JP2006002009A - Method for imparting function to polymer substrate - Google Patents

Method for imparting function to polymer substrate Download PDF

Info

Publication number
JP2006002009A
JP2006002009A JP2004178663A JP2004178663A JP2006002009A JP 2006002009 A JP2006002009 A JP 2006002009A JP 2004178663 A JP2004178663 A JP 2004178663A JP 2004178663 A JP2004178663 A JP 2004178663A JP 2006002009 A JP2006002009 A JP 2006002009A
Authority
JP
Japan
Prior art keywords
pressure
carbon dioxide
polymer substrate
functional additive
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004178663A
Other languages
Japanese (ja)
Inventor
Takeyoshi Den
建順 傳
Wataru Saiki
渉 斎木
Ko Hatakeyama
耕 畠山
Yuurikei Yamano
友里恵 山野
Katsunori Shinohara
勝則 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004178663A priority Critical patent/JP2006002009A/en
Publication of JP2006002009A publication Critical patent/JP2006002009A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for imparting function to a polymer substrate, which controls surface precipitation of a functional additive from a fluid occurring on pressure reduction and removal of the functional additive injected to the substrate after function imparting. <P>SOLUTION: The improved method for imparting function to a polymer substrate by supplying a supercritical fluid having dissolved a functional additive to a pressure container storing a polymer substrate comprises further a process for introducing liquid carbon dioxide to the pressure container, replacing the supercritical liquid having dissolved the functional additive in the pressure container with the liquid carbon dioxide and reducing pressure in the pressure container, into which the liquid carbon dioxide is introduced, to atmospheric pressure as an aftertreatment process after imparting function to the polymer substrate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ポリマー基材に対して、基材表面を改質する機能を付与するポリマー基材への機能付与方法に関するものである。   The present invention relates to a method for imparting a function to a polymer substrate that imparts a function of modifying the surface of the substrate to a polymer substrate.

超臨界流体の特性を利用して様々な添加剤をポリマーに担持させることにより、添加剤放出速度を制御したり、均一な微粒子触媒を形成したり、基材物性、化学特性、耐熱性又は安定性を改良したり、操作特性を改変したりする方法が数多く提案されている。
例えば、ポリマー基材、添加剤及びポリマー膨潤助剤を圧力容器内に入れ、超臨界流体に接触保持してポリマー基材に添加剤とポリマー膨潤助剤を含浸させ、超臨界流体を圧力容器内に流通させてポリマー膨潤助剤を流出分離した後、圧力容器内に圧力を減少させて添加剤をポリマー基材中に封じ込めることを特徴とする添加剤によりポリマー基材を改質する方法が開示されている(例えば、特許文献1参照。)。この特許文献1に示される改質方法では、添加剤としてポリマー基材に実質的に溶解しない材質を用い、ポリマー膨潤助剤として超臨界流体に可溶でポリマー基材に含浸可能な低分子化合物を用いている。この方法を用いることにより、高分子量の添加剤の含浸が可能であり、得られるポリマー基材からの水、生理食塩水、涙液、体液など実使用時にポリマー基材と接触する液体中への添加剤の溶出が実質上ない、或いはあっても極微量である高機能のポリマー基材を提供することができる。
特開平11−255925号公報(請求項1、段落[0039])
By utilizing the properties of supercritical fluids, various additives are supported on the polymer to control the release rate of the additive, to form a uniform fine particle catalyst, physical properties of the substrate, chemical properties, heat resistance or stability. Many methods have been proposed for improving the performance and modifying the operation characteristics.
For example, a polymer substrate, an additive, and a polymer swelling aid are placed in a pressure vessel, held in contact with the supercritical fluid to impregnate the polymer substrate with the additive and the polymer swelling aid, and the supercritical fluid is placed in the pressure vessel. Disclosed is a method for modifying a polymer base material with an additive, characterized in that after the polymer swelling aid flows out and separated, the pressure is reduced in a pressure vessel and the additive is contained in the polymer base material. (For example, refer to Patent Document 1). In the modification method disclosed in Patent Document 1, a low molecular weight compound that is soluble in a supercritical fluid and that can be impregnated into a polymer base material as a polymer swelling aid is used as an additive. Is used. By using this method, high molecular weight additives can be impregnated, and water, physiological saline, tears, body fluids, and the like from the polymer base material obtained into liquids that come into contact with the polymer base material during actual use. It is possible to provide a highly functional polymer base material that is substantially free from elution of the additive or is extremely small.
JP-A-11-255925 (Claim 1, paragraph [0039])

ポリマー基材への機能付与は、機能性添加剤を溶解した超臨界流体に、ポリマー基材を接触させることにより、上記超臨界流体により基材表面を膨潤させ、かつ機能性添加剤の一部又は全部をポリマー基材の表面に注入することにより機能性添加剤をポリマー基材の表面固定するものである。
従来ポリマー基材の機能付与方法としては、次のように行われてきた。即ち、先ず、ポリマー基材を圧力容器に投入してこの圧力容器を密封する。次いで、機能性添加剤を溶解した超臨界流体を圧力容器に供給して圧力容器内部に超臨界流体を充填し、ポリマー基材に機能性添加剤を溶解した超臨界流体を接触させる。この接触によりポリマー基材表面に機能性添加剤が注入される。次に、圧力容器内を大気圧にまで減圧させ、機能を付与したポリマー基材を圧力容器から取出していた。
Functional addition to the polymer base material is made by contacting the polymer base material with a supercritical fluid in which the functional additive is dissolved to swell the surface of the base material with the supercritical fluid, and a part of the functional additive. Alternatively, the functional additive is fixed on the surface of the polymer base material by injecting the whole into the surface of the polymer base material.
Conventionally, a method for imparting a function to a polymer substrate has been performed as follows. That is, first, a polymer substrate is put into a pressure vessel, and the pressure vessel is sealed. Next, the supercritical fluid in which the functional additive is dissolved is supplied to the pressure vessel, the supercritical fluid is filled in the pressure vessel, and the supercritical fluid in which the functional additive is dissolved is brought into contact with the polymer substrate. By this contact, the functional additive is injected onto the surface of the polymer substrate. Next, the inside of the pressure vessel was depressurized to atmospheric pressure, and the polymer base material having a function was taken out from the pressure vessel.

しかしながら、上記方法では次のような問題があった。
機能性物質をポリマー基材表面に注入した後、圧力容器内を大気圧にまで急激に減圧することで、超臨界流体は超臨界状態から常圧状態へと変化する。この相変化により、第1に流体への機能性添加剤の溶解度が急激に低下して流体に溶解していた機能性添加剤が析出し、ポリマー基材表面に析出物が付着してしまう問題があった。また、第2にポリマー基材表面に注入された機能性添加剤の一部が流体とともにポリマー基材から抜け出し易くなってしまう問題があった。第1の問題については、析出物がポリマー基材表面に付着しているだけであり、ポリマー基材と析出物との結合強度は弱く、剥離し易いため、機能付与したポリマー基材を使用する際に、支障を来してしまう。そのため、洗浄溶媒を用いて改質したポリマー基材を洗浄し、表面の析出物を除去しなければならず、煩雑であった。また第2の問題については、急激な減圧によってポリマー基材表面層と圧力容器内の流体相との圧力差が急激に増加し、ポリマー基材表面に注入された機能性添加剤の一部が流体とともにポリマー基材から抜け出し易くなる。そのためポリマー基材中の機能性添加剤濃度が低下し、付与した機能の効率が低下することになる。
However, the above method has the following problems.
After injecting the functional substance onto the surface of the polymer substrate, the supercritical fluid changes from the supercritical state to the normal pressure state by rapidly reducing the pressure vessel to atmospheric pressure. Due to this phase change, firstly, the solubility of the functional additive in the fluid is drastically decreased, and the functional additive dissolved in the fluid is precipitated, and the deposit adheres to the surface of the polymer substrate. was there. Second, there is a problem that a part of the functional additive injected onto the surface of the polymer base material easily escapes from the polymer base material together with the fluid. The first problem is that the precipitate is only attached to the surface of the polymer substrate, and the bond strength between the polymer substrate and the precipitate is weak and easy to peel off. When it comes to trouble. Therefore, the polymer base material modified using a cleaning solvent must be cleaned to remove surface precipitates, which is complicated. As for the second problem, the pressure difference between the surface layer of the polymer base material and the fluid phase in the pressure vessel rapidly increases due to the sudden pressure reduction, and a part of the functional additive injected into the polymer base material surface It becomes easy to escape from the polymer substrate together with the fluid. As a result, the concentration of the functional additive in the polymer substrate is lowered, and the efficiency of the imparted function is lowered.

本発明の目的は、機能付与後において減圧する際に生じる流体からの機能性添加剤の表面析出と基材中に注入された機能性添加剤の抜け出しを抑制し得る、ポリマー基材への機能付与方法を提供することにある。   The object of the present invention is to provide a function for a polymer base material that can suppress the surface precipitation of the functional additive from the fluid and the escape of the functional additive injected into the base material when the pressure is reduced after imparting the function. It is to provide a grant method.

請求項1に係る発明は、ポリマー基材を収容した圧力容器に機能性添加剤を溶解した超臨界流体を供給することによりポリマー基材に機能を付与する方法の改良である。
その特徴ある構成は、ポリマー基材に機能を付与した後の後処理工程として、圧力容器に液体二酸化炭素を導入して圧力容器内の機能性添加剤を溶解した超臨界流体を液体二酸化炭素で置換した後に、液体二酸化炭素を導入した圧力容器内の圧力を大気圧にまで減圧する工程を更に含むところにある。
請求項1に係る発明では、圧力容器内の機能性添加剤を溶解した超臨界流体を液体二酸化炭素で置換した後に圧力容器内部を大気圧にまで減圧するため、ポリマー基材表面への機能性添加剤の付着を抑制することができ、また大気圧にまで減圧することで、液体二酸化炭素が気化して多くの熱を吸収して基材表面に二酸化炭素固体層を形成するため、基材中に注入された機能性添加剤の抜け出しを抑制することができる。
The invention according to claim 1 is an improvement of a method for imparting a function to a polymer substrate by supplying a supercritical fluid in which a functional additive is dissolved to a pressure vessel containing the polymer substrate.
The characteristic configuration is that, as a post-treatment step after imparting a function to the polymer substrate, liquid carbon dioxide is introduced into the pressure vessel and the supercritical fluid in which the functional additive in the pressure vessel is dissolved is liquid carbon dioxide. After the replacement, the method further includes a step of reducing the pressure in the pressure vessel into which liquid carbon dioxide has been introduced to atmospheric pressure.
In the invention according to claim 1, the supercritical fluid in which the functional additive in the pressure vessel is dissolved is replaced with liquid carbon dioxide, and then the pressure vessel is depressurized to atmospheric pressure. Adhesion of additives can be suppressed, and by reducing the pressure to atmospheric pressure, liquid carbon dioxide is vaporized and absorbs a lot of heat to form a carbon dioxide solid layer on the substrate surface. The escape of the functional additive injected into the inside can be suppressed.

請求項2に係る発明は、請求項1に係る発明であって、機能性付与温度が流体の臨界温度以上ポリマー基材の融解温度未満であって、機能性付与圧力が流体の臨界圧力以上30MPa以下である方法である。
請求項3に係る発明は、請求項1に係る発明であって、液体二酸化炭素の温度が31℃以下であって、液体二酸化炭素の圧力が7MPa以上である方法である。
請求項4に係る発明は、請求項1に係る発明であって、超臨界流体がCO2である方法である。
請求項5に係る発明は、請求項1に係る発明であって、超臨界流体がCH3OH、NH3、H2S、ベンゼン、トルエン又はCnm(n=2〜5、m=2n又は2n+2)である方法である。
請求項6に係る発明は、請求項1に係る発明であって、超臨界流体がCO2と5容積%以下のCH3OH、NH3、H2S、ベンゼン、トルエン又はCnm(n=2〜5、m=2n又は2n+2)である方法である。
The invention according to claim 2 is the invention according to claim 1, wherein the functionality imparting temperature is not less than the critical temperature of the fluid and less than the melting temperature of the polymer substrate, and the functionality imparting pressure is not less than the critical pressure of the fluid and 30 MPa. The method is as follows.
The invention according to claim 3 is the method according to claim 1, wherein the temperature of the liquid carbon dioxide is 31 ° C. or lower and the pressure of the liquid carbon dioxide is 7 MPa or higher.
The invention according to claim 4 is the invention according to claim 1, wherein the supercritical fluid is CO 2 .
The invention according to claim 5 is the invention according to claim 1, wherein the supercritical fluid is CH 3 OH, NH 3 , H 2 S, benzene, toluene or C n H m (n = 2 to 5, m = 2n or 2n + 2).
The invention according to claim 6 is the invention according to claim 1, wherein the supercritical fluid is CO 2 and 5% by volume or less of CH 3 OH, NH 3 , H 2 S, benzene, toluene or C n H m ( n = 2 to 5, m = 2n or 2n + 2).

本発明のポリマー基材への機能付与方法は、ポリマー基材に機能を付与した後の後処理工程として、圧力容器に液体二酸化炭素を導入して圧力容器内の機能性添加剤を溶解した超臨界流体を液体二酸化炭素で置換した後に、液体二酸化炭素を導入した圧力容器内の圧力を大気圧にまで減圧する工程を更に含むことにより、機能性添加剤を溶解した超臨界流体を液体二酸化炭素で置換した後に圧力容器内部を大気圧にまで減圧するため、流体の相変化を起因とする溶解度低下による機能性添加剤の析出が大幅に抑制されるため、ポリマー基材表面への析出物の付着を抑制することができ、また大気圧にまで減圧することで、液体二酸化炭素が気化して基材表面に二酸化炭素固体層を形成するため、基材中に注入された機能性添加剤の抜け出しを抑制することができる。   The method for imparting a function to a polymer base material of the present invention is a method of introducing a liquid carbon dioxide into a pressure vessel and dissolving a functional additive in the pressure vessel as a post-treatment step after imparting the function to the polymer base material. After replacing the critical fluid with liquid carbon dioxide, the method further includes the step of reducing the pressure in the pressure vessel into which the liquid carbon dioxide has been introduced to atmospheric pressure, whereby the supercritical fluid in which the functional additive is dissolved is liquid carbon dioxide. Since the pressure vessel is depressurized to atmospheric pressure after replacement with, the precipitation of the functional additive due to the decrease in solubility due to the phase change of the fluid is greatly suppressed. Adhesion can be suppressed, and by reducing the pressure to atmospheric pressure, liquid carbon dioxide is vaporized to form a carbon dioxide solid layer on the substrate surface. Break out It is possible to win.

次に本発明を実施するための最良の形態を図面に基づいて説明する。
本発明の機能付与方法で使用される超臨界流体は、物理的又は化学的に安定な流体であって、臨界温度及び臨界圧力がそれぞれ低く、環境に優しい物質が選定される。超臨界流体とは、臨界温度及び臨界圧力以上に維持された流体であり、気体の性質と液体の性質との両方の性質を示し、気体のように拡散し易くかつ液体の溶解性を示す。本発明の超臨界流体としては、CO2が挙げられる。また、その他に本発明の超臨界流体として適用できる流体としては、CH3OH、NH3、H2S、ベンゼン、トルエン、Cnm(n=2〜5、m=2n又は2n+2)等や、CO2と5容積%以下のCH3OH、NH3、H2S、ベンゼン、トルエン又はCnm(n=2〜5、m=2n又は2n+2)の組合わせが望ましいが、機能性添加剤を用いてポリマー基材に機能を付与することが可能であればこれらに限定されるものではない。本発明の機能性付与温度は流体の臨界温度以上ポリマー基材の融解温度未満であって、機能性付与圧力は流体の臨界圧力以上30MPa以下がそれぞれ好ましい。超臨界流体が超臨界CO2の場合、特に好ましい機能性付与温度は31℃〜150℃であり、特に好ましい機能性付与圧力は10〜25MPaである。
Next, the best mode for carrying out the present invention will be described with reference to the drawings.
The supercritical fluid used in the function-imparting method of the present invention is a physically or chemically stable fluid, and is selected from environmentally friendly substances having low critical temperatures and critical pressures. A supercritical fluid is a fluid maintained above a critical temperature and a critical pressure, exhibits both properties of gas and liquid, is easily diffused like gas, and exhibits solubility of liquid. An example of the supercritical fluid of the present invention is CO 2 . Other fluids that can be used as the supercritical fluid of the present invention include CH 3 OH, NH 3 , H 2 S, benzene, toluene, C n H m (n = 2 to 5, m = 2n or 2n + 2), etc. In addition, a combination of CO 2 and 5% by volume or less of CH 3 OH, NH 3 , H 2 S, benzene, toluene or C n H m (n = 2 to 5, m = 2n or 2n + 2) is desirable. If a function can be provided to a polymer base material using a property additive, it will not be limited to these. The functionality imparting temperature of the present invention is preferably not less than the critical temperature of the fluid and less than the melting temperature of the polymer substrate, and the functionality imparting pressure is preferably not less than the critical pressure of the fluid and not more than 30 MPa. When the supercritical fluid is supercritical CO 2 , a particularly preferable functional application temperature is 31 ° C. to 150 ° C., and a particularly preferable functional application pressure is 10 to 25 MPa.

本発明の機能付与方法で使用されるポリマー基材は、全てのポリマー並びにこれらのポリマーにより作製された成形品である。具体的な材質を例示すると、PP(ポリプロピレン)、PE(ポリエチレン)、PS(ポリスチレン)、PET(ポリエチレンテレフタレート)、ABS(アクリロニトリル−ブタジエン−スチレン)樹脂、PVC(ポリ塩化ビニル)、PVDC(ポリ塩化ビニリデン)、メタクリル、ゼオネックス、シクロポリオレフィン、セルロース系、不飽和ポリエステル、フェノール、ポリウレタン、シリコーン等の樹脂が挙げられ、これら材質を用いて作製されたパイプ、タンク、プレート、繊維又は様々な形状の製品が挙げられるが、機能性添加剤により機能付与可能な基材であれば、これらに限定されるものではない。
また、本発明の機能付与方法で使用される機能性添加剤は、物理的、化学的に非常に安定であり、超臨界流体によって分解せず超臨界流体或いはCO2に5容積%以下のCH3OH、NH3、H2S、ベンゼン、トルエン又はCnm(n=2〜5、m=2n又は2n+2)を含む超臨界流体に溶解可能な有機化合物である。例えば、染料、紫外線吸収剤、防眩剤、ホトクロニック剤、柔軟剤、農薬、薬剤、タンパク質、抗生剤、抗炎症剤、栄養剤、ビタミン剤、フッ素化剤、表面活性剤等が挙げられる。
The polymer substrate used in the function-imparting method of the present invention is all polymers as well as molded articles made from these polymers. Specific materials include PP (polypropylene), PE (polyethylene), PS (polystyrene), PET (polyethylene terephthalate), ABS (acrylonitrile-butadiene-styrene) resin, PVC (polyvinyl chloride), PVDC (polychlorinated). Vinylidene), methacrylic, zeonex, cyclopolyolefin, cellulosic, unsaturated polyester, phenol, polyurethane, silicone, and other resins. Pipes, tanks, plates, fibers, or products of various shapes made using these materials However, it is not limited to these as long as it is a base material capable of imparting a function with a functional additive.
In addition, the functional additive used in the function-imparting method of the present invention is physically and chemically very stable, does not decompose by the supercritical fluid, and is 5% by volume or less in the supercritical fluid or CO 2. It is an organic compound that can be dissolved in a supercritical fluid containing 3 OH, NH 3 , H 2 S, benzene, toluene, or C n H m (n = 2 to 5, m = 2n or 2n + 2). Examples include dyes, ultraviolet absorbers, antiglare agents, photochronic agents, softeners, agricultural chemicals, drugs, proteins, antibiotics, anti-inflammatory agents, nutrients, vitamins, fluorinating agents, surfactants, and the like.

図1に示すように、本発明のポリマー基材への機能付与方法に好適な装置10は、超臨界流体に溶解した機能性添加剤によりポリマー基材12に機能を付与する圧力容器11と、この圧力容器11に機能性添加剤を溶解した超臨界流体を供給するための供給路13と、圧力容器11から超臨界流体を排出するための排出路14とを備える。この供給路13には機能性添加剤を溶解した流体を機能性付与圧力にまで加圧するとともに圧力容器11内に供給する加圧ポンプ17、第1バルブ18及び機能性添加剤を溶解した流体を機能性付与温度にまで加熱する加熱器16がそれぞれ設けられる。また、排出路14には第2バルブ(減圧弁)19が設けられる。更に、供給路13には液体二酸化炭素を圧力容器11内に導入する供給ポンプ21及び第3バルブ22がそれぞれ設けられる。   As shown in FIG. 1, an apparatus 10 suitable for the method for imparting a function to a polymer substrate of the present invention includes a pressure vessel 11 that imparts a function to a polymer substrate 12 with a functional additive dissolved in a supercritical fluid, The pressure vessel 11 is provided with a supply passage 13 for supplying a supercritical fluid in which a functional additive is dissolved, and a discharge passage 14 for discharging the supercritical fluid from the pressure vessel 11. In this supply path 13, the fluid in which the functional additive is dissolved is pressurized to the functionality imparting pressure, and the pressure pump 17, the first valve 18 and the fluid in which the functional additive is dissolved are supplied into the pressure vessel 11. Each of the heaters 16 for heating up to the temperature for imparting functionality is provided. In addition, a second valve (pressure reducing valve) 19 is provided in the discharge path 14. Further, the supply path 13 is provided with a supply pump 21 and a third valve 22 for introducing liquid carbon dioxide into the pressure vessel 11.

このように構成された装置10の圧力容器11にポリマー基材12を収容し、この圧力容器11に加圧ポンプ17及び加熱器16により機能性添加剤を溶解した超臨界流体を供給路13を通じて圧力容器11に供給することにより、圧力容器11内部に機能性添加剤を溶解した超臨界流体が満たされ、ポリマー基材12と超臨界流体とが接触する。次に、第1バルブ18及び第2バルブ(減圧弁)19をそれぞれ閉じ、ポリマー基材12と機能性添加剤を溶解した超臨界流体との接触を一定時間保持することにより、超臨界流体により基材表面が膨潤し、かつ機能性添加剤の一部又は全部がポリマー基材の表面に注入され、ポリマー基材に機能が付与される。また、機能性添加剤を溶解した超臨界流体を連続的に圧力容器11に供給し続けながら、ポリマー基材12に機能を付与してもよく、この場合、第1バルブ18及び第2バルブ(減圧弁)19をそれぞれ開放し、機能性添加剤を溶解した超臨界流体を供給路13を通じて圧力容器11に連続的に供給し続けることで、超臨界流体中に溶解する機能性添加剤の濃度を維持することができる。圧力容器11内部から排出路14を通じて排出された機能性添加剤を溶解した超臨界流体は、機能性添加剤を所定の濃度に調整した後に、加圧ポンプ17及び加熱器16により再度供給路13を通じて循環させてもよい。   The polymer substrate 12 is accommodated in the pressure vessel 11 of the apparatus 10 configured as described above, and a supercritical fluid in which the functional additive is dissolved by the pressure pump 17 and the heater 16 is supplied to the pressure vessel 11 through the supply path 13. By supplying the pressure vessel 11, the supercritical fluid in which the functional additive is dissolved is filled in the pressure vessel 11, and the polymer base 12 and the supercritical fluid come into contact with each other. Next, each of the first valve 18 and the second valve (pressure reducing valve) 19 is closed, and the contact between the polymer substrate 12 and the supercritical fluid in which the functional additive is dissolved is maintained for a certain period of time. The surface of the base material swells, and a part or all of the functional additive is injected into the surface of the polymer base material, thereby imparting a function to the polymer base material. In addition, a function may be imparted to the polymer base 12 while continuously supplying the supercritical fluid in which the functional additive is dissolved to the pressure vessel 11, and in this case, the first valve 18 and the second valve ( Each of the pressure reducing valves 19 is opened, and the supercritical fluid in which the functional additive is dissolved is continuously supplied to the pressure vessel 11 through the supply path 13, so that the concentration of the functional additive dissolved in the supercritical fluid is increased. Can be maintained. The supercritical fluid in which the functional additive discharged from the inside of the pressure vessel 11 is discharged through the discharge path 14 is adjusted to a predetermined concentration, and then supplied again by the pressurizing pump 17 and the heater 16. You may circulate through.

本発明の特徴ある構成は、超臨界流体によりポリマー基材に機能を付与した後の後処理工程として、圧力容器11に液体二酸化炭素を導入して圧力容器内の機能性添加剤を溶解した超臨界流体を液体二酸化炭素で置換した後に、液体二酸化炭素を導入した圧力容器11内の圧力を大気圧にまで減圧する工程を更に含むところにある。
この後処理工程では、先ず、圧力容器11の供給路13側に接続している機能性添加剤を溶解した超臨界流体の第1バルブ18を閉じて、圧力容器11内への機能性添加剤を溶解した超臨界流体の供給を停止する。続いて、第2バルブ(減圧弁)19及び第3バルブ22をそれぞれ開放し、圧力容器11内部の圧力を所定の範囲に維持しながら機能性添加剤を溶解していない液体二酸化炭素を供給ポンプ21により供給路13を通じて圧力容器11内に導入して、圧力容器内の機能性添加剤を溶解した超臨界流体を液体二酸化炭素で置換する。置換された機能性添加剤を溶解した超臨界流体は排出路14を通じて圧力容器11内から除去される。液体二酸化炭素を圧力容器11内に導入し終えたら、第3バルブ22を閉じて、液体二酸化炭素の導入を停止する。
A characteristic configuration of the present invention is a super-process in which liquid carbon dioxide is introduced into the pressure vessel 11 and the functional additive in the pressure vessel is dissolved as a post-treatment step after imparting a function to the polymer base material with a supercritical fluid. After replacing the critical fluid with liquid carbon dioxide, the method further includes a step of reducing the pressure in the pressure vessel 11 into which liquid carbon dioxide has been introduced to atmospheric pressure.
In this post-processing step, first, the first valve 18 of the supercritical fluid in which the functional additive connected to the supply path 13 side of the pressure vessel 11 is dissolved is closed, and the functional additive into the pressure vessel 11 is closed. The supply of the supercritical fluid in which is dissolved is stopped. Subsequently, the second valve (pressure reducing valve) 19 and the third valve 22 are each opened to supply liquid carbon dioxide that does not dissolve the functional additive while maintaining the pressure inside the pressure vessel 11 within a predetermined range. 21 is introduced into the pressure vessel 11 through the supply path 13 to replace the supercritical fluid in which the functional additive in the pressure vessel is dissolved with liquid carbon dioxide. The supercritical fluid in which the substituted functional additive is dissolved is removed from the pressure vessel 11 through the discharge path 14. When the introduction of liquid carbon dioxide into the pressure vessel 11 is completed, the third valve 22 is closed and the introduction of liquid carbon dioxide is stopped.

次に、圧力容器11の排出路14側に設けられた第2バルブ(減圧弁)19を開放して、圧力容器11内部を大気圧まで減圧する。この減圧によって圧力容器11内部に導入された液体二酸化炭素は気化し、この気化によって多くの吸収熱が発生する。気化吸収熱の発生によってポリマー基材表面の温度は急激に低下し、ポリマー基材表面に二酸化炭素の固体層が形成される。ポリマー基材12表面に形成された固体層は基材表面の電気的な活性を低下させるため、圧力容器11内に機能性添加剤が残留していたとしても、基材表面への機能性添加剤の析出が抑制される。また基材表面に二酸化炭素の固体層が形成されることで、従来減圧することによって生じていた基材表面に付与された機能性添加剤の抜け出しを抑制することができる。このポリマー基材12表面に形成された二酸化炭素の固体層は、ポリマー基材12を圧力容器11の外に取出して、室温で基材を放冷することにより自然昇華して除去される。   Next, the second valve (pressure reducing valve) 19 provided on the discharge path 14 side of the pressure vessel 11 is opened to reduce the pressure vessel 11 to atmospheric pressure. The liquid carbon dioxide introduced into the pressure vessel 11 by this decompression is vaporized, and a lot of heat of absorption is generated by this vaporization. The temperature of the polymer substrate surface rapidly decreases due to the generation of vaporization absorption heat, and a solid layer of carbon dioxide is formed on the polymer substrate surface. Since the solid layer formed on the surface of the polymer substrate 12 reduces the electrical activity of the substrate surface, even if the functional additive remains in the pressure vessel 11, the functional addition to the substrate surface The precipitation of the agent is suppressed. Further, by forming a solid layer of carbon dioxide on the surface of the base material, it is possible to suppress the escape of the functional additive applied to the base material surface, which has been caused by reducing the pressure in the past. The solid layer of carbon dioxide formed on the surface of the polymer substrate 12 is removed by natural sublimation by taking the polymer substrate 12 out of the pressure vessel 11 and allowing the substrate to cool at room temperature.

次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
先ず、ポリマー基材としてポリプロピレンを、機能性添加剤としてブロノン204を、流体として二酸化炭素を、後処理導入溶媒として液体二酸化炭素をそれぞれ用意した。次いで、図1に示す機能付与装置を使用し、反応容器11内にポリプロピレンを収容し、反応容器を密封した。次に、40℃、10MPaにまで加温及び加圧してブロノン204を溶解した超臨界二酸化炭素を反応容器11内に供給路13を通じて供給して反応容器11内にブロノン204を溶解した超臨界二酸化炭素を満たし、ポリプロピレンと接触させた。次に、第1バルブ18及び第2バルブ(減圧弁)19をそれぞれ閉じ、この状態を1時間保持することにより、ポリプロピレン表面にブロノン204を注入してポリプロピレンに機能を付与した。続いて、第2バルブ(減圧弁)19で反応容器11内の圧力を所定圧力に調整し、第3バルブ22を開放して、反応容器11内に31℃以下、7MPa以上に維持された液体二酸化炭素を導入し、反応容器11内のブロノン204を溶解した超臨界二酸化炭素を液体二酸化炭素で置換した。排出路14側の第2バルブ(減圧弁)19を開放して、反応容器11内を大気圧にまで減圧し、更にポリプロピレンを圧力容器11から取り出して機能を付与したポリプロピレンを室温で放冷した。得られた機能付与後のポリプロピレン表面を観察したところ、ブロノン204の機能が十分に付与されていた。
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
First, polypropylene was prepared as a polymer substrate, bronone 204 as a functional additive, carbon dioxide as a fluid, and liquid carbon dioxide as a post-treatment introduction solvent. Next, using the function providing apparatus shown in FIG. 1, polypropylene was accommodated in the reaction vessel 11 and the reaction vessel was sealed. Next, supercritical carbon dioxide in which bronone 204 is dissolved by heating and pressurizing to 40 ° C. and 10 MPa is supplied into the reaction vessel 11 through the supply path 13, and supercritical carbon dioxide in which bronone 204 is dissolved in the reaction vessel 11. Filled with carbon and contacted with polypropylene. Next, each of the first valve 18 and the second valve (pressure reducing valve) 19 was closed, and this state was maintained for 1 hour, so that bronone 204 was injected onto the polypropylene surface to impart a function to the polypropylene. Subsequently, the pressure in the reaction vessel 11 is adjusted to a predetermined pressure with the second valve (pressure reducing valve) 19, the third valve 22 is opened, and the liquid maintained in the reaction vessel 11 at 31 ° C. or lower and 7 MPa or higher. Carbon dioxide was introduced, and the supercritical carbon dioxide in which the bronone 204 in the reaction vessel 11 was dissolved was replaced with liquid carbon dioxide. The second valve (pressure reducing valve) 19 on the discharge path 14 side was opened, the inside of the reaction vessel 11 was reduced to atmospheric pressure, and the polypropylene was removed from the pressure vessel 11 and allowed to cool at room temperature. . When the obtained polypropylene surface after imparting the function was observed, the function of bronon 204 was sufficiently imparted.

<実施例2>
超臨界温度を120℃に維持した以外は実施例1と同様にして、ポリプロピレンに機能を付与した。得られた機能付与後のポリプロピレン表面を観察したところ、ブロノン204の機能が十分に付与されていた。
<Example 2>
A function was imparted to polypropylene in the same manner as in Example 1 except that the supercritical temperature was maintained at 120 ° C. When the obtained polypropylene surface after imparting the function was observed, the function of bronon 204 was sufficiently imparted.

<比較例1>
実施例1と同様にしてポリプロピレンに機能を付与した後、排出路14側の第2バルブ(減圧弁)19を開放して、反応容器11内を大気圧にまで減圧し、更にポリプロピレンを圧力容器11から取り出して機能を付与したポリプロピレンを室温で放冷した。即ち、機能を付与した後に、圧力容器11内部に液体二酸化炭素を導入しなかった。得られた機能付与後のポリプロピレン表面にはブロノン204の析出物が付着していた。そのため、メタノールを洗浄溶媒として更に洗浄工程を施す必要があった。この洗浄工程を施すことで環境への負荷がかかるだけでなく、コストが増大することが考えられる。また、洗浄して析出物を除去した後のポリプロピレン表面を観察したところ、ブロノン204の付与が部分的に十分ではなく、いったん注入されたブロノン204が、反応容器11内を大気圧にまで急激に減圧する際に抜け出したものと考えられる。
<Comparative Example 1>
After imparting a function to polypropylene in the same manner as in Example 1, the second valve (pressure reducing valve) 19 on the discharge path 14 side is opened, the inside of the reaction vessel 11 is reduced to atmospheric pressure, and the polypropylene is further added to the pressure vessel. The polypropylene which was taken out from No. 11 and given a function was allowed to cool at room temperature. That is, liquid carbon dioxide was not introduced into the pressure vessel 11 after the function was imparted. Bronone 204 deposits were adhered to the obtained polypropylene surface after imparting the function. Therefore, it has been necessary to further perform a washing step using methanol as a washing solvent. By performing this cleaning step, it is considered that not only an environmental load is applied, but also the cost increases. Further, when the polypropylene surface after removing the precipitates by washing was observed, the application of bronone 204 was not partially sufficient, and once injected, the bronone 204 abruptly reached the atmospheric pressure in the reaction vessel 11. It is thought that it escaped when decompressing.

本発明のポリマー基材への機能付与方法に使用される装置を示す図。The figure which shows the apparatus used for the function provision method to the polymer base material of this invention.

符号の説明Explanation of symbols

10 機能付与装置
11 反応容器
12 ポリマー基材
13 供給路
14 排出路
16 加熱器
17 加圧ポンプ
18 第1バルブ
19 第2バルブ(減圧弁)
21 供給ポンプ
22 第3バルブ
DESCRIPTION OF SYMBOLS 10 Function provision apparatus 11 Reaction container 12 Polymer base material 13 Supply path 14 Discharge path 16 Heater 17 Pressurization pump 18 1st valve 19 2nd valve (pressure reduction valve)
21 Supply pump 22 3rd valve

Claims (6)

ポリマー基材を収容した圧力容器に機能性添加剤を溶解した超臨界流体を供給することにより前記ポリマー基材に機能を付与する方法において、
前記ポリマー基材に機能を付与した後の後処理工程として、前記圧力容器に液体二酸化炭素を導入して前記圧力容器内の機能性添加剤を溶解した超臨界流体を液体二酸化炭素で置換した後に、前記液体二酸化炭素を導入した圧力容器内の圧力を大気圧にまで減圧する工程を更に含むことを特徴とするポリマー基材への機能付与方法。
In a method of imparting a function to the polymer substrate by supplying a supercritical fluid in which a functional additive is dissolved in a pressure vessel containing the polymer substrate,
As a post-treatment step after imparting a function to the polymer base material, after introducing liquid carbon dioxide into the pressure vessel and replacing the supercritical fluid dissolving the functional additive in the pressure vessel with liquid carbon dioxide A method for imparting a function to a polymer substrate, further comprising the step of reducing the pressure in the pressure vessel into which the liquid carbon dioxide has been introduced to atmospheric pressure.
機能性付与温度が流体の臨界温度以上ポリマー基材の融解温度未満であって、機能性付与圧力が流体の臨界圧力以上30MPa以下である請求項1記載の方法。   The method according to claim 1, wherein the functional application temperature is not lower than the critical temperature of the fluid and lower than the melting temperature of the polymer substrate, and the functional application pressure is not lower than the critical pressure of the fluid and not higher than 30 MPa. 液体二酸化炭素の温度が31℃以下であって、液体二酸化炭素の圧力が7MPa以上である請求項1記載の方法。   The method according to claim 1, wherein the temperature of the liquid carbon dioxide is 31 ° C or lower, and the pressure of the liquid carbon dioxide is 7 MPa or higher. 超臨界流体がCO2である請求項1記載の方法。 The method of claim 1 wherein the supercritical fluid is CO 2. 超臨界流体がCH3OH、NH3、H2S、ベンゼン、トルエン又はCnm(n=2〜5、m=2n又は2n+2)である請求項1記載の方法。 Supercritical fluid CH 3 OH, NH 3, H 2 S, benzene, toluene or C n H m (n = 2~5 , m = 2n or 2n + 2) The method of claim 1, wherein. 超臨界流体がCO2と5容積%以下のCH3OH、NH3、H2S、ベンゼン、トルエン又はCnm(n=2〜5、m=2n又は2n+2)である請求項1記載の方法。
Supercritical fluid and CO 2 5% by volume or less of CH 3 OH, NH 3, H 2 S, benzene, according to claim 1, wherein toluene or C n H m (n = 2~5 , m = 2n or 2n + 2) the method of.
JP2004178663A 2004-06-16 2004-06-16 Method for imparting function to polymer substrate Withdrawn JP2006002009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004178663A JP2006002009A (en) 2004-06-16 2004-06-16 Method for imparting function to polymer substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004178663A JP2006002009A (en) 2004-06-16 2004-06-16 Method for imparting function to polymer substrate

Publications (1)

Publication Number Publication Date
JP2006002009A true JP2006002009A (en) 2006-01-05

Family

ID=35770674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004178663A Withdrawn JP2006002009A (en) 2004-06-16 2004-06-16 Method for imparting function to polymer substrate

Country Status (1)

Country Link
JP (1) JP2006002009A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042394A (en) * 2007-08-07 2009-02-26 Ricoh Co Ltd Seamless belt for electrophotography, and manufacturing method therefor
JP2009163050A (en) * 2008-01-08 2009-07-23 Ricoh Co Ltd Electrophotographic photoreceptor, its manufacturing method, image forming apparatus, process cartridge and image forming method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042394A (en) * 2007-08-07 2009-02-26 Ricoh Co Ltd Seamless belt for electrophotography, and manufacturing method therefor
JP2009163050A (en) * 2008-01-08 2009-07-23 Ricoh Co Ltd Electrophotographic photoreceptor, its manufacturing method, image forming apparatus, process cartridge and image forming method

Similar Documents

Publication Publication Date Title
CA2671567C (en) Devulcanized rubber and methods
JP4194494B2 (en) Polymer substrate processing method
JP5467217B2 (en) Cyclodextrin composite material and production method thereof
CN101880401B (en) Polymer surface fluorination technique
CN110023056A (en) The method for manufacturing three-dimension object for subsequent cure by delivering reactive component
EP3768494B1 (en) Production of low density products by additive manufacturing
DE502005009643D1 (en) METHOD FOR PRODUCING POLYMER TREATMENTS BASED ON POLYCONDENSATION REACTIVE RESINS
Ajzenberg et al. What's new in industrial polymerization with supercritical solvents? A short review
Bashir et al. Highly uniform and porous polyurea microspheres: clean and easy preparation by interface polymerization, palladium incorporation, and high catalytic performance for dye degradation
JP2006002009A (en) Method for imparting function to polymer substrate
CN104292393A (en) Method for preparing grafted copolymer by adopting supercritical carbon dioxide
JP2009207973A (en) Hollow microcapsule of styrene-based thermoplastic elastomer and its manufacturing method
CN103773627B (en) A kind of solution and purging method cleaning poly lactic acid polymerized reaction unit
Yang et al. Radiation cross-linking for conventional and supercritical CO2 foaming of polymer
CN101970719B (en) Process for producing composite material comprising resin molded product
JP5578557B2 (en) Method for producing metal ion collector
JP5215731B2 (en) Plastic surface modification method and surface modified plastic
JP5205636B2 (en) Manufacturing method of resin structure
CN107815449A (en) A kind of preparation method of immobilised enzymes oil spilling degradation agent
JP5491737B2 (en) High pressure processing method and high pressure processing apparatus
JP4280832B2 (en) Water photoreductant and method for producing the same
JP6118014B2 (en) Hydrothermal gasification reactor
Saleem et al. Development of Polymeric Aerogel using Plastic Wastes for Oil Cleanup from Wastewater
JP2001096104A (en) Method and apparatus for removing organic matter in liquid
Lora et al. Polymer processing with supercritical fluids: an overview

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904