 21 is larger than the weaving layer 30, and the gap is set substantially equal to the expected final thickness of the three-dimensional weave.

したがって、前述した説明のとおり、収縮繊維の収縮によって起立製織層が起立すると、図8の30aで示されるように得られた立体製織体の厚みはほぼ2枚の板20,21の間隙と等しくなり、この状態で立体製織体の表面に平滑性を与えることができる。   Therefore, as described above, when the standing weaving layer stands by shrinkage of the shrinking fibers, the thickness of the three-dimensional weave obtained as shown by 30a in FIG. 8 is almost equal to the gap between the two plates 20, 21. Thus, smoothness can be imparted to the surface of the three-dimensional weave in this state.

本発明において、立体製織体は、各種材質の基繊維に対して用いることができ、前述した実施例で示した金属基繊維ばかりでなく、その他のポリエステル、ナイロン、セラミックス、アラミド、アルミナ、炭素あるいはガラス繊維なども対象とすることができる。   In the present invention, the three-dimensional woven body can be used for base fibers of various materials, and not only the metal base fibers shown in the above-described examples, but also other polyesters, nylons, ceramics, aramids, aluminas, carbons or Glass fibers and the like can also be targeted.

また、基繊維として用いられる糸の太さに対しても広範囲の選択が可能である。例えば、ステンレスあるいは鉄系の金属においては、10μm〜1000μmの糸径を対象とすることができ、その中でも10〜100μmの太さが好適である。さらにこれらを数本撚り合わせたものも好適である。   In addition, a wide range of selection is possible for the thickness of the yarn used as the base fiber. For example, in a stainless steel or iron-based metal, a yarn diameter of 10 μm to 1000 μm can be targeted, and a thickness of 10 to 100 μm is preferable among them. Furthermore, what twisted several of these is also suitable.

金属繊維として銅あるいはアルミニウムを用いる場合、その太さは10〜2000μmを利用することができ、特に10〜200μmの線径が好適である。さらにこれらを数本撚り合わせたものも好適である。   When copper or aluminum is used as the metal fiber, the thickness can be 10 to 2000 μm, and a wire diameter of 10 to 200 μm is particularly preferable. Furthermore, what twisted several of these is also suitable.

更にポリエステル繊維においては、1〜3000μmまで幅広く用いることができ、特に、10〜300μmの線径が好適である。さらにこれらを数本撚り合わせたものも好適である。   Furthermore, in the polyester fiber, it can be widely used up to 1 to 3000 μm, and a wire diameter of 10 to 300 μm is particularly preferable. Furthermore, what twisted several of these is also suitable.

図9は本発明にかかる金属繊維立体製織体を表面燃焼バーナー用マット16として用いた例であり、混合ガス26によって表面燃焼を行う場合に、良好な断熱作用を与えることができる。   FIG. 9 shows an example in which the metal fiber three-dimensional woven fabric according to the present invention is used as the surface combustion burner mat 16. When the surface combustion is performed by the mixed gas 26, a good heat insulating effect can be given.

図10はオートバイなどの排気ガス27を導くマフラー用断熱材として金属繊維立体製織体16を用いた例であり、良好な断熱作用を与えることができる。   FIG. 10 shows an example in which the metal fiber three-dimensional woven body 16 is used as a heat insulating material for a muffler that guides an exhaust gas 27 of a motorcycle or the like, and can provide a good heat insulating effect.

図11には本発明によって製造された金属繊維立体製織体の一例が示されている。   FIG. 11 shows an example of a three-dimensional metal fiber weave produced according to the present invention.

従来の不織布による金属繊維断熱構造体を示す写真である。It is a photograph which shows the metal fiber heat insulation structure by the conventional nonwoven fabric. 本発明にかかる立体製織体の基本構造を示す説明図である。It is explanatory drawing which shows the basic structure of the three-dimensional woven fabric concerning this invention. 本発明にかかる立体製織体の起立作用を示す説明図である。It is explanatory drawing which shows the standing-up effect | action of the three-dimensional woven fabric concerning this invention. 本発明にかかる起立製織体の充填された状態を示す基本構造を示す図である。It is a figure which shows the basic structure which shows the state with which the standing woven fabric concerning this invention was filled. 本発明にかかる起立製織体の充填された状態を示す他の基本構造を示す図である。It is a figure which shows the other basic structure which shows the state with which the standing woven fabric concerning this invention was filled. 本発明の実施例において用いられる四重送り出し装置付き織機の一例を示す説明図である。It is explanatory drawing which shows an example of the loom with a quadruple feeding apparatus used in the Example of this invention. 本発明にかかる立体製織体を製造する際の熱水処理装置の一例を示す説明図である。It is explanatory drawing which shows an example of the hot-water treatment apparatus at the time of manufacturing the three-dimensional woven fabric concerning this invention. 図7に示した熱水処理装置において、立体製織体が得られた状態を示す説明図である。In the hot water treatment apparatus shown in FIG. 7, it is explanatory drawing which shows the state by which the three-dimensional woven fabric was obtained. 本発明にかかる立体製織体を表面燃焼バーナー用マットに用いた一例を示す説明図である。It is explanatory drawing which shows an example which used the three-dimensional woven fabric concerning this invention for the mat | matte for surface combustion burners. 本発明にかかる立体製織体をオートバイ用マフラー断熱材に応用した説明図である。It is explanatory drawing which applied the three-dimensional woven fabric concerning this invention to the muffler heat insulating material for motorcycles. 本発明によって得られた金属繊維立体製織体の一例を示す写真である。It is a photograph which shows an example of the metal fiber solid woven fabric obtained by this invention.

符号の説明Explanation of symbols

1,2 外側製織層、3 起立製織層。
1, 2 Outer weaving layer, 3 Upright weaving layer.

Claims (6)

一対の外側製織層と、両外側製織層間に配置され、少なくとも一部が各外側製織層に接結された起立製織層とを含み、
外側製織層は、基繊維と収縮繊維との交撚糸から製織され、収縮繊維の収縮作用により起立製織層を両外側製織層間で起立させ、また起立後に収縮繊維が除去されていることを特徴とする立体製織体。
A pair of outer woven layers, and an upright woven layer disposed between both outer woven layers and at least partially connected to each outer woven layer;
The outer woven layer is woven from a twisted yarn of a base fiber and a shrink fiber, the standing woven layer is erected between the outer woven layers by the shrinking action of the shrink fiber, and the shrink fiber is removed after the erection. Three-dimensional weaving body.
請求項1記載の立体製織体において、
外側製織層及び起立製織層を形成する基繊維は金属繊維からなることを特徴とする金属繊維立体製織体。
The three-dimensional weaving body according to claim 1,
A metal fiber three-dimensional woven body, wherein the base fibers forming the outer woven layer and the standing woven layer are made of metal fibers.
請求項1又は2記載の立体製織体において、
収縮繊維は水溶性収縮繊維からなることを特徴とする立体製織体及び金属繊維立体製織体。
In the three-dimensional weaving body according to claim 1 or 2,
A three-dimensional woven fabric and a metal fiber three-dimensional woven fabric, wherein the shrinkable fibers are made of water-soluble shrinkable fibers.
基繊維と収縮繊維との交撚糸を製織することによって一対の外側製織層を形成する工程と、
一対の外側製織層間に配置され、少なくとも一部が各外側製織体に接結される起立製織層を形成する工程と、
外側製織層の収縮繊維を収縮させ、起立製織層を起立して立体製織体を形成する工程と、
立体製織体から収縮繊維を除去する工程と、
を含む立体製織体の製造方法。
Forming a pair of outer woven layers by weaving a twisted yarn of a base fiber and a shrink fiber; and
Forming a standing weaving layer disposed between a pair of outer weaving layers, at least a portion of which is connected to each outer weaving body;
Shrinking the shrinkable fibers of the outer weaving layer and standing up the standing weaving layer to form a three-dimensional weave;
Removing the shrink fibers from the three-dimensional woven fabric;
The manufacturing method of the three-dimensional woven fabric containing this.
請求項4記載の製造方法において、
外側製織層を加熱することによって収縮繊維を収縮させることを特徴とする立体製織体の製造方法。
In the manufacturing method of Claim 4,
A method for producing a three-dimensional woven body, comprising shrinking shrinkage fibers by heating an outer weaving layer.
請求項4記載の製造方法において、
収縮繊維を溶解洗浄することによって立体製織体から収縮繊維を除去することを特徴とする立体製織体の製造方法。
In the manufacturing method of Claim 4,
A method for producing a three-dimensional weaving body, wherein the shrinking fibers are removed from the three-dimensional weaving body by dissolving and washing the shrinking fibers.
JP2004177562A 2004-06-15 2004-06-15 Three-dimensional weaving body, metal fiber three-dimensional weaving body, and methods for producing them Active JP4359537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004177562A JP4359537B2 (en) 2004-06-15 2004-06-15 Three-dimensional weaving body, metal fiber three-dimensional weaving body, and methods for producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004177562A JP4359537B2 (en) 2004-06-15 2004-06-15 Three-dimensional weaving body, metal fiber three-dimensional weaving body, and methods for producing them

Publications (2)

Publication Number Publication Date
JP2006002266A true JP2006002266A (en) 2006-01-05
JP4359537B2 JP4359537B2 (en) 2009-11-04

Family

ID=35770903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004177562A Active JP4359537B2 (en) 2004-06-15 2004-06-15 Three-dimensional weaving body, metal fiber three-dimensional weaving body, and methods for producing them

Country Status (1)

Country Link
JP (1) JP4359537B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011144477A (en) * 2010-01-14 2011-07-28 Kyoto Ichi Composite fiber-woven fabric of carbon fiber and silk fiber, and method for producing the same
JP2012031526A (en) * 2010-07-28 2012-02-16 Shinshu Univ Carbon fiber multi-ply woven fabric and method of manufacturing the same, and seat-like fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011144477A (en) * 2010-01-14 2011-07-28 Kyoto Ichi Composite fiber-woven fabric of carbon fiber and silk fiber, and method for producing the same
JP2012031526A (en) * 2010-07-28 2012-02-16 Shinshu Univ Carbon fiber multi-ply woven fabric and method of manufacturing the same, and seat-like fuel cell

Also Published As

Publication number Publication date
JP4359537B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
KR101387890B1 (en) Fibrous reinforcement structure for producing a composite part
TWI383893B (en) Heat-resistant cushioning member for pressing
US10544528B2 (en) Textile constructs formed with fusible filaments
TWI310796B (en) A fabric and a fabric for use in fabricating paper
CN205917381U (en) Novel bilayer tissue surface fabric and protective clothing
JPS61179337A (en) Multilayered fabric
JP6530761B2 (en) Heat resistant outer fabric
JP2008528822A5 (en)
JP2008511768A (en) Heat resistant composite cloth sheet
TW200951257A (en) Ultra-resilient fabric
JP6725654B2 (en) 3D woven fabric preform with channels
JP2003529686A (en) Industrial textiles built from pre-crimped components
TW200924969A (en) A three-dimensional honeycomb-like woven fabric and its weaving method
JP2013177701A (en) Fiber blending wadding
CN211363811U (en) Flame-retardant burn-through-resistant heat-insulation composite fabric
KR100305120B1 (en) Paper Making Cloth
JP4359537B2 (en) Three-dimensional weaving body, metal fiber three-dimensional weaving body, and methods for producing them
CN100368629C (en) Composite felt
JP2019035160A (en) Three layer-structured fabric
KR101404643B1 (en) Composite yarn fabric having improved heat resistance and a method for preparing the same
JPH07238434A (en) Three-dimensional woven fabric in combination of texture and starting yarns
TW201035436A (en) Three-dimensional fabrics and production thereof
JPH06128837A (en) Cloth of a three-dimensional structure and its production
JPH01250430A (en) Multi-layer structure woven fabric and composite material consisting of said woven fabric
JP6722984B2 (en) Method for producing woven fabric having three-dimensional structure

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070319

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4359537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250