JP2006001965A - Thermoplastic resin molding and thermoplastic resin composition - Google Patents

Thermoplastic resin molding and thermoplastic resin composition Download PDF

Info

Publication number
JP2006001965A
JP2006001965A JP2004176650A JP2004176650A JP2006001965A JP 2006001965 A JP2006001965 A JP 2006001965A JP 2004176650 A JP2004176650 A JP 2004176650A JP 2004176650 A JP2004176650 A JP 2004176650A JP 2006001965 A JP2006001965 A JP 2006001965A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
fiber
carbon fiber
mass
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004176650A
Other languages
Japanese (ja)
Other versions
JP4609984B2 (en
JP2006001965A5 (en
Inventor
Seisuke Tanaka
清介 田中
Yasunori Shirai
安則 白井
Naoki Sugiura
直樹 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2004176650A priority Critical patent/JP4609984B2/en
Publication of JP2006001965A publication Critical patent/JP2006001965A/en
Publication of JP2006001965A5 publication Critical patent/JP2006001965A5/ja
Application granted granted Critical
Publication of JP4609984B2 publication Critical patent/JP4609984B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide thermoplastic resin moldings which are light, highly rigid and impact resistant and a thermoplastic resin composition. <P>SOLUTION: The thermoplastic resin composition comprises 40-80 mass% of a thermoplastic resin (A) containing an aromatic polyamide and 20-60 mass% of a carbon fiber (B). The carbon fiber (B) satisfies the following (i) to (iii): (i) There are substantially no wrinkles extending in the longitudinal direction of a mono-filament on the surface thereof. (ii) The cross-section of the mono-filament has a ratio of the major axis to the minor axis (major axis/minor) of 1.00-1.02. (iii) The modulus of elasticity of a strand is 230-500 GPa. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、軽量性および剛性が必要な樹脂成形品および樹脂組成物に関する。   The present invention relates to a resin molded product and a resin composition that require light weight and rigidity.

近年、金属部品の樹脂化は様々な分野で行われてきており、特にノートパソコン筺体や競技用自転車などの分野においては、マグネシウム合金等の金属に替わりうる剛性、耐衝撃性と軽量性が要求されるようになってきている。高剛性、高耐衝撃性の樹脂成形品を得るためには、一般に、繊維強化材によって補強された樹脂が用いられ、特に軽量化のためには、炭素繊維が補強材として用いられる(例えば、特許文献1参照)。   In recent years, the plasticization of metal parts has been carried out in various fields, especially in the fields of notebook computer housings and competitive bicycles, which require rigidity, impact resistance and light weight that can replace metals such as magnesium alloys. It has come to be. In order to obtain a resin molded product with high rigidity and high impact resistance, a resin reinforced with a fiber reinforcement is generally used, and carbon fiber is used as a reinforcing material particularly for weight reduction (for example, Patent Document 1).

特許文献1には、ナイロン6等の熱可塑性樹脂に炭素繊維を配合することによって、軽量で剛性のある材料が記載されている。しかしながら、同文献に記載されている熱可塑性樹脂成形品の曲げ弾性率は、たかだか30000MPa弱程度であり、さらに高剛性の材料が求められていた。
特開2001−181516号公報
Patent Document 1 describes a lightweight and rigid material by blending carbon fiber with a thermoplastic resin such as nylon 6. However, the bending elastic modulus of the thermoplastic resin molded article described in the same document is at most about 30000 MPa, and a material with higher rigidity has been demanded.
JP 2001-181516 A

本発明の目的は、剛性、耐衝撃性等の機械的特性に優れ、なおかつ軽量性に優れる熱可塑性樹脂成形品および熱可塑性樹脂組成物を提供することにある。   An object of the present invention is to provide a thermoplastic resin molded article and a thermoplastic resin composition which are excellent in mechanical properties such as rigidity and impact resistance and are excellent in light weight.

本発明は、曲げ弾性率が35000MPa以上であって、比重が1.4以下である熱可塑性樹脂成形品に関するものであり、比弾性率が25000MPa以上である熱可塑性樹脂成形品に関するものであり、また、芳香族ポリアミドを含有する熱可塑性樹脂(A)を40〜70質量%、炭素繊維(B)を30〜60質量%含有する熱可塑性樹脂組成物であって、炭素繊維(B)が、下記(i)〜(iii)を満足するものである熱可塑性樹脂組成物に関するものである。
(i)単繊維の表面に単繊維の長手方向に延びる皺が実質的に無く、
(ii)単繊維の繊維断面の長径と短径との比(長径/短径)が1.00〜1.02であり、
(iii)ストランド弾性率が230〜500GPaである。
The present invention relates to a thermoplastic resin molded product having a flexural modulus of 35000 MPa or more and a specific gravity of 1.4 or less, and relates to a thermoplastic resin molded product having a specific modulus of 25000 MPa or more. Moreover, it is a thermoplastic resin composition containing 40 to 70% by mass of a thermoplastic resin (A) containing aromatic polyamide and 30 to 60% by mass of carbon fiber (B), and the carbon fiber (B) is The present invention relates to a thermoplastic resin composition that satisfies the following (i) to (iii).
(I) The surface of the single fiber is substantially free from wrinkles extending in the longitudinal direction of the single fiber,
(Ii) The ratio of the major axis to the minor axis (major axis / minor axis) of the fiber cross section of the single fiber is 1.00 to 1.02.
(Iii) The strand elastic modulus is 230 to 500 GPa.

本発明の熱可塑性樹脂成形品は低比重であるために軽量であり、さらに高剛性、耐衝撃性を有する。従って、これらの特性が要求されるパソコン筺体や自転車部品に好適に用いることができ、特にノートパソコンや競技用などの自転車用部品に好適な材料である。   The thermoplastic resin molded article of the present invention is lightweight because of its low specific gravity, and further has high rigidity and impact resistance. Therefore, it can be suitably used for personal computer housings and bicycle parts that require these characteristics, and is a material that is particularly suitable for notebook personal computers and bicycle parts for competitions.

本発明の熱可塑性樹脂成形品は、曲げ弾性率が35000MPa以上である。なお、本発明において、曲げ弾性率とは、ISO178により測定したものである。
曲げ弾性率が、35000MPa以上の場合に、剛性が十分となり、パソコン筺体、自転車用部品として好ましい。
The thermoplastic resin molded article of the present invention has a flexural modulus of 35000 MPa or more. In the present invention, the flexural modulus is measured by ISO178.
When the flexural modulus is 35000 MPa or more, the rigidity becomes sufficient, which is preferable as a personal computer housing and a bicycle part.

本発明の熱可塑性樹脂成形品の曲げ弾性率の下限値は、35500MPa以上が好ましく、36000MPa以上がより好ましく、36500MPa以上がさらに好ましく、37000MPa以上が特に好ましい。
また、この曲げ弾性率の上限値は、特に制限されないが、50000MPa以下が好ましく、48000MPa以下であることが特に好ましい。
The lower limit value of the flexural modulus of the thermoplastic resin molded article of the present invention is preferably 35500 MPa or more, more preferably 36000 MPa or more, further preferably 36500 MPa or more, and particularly preferably 37000 MPa or more.
The upper limit value of the flexural modulus is not particularly limited, but is preferably 50000 MPa or less, particularly preferably 48000 MPa or less.

また、本発明の熱可塑性樹脂成形品の比重は、1.4以下である。比重が1.4以下の場合に、軽量化が十分となる傾向にあり、パソコン筺体、自転車用部品として好ましい。
本発明の熱可塑性樹脂成形品の比重の上限値は、1.4以下が好ましく、1.39以下が特に好ましい。また、この比重の下限値は、特に制限されないが、1.2以上が好ましく、1.23以上が特に好ましい。
The specific gravity of the thermoplastic resin molded article of the present invention is 1.4 or less. When the specific gravity is 1.4 or less, weight reduction tends to be sufficient, which is preferable as a personal computer housing and a bicycle component.
The upper limit of the specific gravity of the thermoplastic resin molded article of the present invention is preferably 1.4 or less, particularly preferably 1.39 or less. The lower limit of the specific gravity is not particularly limited, but is preferably 1.2 or more, and particularly preferably 1.23 or more.

本発明の熱可塑性樹脂成形品の比弾性率は、25000MPa以上である。ここで、比弾性率とは、曲げ弾性率を比重で除した値である。熱可塑性樹脂成形品の比弾性率が25000MPa以上の場合に、軽量で高い剛性を発現する傾向にあり、パソコン筺体、自転車用部品として好ましい。   The specific elastic modulus of the thermoplastic resin molded article of the present invention is 25000 MPa or more. Here, the specific elastic modulus is a value obtained by dividing the bending elastic modulus by the specific gravity. When the specific elastic modulus of the thermoplastic resin molded product is 25000 MPa or more, it tends to develop light weight and high rigidity, which is preferable as a personal computer housing and a bicycle part.

本発明の熱可塑性樹脂成形品の比弾性率の下限値は、25500MPa以上が好ましく、26000MPa以上がより好ましく、26500MPa以上がさらに好ましく、27000MPa以上が特に好ましい。
また、この比弾性率の上限値は、特に制限されないが、40000MPa以下が好ましく、35000MPa以下が特に好ましい。
The lower limit of the specific elastic modulus of the thermoplastic resin molded article of the present invention is preferably 25500 MPa or more, more preferably 26000 MPa or more, further preferably 26500 MPa or more, and particularly preferably 27000 MPa or more.
The upper limit of the specific elastic modulus is not particularly limited, but is preferably 40000 MPa or less, particularly preferably 35000 MPa or less.

本発明の熱可塑性樹脂成形品の耐衝撃性は、特に制限されないが、ノッチなしシャルピー衝撃試験による衝撃強度が60kJ/m以上であることが好ましい。熱可塑性樹脂成形品のノッチなしシャルピー衝撃強度が60kJ/m以上である場合に、パソコン筺体、自転車用部品として好ましい。このシャルピー衝撃強度の下限値は、70kJ/m以上がより好ましく、80kJ/m以上が特に好ましい。
また、このシャルピー衝撃強度の上限値は、特に制限されないが、500kJ/m以下が好ましく、300kJ/m以下がより好ましく、150kJ/m以下が特に好ましい。
The impact resistance of the thermoplastic resin molded article of the present invention is not particularly limited, but it is preferable that the impact strength according to the notched Charpy impact test is 60 kJ / m 2 or more. When the thermoplastic resin molded product has an unnotched Charpy impact strength of 60 kJ / m 2 or more, it is preferable as a personal computer housing and a bicycle part. The lower limit of the Charpy impact strength is more preferably 70 kJ / m 2 or more, 80 kJ / m 2 or more is particularly preferable.
The upper limit of the Charpy impact strength is not particularly limited but is preferably 500 kJ / m 2 or less, more preferably 300 kJ / m 2 or less, particularly preferably 150 kJ / m 2.

このような物性を有する熱可塑性樹脂成形品は、芳香族ポリアミドを含有する熱可塑性樹脂(A)を40〜70質量%、炭素繊維(B)を30〜60質量%含有する熱可塑性樹脂組成物であって、炭素繊維(B)が、下記(i)〜(iii)を満足するものである熱可塑性樹脂組成物を成形することによって製造することができる。
(i)単繊維の表面に単繊維の長手方向に延びる皺が実質的に無く、
(ii)単繊維の繊維断面の長径と短径との比(長径/短径)が1.00〜1.02であり、
(iii)ストランド弾性率が230〜500GPaである。
A thermoplastic resin molded article having such physical properties is a thermoplastic resin composition containing 40 to 70 mass% of a thermoplastic resin (A) containing an aromatic polyamide and 30 to 60 mass% of a carbon fiber (B). The carbon fiber (B) can be produced by molding a thermoplastic resin composition that satisfies the following (i) to (iii).
(I) The surface of the single fiber is substantially free from wrinkles extending in the longitudinal direction of the single fiber,
(Ii) The ratio of the major axis to the minor axis (major axis / minor axis) of the fiber cross section of the single fiber is 1.00 to 1.02.
(Iii) The strand elastic modulus is 230 to 500 GPa.

芳香族ポリアミドを含有する熱可塑性樹脂(A)の含有量は、熱可塑性樹脂組成物全量中40〜70質量%である。この(A)成分の含有量が40質量%以上の場合に、熱可塑性樹脂組成物を押出す際に、安定してストランドを押出すことができる傾向にあるため、好ましい。また、(A)成分の含有量が70質量%以下の場合に、十分な剛性が得られる傾向にあるため、好ましい。   Content of the thermoplastic resin (A) containing aromatic polyamide is 40-70 mass% in the thermoplastic resin composition whole quantity. When the content of the component (A) is 40% by mass or more, it is preferable because the strand can be stably extruded when the thermoplastic resin composition is extruded. Moreover, since it exists in the tendency for sufficient rigidity to be acquired when content of (A) component is 70 mass% or less, it is preferable.

(A)成分の含有量の下限値は、45質量%以上がより好ましく、50質量%以上が特に好ましい。また、(A)成分の含有量の上限値は、65質量%以下がより好ましく、60質量%以下が特に好ましい。   (A) As for the lower limit of content of a component, 45 mass% or more is more preferable, and 50 mass% or more is especially preferable. Moreover, 65 mass% or less is more preferable, and, as for the upper limit of content of (A) component, 60 mass% or less is especially preferable.

芳香族ポリアミドの含有量は、特に制限されないが、主成分であること、すなわち、(A)成分全量中50質量%以上であることが好ましい。芳香族ポリアミドの含有量が50質量%以上の場合に、剛性が高くなる傾向にある。芳香族ポリアミドの含有量の下限値は、60質量%以上がより好ましく、70質量%以上が特に好ましい。また、芳香族ポリアミドの含有量の上限値は、特に制限されず、(A)成分全量が芳香族ポリアミドであってもよい。   Although content in particular of aromatic polyamide is not restrict | limited, It is preferable that it is 50 mass% or more in a main component, ie, (A) component whole quantity. When the content of the aromatic polyamide is 50% by mass or more, the rigidity tends to increase. 60 mass% or more is more preferable, and, as for the lower limit of content of aromatic polyamide, 70 mass% or more is especially preferable. Moreover, the upper limit of content of aromatic polyamide is not particularly limited, and the total amount of component (A) may be aromatic polyamide.

芳香族ポリアミドとは、芳香族成分を含有するポリアミドであり、例えば、芳香族ジカルボン酸成分と芳香族ジアミン成分からなる全芳香族ポリアミド、ジカルボン酸成分とジアミン成分のどちらか一方が芳香族化合物を含有する成分である半芳香族ポリアミドが挙げられる。   An aromatic polyamide is a polyamide containing an aromatic component, for example, a wholly aromatic polyamide composed of an aromatic dicarboxylic acid component and an aromatic diamine component, and either one of the dicarboxylic acid component and the diamine component is an aromatic compound. A semi-aromatic polyamide which is a component to be contained is mentioned.

芳香族ジカルボン酸成分としては、特に制限されず、例えば、テレフタル酸、イソフタル酸等が挙げられる。また、芳香族ジアミン成分としては、特に制限されず、例えば、メタフェニレンジアミン、パラフェニレンジアミン、メタキシレンジアミン、パラキシレンジアミン等があげられる。脂肪族ジカルボン酸としては、特に制限されず、例えば、アジピン酸、セバシン酸、アゼライン酸、デカンジカルボン酸等が挙げられる。脂肪族ジアミンとしては、特に制限されず、例えば、ジアミノヘキサン等が挙げられる。
芳香族ポリアミドの中でも、半芳香族ポリアミドが好ましく、その中でも、メタキシレンジアミン成分とアジピン酸成分からなるポリアミドが特に好ましい。
The aromatic dicarboxylic acid component is not particularly limited, and examples thereof include terephthalic acid and isophthalic acid. The aromatic diamine component is not particularly limited, and examples thereof include metaphenylene diamine, paraphenylene diamine, metaxylene diamine, and paraxylene diamine. The aliphatic dicarboxylic acid is not particularly limited, and examples thereof include adipic acid, sebacic acid, azelaic acid, decanedicarboxylic acid and the like. The aliphatic diamine is not particularly limited, and examples thereof include diaminohexane.
Among aromatic polyamides, semi-aromatic polyamides are preferable, and among these, polyamides composed of a metaxylenediamine component and an adipic acid component are particularly preferable.

(A)成分は、芳香族ポリアミドを必須成分として含有するものであるが、芳香族ポリアミド以外の熱可塑性樹脂を含有してもよい。
(A)成分に含有される芳香族ポリアミド以外の熱可塑性樹脂としては、特に制限されず、ポリドデカノアミド(ナイロン12)、ポリヘキサメチレンアジパミド(ナイロン6,6)、ポリヘキサメチレンアゼラミド(ナイロン6,9)、ポリヘキサメチレンセバカミド(ナイロン6,10)、ポリヘキサメチレンドデカノアミド(ナイロン6,12)、ポリカプラミド(ナイロン6)、ナイロン12系エラストマー等の脂肪族ポリアミド樹脂;ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート等のポリエステル樹脂、ポリフェニレンエーテル、ポリアセタール、ポリカーボネート等の熱可塑性樹脂を挙げることができる。
The component (A) contains an aromatic polyamide as an essential component, but may contain a thermoplastic resin other than the aromatic polyamide.
The thermoplastic resin other than the aromatic polyamide contained in the component (A) is not particularly limited, and polydodecanoamide (nylon 12), polyhexamethylene adipamide (nylon 6, 6), polyhexamethylene aze Aliphatic polyamide resins such as ramid (nylon 6,9), polyhexamethylene sebacamide (nylon 6,10), polyhexamethylene dodecanoamide (nylon 6,12), polycoupleramide (nylon 6), nylon 12 elastomer And polyester resins such as polybutylene terephthalate, polyethylene terephthalate and polytrimethylene terephthalate, and thermoplastic resins such as polyphenylene ether, polyacetal and polycarbonate.

炭素繊維(B)の含有量は、熱可塑性樹脂組成物全量中30〜60質量%である。この(B)成分の含有量が、30質量%以上の場合に十分な剛性が得られる傾向にあるため、好ましい。また、(B)成分の含有量が60質量%以下の場合に、熱可塑性樹脂を押出す際に安定してストランドを押出すことができる傾向にあるため、好ましい。   Content of carbon fiber (B) is 30-60 mass% in the thermoplastic resin composition whole quantity. Since there exists a tendency for sufficient rigidity to be acquired when content of this (B) component is 30 mass% or more, it is preferable. Moreover, when content of (B) component is 60 mass% or less, since it exists in the tendency which can extrude a strand stably when extruding a thermoplastic resin, it is preferable.

(B)成分の含有量の下限値は、35質量%以上がより好ましく、40質量%以上が特に好ましい。また、(B)成分の含有量の上限値は、55質量%以下がより好ましく、50質量%以下が特に好ましい。   (B) As for the lower limit of content of a component, 35 mass% or more is more preferable, and 40 mass% or more is especially preferable. Moreover, 55 mass% or less is more preferable, and, as for the upper limit of content of (B) component, 50 mass% or less is especially preferable.

炭素繊維(B)は、下記(i)〜(iii)を満足するものである。
(i)単繊維の表面に単繊維の長手方向に延びる皺が実質的に無く、
(ii)単繊維の繊維断面の長径と短径との比(長径/短径)が1.00〜1.02であり、
(iii)ストランド弾性率が230〜500GPaである。
The carbon fiber (B) satisfies the following (i) to (iii).
(I) The surface of the single fiber is substantially free from wrinkles extending in the longitudinal direction of the single fiber,
(Ii) The ratio of the major axis to the minor axis (major axis / minor axis) of the fiber cross section of the single fiber is 1.00 to 1.02.
(Iii) The strand elastic modulus is 230 to 500 GPa.

炭素繊維(B)が上記(i)〜(iii)を満足する場合に、得られる炭素繊維強化熱可塑性樹脂の剛性が十分となる傾向にある。
ここで、単繊維表面の皺は、電子顕微鏡で単繊維表面を観察し、繊維方向に溝があるか無いかを判定したものであり、単繊維の繊維断面の長径と短径との比は、電子顕微鏡度で単繊維の断面を観察して評価したものである。
When the carbon fiber (B) satisfies the above (i) to (iii), the resulting carbon fiber reinforced thermoplastic resin tends to have sufficient rigidity.
Here, the wrinkles on the surface of the single fiber are obtained by observing the surface of the single fiber with an electron microscope and determining whether or not there is a groove in the fiber direction. The cross section of the single fiber was observed and evaluated with an electron microscope.

単繊維の表面に単繊維の長手方向に延びる皺が実質的に無い場合に、特にマトリックス樹脂として芳香族ポリアミドを組み合わせることにより、高い剛性が発現する。
ここで、単繊維の円周長さ2μmの範囲における最高部と最低部の高低差(皺深さ)としては、特に制限されないが、90nm以下が好ましく、70nm以下がより好ましく、50nm以下が特に好ましい。
When the surface of the single fiber is substantially free from wrinkles extending in the longitudinal direction of the single fiber, high rigidity is manifested particularly by combining an aromatic polyamide as a matrix resin.
Here, the difference in height (the depth of wrinkles) between the highest part and the lowest part in the range of the circumferential length of the single fiber is not particularly limited, but is preferably 90 nm or less, more preferably 70 nm or less, and particularly preferably 50 nm or less. preferable.

単繊維の繊維断面の長径と短径との比(長径/短径)は、1.00〜1.02である。
単繊維の繊維径としては、特に制限されないが、7μm以下が好ましく、6.5μm以下が特に好ましい。
熱可塑性樹脂組成物中の単繊維の平均繊維長としては、特に制限されないが、3mm以下が好ましく、1.5mm以下がより好ましく、1mm以下がさらに好ましく、0.5mm以下が特に好ましい。樹脂組成物中の単繊維の平均繊維長が3mm以下の場合に、熱可塑性樹脂組成物の成形時の流動性が良好となる傾向にあり、パソコン筐体や自転車部品等の複雑な形状の成形品を成形することができる傾向にある。
The ratio (major axis / minor axis) of the major axis to the minor axis of the fiber cross section of the single fiber is 1.00 to 1.02.
Although it does not restrict | limit especially as a fiber diameter of a single fiber, 7 micrometers or less are preferable and 6.5 micrometers or less are especially preferable.
The average fiber length of single fibers in the thermoplastic resin composition is not particularly limited, but is preferably 3 mm or less, more preferably 1.5 mm or less, further preferably 1 mm or less, and particularly preferably 0.5 mm or less. When the average fiber length of single fibers in the resin composition is 3 mm or less, the fluidity during molding of the thermoplastic resin composition tends to be good, and molding of complicated shapes such as PC housings and bicycle parts The product tends to be molded.

炭素繊維(B)のストランド弾性率は、230〜500GPaである。ここで、ストランド弾性率およびストランド強度とは、炭素繊維単繊維3000〜90000本よりなる連続繊維束にエポキシ樹脂を含浸硬化させて作製されたストランドの弾性率および強度をいい、ストランド試験片をJIS R7601に準拠して引張り試験に供して得られた値である。   The strand elastic modulus of the carbon fiber (B) is 230 to 500 GPa. Here, the strand elastic modulus and strand strength refer to the elastic modulus and strength of a strand prepared by impregnating and curing an epoxy resin on a continuous fiber bundle composed of 3000 to 90000 carbon fiber single fibers. It is a value obtained by subjecting to a tensile test according to R7601.

ストランド弾性率の下限値は、250GPa以上が好ましく、270GPa以上が特に好ましい。また、ストランド弾性率の上限値は、成形品の耐衝撃性の面から、370GPa以下が好ましく、350GPa以下が特に好ましい。
ストランド強度の下限値は、特に制限されないが、4100MPa以上が好ましく、4200MPa以上がより好ましく、4300MPa以上が特に好ましい。ストランド強度の上限値は、特に制限されないが、5000MPa以下が好ましく、4900MPa以下がより好ましく、4700MPa以下が特に好ましい。
The lower limit of the strand elastic modulus is preferably 250 GPa or more, and particularly preferably 270 GPa or more. Further, the upper limit value of the strand elastic modulus is preferably 370 GPa or less, particularly preferably 350 GPa or less, from the viewpoint of impact resistance of the molded product.
The lower limit of the strand strength is not particularly limited, but is preferably 4100 MPa or more, more preferably 4200 MPa or more, and particularly preferably 4300 MPa or more. The upper limit of the strand strength is not particularly limited, but is preferably 5000 MPa or less, more preferably 4900 MPa or less, and particularly preferably 4700 MPa or less.

炭素繊維(B)は、PAN系またはピッチ系の炭素繊維であり、例えば長繊維タイプや短繊維タイプのチョプドストランド、ミルドファイバーなどから選択して用いることができる。
また、炭素繊維(B)と熱可塑性樹脂との接着性を向上するために、炭素繊維(B)に表面酸化処理を行ってもよく、その場合、通電処理による表面酸化、オゾンなどの酸化性ガス雰囲気中での酸化処理をしても良い。さらに一般的に使用されるエポキシ系、ポリアミド系、ウレタン系、ポリエステル系等のサイジング剤を用いた表面付着処理を用いることも出来る。
The carbon fiber (B) is a PAN-based or pitch-based carbon fiber, and can be selected from, for example, a long fiber type or a short fiber type chopped strand, a milled fiber, or the like.
Further, in order to improve the adhesion between the carbon fiber (B) and the thermoplastic resin, the carbon fiber (B) may be subjected to surface oxidation treatment. In that case, surface oxidation by energization treatment, oxidizing properties such as ozone, etc. An oxidation treatment in a gas atmosphere may be performed. Furthermore, surface adhesion treatment using sizing agents such as epoxy, polyamide, urethane, and polyester that are generally used can also be used.

炭素繊維(B)の形態は、特に制限されないが、数千から数十万本の炭素繊維の束、あるいは粉砕したミルド状の形態で用いられる。炭素繊維束については、連続繊維を直接使用するロービング法、あるいは所定長さにカットしたチョップドストランドを使用する方法を適用し、用いることが可能である。   The form of the carbon fiber (B) is not particularly limited, but is used in the form of a bundle of several thousand to several hundred thousand carbon fibers or a pulverized milled form. The carbon fiber bundle can be used by applying a roving method using directly continuous fibers or a method using chopped strands cut to a predetermined length.

本発明の熱可塑性樹脂組成物は、前述の(A)成分および(B)成分を基本構成成分とするものであるが、必要に応じて、各種フィラー、エラストマー(ゴム)、カーボンブラック、金属酸化物及びセラミックス等の粒状物、難燃剤、流動改質剤、帯電防止剤、離型剤、酸化防止剤等の添加剤を加えることができる。これらの添加剤の含有量は、特に制限されないが、本発明の熱可塑性樹脂組成物全量中30質量%以下の範囲であることが好ましい。   The thermoplastic resin composition of the present invention comprises the above-mentioned components (A) and (B) as basic constituent components, and various fillers, elastomers (rubbers), carbon black, metal oxides as necessary. Additives such as particles and ceramics, flame retardants, flow modifiers, antistatic agents, mold release agents, antioxidants, and the like can be added. The content of these additives is not particularly limited, but is preferably in the range of 30% by mass or less based on the total amount of the thermoplastic resin composition of the present invention.

熱可塑性樹脂組成物の製造方法は、特に制限されず、従来の熱可塑性樹脂組成物の製造方法として一般に用いられる設備と方法により製造することができる。その内でも、溶融混練法が好ましい。溶融混練に用いる装置としては、特に制限されず、例えば、押出し機、バンバリーミキサー、ローラー、ニーダー等を挙げることができる。   The manufacturing method in particular of a thermoplastic resin composition is not restrict | limited, It can manufacture with the equipment and method generally used as a manufacturing method of the conventional thermoplastic resin composition. Among them, the melt kneading method is preferable. An apparatus used for melt kneading is not particularly limited, and examples thereof include an extruder, a Banbury mixer, a roller, and a kneader.

押出機については、単軸押出機、二軸押出機があるが、短時間で混練を行うために二軸押出機であることが好ましい。
また炭素繊維の投入方法としては、特に制限されないが、混練による繊維長の低下を抑制することができることから、スクリューの中間から添加するサイドフィード法が好ましい。
As the extruder, there are a single screw extruder and a twin screw extruder, but a twin screw extruder is preferable in order to perform kneading in a short time.
The carbon fiber charging method is not particularly limited, but the side feed method of adding from the middle of the screw is preferable because the decrease in fiber length due to kneading can be suppressed.

熱可塑性樹脂組成物の成形方法は、特に制限されない。例えば、射出成形、押出成形による棒状、中空状、シート状への成形、真空成形、ブロー成形などが挙げられる。   The method for molding the thermoplastic resin composition is not particularly limited. Examples thereof include injection molding, extrusion molding, rod shape, hollow shape, sheet shape, vacuum molding, blow molding, and the like.

以下、実施例を挙げて本発明を詳細に説明するが、本発明は以下の実施例にのみ限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited only to a following example.

(1)炭素繊維の評価方法
炭素繊維の評価については、次に述べる方法にしたがって測定した。
(1−1)表面の皺
本発明の炭素繊維表面の皺は、試料をSEM試料台に接着し、さらに金(Au)を約10nmの厚さにスパッタリングしてから、PHILIPS社製XL20走査型電子顕微鏡により、加速電圧7.00kV、作動距離31mmの条件で電子顕微鏡で表面を観察し、繊維方向に溝があるか無いかを判定した。
(1) Carbon fiber evaluation method The carbon fiber was evaluated according to the following method.
(1-1) Wrinkles on the surface The wrinkles on the surface of the carbon fiber of the present invention are obtained by bonding a sample to an SEM sample stage and further sputtering gold (Au) to a thickness of about 10 nm, and then performing an XL20 scanning type manufactured by PHILIPS. Using an electron microscope, the surface was observed with an electron microscope under conditions of an acceleration voltage of 7.00 kV and a working distance of 31 mm, and it was determined whether or not there was a groove in the fiber direction.

(1−2)断面形状の評価
炭素繊維の単繊維の繊維断面の長径と短径との比(長径/短径)は、以下のようにして決定した。内径1mmの塩化ビニル樹脂製のチューブ内に測定用の炭素繊維束を通した後、これをナイフで輪切りにして試料を準備する。ついで、該試料を繊維断面が上を向くようにしてSEM試料台に接着し、さらに金(Au)を約10nmの厚さにスパッタリングしてから、PHILIPS社製XL20走査型電子顕微鏡により、加速電圧7.00kV、作動距離31mmの条件で繊維断面を観察し、単繊維の繊維断面の長径および短径を測定し、長径÷短径で長径/短径の比率を求めた。
(1-2) Evaluation of sectional shape The ratio (major axis / minor axis) of the major axis to the minor axis of the fiber cross section of the single fiber of carbon fiber was determined as follows. After passing a carbon fiber bundle for measurement through a tube made of vinyl chloride resin having an inner diameter of 1 mm, the sample is prepared by cutting it with a knife. Next, the sample was bonded to the SEM sample stage with the fiber cross-section facing upward, and gold (Au) was sputtered to a thickness of about 10 nm, and then the acceleration voltage was measured with a PHILIPS XL20 scanning electron microscope. The fiber cross section was observed under the conditions of 7.00 kV and a working distance of 31 mm, the major axis and minor axis of the fiber cross section of the single fiber were measured, and the ratio of major axis / minor axis was calculated as major axis / minor axis.

(1−3)ストランド物性評価
炭素繊維束のストランド強度および弾性率は、JIS R7601に準拠して測定した。
(1-3) Strand physical property evaluation The strand strength and elastic modulus of the carbon fiber bundle were measured according to JIS R7601.

(2)熱可塑性樹脂成形品の評価方法
熱可塑性樹脂成形品の評価については、次に述べる方法にしたがって測定した。
(2−1)比重
ISO1183に準拠して水中置換法により、成形品の比重を測定した。
(2−2)曲げ弾性率
ISO178に準拠して曲げ試験を行い、曲げ弾性率を求めた。
(2−3)シャルピー衝撃強度
ISO179に準拠して、ノッチなしのシャルピー衝撃強度を求めた。
(2) Evaluation method of thermoplastic resin molded product The evaluation of the thermoplastic resin molded product was measured according to the method described below.
(2-1) Specific gravity The specific gravity of the molded product was measured by an underwater substitution method in accordance with ISO 1183.
(2-2) Bending elastic modulus A bending test was performed in accordance with ISO178 to obtain a bending elastic modulus.
(2-3) Charpy impact strength The Charpy impact strength without a notch was calculated | required based on ISO179.

実施例1
2軸押出機(池貝製作所製PCM−30)を用いて、メタキシレンジアミン成分とアジピン酸成分からなる半芳香族ポリアミド(三菱ガス化学(株)製MXD6ナイロン、商品名「レニー6007」)60質量部を樹脂フィーダーから供給し、炭素繊維MR06NE(三菱レイヨン(株)製チョップド炭素繊維:原糸として三菱レイヨン(株)製MR40−12M(繊維径6μm、集束本数12000本、NEサイズ処理品、ストランド弾性率295GPa)を使用し、繊維長さ6mmにチョップしたもの)40質量部をサイドフィーダーから供給して、樹脂温度280℃の温度で溶融混練してペレットとした。ここで、押出機の中間に設けられたベント口より減圧し水分を除去した。
Example 1
Using a twin screw extruder (PCM-30 manufactured by Ikegai Seisakusho Co., Ltd.), a semi-aromatic polyamide composed of a metaxylenediamine component and an adipic acid component (MXD6 nylon manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name “Reny 6007”) 60 mass Parts are supplied from a resin feeder, and carbon fiber MR06NE (Mitsubishi Rayon Co., Ltd. chopped carbon fiber: Mitsubishi Rayon Co., Ltd. MR40-12M (fiber diameter 6 μm, number of bundles 12,000, NE size treated product, strand) (Elastic modulus 295 GPa) and chopped to a fiber length of 6 mm) 40 parts by mass were supplied from a side feeder and melt-kneaded at a resin temperature of 280 ° C. to obtain pellets. Here, the pressure was reduced from a vent port provided in the middle of the extruder to remove moisture.

なお、ここで用いた炭素繊維MR06NEの単繊維を電子顕微鏡により観察した結果、長径/短径比は1.00であり、繊維方向に皺は見られなかった。
次いでこのペレットを150℃で2時間の熱風による乾燥をし、射出成形機(日本製鋼所(JSW)製75T射出成形機J75SSII)を用いて、樹脂温度260℃、金型温度80℃の温度条件で試験片を成形した。成形品の評価結果を表1に示す。
In addition, as a result of observing the single fiber of carbon fiber MR06NE used here with an electron microscope, the major axis / minor axis ratio was 1.00, and no wrinkles were observed in the fiber direction.
Next, the pellets were dried with hot air at 150 ° C. for 2 hours, and using an injection molding machine (Japan Steel Works (JSW) 75T injection molding machine J75SSII), temperature conditions of a resin temperature of 260 ° C. and a mold temperature of 80 ° C. A test piece was molded. Table 1 shows the evaluation results of the molded products.

実施例2
炭素繊維として、MR06NEの代わりに炭素繊維CF−1(原糸として三菱レイヨン(株)製HR40−12M(繊維径7μm、集束本数12000本、NEサイズ処理品、ストランド弾性率390GPa)を使用し、繊維長さ6mmにチョップしたもの)を用いること以外は、実施例1と同様の方法でペレットおよび成形品を得た。評価結果を表1に示す。
なお、ここで用いた炭素繊維CF−1の単繊維を電子顕微鏡により観察した結果、長径/短径比は1.00であり、繊維方向に皺は見られなかった。
Example 2
As carbon fiber, instead of MR06NE, carbon fiber CF-1 (manufactured by Mitsubishi Rayon Co., Ltd. HR40-12M (fiber diameter 7 μm, number of bundles 12,000, NE size processed product, strand elastic modulus 390 GPa), A pellet and a molded product were obtained in the same manner as in Example 1 except that a fiber having a fiber length of 6 mm was used. The evaluation results are shown in Table 1.
In addition, as a result of observing the single fiber of carbon fiber CF-1 used here with an electron microscope, the major axis / minor axis ratio was 1.00, and no wrinkles were observed in the fiber direction.

比較例1
炭素繊維として、MR06NEの代わりに炭素繊維TR06NE(三菱レイヨン(株)製チョップド炭素繊維:原糸として三菱レイヨン(株)製TR50S−12L(繊維径7μm、集束本数12000本、NEサイズ処理品、ストランド弾性率240GPa)を使用し、繊維長さ6mmにチョップしたもの)を用いること以外は、実施例1と同様の方法でペレットおよび成形品を得た。評価結果を表1に示す。
なお、ここで用いた炭素繊維TR06NEの単繊維を電子顕微鏡により観察した結果、長径/短径比は1.08であり、繊維方向に皺が見られた。また、その皺の深さ(単繊維の円周長さ2μmの範囲における最高部と最低部の高低差)は、100nmであった。
Comparative Example 1
As carbon fiber, instead of MR06NE, carbon fiber TR06NE (Mitsubishi Rayon Co., Ltd. chopped carbon fiber: Mitsubishi Rayon Co., Ltd. TR50S-12L (fiber diameter 7 μm, number of bundles 12000, NE size treated product, strand) A pellet and a molded product were obtained in the same manner as in Example 1 except that the elastic modulus was 240 GPa) and the fiber length was chopped to 6 mm. The evaluation results are shown in Table 1.
In addition, as a result of observing the single fiber of carbon fiber TR06NE used here with an electron microscope, the major axis / minor axis ratio was 1.08, and wrinkles were observed in the fiber direction. Moreover, the depth of the wrinkles (the difference in height between the highest part and the lowest part in the range of the circumferential length of single fiber of 2 μm) was 100 nm.

比較例2
メタキシレンジアミン成分とアジピン酸成分からなる半芳香族ポリアミドの代わりにナイロン66(東レ(株)製、商品名「CM3001N」)を用い、樹脂温度を300℃とすること以外は、実施例1と同様の方法でペレットを得た。また、得られたペレットを用いて、樹脂温度を290℃とする以外は、実施例1と同様の方法で成形品を得た。評価結果を表1に示す。
Comparative Example 2
Example 1 except that nylon 66 (trade name “CM3001N” manufactured by Toray Industries, Inc.) is used in place of the semi-aromatic polyamide composed of the metaxylenediamine component and the adipic acid component, and the resin temperature is 300 ° C. Pellets were obtained in the same manner. Moreover, the molded article was obtained by the method similar to Example 1 except having set the resin temperature to 290 degreeC using the obtained pellet. The evaluation results are shown in Table 1.

比較例3
メタキシレンジアミン成分とアジピン酸成分からなる半芳香族ポリアミドの代わりにポリカーボネート(出光石油化学(株)製、商品名「タフロンA1700」)を用い、樹脂温度を300℃とすること以外は、実施例1と同様の方法でペレットを得た。また、得られたペレットを用いて、樹脂温度を300℃とする以外は、実施例1と同様の方法で成形品を得た。評価結果を表1に示す。
Comparative Example 3
Example except that polycarbonate (made by Idemitsu Petrochemical Co., Ltd., trade name “Taflon A1700”) is used in place of the semi-aromatic polyamide comprising the meta-xylenediamine component and the adipic acid component, and the resin temperature is set to 300 ° C. 1 to obtain pellets. Moreover, the molded article was obtained by the method similar to Example 1 except having made resin temperature into 300 degreeC using the obtained pellet. The evaluation results are shown in Table 1.

比較例4
メタキシレンジアミン成分とアジピン酸成分からなる半芳香族ポリアミドと炭素繊維の添加量を表1のように変更すること以外は、実施例1と同様の方法でペレットおよび成形品を得た。評価結果を表1に示す。
Comparative Example 4
Pellets and molded articles were obtained in the same manner as in Example 1 except that the addition amounts of the semi-aromatic polyamide composed of the metaxylenediamine component and the adipic acid component and the carbon fiber were changed as shown in Table 1. The evaluation results are shown in Table 1.

比較例5
メタキシレンジアミン成分とアジピン酸成分からなる半芳香族ポリアミドと炭素繊維の添加量を表1のように変更すること以外は、実施例1と同様の方法で溶融混練したが、押出しが不能であったため、熱可塑性樹脂組成物のペレットを得ることができなかった。
Comparative Example 5
Except for changing the addition amount of the semi-aromatic polyamide composed of the metaxylenediamine component and the adipic acid component and the carbon fiber as shown in Table 1, it was melt-kneaded in the same manner as in Example 1, but extrusion was impossible. Therefore, a pellet of the thermoplastic resin composition could not be obtained.

Figure 2006001965
Figure 2006001965

本発明の成形品は、軽量性と剛性が要求されるパソコン、液晶プロジェクター、テレビ、オーディオ機器、携帯電話などの電気機器用部品、自転車、自動車、鉄道車両等の車両、船舶、飛行機等の輸送機用部品、車椅子や松葉杖などの介護用品、ラジコンのシャーシなどのホビー用品、電動工具、登山用品などに使用することが可能であり、中でもパソコン筐体、自転車用部品として好適に使用することができる。

The molded article of the present invention is used for parts such as personal computers, liquid crystal projectors, televisions, audio equipments, mobile phones, etc., bicycles, automobiles, railcars, vehicles, ships, airplanes, etc. It can be used for machine parts, care products such as wheelchairs and crutches, hobby items such as radio control chassis, power tools, mountaineering items, etc. it can.

Claims (3)

曲げ弾性率が35000MPa以上であって、比重が1.4以下である熱可塑性樹脂成形品。   A thermoplastic resin molded article having a flexural modulus of 35000 MPa or more and a specific gravity of 1.4 or less. 比弾性率が25000MPa以上である熱可塑性樹脂成形品。   A thermoplastic resin molded article having a specific elastic modulus of 25000 MPa or more. 芳香族ポリアミドを含有する熱可塑性樹脂(A)を40〜70質量%、炭素繊維(B)を30〜60質量%含有する熱可塑性樹脂組成物であって、炭素繊維(B)が、下記(i)〜(iii)を満足するものである熱可塑性樹脂組成物。
(i)単繊維の表面に単繊維の長手方向に延びる皺が実質的に無く、
(ii)単繊維の繊維断面の長径と短径との比(長径/短径)が1.00〜1.02であり、
(iii)ストランド弾性率が230〜500GPaである。

A thermoplastic resin composition containing 40 to 70 mass% of a thermoplastic resin (A) containing an aromatic polyamide and 30 to 60 mass% of a carbon fiber (B), wherein the carbon fiber (B) is: A thermoplastic resin composition satisfying i) to (iii).
(I) The surface of the single fiber is substantially free from wrinkles extending in the longitudinal direction of the single fiber,
(Ii) The ratio of the major axis to the minor axis (major axis / minor axis) of the fiber cross section of the single fiber is 1.00 to 1.02.
(Iii) The strand elastic modulus is 230 to 500 GPa.

JP2004176650A 2004-06-15 2004-06-15 Thermoplastic resin molded article and thermoplastic resin composition Active JP4609984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004176650A JP4609984B2 (en) 2004-06-15 2004-06-15 Thermoplastic resin molded article and thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004176650A JP4609984B2 (en) 2004-06-15 2004-06-15 Thermoplastic resin molded article and thermoplastic resin composition

Publications (3)

Publication Number Publication Date
JP2006001965A true JP2006001965A (en) 2006-01-05
JP2006001965A5 JP2006001965A5 (en) 2007-07-19
JP4609984B2 JP4609984B2 (en) 2011-01-12

Family

ID=35770635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004176650A Active JP4609984B2 (en) 2004-06-15 2004-06-15 Thermoplastic resin molded article and thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JP4609984B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013001789A (en) * 2011-06-16 2013-01-07 Koki Plast Kogyo Kk Poly(metaxylylene adipamide) coiled molded article
WO2013077238A1 (en) 2011-11-25 2013-05-30 東レ株式会社 Resin composition, and pellet and molded product thereof
WO2013080820A1 (en) 2011-11-29 2013-06-06 東レ株式会社 Carbon fiber-reinforced thermoplastic resin composition, and pellets and molded article thereof
CN112341817A (en) * 2020-10-28 2021-02-09 电子科技大学 Self-driven anti-icing material based on modulus patterning and preparation method thereof
WO2021044935A1 (en) 2019-09-04 2021-03-11 東レ株式会社 Resin composition and molded article

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03185121A (en) * 1989-09-05 1991-08-13 Toray Ind Inc Carbon fiber with non-circular cross section, its production and carbon fiber composite material therefrom
JP2004026982A (en) * 2002-06-25 2004-01-29 Toray Ind Inc Carbon fiber-reinforced thermoplastic resin composition, molding material and its molding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03185121A (en) * 1989-09-05 1991-08-13 Toray Ind Inc Carbon fiber with non-circular cross section, its production and carbon fiber composite material therefrom
JP2004026982A (en) * 2002-06-25 2004-01-29 Toray Ind Inc Carbon fiber-reinforced thermoplastic resin composition, molding material and its molding

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013001789A (en) * 2011-06-16 2013-01-07 Koki Plast Kogyo Kk Poly(metaxylylene adipamide) coiled molded article
WO2013077238A1 (en) 2011-11-25 2013-05-30 東レ株式会社 Resin composition, and pellet and molded product thereof
US10087327B2 (en) 2011-11-25 2018-10-02 Toray Industries, Inc. Resin composition, and pellet and molded product thereof
WO2013080820A1 (en) 2011-11-29 2013-06-06 東レ株式会社 Carbon fiber-reinforced thermoplastic resin composition, and pellets and molded article thereof
US9803061B2 (en) 2011-11-29 2017-10-31 Toray Industries, Inc. Carbon fiber-reinforced thermoplastic resin composition, and pellets and molded article thereof
WO2021044935A1 (en) 2019-09-04 2021-03-11 東レ株式会社 Resin composition and molded article
KR20220053574A (en) 2019-09-04 2022-04-29 도레이 카부시키가이샤 Resin composition and molded article
CN112341817A (en) * 2020-10-28 2021-02-09 电子科技大学 Self-driven anti-icing material based on modulus patterning and preparation method thereof

Also Published As

Publication number Publication date
JP4609984B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
KR20160042766A (en) Reinforced polyamide moulding compositions and injection mouldings produced therefrom
EP3209713B1 (en) Reinforced polymer molding composition
US5866648A (en) Long fiber-reinforced polymer alloy resin composition
KR20160115919A (en) Fiber-reinforced multilayered pellet, molded article molded therefrom, and method for producing fiber-reinforced multilayered pellet
JP2019052323A (en) Glass fiber-reinforced resin molding
JP2011148267A (en) Manufacturing method of polyamide resin molded article
JP7201016B2 (en) Glass fiber reinforced resin molded product
EP4011975A1 (en) Liquid crystal polyester resin pellet, and production method therefor, and production method for molded article
JP2009197359A (en) Reinforcing fiber, and fiber-reinforced composite material
KR20160094724A (en) Carbon fiber reinforced thermoplastic resin composition and molded article using the same
JP2021003899A (en) Glass fiber-reinforced resin molded article
TWI547514B (en) Composite forming material, injection molding article and method of manufacturing the composite forming material
JP5292744B2 (en) Long fiber reinforced polyamide resin composition
WO2021157162A1 (en) Glass-fiber-reinforced resin composition and molded glass-fiber-reinforced resin article
JP4609984B2 (en) Thermoplastic resin molded article and thermoplastic resin composition
EP3401355A1 (en) Polyamide material
JP2009024057A (en) Composite fiber-reinforced thermoplastic resin pellet, and molded product
JP5374228B2 (en) Long fiber reinforced polyamide resin composition and conductive shaft-shaped product formed by molding the same
JP5255541B2 (en) Propylene resin composition
JP4587445B2 (en) Thermoplastic resin molded article and thermoplastic resin composition
JP2023106452A (en) Thermoplastic resin composition and molding thereof, resin pellet and method for producing the same, and injection molding using resin pellet
JP2005298663A (en) Automobile interior part made of resin
JP2007245517A (en) Resin mass and its manufacturing method
JPH05230366A (en) Galss-fiber reinforced polyamide resin composition and method for molding the same
JP2007112915A (en) High strength polyamide resin composition and its production method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4609984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250