JP2006001889A - Bactericidal pyridine compound - Google Patents

Bactericidal pyridine compound Download PDF

Info

Publication number
JP2006001889A
JP2006001889A JP2004180648A JP2004180648A JP2006001889A JP 2006001889 A JP2006001889 A JP 2006001889A JP 2004180648 A JP2004180648 A JP 2004180648A JP 2004180648 A JP2004180648 A JP 2004180648A JP 2006001889 A JP2006001889 A JP 2006001889A
Authority
JP
Japan
Prior art keywords
pyridine compound
reaction
compound
general formula
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004180648A
Other languages
Japanese (ja)
Other versions
JP4152353B2 (en
Inventor
Hiroki Koma
寛紀 高麗
Yoshio Igarashi
喜雄 五十嵐
Hirofumi Nobushima
浩文 延嶋
Satoshi Meji
聡 目時
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tama Kagaku Kogyo Co Ltd
Original Assignee
Tama Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004180648A priority Critical patent/JP4152353B2/en
Application filed by Tama Kagaku Kogyo Co Ltd filed Critical Tama Kagaku Kogyo Co Ltd
Priority to ES04818219T priority patent/ES2384386T3/en
Priority to CN2004800326458A priority patent/CN1875000B/en
Priority to US10/578,870 priority patent/US7612097B2/en
Priority to KR1020067009103A priority patent/KR100770517B1/en
Priority to PCT/JP2004/016540 priority patent/WO2005044800A1/en
Priority to AU2004287705A priority patent/AU2004287705B2/en
Priority to EP04818219A priority patent/EP1683787B1/en
Priority to AT04818219T priority patent/ATE553081T1/en
Priority to CA2543254A priority patent/CA2543254C/en
Publication of JP2006001889A publication Critical patent/JP2006001889A/en
Application granted granted Critical
Publication of JP4152353B2 publication Critical patent/JP4152353B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new bactericidal pyridine compound by a simple process at a low cost using an easily available pyridine compound as a starting raw material. <P>SOLUTION: The bactericidal pyridine compound is represented by formula (1) [wherein R is a -(CH<SB>2</SB>)<SB>9</SB>CH<SB>3</SB>group or a -(CH<SB>2</SB>)<SB>11</SB>CH<SB>3</SB>group; and Z is chlorine, bromine, iodine or an OSO<SB>2</SB>R<SB>1</SB>group (wherein R<SB>1</SB>is a lower alkyl group or a substituted or nonsubstituted phenyl group)]. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、殺菌性を有する新規なピリジン化合物に関する。   The present invention relates to a novel pyridine compound having bactericidal properties.

細菌や真菌などに抗菌活性を発揮するビス第四級アンモニウム塩化合物は古くから知られており、現在も抗菌剤として広く実用化されている。しかしながら、現在用いられている抗菌性のビス第四級アンモニウム塩化合物は、通常、抗菌活性は優れているが、同時に生分解生成物の残留毒性も高いため、実際の使用に関しては、環境に対する安全性と水に対する溶解性および安定性に問題があり、その適用範囲には制限があった。また、従来のビス第四級アンモニウム塩化合物は、抗菌力が糖質、蛋白質および脂質などに拮抗され、抗菌力がpHの低い(酸性)領域では低下し、かつ細胞芽胞に効果がないなどの欠点があった。   Bis quaternary ammonium salt compounds that exhibit antibacterial activity against bacteria and fungi have been known for a long time and are still widely used as antibacterial agents. However, currently used antibacterial bis-quaternary ammonium salt compounds are usually excellent in antibacterial activity, but at the same time, the residual toxicity of biodegradation products is also high. There was a problem in the solubility and solubility in water and stability, and the application range was limited. In addition, conventional bis quaternary ammonium salt compounds have antibacterial activity antagonized by carbohydrates, proteins, lipids, etc., and the antibacterial activity decreases in the low pH (acidic) region and has no effect on cell spores. There were drawbacks.

そこで、下記一般式(A)および(B)で表されるビス第四級アンモニウム塩化合物(特許文献1参照)や、

Figure 2006001889
Figure 2006001889
(上記式中、Yはピリジン環、キノリン環、イソキノリン環またはチアゾリン環を、R1は炭素数2〜10のアルキレン基あるいはアルケニレン基を、R2はYの窒素原子に結合した炭素数6〜18のアルキル基を示し、いずれも置換基を含んでもよい。Xはアニオンを示す。) Therefore, bis quaternary ammonium salt compounds represented by the following general formulas (A) and (B) (see Patent Document 1),
Figure 2006001889
Figure 2006001889
(Wherein Y represents a pyridine ring, quinoline ring, isoquinoline ring or thiazoline ring, R 1 represents an alkylene group or alkenylene group having 2 to 10 carbon atoms, and R 2 represents 6 to 6 carbon atoms bonded to the nitrogen atom of Y. 18 represents an alkyl group, any of which may contain a substituent, and X represents an anion.)

下記一般式(C)で表されるビス第四級アンモニウム塩化合物(特許文献2参照)、

Figure 2006001889
(上記式中、Zはピリジン環を示し、R1およびR2は同一または異なり、各々水素原子または炭素数1〜6のアルキル基を示し、R3は炭素数3〜18のアルケニレン基を示し、R4はZの環窒素原子に結合した炭素数6〜18のアルキル基またはアルケニル基を示し、Xはアニオンを示す。) Bis quaternary ammonium salt compound represented by the following general formula (C) (see Patent Document 2),
Figure 2006001889
(In the above formula, Z represents a pyridine ring, R 1 and R 2 are the same or different, each represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and R 3 represents an alkenylene group having 3 to 18 carbon atoms. R 4 represents an alkyl or alkenyl group having 6 to 18 carbon atoms bonded to the ring nitrogen atom of Z, and X represents an anion.)

下記一般式(D)で表されるビス第四級アンモニウム塩化合物(特許文献3参照)が報告されている。

Figure 2006001889
(上記式中、Zはピリジン環またはキノリン環を、R3は炭素数2〜18のアルキレン基あるいはアルケニレン基を、R4はZの窒素原子に結合した炭素数6〜18のアルキル基を示し、いずれも置換基を含んでもよい。R1およびR2は同一または異なって、Zの窒素原子以外の原子に結合した炭素数1〜3のアルキル基、水酸基、アミノ基、炭素数1〜3のアルコキシ基あるいは水素原子を、Xはアニオンをそれぞれ示す。) A bis quaternary ammonium salt compound represented by the following general formula (D) (see Patent Document 3) has been reported.
Figure 2006001889
(In the above formula, Z represents a pyridine ring or a quinoline ring, R 3 represents an alkylene group or alkenylene group having 2 to 18 carbon atoms, and R 4 represents an alkyl group having 6 to 18 carbon atoms bonded to the nitrogen atom of Z. R 1 and R 2 may be the same or different and each has an alkyl group having 1 to 3 carbon atoms, a hydroxyl group, an amino group, or 1 to 3 carbon atoms bonded to an atom other than the nitrogen atom of Z. And X represents an anion.)

特開平8−301703号公報JP-A-8-301703 特開平10−095773号公報Japanese Patent Laid-Open No. 10-095773 特開平6−321902号公報JP-A-6-321902

上記の従来公知のビス第四級アンモニウム塩化合物よりも抗菌活性に極めて優れ、かつ生分解後の化合物は、残留毒性が少なく、地球環境に優しいビス第四級アンモニウム塩化合物の開発が強く望まれている。
従って本発明の目的は、入手の容易なピリジン化合物を出発原料として、簡便、かつ安価に新規な殺菌性ピリジン化合物を提供することにある。
Development of a bis-quaternary ammonium salt compound that is extremely superior in antibacterial activity than the above-mentioned conventionally known bis-quaternary ammonium salt compounds and has little residual toxicity and is friendly to the global environment is strongly desired. ing.
Accordingly, an object of the present invention is to provide a novel bactericidal pyridine compound conveniently and inexpensively using a readily available pyridine compound as a starting material.

本発明は、下記一般式(1)で表されることを特徴とする殺菌性ピリジン化合物を提供する。

Figure 2006001889
(上記式中のRは−(CH29CH3基または−(CH211CH3基であり、Zは、塩素原子、臭素原子、ヨウ素原子もしくはOSO21基(R1は、低級アルキル基もしくは置換あるいは無置換のフェニル基である)である。) The present invention provides a bactericidal pyridine compound represented by the following general formula (1).
Figure 2006001889
(In the above formula, R is — (CH 2 ) 9 CH 3 group or — (CH 2 ) 11 CH 3 group, Z is chlorine atom, bromine atom, iodine atom or OSO 2 R 1 group (R 1 is A lower alkyl group or a substituted or unsubstituted phenyl group).

本発明によれば、入手の容易なピリジン化合物を出発原料として、簡便、かつ安価に新規な殺菌性ピリジン化合物を提供することができる。   According to the present invention, a novel bactericidal pyridine compound can be provided simply and inexpensively using a readily available pyridine compound as a starting material.

次に好ましい実施の形態を挙げて本発明をさらに詳しく説明する。
前記本発明の一般式(1)で表される化合物は種々の方法で合成することができるが、1例を挙げれば、下記の通りである。すなわち、3−クロロメチルピリジン、3−ブロモメチルピリジン、3−ヨードメチルピリジン、3−(メタンスルホニルオキシ)メチルピリジン、3−(ベンゼンスルホニルオキシ)メチルピリジンまたはそれらの塩(以下「原料ピリジン化合物」という)と1,4−ブタンジオールとを反応させることにより、下記一般式(2)のピリジン化合物を合成する。該反応時においては、1,4−ブタンジオールに対して、原料ピリジン化合物の使用量は1当量モルから1.5当量モルが好ましく、1当量モルから1.1当量モルがさらに好ましい。

Figure 2006001889
Next, the present invention will be described in more detail with reference to preferred embodiments.
The compound represented by the general formula (1) of the present invention can be synthesized by various methods, and one example is as follows. That is, 3-chloromethylpyridine, 3-bromomethylpyridine, 3-iodomethylpyridine, 3- (methanesulfonyloxy) methylpyridine, 3- (benzenesulfonyloxy) methylpyridine or a salt thereof (hereinafter referred to as “raw pyridine compound”) ) And 1,4-butanediol are reacted to synthesize a pyridine compound of the following general formula (2). In the reaction, the amount of the raw material pyridine compound used relative to 1,4-butanediol is preferably 1 equivalent mole to 1.5 equivalent mole, and more preferably 1 equivalent mole to 1.1 equivalent mole.
Figure 2006001889

原料ピリジン化合物と1,4−ブタンジオールとの反応により一般式(2)で表されるピリジン化合物を製する際には、種々の反応条件が可能である。本反応の実施には強塩基の存在が必須であり、これは1,4−ブタンジオールから対応するアルコキシドを生成することが重要だからである。本反応に使用できる強塩基としては、金属リチウム、金属カリウム、金属ナトリウムおよびその水素化物、メチルリチウム、ブチルリチウムなどのアルキルリチウム類、フェニルリチウム、リチウムターシャリブトキサイド、カリウムターシャリブトキサイド、ナトリウムターシャリブトキサイドなどの第3級アルカリ金属アルコキサイドが挙げられ、経済性、安全性および簡便性から、ナトリウムターシャリブトキサイドおよびカリウムターシャリブトキサイドが好適である。これらの強塩基は単独で用いても、2種以上組み合わせて用いても差し支えない。   When producing the pyridine compound represented by General formula (2) by reaction with a raw material pyridine compound and 1, 4- butanediol, various reaction conditions are possible. The presence of a strong base is essential for carrying out this reaction because it is important to produce the corresponding alkoxide from 1,4-butanediol. Strong bases that can be used in this reaction include metallic lithium, metallic potassium, metallic sodium and hydrides thereof, alkyllithiums such as methyllithium and butyllithium, phenyllithium, lithium tertiary riboxide, potassium tertiary riboxide, sodium Tertiary alkali metal alkoxides such as tartaribtoxide are mentioned, and sodium tartariboxide and potassium tartariboxide are preferred from the viewpoint of economy, safety and simplicity. These strong bases may be used alone or in combination of two or more.

本反応においては、原料ピリジン化合物の遊離塩基を原料として使用する場合、使用する強塩基は約1当量モルである。さらに、原料ピリジン化合物が塩を形成している場合は、使用する強塩基は、塩を中和するに足る約1当量モルと所望の反応に消費される約1当量モルを合した約2当量モルである。但し、転化率が低い場合は、原料ピリジン化合物が消失するまで、強塩基を追加しても差し支えない。塩を中和する際に使用する強塩基と、所望の反応に使用する強塩基は、同一でも異なっていても差し支えない。本反応の実施にあたっては、原料ピリジン化合物が強塩基との接触によって変化しやすいため、予め、1,4−ブタンジオールと強塩基との反応によりアルコキシドを生成させ、該アルコキシドと原料ピリジン化合物を処理するか、原料ピリジン化合物と1,4−ブタンジオールとを予め混合しておき、次いで、混合物中に強塩基を添加することが好ましい。原料ピリジン化合物が塩を形成している場合は、該化合物を遊離化させ得る量の強塩基を事前に添加し、前述の手順で処理することが可能である。   In this reaction, when the free base of the starting pyridine compound is used as the starting material, the strong base used is about 1 equivalent mole. Further, when the raw pyridine compound forms a salt, the strong base used is about 2 equivalents, which is about 1 equivalent moles sufficient to neutralize the salt and about 1 equivalent moles consumed for the desired reaction. Is a mole. However, if the conversion rate is low, a strong base may be added until the starting pyridine compound disappears. The strong base used for neutralizing the salt and the strong base used for the desired reaction may be the same or different. In carrying out this reaction, since the starting pyridine compound is likely to change due to contact with a strong base, an alkoxide is generated in advance by a reaction between 1,4-butanediol and a strong base, and the alkoxide and the starting pyridine compound are treated. Alternatively, it is preferable that the raw material pyridine compound and 1,4-butanediol are mixed in advance, and then a strong base is added to the mixture. When the raw material pyridine compound forms a salt, it is possible to add in advance an amount of a strong base capable of liberating the compound, and to perform the treatment in the above-described procedure.

本反応は、通常、種々の溶媒の存在下に実施できるが、所望の反応に悪影響を及ぼさず、かつ、所望の反応において良好な転化率および選択率を与える溶媒としては、非プロトン性極性溶媒の使用が好ましい。非プロトン性極性溶媒としては、テトラヒドロフラン、ジオキサンなどの環状エーテル系溶媒、ジメチルホルムアミド、N−メチルピロリドン、ジメチルイミダゾリジノンなどのアミド系溶媒などが好適に使用されるが、経済性、後処理の簡便さなどを考慮すると、ジメチルホルムアミドが最も好適な溶媒である。これらの溶媒は、単独で用いても、2種以上を混合して用いても差し支えない。溶媒の使用量は、原料ピリジン化合物の溶解度および1,4−ブタンジオールの溶解度および反応中に生成するアルカリ金属塩の分散様態を加味して、適宜選択できる。   This reaction can usually be carried out in the presence of various solvents, but as a solvent that does not adversely affect the desired reaction and gives good conversion and selectivity in the desired reaction, an aprotic polar solvent Is preferred. As the aprotic polar solvent, cyclic ether solvents such as tetrahydrofuran and dioxane, amide solvents such as dimethylformamide, N-methylpyrrolidone, and dimethylimidazolidinone are preferably used. Considering simplicity, dimethylformamide is the most suitable solvent. These solvents may be used alone or in combination of two or more. The amount of the solvent used can be appropriately selected in consideration of the solubility of the starting pyridine compound, the solubility of 1,4-butanediol, and the dispersion state of the alkali metal salt produced during the reaction.

本反応の温度は、−20℃から使用する溶媒の常圧における沸点までを選択できる。好ましい反応温度は、−20℃から室温であり、さらに好ましい反応温度は、−10℃から10℃である。反応の進行は、薄層クロマトグラフィーや高速液体クロマトグラフィーなどで追跡でき、原料の消失をもって反応の終了を確認できる。   The temperature of this reaction can be selected from −20 ° C. to the boiling point of the solvent used at normal pressure. A preferable reaction temperature is −20 ° C. to room temperature, and a more preferable reaction temperature is −10 ° C. to 10 ° C. The progress of the reaction can be traced by thin layer chromatography or high performance liquid chromatography, and the completion of the reaction can be confirmed by disappearance of the raw material.

本反応によって得られた、一般式(2)で表されるピリジン化合物は常法により、反応混合物から取り出すことができる。例えば、反応終了後の混合物を固液分離することにより生成したアルカリ金属塩を取り除き、母液を減圧下に濃縮した後、残液を水に分散後に抽出し、抽出液を減圧濃縮すればよい。より高純度の化合物は、一般式(2)で表されるピリジン化合物の塩酸塩、酢酸塩、硫酸塩などの無機もしくは有機酸の塩を生成させ、必要により、それらの再結晶を行った後に塩を中和し、常法で処理することで得ることができる。   The pyridine compound represented by the general formula (2) obtained by this reaction can be removed from the reaction mixture by a conventional method. For example, the alkali metal salt generated by solid-liquid separation of the mixture after completion of the reaction is removed, the mother liquor is concentrated under reduced pressure, the residual liquid is extracted after dispersion in water, and the extract is concentrated under reduced pressure. Higher-purity compounds are produced by forming a salt of an inorganic or organic acid such as hydrochloride, acetate or sulfate of the pyridine compound represented by the general formula (2), and if necessary after recrystallization thereof. It can be obtained by neutralizing the salt and treating it in a conventional manner.

次いで、一般式(2)で表されるピリジン化合物を、前記と同じ原料ピリジン化合物と強塩基の存在下に反応させることにより、下記一般式(3)で表されるピリジン化合物を製することができる。

Figure 2006001889
Next, the pyridine compound represented by the following general formula (3) can be produced by reacting the pyridine compound represented by the general formula (2) with the same raw material pyridine compound as described above in the presence of a strong base. it can.
Figure 2006001889

一般式(3)で表されるピリジン化合物は、前記一般式(2)で表される化合物を単離することなく製造することも可能である。例えば、前述のような操作で一般式(2)で表されるピリジン化合物を反応系に生成させ、次いで、強塩基の存在下に原料ピリジン化合物を作用させればよい。一般式(2)で表されるピリジン化合物もしくはその塩の使用量は、原料ピリジン化合物に対して、1〜1.5当量の使用が好ましく、さらに、1〜1.1当量の使用が好ましい。   The pyridine compound represented by the general formula (3) can also be produced without isolating the compound represented by the general formula (2). For example, the pyridine compound represented by the general formula (2) is generated in the reaction system by the above-described operation, and then the raw material pyridine compound is allowed to act in the presence of a strong base. The amount of the pyridine compound represented by the general formula (2) or a salt thereof is preferably 1 to 1.5 equivalents, more preferably 1 to 1.1 equivalents, relative to the raw material pyridine compound.

前述したように、原料ピリジン化合物と一般式(2)で表されるピリジン化合物もしくはその塩の反応においては、原料ピリジン化合物が強塩基との接触によって変化しやすいため、予め、原料ピリジン化合物と強塩基の反応により、アルコキサイドを生成させた後に一般式(2)で表されるピリジン化合物を加えるか、一般式(2)で表されるピリジン化合物と原料ピリジン化合物とを予め混合しておき、次いで、強塩基を添加することが好ましい。原料ピリジン化合物が塩を形成している場合は、該化合物を遊離化させ得る量、通常は約1当量モルの強塩基を事前に添加し、前述の手順で処理することが可能である。   As described above, in the reaction of the raw pyridine compound and the pyridine compound represented by the general formula (2) or a salt thereof, the raw pyridine compound is easily changed by contact with a strong base. After the alkoxide is generated by the reaction of the base, the pyridine compound represented by the general formula (2) is added, or the pyridine compound represented by the general formula (2) and the raw material pyridine compound are mixed in advance, It is preferable to add a strong base. When the starting pyridine compound forms a salt, an amount capable of liberating the compound, usually about 1 equivalent mole of a strong base, is added in advance and can be treated by the procedure described above.

本反応においては、原料ピリジン化合物と1,4−ブタンジオールの反応において選択した強塩基の使用が可能であり、それらは単独で用いても2種以上を組み合わせて用いても差し支えない。強塩基の使用量は、原料ピリジン化合物が遊離塩基の場合、その約1当量モルが好ましい。但し、転化率が低い場合は、一般式(2)で表されるピリジン化合物および原料ピリジン化合物が消失するまで、強塩基を追加しても差し支えない。   In this reaction, the strong base selected in the reaction of the raw material pyridine compound and 1,4-butanediol can be used, and these may be used alone or in combination of two or more. When the starting pyridine compound is a free base, the amount of strong base used is preferably about 1 equivalent mole. However, when the conversion rate is low, a strong base may be added until the pyridine compound represented by the general formula (2) and the starting pyridine compound disappear.

本反応においては、原料ピリジン化合物と1,4−ブタンジオールとの反応において選択した溶媒の使用が可能であり、それらは単独で用いても、2種以上を組み合わせて用いても差し支えない。溶媒の使用量は、一般式(2)で表されるピリジン化合物および原料ピリジン化合物の溶解度や反応中に生成するアルカリ金属塩の分散様態により、適宜選択できる。   In this reaction, it is possible to use the solvent selected in the reaction of the raw material pyridine compound and 1,4-butanediol, which may be used alone or in combination of two or more. The amount of the solvent used can be appropriately selected according to the solubility of the pyridine compound represented by the general formula (2) and the raw material pyridine compound and the dispersion state of the alkali metal salt generated during the reaction.

本反応は、−20℃から使用する溶媒の常圧下での沸点までを選択できる。好ましい反応温度は、−20℃から室温であり、さらに好ましい反応温度は、−10℃から10℃である。反応の進行は、薄層クロマトグラフィーや高速液体クロマトグラフィーで追跡でき、原料の消失により反応の終了が確認できる。一般式(3)で表されるピリジン化合物は、常法により反応混合物から取り出すことが可能である。該化合物が結晶性の場合、再結晶を行うことでより高純度の化合物を得ることができる。該化合物が非結晶性の場合、該化合物の一塩酸塩、二塩酸塩、一酢酸塩、二酢酸塩などの無機もしくは有機酸塩を生成させ、必要に応じてそれらの再結晶を行った後に塩を中和し、常法により取り出すことで、高純度の化合物を得ることができる。   This reaction can be selected from −20 ° C. to the boiling point of the solvent used under normal pressure. A preferable reaction temperature is −20 ° C. to room temperature, and a more preferable reaction temperature is −10 ° C. to 10 ° C. The progress of the reaction can be traced by thin layer chromatography or high performance liquid chromatography, and the completion of the reaction can be confirmed by disappearance of the raw material. The pyridine compound represented by the general formula (3) can be taken out from the reaction mixture by a conventional method. When the compound is crystalline, a higher purity compound can be obtained by recrystallization. When the compound is non-crystalline, after forming an inorganic or organic acid salt such as monohydrochloride, dihydrochloride, monoacetate, diacetate, etc. of the compound and recrystallizing them as necessary A high-purity compound can be obtained by neutralizing the salt and removing it by a conventional method.

次いで、一般式(3)で表されるピリジン化合物と、下記一般式(4)で表される化合物を反応させることにより、前記一般式(1)で表される本発明の殺菌性ピリジン化合物を得ることができる。

Figure 2006001889
(上記式中のRは−(CH29CH3基または−(CH211CH3基であり、Zは、塩素原子、臭素原子、ヨウ素原子もしくはOSO21基(R1は、低級アルキル基もしくは置換あるいは無置換のフェニル基である)である。) Next, the bactericidal pyridine compound of the present invention represented by the general formula (1) is reacted by reacting the pyridine compound represented by the general formula (3) with the compound represented by the following general formula (4). Obtainable.
Figure 2006001889
(In the above formula, R is — (CH 2 ) 9 CH 3 group or — (CH 2 ) 11 CH 3 group, Z is chlorine atom, bromine atom, iodine atom or OSO 2 R 1 group (R 1 is A lower alkyl group or a substituted or unsubstituted phenyl group).

本反応において、一般式(3)で表されるピリジン化合物に対する一般式(4)で表される化合物の使用量は、理論的に2当量モルである。但し、転化率が低い場合、さらに一般式(4)で表される化合物を多く用いても差し支えなく、大過剰に用いた場合は、回収して再使用することも可能である。   In this reaction, the amount of the compound represented by the general formula (4) to the pyridine compound represented by the general formula (3) is theoretically 2 equivalent moles. However, when the conversion rate is low, a large amount of the compound represented by the general formula (4) may be used. If it is used in a large excess, it can be recovered and reused.

一般式(3)で表されるピリジン化合物と一般式(4)で表される化合物の反応においては溶媒の使用が可能である。好ましい溶媒としては、低級脂肪族アルコール、非プロトン性極性溶媒が挙げられ、具体的には、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、ターシャリブタノール、アセトニトリル、プロピオニトリル、アセトン、メチルエチルケトン、メチルイソブチルケトン、テトラヒドロフラン、ジオキサン、ジメチルホルムアミド、N−メチルピロリドン、ジメチルイミダゾリジノン、ジメチルスルホキシドなどが使用できる。ジメチルホルムアミドは、該反応の転化率および選択率が良好であること、後処理が簡便であること、経済性に優れていることなどから最も好ましい溶媒である。   In the reaction of the pyridine compound represented by the general formula (3) and the compound represented by the general formula (4), a solvent can be used. Preferred solvents include lower aliphatic alcohols and aprotic polar solvents. Specifically, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, tertiary butanol, acetonitrile, propionitrile, acetone, methyl ethyl ketone. , Methyl isobutyl ketone, tetrahydrofuran, dioxane, dimethylformamide, N-methylpyrrolidone, dimethylimidazolidinone, dimethyl sulfoxide and the like can be used. Dimethylformamide is the most preferred solvent because of good conversion and selectivity of the reaction, simple post-treatment, and excellent economic efficiency.

これらの溶媒は、単独で用いても、2種以上を混合して用いても差し支えない。溶媒の使用量は、一般式(3)で表されるピリジン化合物、一般式(4)で表される化合物の該溶媒への溶解度を考慮して適宜選択できる。   These solvents may be used alone or in combination of two or more. The amount of the solvent used can be appropriately selected in consideration of the solubility of the pyridine compound represented by the general formula (3) and the compound represented by the general formula (4) in the solvent.

一方、該反応は、溶媒を使用せず、一般式(4)で表される化合物を過剰に使用して実施することも可能である。この場合、反応終了後に、未反応の一般式(4)で表される化合物は、反応混合物から分離、回収して再使用することができ、極めて効率的、かつ、経済的である。   On the other hand, this reaction can also be carried out using an excess of the compound represented by the general formula (4) without using a solvent. In this case, after completion of the reaction, the unreacted compound represented by the general formula (4) can be separated from the reaction mixture, recovered, and reused, which is extremely efficient and economical.

本反応は、0℃から使用する溶媒もしくは一般式(4)で表される化合物の常圧における沸点で実施できる。好ましい温度は、室温から100℃であり、さらに好ましい温度は、40℃から80℃である。反応の進行は、高速液体クロマトグラフィーなどで追跡でき、原料の消失と目的とする前記一般式(1)の殺菌性ピリジン化合物の生成量から反応の終了を判断できる。   This reaction can be carried out from 0 ° C. at the boiling point at normal pressure of the solvent used or the compound represented by the general formula (4). A preferred temperature is from room temperature to 100 ° C, and a more preferred temperature is from 40 ° C to 80 ° C. The progress of the reaction can be traced by high performance liquid chromatography or the like, and the end of the reaction can be judged from the disappearance of the raw materials and the amount of the desired bactericidal pyridine compound of the general formula (1).

さらに、該反応は、一般式(3)で表されるピリジン化合物を単離することなしに、一般式(3)で表されるピリジン化合物を含有する反応混合物に一般式(4)で表される化合物を添加して連続的に実施することも可能である。この場合、一般式(3)の化合物の製造に使用した溶媒をそのまま使用すればよい。   Further, the reaction is represented by the general formula (4) in the reaction mixture containing the pyridine compound represented by the general formula (3) without isolating the pyridine compound represented by the general formula (3). It is also possible to carry out continuously by adding a compound. In this case, what is necessary is just to use the solvent used for manufacture of the compound of General formula (3) as it is.

前記一般式(1)で表される本発明の殺菌性ピリジン化合物は、常法により取り出すことが可能であり、常温で固体の化合物は、適切な溶媒系からの結晶化が可能である。また、この場合、適切な溶媒系を選択することにより、再結晶による精製が可能であり、高純度の目的物を得ることができる。   The bactericidal pyridine compound of the present invention represented by the general formula (1) can be taken out by a conventional method, and a compound that is solid at room temperature can be crystallized from an appropriate solvent system. In this case, by selecting an appropriate solvent system, purification by recrystallization is possible, and a high-purity target product can be obtained.

以下の実施例で本発明をさらに詳細に説明する。
<実施例1>
[下記構造式で示される化合物(A)の合成]

Figure 2006001889
DMF(ジメチルホルムアミド)75mlに1,4−ブタンジオール8.24g(91.43mmol)を加え、氷冷下カリウムtert−ブトキシド10.3g(91.79mmol)を添加し、室温で1.5時間撹拌した。 The following examples further illustrate the present invention.
<Example 1>
[Synthesis of Compound (A) Represented by Structural Formula below]
Figure 2006001889
To 75 ml of DMF (dimethylformamide), 8.24 g (91.43 mmol) of 1,4-butanediol was added, and 10.3 g (91.79 mmol) of potassium tert-butoxide was added under ice cooling, followed by stirring at room temperature for 1.5 hours. did.

このスラリー液に−8〜−3℃で3−クロロメチルピリジン塩酸塩1.0g(6.10mmol)およびカリウムtert−ブトキシド0.68g(6.06mmol)を交互に添加し、これを15回繰り返し、全量で3−クロロメチルピリジン塩酸塩15.0g(91.45mmol)およびカリウムtert−ブトキシド10.2g(90.9mmol)を添加した。   To this slurry solution, 1.0 g (6.10 mmol) of 3-chloromethylpyridine hydrochloride and 0.68 g (6.06 mmol) of potassium tert-butoxide were alternately added at −8 to −3 ° C., and this was repeated 15 times. In total, 15.0 g (91.45 mmol) of 3-chloromethylpyridine hydrochloride and 10.2 g (90.9 mmol) of potassium tert-butoxide were added.

添加終了後、反応混合物をHPLC(条件1)で分析すると、3−クロロメチルピリジンのピークが確認されたので、3−クロロメチルピリジンのピークが消失するまで、カリウムtert−ブトキシドを5℃以下で添加した。追加したカリウムtert−ブトキシドは1.13g(10.07mmol)であった。   After completion of the addition, the reaction mixture was analyzed by HPLC (condition 1). As a result, a peak of 3-chloromethylpyridine was confirmed. Therefore, potassium tert-butoxide was kept at 5 ° C. or lower until the peak of 3-chloromethylpyridine disappeared. Added. The added potassium tert-butoxide was 1.13 g (10.07 mmol).

反応混合物を固液分離し、ケークをDMF30mlで洗浄、ろ洗液からDMFを減圧下に留去して油状の粗生成物(化合物(A))17.1gを得た。得られた油状物をHPLC(条件1)で分析すると、前記化合物(A)の面積%は76.0%であった。   The reaction mixture was subjected to solid-liquid separation, the cake was washed with 30 ml of DMF, and DMF was distilled off from the filtrate under reduced pressure to obtain 17.1 g of an oily crude product (compound (A)). When the obtained oil was analyzed by HPLC (condition 1), the area% of the compound (A) was 76.0%.

前記化合物(A)の粗生成物を水30mlに溶解し、トルエンで洗浄した。その後、水層に食塩6gを加え、ジクロロメタン20ml×2で抽出し、無水硫酸マグネシウムで脱水後、溶媒を留去し、油状の前記化合物(A)9.21g(収率(1,4−ブタンジオールより):57.2%)を得た。得られた油状物をHPLC(条件1)で分析すると、面積%は99.4%であった。(1H−NMR(CDCl3):δ1.67−1.75(4H,m,−(C 22−)、δ2.35(1H,s,O)、δ3.52−3.56(2H,t,J=6.0Hz,C 2)、δ3.64−3.68(2H,t,J=6.0Hz,C 2)、δ4.52(2H,s,C 2)、δ7.27−7.31(1H,m,arom)、δ7.66−7.70(1H,m,arom)、δ8.52−8.56(2H,m,arom×2)、MS(APCl):m/z=182[M+H]+The crude product of the compound (A) was dissolved in 30 ml of water and washed with toluene. Thereafter, 6 g of sodium chloride was added to the aqueous layer, followed by extraction with 20 ml of dichloromethane, dehydration with anhydrous magnesium sulfate, the solvent was distilled off, and 9.21 g of the oily compound (A) (yield (1,4-butane) From the diol): 57.2%). When the obtained oily substance was analyzed by HPLC (condition 1), the area% was 99.4%. (1 H-NMR (CDCl 3 ): δ1.67-1.75 (4H, m, - (C H 2) 2 -), δ2.35 (1H, s, O H), δ3.52-3. 56 (2H, t, J = 6.0 Hz, C H 2 ), δ 3.64-3.68 (2H, t, J = 6.0 Hz, C H 2 ), δ 4.52 (2H, s, C H 2 ), δ 7.27-7.31 (1H, m, arom H ), δ 7.66-7.70 (1 H, m, arom H ), δ 8.52-8.56 (2H, m, arom H × 2), MS (APCl): m / z = 182 [M + H] + )

HPLC(条件1)
・カラム:Inertsil ODS-3(GL Sciences)4.6mmφ×250mm
・カラム温度:15℃付近の一定温度
・移動相:A−0.5%酢酸アンモニウム水溶液、B−アセトニトリル A:B=70:30(一定)
・流量:1.0ml/min
・検出器:UV254nm
・注入量:20μL
HPLC (condition 1)
Column: Inertsil ODS-3 (GL Sciences) 4.6 mmφ × 250 mm
Column temperature: constant temperature around 15 ° C. Mobile phase: A-0.5% ammonium acetate aqueous solution, B-acetonitrile A: B = 70: 30 (constant)
・ Flow rate: 1.0ml / min
・ Detector: UV254nm
・ Injection volume: 20μL

[下記構造式で示される化合物(B)の合成]

Figure 2006001889
DMF25mlに前記化合物(A)5.0g(27.59mmol)を加え、氷冷下カリウムtert−ブトキシド3.1g(27.63mmol)を添加した。このスラリーに5〜6℃で3−クロロメチルピリジン塩酸塩0.5g(3.05mmol)およびカリウムtert−ブトキシド0.34g(3.03mmol)を交互に添加し、これを9回繰り返し、全量で3−クロロメチルピリジン塩酸塩4.5g(27.43mmol)およびカリウムtert−ブトキシド3.06g(27.27mmol)を添加した。 [Synthesis of Compound (B) Represented by Structural Formula below]
Figure 2006001889
The compound (A) (5.0 g, 27.59 mmol) was added to DMF (25 ml), and potassium tert-butoxide (3.1 g, 27.63 mmol) was added under ice cooling. To this slurry, 0.5 g (3.05 mmol) of 3-chloromethylpyridine hydrochloride and 0.34 g (3.03 mmol) of potassium tert-butoxide were alternately added at 5 to 6 ° C., and this was repeated 9 times. 4.5 g (27.43 mmol) of 3-chloromethylpyridine hydrochloride and 3.06 g (27.27 mmol) of potassium tert-butoxide were added.

添加終了後、反応混合物をHPLC(条件1)で分析すると、3−クロロメチルピリジンおよび前記化合物(A)のピークが確認されたので、3−クロロメチルピリジンのピークおよび前記化合物(A)のピークが消失するまで、カリウムtert−ブトキシドを5℃以下で添加した。追加したカリウムtert−ブトキシドは0.62g(5.53mmol)であった。   After completion of the addition, the reaction mixture was analyzed by HPLC (condition 1). As a result, peaks of 3-chloromethylpyridine and the compound (A) were confirmed. Therefore, the peak of 3-chloromethylpyridine and the peak of the compound (A) were confirmed. Potassium tert-butoxide was added at 5 ° C. or lower until disappeared. The added potassium tert-butoxide was 0.62 g (5.53 mmol).

反応混合物を固液分離し、ケークをDMF30mlで洗浄、ろ洗液からDMFを減圧下に留去した。この濃縮残液にジクロロメタン20mlを添加し、溶解液を飽和食塩水で洗浄後、溶媒を留去し、油状物5.8gを得た。この粗生成物0.5gについてシリカゲルカラムクロマトグラフィー(展開溶媒:クロロホルム−メタノール)で精製を行い、油状の前記化合物(B)0.3gを得た。(1H−NMR:δ1.70−1.74(4H,m,−(C 22−)、δ3.50−3.54(4H,m,C 2×2)、δ4.51(4H,s,C 2×2)、δ7.25−7.29(2H,dd,J=4.9Hz,7.9Hz,arom×2)、δ7.65−7.69(2H,dt,J=1.7Hz,7.9Hz,arom ×2)、δ8.52−8.57(4H,dd,J=1.7Hz,4.9Hz,arom×4)、MS(APCl):m/z=273[M+H]+The reaction mixture was separated into solid and liquid, the cake was washed with 30 ml of DMF, and DMF was distilled off from the filtrate under reduced pressure. To this concentrated residue, 20 ml of dichloromethane was added, and the solution was washed with saturated brine, and then the solvent was distilled off to obtain 5.8 g of an oily substance. About 0.5 g of this crude product was purified by silica gel column chromatography (developing solvent: chloroform-methanol) to obtain 0.3 g of oily compound (B). ( 1 H-NMR: δ 1.70-1.74 (4H, m,-(C H 2 ) 2- ), δ 3.50-3.54 (4H, m, C H 2 × 2), δ 4.51 (4H, s, C H 2 × 2), δ 7.25-7.29 (2H, dd, J = 4.9 Hz, 7.9 Hz, arom H × 2), δ 7.65-7.69 (2H, dt, J = 1.7 Hz, 7.9 Hz, arom H × 2), δ 8.52-8.57 (4H, dd, J = 1.7 Hz, 4.9 Hz, arom H × 4), MS (APCl) : M / z = 273 [M + H] + )

[下記構造式の化合物(1)の合成]

Figure 2006001889
前記化合物(B)5.0g(18.36mmol)にデシルブロマイド40.6g(183.8mmol)を加え、70〜80℃で20時間反応を行った。 [Synthesis of Compound (1) of Structural Formula below]
Figure 2006001889
40.6 g (183.8 mmol) of decyl bromide was added to 5.0 g (18.36 mmol) of the compound (B), and the reaction was performed at 70 to 80 ° C. for 20 hours.

反応混合物をHPLC(条件2)で分析すると、前記化合物(B)のピークは消失していた。反応混合物より上層のデシルブロマイド層を分離し、下層油状物をアセトニトリル−酢酸エチル=1:3(v/v)混液に注加した。混合物を冷却し、析出結晶を0℃でろ過、減圧乾燥を行い、灰白色結晶11.6g(粗収率(前記化合物(B)より):88.5%)を得た。該化合物の結晶をHPLC(条件1)で分析すると、前記化合物(1)の面積%は98.4%であった。融点、NMR分析値および元素分析値は以下の通りであった。
(融点:76.8〜79.2℃、1H−NMR(CD3OD):δ0.9(6H、t、C 3×2)、δ1.29〜1.40(28H、m、(C 27×2)、δ1.77〜1.84(4H、m、C 2×2)、δ2.00〜2.05(4H、t、C 2×2)、δ3.69〜3.70(4H、t、C 2×2)、δ4.64〜4.68(4H、t、C 2×2)、δ4.77(4H、s、C 2×2)、δ8.07〜8.11(2H、dd、J=、arom ×2)、δ8.55〜8.57(2H、d、arom ×2)、δ8.93〜8.94(2H、d、arom ×2)、δ9.02(2H、s、arom ×2)

Figure 2006001889
When the reaction mixture was analyzed by HPLC (condition 2), the peak of the compound (B) disappeared. The upper decyl bromide layer was separated from the reaction mixture, and the lower oil was poured into a mixture of acetonitrile-ethyl acetate = 1: 3 (v / v). The mixture was cooled, and the precipitated crystals were filtered at 0 ° C. and dried under reduced pressure to obtain 11.6 g of grayish white crystals (crude yield (from the compound (B)): 88.5%). When the crystals of the compound were analyzed by HPLC (Condition 1), the area% of the compound (1) was 98.4%. Melting points, NMR analysis values and elemental analysis values were as follows.
(Melting point: 76.8 to 79.2 ° C., 1 H-NMR (CD 3 OD): δ 0.9 (6H, t, C H 3 × 2), δ 1.29 to 1.40 (28H, m, ( C H 2 ) 7 × 2), δ 1.77 to 1.84 (4H, m, C H 2 × 2), δ 2.00 to 2.05 (4H, t, C H 2 × 2), δ 3.69 ˜3.70 (4H, t, C H 2 × 2), δ 4.64 to 4.68 (4H, t, C H 2 × 2), δ 4.77 (4H, s, C H 2 × 2), δ 8.07 to 8.11 (2H, dd, J =, arom H × 2), δ 8.55 to 8.57 (2H, d, arom H × 2), δ 8.93 to 8.94 (2H, d , arom H × 2), δ9.02 (2H, s, arom H × 2)
Figure 2006001889

HPLC(条件2)
・カラム:Inertsil ODS-3(GL Sciences)4.6mmφ×250mm
・カラム温度:15℃付近の一定温度
・移動相:A−0.5%酢酸アンモニウム水溶液、B−アセトニトリル A:60%(5min保持)→(10min)→A:30%(30min保持)→A:60%
・流量:1.0ml/min
・検出器:UV254nm
・注入量:10μL
HPLC (condition 2)
Column: Inertsil ODS-3 (GL Sciences) 4.6 mmφ × 250 mm
Column temperature: constant temperature around 15 ° C. Mobile phase: A-0.5% ammonium acetate aqueous solution, B-acetonitrile A: 60% (5 min hold) → (10 min) → A: 30% (30 min hold) → A : 60%
・ Flow rate: 1.0ml / min
・ Detector: UV254nm
・ Injection volume: 10 μL

<実施例2>
実施例1におけるデシルブロマイドに代えて当モル量のドデシルブロマイドを用いた以外は実施例1と同様にして下記構造式で表される化合物(2)13.0g(粗収率:91.5%)を得た。得られた化合物(2)をHPLC(条件3)で分析すると、化合物(2)のピークの面積%は97.5%であった。また、融点、NMR分析値および元素分析値は以下の通りであった。

Figure 2006001889
<Example 2>
13.0 g of the compound (2) represented by the following structural formula in the same manner as in Example 1 except that an equimolar amount of dodecyl bromide was used instead of decyl bromide in Example 1 (crude yield: 91.5% ) When the obtained compound (2) was analyzed by HPLC (condition 3), the peak area% of the compound (2) was 97.5%. The melting point, NMR analysis value, and elemental analysis value were as follows.
Figure 2006001889

(融点:90.0〜91.4℃、1H−NMR(CD3OD):δ0.89(6H、t、C 3×2)、δ1.26〜1.39(36H、m、(C 29×2)、δ1.79〜1.82(4H、m、C 2×2)、δ1.84〜2.05(4H、m、C 2×2)、δ3.67〜3.70(4H、t、C 2×2)、δ4.65〜4.68(4H、t、C 2×2)、δ4.77(4H、s、C 2×2)、δ8.07〜8.11(2H、dd、arom ×2)、δ8.55〜8.57(2H、d、arom ×2)、δ8.93〜8.94(2H、d、arom ×2)、δ9.02(2H、s、arom ×2)

Figure 2006001889
(Melting point: 90.0 to 91.4 ° C., 1 H-NMR (CD 3 OD): δ 0.89 (6H, t, C H 3 × 2), δ 1.26 to 1.39 (36H, m, ( C H 2 ) 9 × 2), δ 1.79 to 1.82 (4H, m, C H 2 × 2), δ 1.84 to 2.05 (4H, m, C H 2 × 2), δ 3.67 ˜3.70 (4H, t, C H 2 × 2), δ 4.65 to 4.68 (4H, t, C H 2 × 2), δ 4.77 (4H, s, C H 2 × 2), δ 8.07 to 8.11 (2H, dd, arom H × 2), δ 8.55 to 8.57 (2H, d, arom H × 2), δ 8.93 to 8.94 (2H, d, arom H × 2), δ9.02 (2H, s, arom H × 2)
Figure 2006001889

HPLC(条件3)
・カラム:CAPCELL PAK C18 SG120(資生堂)4.6mmφ×250mm
・カラム温度:15℃付近の一定温度
・移動相:A−0.1Mリン酸二水素カリウム(0.05%燐酸)水溶液、B−80%アセトニトリル水溶液 A:B=30:70
・流量:1.0ml/min
・検出器:UV254nm
・注入量:20μL
HPLC (condition 3)
Column: CAPCELL PAK C 18 SG120 (Shiseido) 4.6 mmφ × 250 mm
Column temperature: constant temperature around 15 ° C. Mobile phase: A-0.1M potassium dihydrogen phosphate (0.05% phosphoric acid) aqueous solution, B-80% acetonitrile aqueous solution A: B = 30: 70
・ Flow rate: 1.0ml / min
・ Detector: UV254nm
・ Injection volume: 20μL

試験例1<本発明の前記化合物(1)〜(2)の各種細菌に対する静菌活性>
対照化合物には塩化ベンザルコニウムを用いて最小発育阻止濃度(MIC)を測定した。最小発育阻止濃度(MIC)の測定は一般的なブロス希釈法に従い、ニュトリエントブロスを用いて、菌懸濁濃度が106cell/mlになるように調整した定常期状態の菌液を段階希釈した薬剤溶液と混合し、37℃、24時間静置培養後、増殖の有無によりMIC値を決定した。供試菌としてグラム陰性菌10種およびグラム陽性菌6種を用いた。その結果を表1に示す。
Test Example 1 <Bacteriostatic activity against various bacteria of the compounds (1) to (2) of the present invention>
The minimum inhibitory concentration (MIC) was measured using benzalkonium chloride as a control compound. The minimum inhibitory concentration (MIC) was measured according to a general broth dilution method. Using a nutrient broth, a steady-state bacterial solution adjusted to a cell suspension concentration of 10 6 cells / ml was serially diluted. The MIC value was determined based on the presence or absence of proliferation after mixing with the drug solution and standing culture at 37 ° C. for 24 hours. Ten gram-negative bacteria and six gram-positive bacteria were used as test bacteria. The results are shown in Table 1.

Figure 2006001889
Figure 2006001889

試験例2<本発明の化合物(1)〜(2)の各種細菌に対する殺菌活性(MBC)>
対照化合物には、ヨウ化ベンザルコニウムを用いた。供試菌としてグラム陰性菌5種およびグラム陽性菌4種を用い、前記と同様にして最小殺菌0濃度(MBC)を測定した。その結果を表2に示す。
Test Example 2 <Bactericidal activity (MBC) against various bacteria of the compounds (1) to (2) of the present invention>
Benzalkonium iodide was used as a control compound. Five gram-negative bacteria and four gram-positive bacteria were used as test bacteria, and the minimum bactericidal concentration (MBC) was measured in the same manner as described above. The results are shown in Table 2.

Figure 2006001889
Figure 2006001889

試験例3<本発明の化合物(1)〜(2)の真菌に対する最小発育阻止濃度(MIC)の測定>
対照化合物にはTBZ(2−(4’−チアゾリル)ベンズイミダゾール)を用いた。最小発育阻止濃度(MIC)の測定は、一般的なブロス希釈法に従い、サブロー培地を用い、前培養した供試菌を湿潤剤添加殺菌水で胞子液を調製した。希釈薬剤溶液1mlと胞子液1mlを混合し、インキュベーダー中で30℃、1週間培養後、増殖の有無を濁度で判定し、濁度を生じていないところをMICとした。その結果を表3に示す。
Test Example 3 <Measurement of Minimum Growth Inhibitory Concentration (MIC) for Fungi of Compounds (1) to (2) of the Present Invention>
TBZ (2- (4′-thiazolyl) benzimidazole) was used as a reference compound. The minimum inhibitory concentration (MIC) was measured according to a general broth dilution method, using a Sabouraud medium, and preparing a spore solution of pre-cultured test bacteria with humectant-added sterilized water. Diluted drug solution (1 ml) and spore solution (1 ml) were mixed, cultured in an incubator at 30 ° C. for 1 week, the presence or absence of growth was determined by turbidity, and the place where no turbidity occurred was defined as MIC. The results are shown in Table 3.

Figure 2006001889
Figure 2006001889

本発明によれば、入手の容易なピリジン化合物を出発原料として、簡便、かつ安価に新規な殺菌性ピリジン化合物を提供することができる。
According to the present invention, a novel bactericidal pyridine compound can be provided conveniently and inexpensively using a readily available pyridine compound as a starting material.

Claims (1)

下記一般式(1)で表されることを特徴とする殺菌性ピリジン化合物。
Figure 2006001889
(上記式中のRは−(CH29CH3基または−(CH211CH3基であり、Zは、塩素原子、臭素原子、ヨウ素原子もしくはOSO21基(R1は、低級アルキル基もしくは置換あるいは無置換のフェニル基である)である。)
A bactericidal pyridine compound represented by the following general formula (1):
Figure 2006001889
(In the above formula, R is — (CH 2 ) 9 CH 3 group or — (CH 2 ) 11 CH 3 group, Z is chlorine atom, bromine atom, iodine atom or OSO 2 R 1 group (R 1 is A lower alkyl group or a substituted or unsubstituted phenyl group).
JP2004180648A 2003-11-11 2004-06-18 Bactericidal pyridine compound Active JP4152353B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2004180648A JP4152353B2 (en) 2004-06-18 2004-06-18 Bactericidal pyridine compound
AT04818219T ATE553081T1 (en) 2003-11-11 2004-11-08 METHOD FOR PRODUCING A BACTERICIDAL PYRIDINE COMPOUND, AND BACTERICIDAL PYRIDINE COMPOUND
US10/578,870 US7612097B2 (en) 2003-11-11 2004-11-08 Method for producing bactericidal pyridine compound and bactericidal pyridine compound
KR1020067009103A KR100770517B1 (en) 2003-11-11 2004-11-08 Method for producing bactericidal pyridine compound and bactericidal pyridine compound
PCT/JP2004/016540 WO2005044800A1 (en) 2003-11-11 2004-11-08 Method for producing bactericidal pyridine compound and bactericidal pyridine compound
AU2004287705A AU2004287705B2 (en) 2003-11-11 2004-11-08 Method for producing bactericidal pyridine compound and bactericidal pyridine compound
ES04818219T ES2384386T3 (en) 2003-11-11 2004-11-08 Method for producing a bactericidal pyridine compound and a bactericidal pyridine compound
CN2004800326458A CN1875000B (en) 2003-11-11 2004-11-08 Method for producing bactericidal pyridine compound and bactericidal pyridine compound
CA2543254A CA2543254C (en) 2003-11-11 2004-11-08 Method for producing bactericidal pyridine compound and bactericidal pyridine compound
EP04818219A EP1683787B1 (en) 2003-11-11 2004-11-08 Method for producing bactericidal pyridine compound and bactericidal pyridine compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004180648A JP4152353B2 (en) 2004-06-18 2004-06-18 Bactericidal pyridine compound

Publications (2)

Publication Number Publication Date
JP2006001889A true JP2006001889A (en) 2006-01-05
JP4152353B2 JP4152353B2 (en) 2008-09-17

Family

ID=35770588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004180648A Active JP4152353B2 (en) 2003-11-11 2004-06-18 Bactericidal pyridine compound

Country Status (1)

Country Link
JP (1) JP4152353B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006021105A (en) * 2004-07-07 2006-01-26 Hiroki Koma Method for removing legionella bacteria in water system
JP2009215271A (en) * 2008-03-13 2009-09-24 Aquas Corp Biofilm releasant, and method for releasing biofilm
JP2016204301A (en) * 2015-04-22 2016-12-08 タマ化学工業株式会社 Antibacterial/antifungal pyridine compound, antibacterial/antifungal resin composition, and resin molded article
JP2017057194A (en) * 2015-09-17 2017-03-23 住化エンバイロメンタルサイエンス株式会社 Allergen-reducing and antimicrobial composition
JP2018008417A (en) * 2016-07-13 2018-01-18 イビデン株式会社 Decorative sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321902A (en) * 1993-05-17 1994-11-22 Otsuka Chem Co Ltd Quaternary ammonium salt compound having antibacterial activity and its production
JPH08301703A (en) * 1995-05-10 1996-11-19 Otsuka Chem Co Ltd Quaternary ammonium compound having antimicrobial activity
JPH1095773A (en) * 1996-09-19 1998-04-14 Inui Kk Bisquaternary ammonium salt compound having antimicrobial activity and its production
JP2000159608A (en) * 1998-11-30 2000-06-13 Otsuka Chem Co Ltd Antimicrobial composition
JP2003267953A (en) * 2002-03-15 2003-09-25 Koma Hiroki Bis type quaternary ammonium salt compound and antimicrobial agent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321902A (en) * 1993-05-17 1994-11-22 Otsuka Chem Co Ltd Quaternary ammonium salt compound having antibacterial activity and its production
JPH08301703A (en) * 1995-05-10 1996-11-19 Otsuka Chem Co Ltd Quaternary ammonium compound having antimicrobial activity
JPH1095773A (en) * 1996-09-19 1998-04-14 Inui Kk Bisquaternary ammonium salt compound having antimicrobial activity and its production
JP2000159608A (en) * 1998-11-30 2000-06-13 Otsuka Chem Co Ltd Antimicrobial composition
JP2003267953A (en) * 2002-03-15 2003-09-25 Koma Hiroki Bis type quaternary ammonium salt compound and antimicrobial agent

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006021105A (en) * 2004-07-07 2006-01-26 Hiroki Koma Method for removing legionella bacteria in water system
JP2009215271A (en) * 2008-03-13 2009-09-24 Aquas Corp Biofilm releasant, and method for releasing biofilm
JP2016204301A (en) * 2015-04-22 2016-12-08 タマ化学工業株式会社 Antibacterial/antifungal pyridine compound, antibacterial/antifungal resin composition, and resin molded article
JP2017057194A (en) * 2015-09-17 2017-03-23 住化エンバイロメンタルサイエンス株式会社 Allergen-reducing and antimicrobial composition
JP7007540B2 (en) 2015-09-17 2022-02-10 住化エンバイロメンタルサイエンス株式会社 Allergen reduction and antibacterial composition
JP2018008417A (en) * 2016-07-13 2018-01-18 イビデン株式会社 Decorative sheet

Also Published As

Publication number Publication date
JP4152353B2 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
AU2015414743B2 (en) Process for the preparation of kinase inhibitors and intermediates thereof
JP6513105B2 (en) Novel process for producing triazine, pyrimidine and pyridine derivatives
JP4152353B2 (en) Bactericidal pyridine compound
WO1997000867A1 (en) Process for producing guanidine derivatives, intermediates therefor and their production
KR101728443B1 (en) Method for Producing Benzyl Ester 2-aminonicotinicotinate Derivative
JP2013537875A5 (en)
JP5968900B2 (en) Preparation of rosuvastatin salt
JP4381220B2 (en) Method for producing bactericidal pyridine compound
US7612097B2 (en) Method for producing bactericidal pyridine compound and bactericidal pyridine compound
JP4381221B2 (en) Bactericidal pyridine compound
JP2005325036A6 (en) Bactericidal pyridine compound
JP2019501913A (en) Synthetic method of efinaconazole
JP3467265B2 (en) Crystals of azetidinone compounds
KR102060318B1 (en) Novel intermediate, processes for preparing the same, and processes for preparing rosuvastatin calcium salt using the same
WO2015163446A1 (en) Method for producing imidazole compound
JP2006022031A (en) Algae-controlling agent and algae-controlling method
CA3214107A1 (en) New process for the synthesis of 5-{5-chloro-2-[(3s)-3- [(morpholin-4-yl)methyl]-3,4-dihydroisoquinoline-2(1h)- carbonyl]phenyl}-1,2-dimethyl-1h-pyrrole-3-carboxylic acid derivatives and its application for the production of pharmaceutical compounds
JP5080050B2 (en) Method for producing optically active piperazine compound
JP2014185091A (en) Method of manufacturing 3-amine-4-piperidone derivative
JP2016175859A (en) Production method related to optically active uracil derivative and intermediate thereof
JPH05339267A (en) New pyridine derivative, its production and intermediate
JPS6144874A (en) Production of 2,4-diamino-5-formylpyrimidine
WO2015087291A1 (en) 3-carboxy-4-(r)-phenylpyrrolydine-2-one salt and its use
JP2013006804A (en) Method for producing benzophenone derivative
JPH05345782A (en) Production of adenine derivative

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4152353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250