JP4381220B2 - Method for producing bactericidal pyridine compound - Google Patents

Method for producing bactericidal pyridine compound Download PDF

Info

Publication number
JP4381220B2
JP4381220B2 JP2004142749A JP2004142749A JP4381220B2 JP 4381220 B2 JP4381220 B2 JP 4381220B2 JP 2004142749 A JP2004142749 A JP 2004142749A JP 2004142749 A JP2004142749 A JP 2004142749A JP 4381220 B2 JP4381220 B2 JP 4381220B2
Authority
JP
Japan
Prior art keywords
general formula
pyridine compound
compound
producing
compound according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004142749A
Other languages
Japanese (ja)
Other versions
JP2005162731A (en
Inventor
寛紀 高麗
喜雄 五十嵐
浩文 延嶋
聡 目時
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tama Kagaku Kogyo Co Ltd
Original Assignee
Tama Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004142749A priority Critical patent/JP4381220B2/en
Application filed by Tama Kagaku Kogyo Co Ltd filed Critical Tama Kagaku Kogyo Co Ltd
Priority to KR1020067009103A priority patent/KR100770517B1/en
Priority to AU2004287705A priority patent/AU2004287705B2/en
Priority to US10/578,870 priority patent/US7612097B2/en
Priority to EP04818219A priority patent/EP1683787B1/en
Priority to AT04818219T priority patent/ATE553081T1/en
Priority to CN2004800326458A priority patent/CN1875000B/en
Priority to PCT/JP2004/016540 priority patent/WO2005044800A1/en
Priority to ES04818219T priority patent/ES2384386T3/en
Priority to CA2543254A priority patent/CA2543254C/en
Publication of JP2005162731A publication Critical patent/JP2005162731A/en
Application granted granted Critical
Publication of JP4381220B2 publication Critical patent/JP4381220B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pyridine Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

本発明は、殺菌性を有する新規なピリジン化合物の工業的製造方法に関する。   The present invention relates to an industrial production method of a novel pyridine compound having bactericidal properties.

細菌や真菌などに抗菌活性を発揮するビス第四級アンモニウム塩化合物は古くから知られており、現在も抗菌剤として広く実用化されている。しかしながら、現在用いられている抗菌性のビス第四級アンモニウム塩化合物は、通常、抗菌活性は優れているが、同時に生分解生成物の残留毒性も高いため、実際の使用に関しては、環境に対する安全性と水に対する溶解性および安定性に問題があり、その適用範囲には制限があった。また、従来のビス第四級アンモニウム塩化合物は、抗菌力が糖質、蛋白質および脂質などに拮抗され、抗菌力がpHの低い(酸性)領域では低下し、かつ細胞芽胞に効果がないなどの欠点があった。   Bis quaternary ammonium salt compounds that exhibit antibacterial activity against bacteria and fungi have been known for a long time and are still widely used as antibacterial agents. However, currently used antibacterial bis-quaternary ammonium salt compounds are usually excellent in antibacterial activity, but at the same time, the residual toxicity of biodegradation products is also high. There was a problem in the solubility and solubility in water and stability, and the application range was limited. In addition, conventional bis quaternary ammonium salt compounds have antibacterial activity antagonized by carbohydrates, proteins, lipids, etc., and the antibacterial activity decreases in the low pH (acidic) region and has no effect on cell spores. There were drawbacks.

そこで、下記一般式(A)および(B)で表されるビス第四級アンモニウム塩化合物(特許文献1参照)や、

Figure 0004381220
Figure 0004381220
(上記式中、Yはピリジン環、キノリン環、イソキノリン環またはチアゾリン環を、R1は炭素数2〜10のアルキレン基あるいはアルケニレン基を、R2はYの窒素原子に結合した炭素数6〜18のアルキル基を示し、いずれも置換基を含んでもよい。Xはアニオンを示す。) Therefore, bis quaternary ammonium salt compounds represented by the following general formulas (A) and (B) (see Patent Document 1),
Figure 0004381220
Figure 0004381220
(Wherein Y represents a pyridine ring, quinoline ring, isoquinoline ring or thiazoline ring, R 1 represents an alkylene group or alkenylene group having 2 to 10 carbon atoms, and R 2 represents 6 to 6 carbon atoms bonded to the nitrogen atom of Y. 18 represents an alkyl group, any of which may contain a substituent, and X represents an anion.)

下記一般式(C)で表されるビス第四級アンモニウム塩化合物(特許文献2参照)、

Figure 0004381220
(上記式中、Zはピリジン環を示し、R1およびR2は同一または異なり、各々水素原子または炭素数1〜6のアルキル基を示し、R3は炭素数3〜18のアルケニレン基を示し、R4はZの環窒素原子に結合した炭素数6〜18のアルキル基またはアルケニル基を示し、Xはアニオンを示す。) Bis quaternary ammonium salt compound represented by the following general formula (C) (see Patent Document 2),
Figure 0004381220
(In the above formula, Z represents a pyridine ring, R 1 and R 2 are the same or different, each represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and R 3 represents an alkenylene group having 3 to 18 carbon atoms. R 4 represents an alkyl or alkenyl group having 6 to 18 carbon atoms bonded to the ring nitrogen atom of Z, and X represents an anion.)

下記一般式(D)で表されるビス第四級アンモニウム塩化合物(特許文献3参照)が報告されている。

Figure 0004381220
(上記式中、Zはピリジン環またはキノリン環を、R3は炭素数2〜18のアルキレン基あるいはアルケニレン基を、R4はZの窒素原子に結合した炭素数6〜18のアルキル基を示し、いずれも置換基を含んでもよい。R1およびR2は同一または異なって、Zの窒素原子以外の原子に結合した炭素数1〜3のアルキル基、水酸基、アミノ基、炭素数1〜3のアルコキシ基あるいは水素原子を、Xはアニオンをそれぞれ示す。) A bis quaternary ammonium salt compound represented by the following general formula (D) (see Patent Document 3) has been reported.
Figure 0004381220
(In the above formula, Z represents a pyridine ring or a quinoline ring, R 3 represents an alkylene group or alkenylene group having 2 to 18 carbon atoms, and R 4 represents an alkyl group having 6 to 18 carbon atoms bonded to the nitrogen atom of Z. R 1 and R 2 may be the same or different and each has an alkyl group having 1 to 3 carbon atoms, a hydroxyl group, an amino group, or 1 to 3 carbon atoms bonded to an atom other than the nitrogen atom of Z. And X represents an anion.)

特開平8−301703号公報JP-A-8-301703 特開平10−095773号公報Japanese Patent Laid-Open No. 10-095773 特開平6−321902号公報JP-A-6-321902

上記の従来公知のビス第四級アンモニウム塩化合物よりも抗菌活性に極めて優れ、かつ生分解後の化合物は、残留毒性が少なく、地球環境に優しいビス第四級アンモニウム塩化合物の開発が強く望まれている。
従って本発明の目的は、入手の容易なピリジン化合物を出発原料として、簡便、かつ安価に新規な殺菌性ピリジン化合物を提供することにある。
Development of a bis-quaternary ammonium salt compound that is extremely superior in antibacterial activity than the above-mentioned conventionally known bis-quaternary ammonium salt compounds and has little residual toxicity and is friendly to the global environment is strongly desired. ing.
Accordingly, an object of the present invention is to provide a novel bactericidal pyridine compound conveniently and inexpensively using a readily available pyridine compound as a starting material.

本発明は、下記一般式(7)

Figure 0004381220
(但し、上記一般式(7)において、R1およびR4は、炭素数1〜4の直鎖もしくは分岐の同一または異なるアルキル基であり、R2およびR5は、水素原子、同一または異なるハロゲン原子、低級アルキル基または低級アルコキシ基であり、R3は、炭素数2〜12の直鎖もしくは分岐のアルキル基であり、R6は、炭素数1〜18の直鎖もしくは分岐のアルキル基であり、Zは、塩素原子、臭素原子、ヨウ素原子もしくはOSO27基(R7は、低級アルキル基もしくは置換あるいは無置換のフェニル基である)である。)で表される殺菌性ピリジン化合物の製造方法を提供する。当該化合物は抗菌性化合物として有用である。
上記化合物を製造する場合、以下の2つの工程に大別される。なお、以下の説明においてR1〜R7およびZは前記と同一意義を有するので、以下においてはR1〜R7およびZの説明は省略する。 The present invention relates to the following general formula (7)
Figure 0004381220
(However, in the above general formula (7), R 1 and R 4 is a linear or branched, identical or different alkyl groups having 1 to 4 carbon atoms, R 2 and R 5 are hydrogen atoms, the same or different A halogen atom, a lower alkyl group or a lower alkoxy group, R 3 is a linear or branched alkyl group having 2 to 12 carbon atoms, and R 6 is a linear or branched alkyl group having 1 to 18 carbon atoms. And Z is a chlorine atom, bromine atom, iodine atom or OSO 2 R 7 group (R 7 is a lower alkyl group or a substituted or unsubstituted phenyl group). A method for producing a compound is provided. The compound is useful as an antibacterial compound.
When manufacturing the said compound, it divides roughly into the following two processes. In the following description, R 1 to R 7 and Z have the same meaning as described above. Therefore, description of R 1 to R 7 and Z is omitted in the following.

すなわち、
1)一般式(5)

Figure 0004381220
で表されるピリジン化合物の合成。 That is,
1) General formula (5)
Figure 0004381220
Synthesis of a pyridine compound represented by

2)前記一般式(5)の化合物と一般式(6)

Figure 0004381220
で表されるハロゲン化合物もしくはスルホン酸エステル化合物の反応による前記一般式(7)の殺菌性ピリジン化合物の合成。 2) Compound of general formula (5) and general formula (6)
Figure 0004381220
Synthesis of the bactericidal pyridine compound of the general formula (7) by reaction of a halogen compound or a sulfonic acid ester compound represented by the formula:

本発明者らは、最初に、前記一般式(5)で表される新規なピリジン化合物の合成方法について以下の計画を立案した。すなわち、一般式(1)

Figure 0004381220
(但し、式中のAは、塩基の作用により脱離基として機能し、アルキルカチオンを生成し得る置換基であり、R1およびR2は前記の通りであり、Xは無機もしくは有機のプロトン酸の対アニオンであり、mは0〜1である)で表されるピリジン化合物(m=0)もしくはその塩(m=1)と、下記一般式(2)
Figure 0004381220
で表されるジオール類の求核置換反応によるエーテル結合生成である。この場合、ジオール類は塩基によりアルコキシドを生成して活性化される必要がある。前記一般式(1)の塩を使用した場合には、該塩を中和するに足る塩基がさらに必要となる。 The present inventors first made the following plan for a method for synthesizing a novel pyridine compound represented by the general formula (5). That is, the general formula (1)
Figure 0004381220
(In the formula, A is a substituent which functions as a leaving group by the action of a base and can generate an alkyl cation, R 1 and R 2 are as described above, and X is an inorganic or organic proton. A pyridine compound (m = 0) or a salt thereof (m = 1) represented by the following general formula (2):
Figure 0004381220
It is an ether bond formation by the nucleophilic substitution reaction of diol represented by these. In this case, the diol needs to be activated by generating an alkoxide with a base. When the salt of the general formula (1) is used, a base sufficient to neutralize the salt is further required.

本発明者らは、本計画に従い、
1)脱離基として機能する置換基の選択。
2)脱離を可能ならしめる塩基の選択。
3)脱離を可能ならしめる溶媒種の選択。
4)高選択的な反応条件の選択。
を主たる目的として鋭意研究を進めた結果、下記一般式(3)

Figure 0004381220
で表されるピリジン化合物の効率的な製造方法を見いだした。 In accordance with the plan, the inventors
1) Selection of substituents that function as leaving groups.
2) Selection of a base that enables elimination.
3) Selection of a solvent species that enables desorption.
4) Selection of highly selective reaction conditions.
As a result of diligent research for the main purpose, the following general formula (3)
Figure 0004381220
The efficient manufacturing method of the pyridine compound represented by these was discovered.

次に、本発明者らは、前記一般式(3)で表されるピリジン化合物と下記一般式(4)

Figure 0004381220
(但し式中のBは塩基の作用により脱離基として機能し、アルキルカチオンを生成し得る置換基であり、Yは無機もしくは有機のプロトン酸の対アニオンであり、R4およびR5は前記の通りであり、Bは前記Aと同一でも異なっていてもよく、Yは前記Xと同一でも異なっていてもよく、R4は前記R1と同一でも異なっていてもよく、R5は前記R2と同一でも異なっていてもよく、nは0〜1であり、前記mと同一でも異なっていてもよい)で表されるピリジン化合物(n=0)もしくはその塩(n=1)の求核置換反応による第2のエーテル結合の生成において、
1)脱離基として機能する置換基の選択。
2)脱離を可能ならしめる塩基の選択。
3)脱離を可能ならしめる溶媒種の選択。
4)高選択的な反応条件の選択。
に着目して鋭意検討を進めた。該反応において、前記一般式(3)で表されるピリジン化合物は塩基によりアルコキシドを生成して活性化される必要がある。また、前記一般式(4)の塩を使用する場合は、該塩を中和するに足る塩基が必要になる。種々検討の結果、本発明者らは、前記一般式(5)で表されるピリジン化合物の効率的な製造方法を見いだし、本発明を完成させるに至った。なお、以下の説明においてA、B、X、Y、mおよびnは前記と同一意義を有するので、以下においてはA、B、X、Y、mおよびnの説明は省略する。 Next, the inventors have prepared a pyridine compound represented by the general formula (3) and the following general formula (4).
Figure 0004381220
(In the formula, B is a substituent that functions as a leaving group by the action of a base and can generate an alkyl cation, Y is a counter anion of an inorganic or organic protonic acid, and R 4 and R 5 are B may be the same as or different from A, Y may be the same as or different from X, R 4 may be the same as or different from R 1, and R 5 may be the same as R 2 may be the same as or different from R 2, and n is 0 to 1, and may be the same as or different from m) or a salt thereof (n = 1) In the formation of the second ether bond by the nucleophilic substitution reaction,
1) Selection of substituents that function as leaving groups.
2) Selection of a base that enables elimination.
3) Selection of a solvent species that enables desorption.
4) Selection of highly selective reaction conditions.
Focused on the study and advanced research. In the reaction, the pyridine compound represented by the general formula (3) needs to be activated by generating an alkoxide with a base. Moreover, when using the salt of the said General formula (4), the base sufficient to neutralize this salt is needed. As a result of various studies, the present inventors have found an efficient method for producing a pyridine compound represented by the general formula (5), and have completed the present invention. In the following description, A, B, X, Y, m, and n have the same meaning as described above. Therefore, description of A, B, X, Y, m, and n is omitted in the following.

最後に、本発明者らは前記一般式(5)で表されるピリジン化合物と一般式(6)で表されるハロゲン化アルキルもしくはスルホン酸エステルの反応による、所望の前記一般式(7)で表される殺菌性ピリジン化合物の合成条件について鋭意検討した結果、本発明を完成するに至った。すなわち、本発明は、下記一般式(1)

Figure 0004381220
で表されるピリジン化合物と、下記一般式(2)
Figure 0004381220
で表されるジオール類とを、強塩基の存在下に反応させることにより、下記一般式(3)
Figure 0004381220
で表されるピリジン化合物を製し、該化合物と下記一般式(4)
Figure 0004381220
で表されるピリジン化合物とを強塩基の存在下に反応させることにより、下記一般式(5)
Figure 0004381220
で表されるピリジン化合物を製し、該化合物と下記一般式(6)
Figure 0004381220
で表されるハロゲン化合物もしくはスルホン酸エステル化合物とを反応させることを特徴とする下記一般式(7)
Figure 0004381220
で表される新規な殺菌性ピリジン化合物の製造方法を提供する。 Finally, the present inventors have obtained a desired general formula (7) by the reaction of the pyridine compound represented by the general formula (5) and the alkyl halide or sulfonate ester represented by the general formula (6). As a result of intensive studies on the synthesis conditions of the bactericidal pyridine compound represented, the present invention has been completed. That is, the present invention provides the following general formula (1)
Figure 0004381220
And a pyridine compound represented by the following general formula (2)
Figure 0004381220
Is reacted in the presence of a strong base to give the following general formula (3):
Figure 0004381220
A pyridine compound represented by the formula:
Figure 0004381220
Is reacted with a pyridine compound represented by the following general formula (5):
Figure 0004381220
A pyridine compound represented by the formula:
Figure 0004381220
The following general formula (7), characterized by reacting with a halogen compound or a sulfonic acid ester compound represented by the formula:
Figure 0004381220
A method for producing a novel bactericidal pyridine compound represented by the formula:

本発明によれば、入手の容易なピリジン化合物を出発原料として、簡便、かつ安価に新規な殺菌性ピリジン化合物を提供することができる。   According to the present invention, a novel bactericidal pyridine compound can be provided simply and inexpensively using a readily available pyridine compound as a starting material.

次に好ましい実施の形態を挙げて本発明をさらに詳しく説明する。
前記一般式(1)で表されるピリジン化合物において、Aで示されるところの塩基の作用により脱離基として機能し、カルボカチオンを生成し得る置換基としては、塩素原子、臭素原子、ヨウ素原子、低級アルキルスルホニルオキシ基、置換もしくは無置換のベンゼンスルホニルオキシ基などが挙げられる。低級アルキルスルホニルオキシ基としてはメタンスルホニルオキシ基、エタンスルホニルオキシ基などが、置換もしくは無置換のベンゼンスルホニルオキシ基としては、ベンゼンスルホニルオキシ基、4−メチルベンゼンスルホニルオキシ基、4−メトキシベンゼンスルホニルオキシ基、4−クロロベンゼンスルホニルオキシ基などが挙げられる。
Next, the present invention will be described in more detail with reference to preferred embodiments.
In the pyridine compound represented by the general formula (1), a substituent that functions as a leaving group by the action of a base represented by A and can generate a carbocation includes a chlorine atom, a bromine atom, and an iodine atom. , A lower alkylsulfonyloxy group, a substituted or unsubstituted benzenesulfonyloxy group, and the like. Examples of the lower alkylsulfonyloxy group include a methanesulfonyloxy group and an ethanesulfonyloxy group, and examples of the substituted or unsubstituted benzenesulfonyloxy group include a benzenesulfonyloxy group, a 4-methylbenzenesulfonyloxy group, and a 4-methoxybenzenesulfonyloxy group. Group, 4-chlorobenzenesulfonyloxy group and the like.

一般式(1)において、R1で示されるところの炭素数1〜4の直鎖もしくは分岐のアルキル基としては、−CH2−基、−(CH22−基、−(CH23−基、−(CH24−基、−CH3CH−基、−(CH32C−基、−(CH3CH2)C(CH3)−基などが挙げられ、R2は水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、イソブチル基、ターシャリブチル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などが挙げられる。置換基R1およびR2の置換位置は特に限定されない。 In the general formula (1), as the linear or branched alkyl group having 1 to 4 carbon atoms represented by R 1 , —CH 2 — group, — (CH 2 ) 2 — group, — (CH 2 ) 3 - group, - (CH 2) 4 - group, -CH 3 CH- group, - (CH 3) 2 C- group, - (CH 3 CH 2) C (CH 3) - group and the like, R 2 is hydrogen atom, fluorine atom, chlorine atom, bromine atom, iodine atom, methyl group, ethyl group, propyl group, butyl group, isopropyl group, isobutyl group, tertiary butyl group, methoxy group, ethoxy group, propoxy group, butoxy Groups and the like. The substitution positions of the substituents R 1 and R 2 are not particularly limited.

さらに、一般式(1)において、Xは塩素アニオン、臭素アニオン、ヨウ素アニオン、低級アルキルスルホニルオキシアニオン、置換もしくは無置換のベンゼンスルホニルオキシアニオン、低級アルキルカルボキシアニオン、置換もしくは無置換のベンゼンカルボキシアニオンなどが挙げられる。ここで、低級アルキルスルホニルオキシアニオンとしては、メタンスルホニルオキシアニオン、エタンスルホニルオキシアニオンなどが挙げられ、置換もしくは無置換のベンゼンスルホニルオキシアニオンとしては、ベンゼンスルホニルオキシアニオン、4−メチルベンゼンスルホニルオキシアニオン、4−メトキシベンゼンスルホニルオキシアニオン、4−クロロベンゼンスルホニルオキシアニオンなどが挙げられる。一方、低級アルキルカルボキシアニオンとしては、アセトキシアニオン、プロピオニルオキシアニオンなどが挙げられ、置換もしくは無置換のベンゼンカルボキシアニオンとしては、ベンゾイルオキシアニオン、4−メチルベンゾイルオキシアニオン、4−メトキシベンゾイルオキシアニオン、4−クロロベンゾイルオキシアニオンなどが挙げられる。   Furthermore, in the general formula (1), X is a chlorine anion, a bromine anion, an iodine anion, a lower alkylsulfonyloxy anion, a substituted or unsubstituted benzenesulfonyloxy anion, a lower alkylcarboxy anion, a substituted or unsubstituted benzenecarboxy anion, etc. Is mentioned. Here, examples of the lower alkylsulfonyloxy anion include methanesulfonyloxy anion and ethanesulfonyloxy anion. Examples of the substituted or unsubstituted benzenesulfonyloxy anion include benzenesulfonyloxy anion, 4-methylbenzenesulfonyloxy anion, Examples include 4-methoxybenzenesulfonyloxy anion and 4-chlorobenzenesulfonyloxy anion. On the other hand, examples of the lower alkylcarboxy anion include an acetoxy anion and propionyloxy anion. Examples of the substituted or unsubstituted benzenecarboxy anion include benzoyloxy anion, 4-methylbenzoyloxy anion, 4-methoxybenzoyloxy anion, 4 -Chlorobenzoyloxy anion and the like.

一般式(1)において、m=0の場合は、一般式(1)の化合物は遊離のピリジン塩基であり、m=1の場合は対応する種々の無機酸もしくは有機酸塩である。   In the general formula (1), when m = 0, the compound of the general formula (1) is a free pyridine base, and when m = 1, the corresponding various inorganic acids or organic acid salts.

出発原料の一般式(1)で表されるピリジン化合物は、種々の方法で入手可能である。例えば、2−クロロメチルピリジン、3−クロロメチルピリジン、4−クロロメチルピリジンなどの遊離塩基およびその塩、2−ブロモメチルピリジン、3−ブロモメチルピリジン、4−ブロモメチルピリジンなどの遊離塩基およびその塩、2−ヨードメチルピリジン、3−ヨードメチルピリジン、4−ヨードメチルピリジンおよびその塩、2−(メタンスルホニルオキシ)メチルピリジン、3−(メタンスルホニルオキシ)メチルピリジン、4−(メタンスルホニルオキシ)メチルピリジンなどの遊離塩基およびその塩、2−(ベンゼンスルホニルオキシ)メチルピリジン、3−(ベンゼンスルホニルオキシ)メチルピリジン、4−(ベンゼンスルホニルオキシ)メチルピリジンなどの遊離塩基およびその塩などが使用できる。   The pyridine compound represented by the general formula (1) as a starting material can be obtained by various methods. For example, free bases such as 2-chloromethylpyridine, 3-chloromethylpyridine, 4-chloromethylpyridine and salts thereof, free bases such as 2-bromomethylpyridine, 3-bromomethylpyridine, 4-bromomethylpyridine and the like Salt, 2-iodomethylpyridine, 3-iodomethylpyridine, 4-iodomethylpyridine and salts thereof, 2- (methanesulfonyloxy) methylpyridine, 3- (methanesulfonyloxy) methylpyridine, 4- (methanesulfonyloxy) Free bases such as methylpyridine and salts thereof, free bases such as 2- (benzenesulfonyloxy) methylpyridine, 3- (benzenesulfonyloxy) methylpyridine, 4- (benzenesulfonyloxy) methylpyridine and salts thereof can be used. .

一般式(2)において、R3が炭素数2〜12の直鎖もしくは分岐のアルキル基を有するジオール類は、種々の方法で入手可能であり、本発明に使用できる。例えば、エチレングリコール、プロピレングリコール、1,2−プロパンジオール、1,4−ブタンジオール、1,2−ブタンジオール、2,3−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,8−オクタンジオール、1,10−デカンジオール、2−メチル−2,4−ペンタンジオール、2−エチル−1,3−ヘキサンジオールなどのジオール類や2−ブテン−1,4−ジオールのような不飽和結合を有するジオール類、ジエチレングリコール、トリエチレングリコールのようなエーテル結合を有するジオール類も使用できる。 In the general formula (2), R 3 having a linear or branched alkyl group having 2 to 12 carbon atoms can be obtained by various methods and used in the present invention. For example, ethylene glycol, propylene glycol, 1,2-propanediol, 1,4-butanediol, 1,2-butanediol, 2,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, Diols such as 1,8-octanediol, 1,10-decanediol, 2-methyl-2,4-pentanediol, 2-ethyl-1,3-hexanediol, and 2-butene-1,4-diol Diols having an unsaturated bond and diols having an ether bond such as diethylene glycol and triethylene glycol can also be used.

一般式(2)で表されるジオール類に対して、一般式(1)で表されるピリジン化合物もしくはその塩の使用量は1当量モルから1.5当量モルが好ましく、1当量モルから1.1当量モルがさらに好ましい。   The amount of the pyridine compound represented by the general formula (1) or a salt thereof is preferably from 1 equivalent mole to 1.5 equivalent moles relative to the diol represented by the general formula (2). More preferred is 1 equivalent mole.

一般式(1)で表されるピリジン化合物と一般式(2)で表されるジオール類の反応により一般式(3)で表されるピリジン化合物を製する際には、種々の反応条件が可能である。本反応の実施には強塩基の存在が必須であり、これは一般式(2)で表されるジオール類が対応するアルコキシドを生成することが重要だからである。本反応に使用できる強塩基としては、金属リチウム、金属カリウム、金属ナトリウムおよびその水素化物、メチルリチウム、ブチルリチウムなどのアルキルリチウム類、フェニルリチウム、リチウムターシャリブトキサイド、カリウムターシャリブトキサイド、ナトリウムターシャリブトキサイドなどの第3級アルカリ金属アルコキサイドが挙げられ、経済性、安全性および簡便性から、ナトリウムターシャリブトキサイドおよびカリウムターシャリブトキサイドが好適である。これらの強塩基は単独で用いても、2種以上組み合わせて用いても差し支えない。   Various reaction conditions are possible when producing the pyridine compound represented by the general formula (3) by the reaction of the pyridine compound represented by the general formula (1) and the diol represented by the general formula (2). It is. The presence of a strong base is essential for carrying out this reaction, because it is important that the diols represented by the general formula (2) produce the corresponding alkoxide. Strong bases that can be used in this reaction include metallic lithium, metallic potassium, metallic sodium and hydrides thereof, alkyllithiums such as methyllithium and butyllithium, phenyllithium, lithium tertiary riboxide, potassium tertiary riboxide, sodium Tertiary alkali metal alkoxides such as tartaribtoxide are mentioned, and sodium tartariboxide and potassium tartariboxide are preferred from the viewpoint of economy, safety and simplicity. These strong bases may be used alone or in combination of two or more.

本反応においては、一般式(1)で表されるピリジン化合物の遊離塩基を原料として使用する場合、使用する強塩基は約1当量モルである。さらに、一般式(1)で表されるピリジン化合物が塩を形成している場合は、使用する強塩基は、塩を中和するに足る約1当量モルと所望の反応に消費される約1当量モルを合した約2当量モルである。但し、転化率が低い場合は、一般式(1)で表されるピリジン化合物が消失するまで、強塩基を追加しても差し支えない。塩を中和する際に使用する強塩基と、所望の反応に使用する強塩基は、同一でも異なっていても差し支えない。本反応の実施にあたっては、一般式(1)で表されるピリジン化合物が強塩基との接触によって変化しやすいため、予め、一般式(2)で表されるジオール類と強塩基の反応によりアルコキシドを生成させ、該アルコキシドと一般式(1)で表されるピリジン化合物を処理するか、一般式(1)で表されるピリジン化合物と一般式(2)で表されるジオール類を予め混合しておき、次いで、混合物中に強塩基を添加することが好ましい。一般式(1)で表されるピリジン化合物が塩を形成している場合は、該化合物を遊離化させ得る量の強塩基を事前に添加し、前述の手順で処理することが可能である。   In this reaction, when the free base of the pyridine compound represented by the general formula (1) is used as a raw material, the strong base used is about 1 equivalent mole. Furthermore, when the pyridine compound represented by the general formula (1) forms a salt, the strong base used is about 1 equivalent mole sufficient to neutralize the salt and about 1 consumed for the desired reaction. It is about 2 equivalent moles when the equivalent moles are combined. However, when the conversion rate is low, a strong base may be added until the pyridine compound represented by the general formula (1) disappears. The strong base used for neutralizing the salt and the strong base used for the desired reaction may be the same or different. In carrying out this reaction, since the pyridine compound represented by the general formula (1) is easily changed by contact with a strong base, an alkoxide is previously obtained by reacting the diol represented by the general formula (2) with the strong base. The alkoxide and the pyridine compound represented by the general formula (1) are treated, or the pyridine compound represented by the general formula (1) and the diol represented by the general formula (2) are mixed in advance. Then, it is preferable to add a strong base to the mixture. When the pyridine compound represented by the general formula (1) forms a salt, an amount of a strong base capable of liberating the compound can be added in advance, and the treatment can be performed according to the procedure described above.

本反応は、通常、種々の溶媒の存在下に実施できるが、所望の反応に悪影響を及ぼさず、かつ、所望の反応において良好な転化率および選択率を与える溶媒としては、非プロトン性極性溶媒の使用が好ましい。非プロトン性極性溶媒としては、テトラヒドロフラン、ジオキサンなどの環状エーテル系溶媒、ジメチルホルムアミド、N−メチルピロリドン、ジメチルイミダゾリジノンなどのアミド系溶媒などが好適に使用されるが、経済性、後処理の簡便さなどを考慮すると、ジメチルホルムアミドが最も好適な溶媒である。これらの溶媒は、単独で用いても、2種以上を混合して用いても差し支えない。溶媒の使用量は、原料である一般式(1)で表されるピリジン化合物もしくはその塩の溶解度および一般式(2)で表されるジオール類の溶解度および反応中に生成するアルカリ金属塩の分散様態を加味して、適宜選択できる。   This reaction can usually be carried out in the presence of various solvents, but as a solvent that does not adversely affect the desired reaction and gives good conversion and selectivity in the desired reaction, an aprotic polar solvent Is preferred. As the aprotic polar solvent, cyclic ether solvents such as tetrahydrofuran and dioxane, amide solvents such as dimethylformamide, N-methylpyrrolidone, and dimethylimidazolidinone are preferably used. Considering simplicity, dimethylformamide is the most suitable solvent. These solvents may be used alone or in combination of two or more. The amount of the solvent used is the solubility of the pyridine compound or its salt represented by the general formula (1) as a raw material and the solubility of the diol represented by the general formula (2) and the dispersion of the alkali metal salt generated during the reaction. Appropriate selection can be made in consideration of the mode.

本反応の温度は、−20℃から使用する溶媒の常圧における沸点までを選択できる。好ましい反応温度は、−20℃から室温であり、さらに好ましい反応温度は、−10℃から10℃である。反応の進行は、薄層クロマトグラフィーや高速液体クロマトグラフィーなどで追跡でき、原料の消失をもって反応の終了を確認できる。   The temperature of this reaction can be selected from −20 ° C. to the boiling point of the solvent used at normal pressure. A preferable reaction temperature is −20 ° C. to room temperature, and a more preferable reaction temperature is −10 ° C. to 10 ° C. The progress of the reaction can be traced by thin layer chromatography or high performance liquid chromatography, and the completion of the reaction can be confirmed by disappearance of the raw material.

本反応によって得られた、一般式(3)で表されるピリジン化合物は常法により、反応混合物から取り出すことができる。例えば、反応終了後の混合物を固液分離することにより生成したアルカリ金属塩を取り除き、母液を減圧下に濃縮した後、残液を水に分散後に抽出し、抽出液を減圧濃縮すればよい。より高純度の化合物は、一般式(3)で表されるピリジン化合物の塩酸塩、酢酸塩、硫酸塩などの無機もしくは有機酸の塩を生成させ、必要により、それらの再結晶を行った後に塩を中和し、常法で処理することで得ることができる。   The pyridine compound represented by the general formula (3) obtained by this reaction can be removed from the reaction mixture by a conventional method. For example, the alkali metal salt generated by solid-liquid separation of the mixture after completion of the reaction is removed, the mother liquor is concentrated under reduced pressure, the residual liquid is extracted after dispersion in water, and the extract is concentrated under reduced pressure. Higher purity compounds are produced by generating salts of inorganic or organic acids such as hydrochlorides, acetates and sulfates of pyridine compounds represented by the general formula (3), and if necessary after recrystallization thereof. It can be obtained by neutralizing the salt and treating it in a conventional manner.

次いで、一般式(3)で表されるピリジン化合物を、一般式(4)で表されるピリジン化合物もしくはその塩と強塩基の存在下に反応させることにより、一般式(5)で表されるピリジン化合物を製することができる。   Next, the pyridine compound represented by the general formula (3) is reacted with the pyridine compound represented by the general formula (4) or a salt thereof in the presence of a strong base, thereby being represented by the general formula (5). A pyridine compound can be produced.

一般式(4)で表されるピリジン化合物もしくはその塩としては、前述の一般式(1)で表されるピリジン化合物もしくはその塩と同様の化合物を選択できる。この場合、一般式(4)で表されるピリジン化合物もしくはその塩と一般式(1)で表されるピリジン化合物もしくはその塩において、R1≠R4もしくはR2≠R5の場合には、得られた一般式(5)で表されるピリジン化合物は2つのピリジン環において、ピリジルアルキル基もしくは環上の置換基が異なる化合物となり、R1=R4であり、R2=R5の場合には、得られた一般式(5)で表されるピリジン化合物は、2つのピリジン環において、ピリジルアルキル基もしくは環上の置換基が同一の化合物となる。 As the pyridine compound represented by the general formula (4) or a salt thereof, the same compound as the pyridine compound represented by the general formula (1) or a salt thereof can be selected. In this case, when R 1 ≠ R 4 or R 2 ≠ R 5 in the pyridine compound represented by the general formula (4) or a salt thereof and the pyridine compound represented by the general formula (1) or a salt thereof, The obtained pyridine compound represented by the general formula (5) is a compound in which two pyridine rings have different pyridylalkyl groups or substituents on the ring, and R 1 = R 4 and R 2 = R 5 In the obtained pyridine compound represented by the general formula (5), a pyridylalkyl group or a substituent on the ring is the same in two pyridine rings.

さらに、一般式(3)で表されるピリジン化合物の製造において、使用する一般式(2)で表されるジオール類が対照型のジオールの場合、一般式(4)で表されるピリジン化合物もしくはその塩と一般式(1)で表されるピリジン化合物もしくはその塩において、R1=R4であり、R2=R5の場合には、得られた一般式(5)で表されるピリジン化合物は、左右対称の構造を有する化合物となる。 Further, in the production of the pyridine compound represented by the general formula (3), when the diol represented by the general formula (2) to be used is a control type diol, the pyridine compound represented by the general formula (4) or In the case where R 1 = R 4 and R 2 = R 5 in the salt and the pyridine compound represented by the general formula (1) or the salt thereof, the pyridine represented by the general formula (5) thus obtained The compound becomes a compound having a symmetrical structure.

一般式(5)で表されるピリジン化合物は、一般式(3)で表される化合物を単離することなく製造することも可能である。例えば、前述のような操作で一般式(3)で表されるピリジン化合物を反応系に生成させ、次いで、強塩基の存在下に一般式(4)で表されるピリジン化合物を作用させればよい。この方法は、一般式(4)および一般式(1)で表されるピリジン化合物もしくはその塩において、R1=R4であり、R2=R5の場合有効であり、なおかつ、A=Bであり、X=Yである場合には極めて有効な手段である。 The pyridine compound represented by the general formula (5) can also be produced without isolating the compound represented by the general formula (3). For example, when the pyridine compound represented by the general formula (3) is generated in the reaction system by the above-described operation, and then the pyridine compound represented by the general formula (4) is allowed to act in the presence of a strong base. Good. This method is effective when R 1 = R 4 and R 2 = R 5 in the pyridine compound represented by the general formula (4) and the general formula (1) or a salt thereof, and A = B This is an extremely effective means when X = Y.

一般式(4)で表されるピリジン化合物もしくはその塩の使用量は、一般式(3)で表されるピリジン化合物に対して、1〜1.5当量の使用が好ましく、さらに、1〜1.1当量の使用が好ましい。   The amount of the pyridine compound represented by the general formula (4) or a salt thereof is preferably 1 to 1.5 equivalents relative to the pyridine compound represented by the general formula (3). Use of 1 equivalent is preferred.

前述したように、一般式(3)で表されるピリジン化合物と一般式(4)で表されるピリジン化合物もしくはその塩の反応においては、一般式(4)で表されるピリジン化合物もしくはその塩が強塩基との接触によって変化しやすいため、予め、一般式(3)で表されるピリジン化合物と強塩基の反応により、一般式(3)で表される化合物のアルコキサイドを生成させた後に一般式(4)で表されるピリジン化合物を加えるか、一般式(3)で表されるピリジン化合物と一般式(4)で表されるピリジン化合物を予め混合しておき、次いで、強塩基を添加することが好ましい。一般式(4)で表されるピリジン化合物が塩を形成している場合は、該化合物を遊離化させ得る量、通常は約1当量モルの強塩基を事前に添加し、前述の手順で処理することが可能である。   As described above, in the reaction of the pyridine compound represented by the general formula (3) and the pyridine compound represented by the general formula (4) or a salt thereof, the pyridine compound represented by the general formula (4) or a salt thereof Since it is easy to change by contact with a strong base, after the alkoxide of the compound represented by the general formula (3) is generated in advance by the reaction of the pyridine compound represented by the general formula (3) and the strong base, Add a pyridine compound represented by formula (4), or previously mix a pyridine compound represented by formula (3) and a pyridine compound represented by formula (4), and then add a strong base It is preferable to do. When the pyridine compound represented by the general formula (4) forms a salt, an amount capable of liberating the compound, usually about 1 equivalent mole of a strong base is added in advance, and the above procedure is followed. Is possible.

本反応においては、一般式(1)で表されるピリジン化合物もしくはその塩と、一般式(2)で表されるジオール類の反応において選択した強塩基の使用が可能であり、それらは単独で用いても2種以上を組み合わせて用いても差し支えない。強塩基の使用量は、一般式(4)で表されるピリジン化合物が遊離塩基の場合、その約1当量モルが好ましい。但し、転化率が低い場合は、一般式(3)で表されるピリジン化合物および一般式(4)で表されるピリジン化合物が消失するまで、強塩基を追加しても差し支えない。   In this reaction, it is possible to use a strong base selected in the reaction of the pyridine compound represented by the general formula (1) or a salt thereof and the diol represented by the general formula (2). It may be used or two or more types may be used in combination. When the pyridine compound represented by the general formula (4) is a free base, the amount of strong base used is preferably about 1 equivalent mole. However, when the conversion rate is low, a strong base may be added until the pyridine compound represented by the general formula (3) and the pyridine compound represented by the general formula (4) disappear.

本反応においては、一般式(1)で表されるピリジン化合物もしくはその塩と、一般式(2)で表されるジオール類の反応において選択した溶媒の使用が可能であり、それらは単独で用いても、2種以上を組み合わせて用いても差し支えない。溶媒の使用量は、一般式(3)で表されるピリジン化合物および一般式(4)で表されるピリジン化合物およびその塩の溶解度や反応中に生成するアルカリ金属塩の分散様態により、適宜選択できる。   In this reaction, it is possible to use a solvent selected in the reaction of the pyridine compound represented by the general formula (1) or a salt thereof and the diol represented by the general formula (2). Alternatively, two or more types may be used in combination. The amount of the solvent used is appropriately selected depending on the solubility of the pyridine compound represented by the general formula (3) and the pyridine compound represented by the general formula (4) and salts thereof and the dispersion state of the alkali metal salt generated during the reaction. it can.

本反応は、−20℃から使用する溶媒の常圧下での沸点までを選択できる。好ましい反応温度は、−20℃から室温であり、さらに好ましい反応温度は、−10℃から10℃である。反応の進行は、薄層クロマトグラフィーや高速液体クロマトグラフィーで追跡でき、原料の消失により反応の終了が確認できる。一般式(5)で表されるピリジン化合物は、常法により反応混合物から取り出すことが可能である。該化合物が結晶性の場合、再結晶を行うことでより高純度の化合物を得ることができる。該化合物が非結晶性の場合、該化合物の一塩酸塩、二塩酸塩、一酢酸塩、二酢酸塩などの無機もしくは有機酸塩を生成させ、必要に応じてそれらの再結晶を行った後に塩を中和し、常法により取り出すことで、高純度の化合物を得ることができる。   This reaction can be selected from −20 ° C. to the boiling point of the solvent used under normal pressure. A preferable reaction temperature is −20 ° C. to room temperature, and a more preferable reaction temperature is −10 ° C. to 10 ° C. The progress of the reaction can be traced by thin layer chromatography or high performance liquid chromatography, and the completion of the reaction can be confirmed by disappearance of the raw material. The pyridine compound represented by the general formula (5) can be taken out from the reaction mixture by a conventional method. When the compound is crystalline, a higher purity compound can be obtained by recrystallization. When the compound is non-crystalline, after forming an inorganic or organic acid salt such as monohydrochloride, dihydrochloride, monoacetate, diacetate, etc. of the compound and recrystallizing them as necessary A high-purity compound can be obtained by neutralizing the salt and removing it by a conventional method.

次いで、一般式(5)で表されるピリジン化合物と、一般式(6)で表されるハロゲン化合物もしくはスルホン酸エステル化合物を反応させることにより、所望の、一般式(7)で表される、殺菌性ピリジン化合物を得ることができる。一般式(6)において、R6は炭素数1〜18の直鎖もしくは分岐のアルキル基が選択でき、Zは塩素原子、臭素原子、ヨウ素原子などのハロゲン原子もしくはOSO27基で表される置換のスルホニルオキシ基が選択できる。この際、R7は低級アルキル基もしくは置換あるいは無置換のフェニル基を選択できる。例えば、一般式(6)で表されるハロゲン化合物としては、炭素数1〜18の塩化アルキル、臭化アルキル、ヨウ化アルキルなどが挙げられ、スルホン酸エステルとしては炭素数1〜18の脂肪族アルコールの低級アルキルスルホン酸エステル、置換あるいは無置換のベンゼンスルホン酸エステルが挙げられる。 Next, by reacting the pyridine compound represented by the general formula (5) with the halogen compound or sulfonic acid ester compound represented by the general formula (6), a desired general formula (7) is represented. A bactericidal pyridine compound can be obtained. In the general formula (6), R 6 can be a linear or branched alkyl group having 1 to 18 carbon atoms, and Z is represented by a halogen atom such as a chlorine atom, a bromine atom or an iodine atom, or an OSO 2 R 7 group. Substituted sulfonyloxy groups can be selected. In this case, R 7 can be a lower alkyl group or a substituted or unsubstituted phenyl group. For example, examples of the halogen compound represented by the general formula (6) include alkyl chlorides having 1 to 18 carbon atoms, alkyl bromides, and alkyl iodides. Examples thereof include lower alkyl sulfonic acid esters of alcohol and substituted or unsubstituted benzene sulfonic acid esters.

本反応において、一般式(5)で表されるピリジン化合物に対する一般式(6)で表されるハロゲン化合物もしくはスルホン酸エステル化合物の使用量は、理論的に2当量モルである。但し、転化率が低い場合、さらに一般式(6)の化合物を多く用いても差し支えなく、大過剰に用いた場合は、回収して再使用することも可能である。   In this reaction, the amount of the halogen compound or sulfonate compound represented by the general formula (6) used relative to the pyridine compound represented by the general formula (5) is theoretically 2 equivalent moles. However, when the conversion rate is low, a larger amount of the compound of the general formula (6) can be used. If it is used in a large excess, it can be recovered and reused.

一般式(5)で表されるピリジン化合物と一般式(6)で表されるハロゲン化合物もしくはスルホン酸エステル化合物の反応においては溶媒の使用が可能である。好ましい溶媒としては、低級脂肪族アルコール、非プロトン性極性溶媒が挙げられ、具体的には、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、ターシャリブタノール、アセトニトリル、プロピオニトリル、アセトン、メチルエチルケトン、メチルイソブチルケトン、テトラヒドロフラン、ジオキサン、ジメチルホルムアミド、N−メチルピロリドン、ジメチルイミダゾリジノン、ジメチルスルホキシドなどが使用できる。ジメチルホルムアミドは、該反応の転化率および選択率が良好であること、後処理が簡便であること、経済性に優れていることなどから最も好ましい溶媒である。   In the reaction of the pyridine compound represented by the general formula (5) and the halogen compound or sulfonic acid ester compound represented by the general formula (6), a solvent can be used. Preferred solvents include lower aliphatic alcohols and aprotic polar solvents. Specifically, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, tertiary butanol, acetonitrile, propionitrile, acetone, methyl ethyl ketone. , Methyl isobutyl ketone, tetrahydrofuran, dioxane, dimethylformamide, N-methylpyrrolidone, dimethylimidazolidinone, dimethyl sulfoxide and the like can be used. Dimethylformamide is the most preferred solvent because of good conversion and selectivity of the reaction, simple post-treatment, and excellent economic efficiency.

これらの溶媒は、単独で用いても、2種以上を混合して用いても差し支えない。溶媒の使用量は、一般式(5)で表されるピリジン化合物、一般式(6)で表されるハロゲン化合物もしくはスルホン酸エステル化合物の該溶媒への溶解度を考慮して適宜選択できる。   These solvents may be used alone or in combination of two or more. The amount of the solvent used can be appropriately selected in consideration of the solubility of the pyridine compound represented by the general formula (5), the halogen compound represented by the general formula (6) or the sulfonic acid ester compound in the solvent.

一方、該反応は、溶媒を使用せず、一般式(6)で表されるハロゲン化合物もしくはスルホン酸エステル化合物を過剰に使用して実施することも可能である。この場合、反応終了後に、未反応の一般式(6)で表される化合物は、反応混合物から分離、回収して再使用することができ、極めて効率的、かつ、経済的である。   On the other hand, this reaction can also be carried out using an excess of the halogen compound or sulfonate compound represented by the general formula (6) without using a solvent. In this case, after completion of the reaction, the unreacted compound represented by the general formula (6) can be separated from the reaction mixture, recovered, and reused, which is extremely efficient and economical.

本反応は、0℃から使用する溶媒もしくは一般式(6)で表される化合物の常圧における沸点で実施できる。好ましい温度は、室温から100℃であり、さらに好ましい温度は、40℃から80℃である。反応の進行は、高速液体クロマトグラフィーなどで追跡でき、原料の消失と目的とする一般式(7)の殺菌性ピリジン化合物の生成量から反応の終了を判断できる。   This reaction can be carried out from 0 ° C. at the boiling point at normal pressure of the solvent to be used or the compound represented by the general formula (6). A preferred temperature is from room temperature to 100 ° C, and a more preferred temperature is from 40 ° C to 80 ° C. The progress of the reaction can be traced by high performance liquid chromatography or the like, and the end of the reaction can be judged from the disappearance of the raw material and the amount of the bactericidal pyridine compound of the general formula (7) produced.

さらに、該反応は、一般式(5)で表されるピリジン化合物を単離することなしに、一般式(5)で表されるピリジン化合物を含有する反応混合物に一般式(6)で表される化合物を添加して連続的に実施することも可能である。この場合、一般式(5)の化合物の製造に使用した溶媒をそのまま使用すればよい。   Further, the reaction is represented by the general formula (6) in the reaction mixture containing the pyridine compound represented by the general formula (5) without isolating the pyridine compound represented by the general formula (5). It is also possible to carry out continuously by adding a compound. In this case, what is necessary is just to use the solvent used for manufacture of the compound of General formula (5) as it is.

一般式(7)で表される殺菌性ピリジン化合物は、常法により取り出すことが可能であり、常温で固体の化合物は、適切な溶媒系からの結晶化が可能である。また、この場合、適切な溶媒系を選択することにより、再結晶による精製が可能であり、高純度の目的物を得ることができる。   The bactericidal pyridine compound represented by the general formula (7) can be taken out by a conventional method, and a compound that is solid at room temperature can be crystallized from an appropriate solvent system. In this case, by selecting an appropriate solvent system, purification by recrystallization is possible, and a high-purity target product can be obtained.

以下の実施例で本発明をさらに詳細に説明する。
<実施例1>
[下記構造式で示される化合物(3−A)の合成]

Figure 0004381220
DMF(ジメチルホルムアミド)75mlに1,4−ブタンジオール8.24g(91.43mmol)を加え、氷冷下カリウムtert−ブトキシド10.3g(91.79mmol)を添加し、室温で1.5時間撹拌した。 The following examples further illustrate the present invention.
<Example 1>
[Synthesis of Compound (3-A) represented by Structural Formula below]
Figure 0004381220
To 75 ml of DMF (dimethylformamide), 8.24 g (91.43 mmol) of 1,4-butanediol was added, and 10.3 g (91.79 mmol) of potassium tert-butoxide was added under ice cooling, followed by stirring at room temperature for 1.5 hours. did.

このスラリー液に−8〜−3℃で3−クロロメチルピリジン塩酸塩1.0g(6.10mmol)およびカリウムtert−ブトキシド0.68g(6.06mmol)を交互に添加し、これを15回繰り返し、全量で3−クロロメチルピリジン塩酸塩15.0g(91.45mmol)およびカリウムtert−ブトキシド10.2g(90.9mmol)を添加した。   To this slurry solution, 1.0 g (6.10 mmol) of 3-chloromethylpyridine hydrochloride and 0.68 g (6.06 mmol) of potassium tert-butoxide were alternately added at −8 to −3 ° C., and this was repeated 15 times. In total, 15.0 g (91.45 mmol) of 3-chloromethylpyridine hydrochloride and 10.2 g (90.9 mmol) of potassium tert-butoxide were added.

添加終了後、反応混合物をHPLC(条件1)で分析すると、3−クロロメチルピリジンのピークが確認されたので、3−クロロメチルピリジンのピークが消失するまで、カリウムtert−ブトキシドを5℃以下で添加した。追加したカリウムtert−ブトキシドは1.13g(10.07mmol)であった。   After completion of the addition, the reaction mixture was analyzed by HPLC (condition 1). As a result, a peak of 3-chloromethylpyridine was confirmed. Therefore, potassium tert-butoxide was kept at 5 ° C. or lower until the peak of 3-chloromethylpyridine disappeared. Added. The added potassium tert-butoxide was 1.13 g (10.07 mmol).

反応混合物を固液分離し、ケークをDMF30mlで洗浄、ろ洗液からDMFを減圧下に留去して油状の粗生成物(化合物(3−A))17.1gを得た。得られたオイルをHPLC(条件1)で分析すると、前記化合物(3−A)の面積%は76.0%であった。   The reaction mixture was subjected to solid-liquid separation, the cake was washed with 30 ml of DMF, and DMF was distilled off from the filtrate under reduced pressure to obtain 17.1 g of an oily crude product (compound (3-A)). When the obtained oil was analyzed by HPLC (Condition 1), the area% of the compound (3-A) was 76.0%.

前記化合物(3−A)の粗生成物を水30mlに溶解し、トルエンで洗浄した。その後、水層に食塩6gを加え、ジクロロメタン20ml×2で抽出し、無水硫酸マグネシウムで脱水後、溶媒を留去し、油状の前記化合物(3−A)9.21g(収率(1,4−ブタンジオールより):57.2%)を得た。得られたオイルをHPLC(条件1)で分析すると、面積%は99.4%であった。(1H−NMR(CDCl3):δ1.67−1.75(4H,m,−(C 22−)、δ2.35(1H,s,O)、δ3.52−3.56(2H,t,J=6.0Hz,C 2)、δ3.64−3.68(2H,t,J=6.0Hz,C 2 )、δ4.52(2H,s,C 2)、δ7.27−7.31(1H,m,arom)、δ7.66−7.70(1H,m,arom)、δ8.52−8.56(2H,m,arom ×2)、MS(APCl):m/z=182[M+H]+The crude product of the compound (3-A) was dissolved in 30 ml of water and washed with toluene. Thereafter, 6 g of sodium chloride was added to the aqueous layer, followed by extraction with 20 ml × 2 dichloromethane, dehydration with anhydrous magnesium sulfate, the solvent was distilled off, and 9.21 g of the oily compound (3-A) (yield (1,4 -From butanediol): 57.2%). When the obtained oil was analyzed by HPLC (Condition 1), the area% was 99.4%. (1 H-NMR (CDCl 3 ): δ1.67-1.75 (4H, m, - (C H 2) 2 -), δ2.35 (1H, s, O H), δ3.52-3. 56 (2H, t, J = 6.0 Hz, C H 2 ), δ 3.64-3.68 (2H, t, J = 6.0 Hz, C H 2 ), δ 4.52 (2H, s, C H 2 ), δ 7.27-7.31 (1H, m, arom H ), δ 7.66-7.70 (1 H, m, arom H ), δ 8.52-8.56 (2H, m, arom H × 2), MS (APCl): m / z = 182 [M + H] + )

HPLC(条件1)
・カラム:Inertsil ODS-3(GL Sciences)4.6mmφ×250mm
・カラム温度:15℃付近の一定温度
・移動相:A−0.5%酢酸アンモニウム水溶液、B−アセトニトリル A:B=70:30(一定)
・流量:1.0ml/min
・検出器:UV254nm
・注入量:20μL
HPLC (condition 1)
Column: Inertsil ODS-3 (GL Sciences) 4.6 mmφ × 250 mm
Column temperature: constant temperature around 15 ° C. Mobile phase: A-0.5% ammonium acetate aqueous solution, B-acetonitrile A: B = 70: 30 (constant)
・ Flow rate: 1.0ml / min
・ Detector: UV254nm
・ Injection volume: 20μL

<実施例2>
[下記構造式で示される化合物(5−A)の合成]

Figure 0004381220
DMF25mlに前記化合物(3−A)5.0g(27.59mmol)を加え、氷冷下カリウムtert−ブトキシド3.1g(27.63mmol)を添加した。このスラリーに5〜6℃で3−クロロメチルピリジン塩酸塩0.5g(3.05mmol)およびカリウムtert−ブトキシド0.34g(3.03mmol)を交互に添加し、これを9回繰り返し、全量で3−クロロメチルピリジン塩酸塩4.5g(27.43mmol)およびカリウムtert−ブトキシド3.06g(27.27mmol)を添加した。 <Example 2>
[Synthesis of Compound (5-A) represented by Structural Formula below]
Figure 0004381220
To 25 ml of DMF was added 5.0 g (27.59 mmol) of the compound (3-A), and 3.1 g (27.63 mmol) of potassium tert-butoxide was added under ice cooling. To this slurry, 0.5 g (3.05 mmol) of 3-chloromethylpyridine hydrochloride and 0.34 g (3.03 mmol) of potassium tert-butoxide were alternately added at 5 to 6 ° C., and this was repeated 9 times. 4.5 g (27.43 mmol) of 3-chloromethylpyridine hydrochloride and 3.06 g (27.27 mmol) of potassium tert-butoxide were added.

添加終了後、反応混合物をHPLC(条件1)で分析すると、3−クロロメチルピリジンおよび前記化合物(3−A)のピークが確認されたので、3−クロロメチルピリジンのピークおよび前記化合物(3−A)のピークが消失するまで、カリウムtert−ブトキシドを5℃以下で添加した。追加したカリウムtert−ブトキシドは0.62g(5.53mmol)であった。   After completion of the addition, the reaction mixture was analyzed by HPLC (condition 1). As a result, peaks of 3-chloromethylpyridine and the compound (3-A) were confirmed. Therefore, the peak of 3-chloromethylpyridine and the compound (3- Potassium tert-butoxide was added at 5 ° C. or lower until the peak of A) disappeared. The added potassium tert-butoxide was 0.62 g (5.53 mmol).

反応混合物を固液分離し、ケークをDMF30mlで洗浄、ろ洗液からDMFを減圧下に留去した。この濃縮残液にジクロロメタン20mlを添加し、溶解液を飽和食塩水で洗浄後、溶媒を留去し、油状物5.8gを得た。この粗生成物0.5gについてシリカゲルカラムクロマトグラフィー(展開溶媒:クロロホルム−メタノール)で精製を行い、油状の前記化合物(5−A)0.3gを得た。(1H−NMR:δ1.70−1.74(4H,m,−(C 22−)、δ3.50−3.54(4H,m,C 2×2)、δ4.51(4H,s,C 2×2)、δ7.25−7.29(2H,dd,J=4.9Hz,7.9Hz,arom×2)、δ7.65−7.69(2H,dt,J=1.7Hz,7.9Hz,arom ×2)、δ8.52−8.57(4H,dd,J=1.7Hz,4.9Hz,arom×4)、MS(APCl):m/z=273[M+H]+The reaction mixture was separated into solid and liquid, the cake was washed with 30 ml of DMF, and DMF was distilled off from the filtrate under reduced pressure. To this concentrated residue, 20 ml of dichloromethane was added, and the solution was washed with saturated brine, and then the solvent was distilled off to obtain 5.8 g of an oily substance. About 0.5 g of this crude product was purified by silica gel column chromatography (developing solvent: chloroform-methanol) to obtain 0.3 g of oily compound (5-A). ( 1 H-NMR: δ 1.70-1.74 (4H, m,-(C H 2 ) 2- ), δ 3.50-3.54 (4H, m, C H 2 × 2), δ 4.51 (4H, s, C H 2 × 2), δ 7.25-7.29 (2H, dd, J = 4.9 Hz, 7.9 Hz, arom H × 2), δ 7.65-7.69 (2H, dt, J = 1.7 Hz, 7.9 Hz, arom H × 2), δ 8.52-8.57 (4H, dd, J = 1.7 Hz, 4.9 Hz, arom H × 4), MS (APCl) : M / z = 273 [M + H] + )

<実施例3>
[下記構造式の化合物(7−A)の合成]

Figure 0004381220
前記化合物(5−A)5.0g(18.36mmol)にオクチルブロマイド35.5g(183.8mmol)を加え、70〜80℃で20時間反応を行った。 <Example 3>
[Synthesis of Compound (7-A) of the following Structural Formula]
Figure 0004381220
35.0 g (183.8 mmol) of octyl bromide was added to 5.0 g (18.36 mmol) of the compound (5-A), and reacted at 70 to 80 ° C. for 20 hours.

反応混合物をHPLC(条件2)で分析すると、前記化合物(5−A)のピークは消失していた。反応混合物より上層のオクチルブロマイド層を分離し、下層油状物をアセトニトリル−酢酸エチル=1:3(v/v)混液に注加した。混合物を冷却し、析出結晶を0℃でろ過、減圧乾燥を行い、灰白色結晶9.7g(粗収率(前記化合物(5−A)より):85%)を得た。   When the reaction mixture was analyzed by HPLC (condition 2), the peak of the compound (5-A) disappeared. The upper octyl bromide layer was separated from the reaction mixture, and the lower oil layer was poured into a mixture of acetonitrile-ethyl acetate = 1: 3 (v / v). The mixture was cooled, and the precipitated crystals were filtered at 0 ° C. and dried under reduced pressure to obtain 9.7 g of grayish white crystals (crude yield (from the compound (5-A)): 85%).

得られた結晶2gについてアセトニトリル−酢酸エチル=1:3(v/v)混液で再結晶を行い、微灰白色結晶の化合物(7−A)1.6gを得た。(m.p.52〜53℃、1H−NMR(d6−DMSO):δ0.82−0.89(6H,t,J=5.3Hz,C 3×2)、δ1.25−1.34(20H,m,−(C 25−×2)、δ1.77−1.80(4H,m,−(C 22−×2)、δ2.04−2.09(4H,t,J=7.0Hz,C 2×2)、δ3.70−3.72(4H,t,J=5.9Hz,C 2×2)、δ4.67−4.71(4H,t,J=7.0Hz,C 2×2)、δ4.84(4H,s,C 2×2)、δ8.11−8.15(2H,dd,J=6.0Hz,8.0Hz,arom×2)、δ8.56−8.59(2H,d,J=8.0Hz,arom×2)、δ8.69−8.92(4H,dd,J=6.0Hz,13.1Hz,arom×4)、MS(ESI):m/z=579[M−Br]+)。 2 g of the obtained crystal was recrystallized with a mixed solution of acetonitrile-ethyl acetate = 1: 3 (v / v) to obtain 1.6 g of a compound (7-A) as a fine grayish white crystal. (Mp 52-53 ° C., 1 H-NMR (d 6 -DMSO): δ 0.82-0.89 (6H, t, J = 5.3 Hz, C H 3 × 2), δ 1.25- 1.34 (20H, m, - ( C H 2) 5 - × 2), δ1.77-1.80 (4H, m, - (C H 2) 2 - × 2), δ2.04-2. 09 (4H, t, J = 7.0 Hz, C H 2 × 2), δ 3.70-3.72 (4H, t, J = 5.9 Hz, C H 2 × 2), δ 4.67-4. 71 (4H, t, J = 7.0 Hz, C H 2 × 2), δ 4.84 (4H, s, C H 2 × 2), δ 8.11-8.15 (2H, dd, J = 6. 0 Hz, 8.0 Hz, arom H × 2), δ 8.56-8.59 (2H, d, J = 8.0 Hz, arom H × 2), δ 8.69-8.92 (4H, dd, J = 6.0Hz, 13.1Hz, arom H × 4), MS (ESI): m / z = 579 [M-Br] + ).

HPLC(条件2)
・カラム:Inertsil ODS-3(GL Sciences)4.6mmφ×250mm
・カラム温度:15℃付近の一定温度
・移動相:A−0.5%酢酸アンモニウム水溶液、B−アセトニトリル A:70%(12min保持)→(10min)→A:50%(14min保持)→A:70%
・流量:1.0ml/min
・検出器:UV254nm
・注入量:20μL
HPLC (condition 2)
Column: Inertsil ODS-3 (GL Sciences) 4.6 mmφ × 250 mm
Column temperature: constant temperature around 15 ° C. Mobile phase: A-0.5% ammonium acetate aqueous solution, B-acetonitrile A: 70% (12 min hold) → (10 min) → A: 50% (14 min hold) → A : 70%
・ Flow rate: 1.0ml / min
・ Detector: UV254nm
・ Injection volume: 20μL

<実施例4>
[前記化合物(5−A)の合成:1,4−ブタンジオールカリウム塩−DMFスラリーに3−クロロメチルピリジン−DMFスラリーを滴下]
DMF20mlに1,4−ブタンジオール1.37g(15.20mmol)を加え、氷冷下カリウムtert−ブトキシド1.71g(15.24mmol)を添加し、室温で1時間撹拌した。
<Example 4>
[Synthesis of Compound (5-A): 3-chloromethylpyridine-DMF slurry added dropwise to 1,4-butanediol potassium salt-DMF slurry]
1,4-butanediol (1.37 g, 15.20 mmol) was added to DMF (20 ml), and potassium tert-butoxide (1.71 g, 15.24 mmol) was added under ice cooling, followed by stirring at room temperature for 1 hour.

一方、DMF15mlに3−クロロメチルピリジン塩酸塩2.5g(15.24mmol)を加え、氷冷下カリウムtert−ブトキシド1.71g(15.24mmol)を添加した。1,4−ブタンジオール−DMFスラリーに3−クロロメチルピリジン−DMFスラリーを−17〜−14℃で滴下した。   On the other hand, 2.5 g (15.24 mmol) of 3-chloromethylpyridine hydrochloride was added to 15 ml of DMF, and 1.71 g (15.24 mmol) of potassium tert-butoxide was added under ice cooling. To the 1,4-butanediol-DMF slurry, 3-chloromethylpyridine-DMF slurry was added dropwise at -17 to -14 ° C.

反応混合物をHPLC(条件1)で分析すると、3−クロロメチルピリジンのピークが確認されたので、カリウムtert−ブトキシドを−10℃以下で3−クロロメチルピリジンのピークが消失するまで添加した。3−クロロメチルピリジンのピーク消失確認後、反応混合物に氷冷下カリウムtert−ブトキシド1.71g(15.24mmol)を添加し、先に調製したものと同量の3−クロロメチルピリジン−DMFスラリーを−20〜−17℃で滴下した。反応混合物をHPLC(条件1)で分析すると、3−クロロメチルピリジンのピークが確認されたので、カリウムtert−ブトキシドを−10℃以下で3−クロロメチルピリジンのピークが消失するまで添加した。3−クロロメチルピリジンのピーク消失確認後、反応混合物を固液分離し、ケークをDMF25mlで洗浄、ろ洗液からDMFを減圧下に留去した。   When the reaction mixture was analyzed by HPLC (condition 1), a peak of 3-chloromethylpyridine was confirmed, and potassium tert-butoxide was added at -10 ° C. or lower until the peak of 3-chloromethylpyridine disappeared. After confirming the disappearance of the peak of 3-chloromethylpyridine, 1.71 g (15.24 mmol) of potassium tert-butoxide was added to the reaction mixture under ice-cooling, and the same amount of 3-chloromethylpyridine-DMF slurry as prepared above was added. Was added dropwise at -20 to -17 ° C. When the reaction mixture was analyzed by HPLC (condition 1), a peak of 3-chloromethylpyridine was confirmed, and potassium tert-butoxide was added at -10 ° C. or lower until the peak of 3-chloromethylpyridine disappeared. After confirming disappearance of the peak of 3-chloromethylpyridine, the reaction mixture was subjected to solid-liquid separation, the cake was washed with 25 ml of DMF, and DMF was distilled off from the filtrate under reduced pressure.

この濃縮残液にジクロロメタン20mlを添加し、溶解液を飽和食塩水で洗浄後、溶媒を留去し、油状の前記化合物(5−A)3.79g(粗収率(1,4−ブタンジオールより):91.8%)を得た。得られたオイルをHPLC(条件1)で分析すると、前記化合物(5−A)の面積%は64.5%であった。   20 ml of dichloromethane was added to the concentrated residue, and the solution was washed with saturated brine, and then the solvent was distilled off to obtain 3.79 g of the oily compound (5-A) (crude yield (1,4-butanediol). More): 91.8%). When the obtained oil was analyzed by HPLC (condition 1), the area% of the compound (5-A) was 64.5%.

<実施例5>
[前記化合物(5−A)の合成:DMF−1,4−ブタンジオール−3−クロロメチルピリジン塩酸塩のスラリーにカリウムtert−ブトキシドを分割して添加]
DMF50mlに1,4−ブタンジオール1.37g(15.20mmol)および3−クロロメチルピリジン塩酸塩5.0g(30.48mmol)を加え、−20〜−13℃でカリウムtert−ブトキシド6.84g(60.96mmol)を10分割して添加した。
<Example 5>
[Synthesis of Compound (5-A): Potassium tert-butoxide is added in portions to a slurry of DMF-1,4-butanediol-3-chloromethylpyridine hydrochloride]
1.37 g (15.20 mmol) of 1,4-butanediol and 5.0 g (30.48 mmol) of 3-chloromethylpyridine hydrochloride were added to 50 ml of DMF, and 6.84 g of potassium tert-butoxide at −20 to −13 ° C. 60.96 mmol) was added in 10 portions.

反応混合物をHPLC(条件1)で分析すると、3−クロロメチルピリジンのピークおよび前記化合物(3−A)のピークが確認されたので、3−クロロメチルピリジンのピークおよび前記化合物(3−A)のピークが消失するまで、3−クロロメチルピリジン塩酸塩とカリウムtert−ブトキシドを−10℃以下で添加した。追加した3−クロロメチルピリジン塩酸塩は1.0g(6.10mmol)、カリウムtert−ブトキシドは8.7g(77.53mmol)であった。   When the reaction mixture was analyzed by HPLC (condition 1), the peak of 3-chloromethylpyridine and the peak of the compound (3-A) were confirmed, so the peak of 3-chloromethylpyridine and the compound (3-A) were confirmed. Until the peak disappeared, 3-chloromethylpyridine hydrochloride and potassium tert-butoxide were added at -10 ° C or lower. The added 3-chloromethylpyridine hydrochloride was 1.0 g (6.10 mmol), and potassium tert-butoxide was 8.7 g (77.53 mmol).

反応混合物を固液分離し、ケークをDMF25mlで洗浄、ろ洗液からDMFを減圧下に留去した。この濃縮残液にジクロロメタン20mlを添加し、溶解液を飽和食塩水で洗浄後、溶媒を留去し、油状の前記化合物(5−A)4.31g(粗収率(3−クロロメチルピリジン塩酸塩より):86.5%)を得た。得られたオイルをHPLC(条件1)で分析すると、前記化合物(5−A)の面積%は72.8%であった。   The reaction mixture was separated into solid and liquid, the cake was washed with 25 ml of DMF, and DMF was distilled off from the filtrate under reduced pressure. To this concentrated residue was added 20 ml of dichloromethane, and the solution was washed with saturated brine, and then the solvent was distilled off to give 4.31 g of the oily compound (5-A) (crude yield (3-chloromethylpyridine hydrochloride). From the salt): 86.5%). When the obtained oil was analyzed by HPLC (condition 1), the area% of the compound (5-A) was 72.8%.

<実施例6>
[前記化合物(5−A)の合成:実施例5のスケールアップ]
DMF250mlに1,4−ブタンジオール13.73g(0.1524mol)、3−クロロメチルピリジン塩酸塩50.0g(0.3048mol)を加え、−19〜−12℃でカリウムtert−ブトキシド68.4g(0.6096mol)を20分割して添加した。
<Example 6>
[Synthesis of Compound (5-A): Scale-up of Example 5]
1,4-butanediol (13.73 g, 0.1524 mol) and 3-chloromethylpyridine hydrochloride (50.0 g, 0.3048 mol) were added to DMF (250 ml), and potassium tert-butoxide (68.4 g) was added at -19 to -12 ° C. 0.6096 mol) was added in 20 portions.

反応混合物をHPLC(条件1)で分析すると、3−クロロメチルピリジンおよび前記化合物(3−A)のピークが確認されたので、3−クロロメチルピリジンのピークおよび前記化合物(3−A)のピークが消失するまで、3−クロロメチルピリジン塩酸塩とカリウムtert−ブトキシドを−10℃以下で添加した。   When the reaction mixture was analyzed by HPLC (condition 1), the peak of 3-chloromethylpyridine and the compound (3-A) was confirmed, so the peak of 3-chloromethylpyridine and the peak of the compound (3-A) were confirmed. 3-Chloromethylpyridine hydrochloride and potassium tert-butoxide were added at −10 ° C. or lower until disappeared.

追加した3−クロロメチルピリジン塩酸塩は8.0g(0.0366mol)、カリウムtert−ブトキシドは23.9g(0.2130mol)であった。反応混合物を固液分離し、ケークをDMF125mlで洗浄、ろ洗液からDMFを減圧下に留去した。この濃縮残液にジクロロメタン200mlを添加し、溶解液を飽和食塩水で洗浄後、溶媒を留去し、油状の前記化合物(5−A)41.0g(粗収率(1,4−ブタンジオールより):98.8%)を得た。得られたオイルをHPLC(条件1)で分析すると、前記化合物(5−A)の面積%は68.8%であった。   The added 3-chloromethylpyridine hydrochloride was 8.0 g (0.0366 mol), and potassium tert-butoxide was 23.9 g (0.2130 mol). The reaction mixture was separated into solid and liquid, the cake was washed with 125 ml of DMF, and DMF was distilled off from the filtrate under reduced pressure. To this concentrated residue, 200 ml of dichloromethane was added, and the solution was washed with saturated brine, and then the solvent was distilled off. 41.0 g of the oily compound (5-A) (crude yield (1,4-butanediol) More): 98.8%). When the obtained oil was analyzed by HPLC (condition 1), the area% of the compound (5-A) was 68.8%.

<実施例7>
[前記化合物(5−A)の合成:1,4−ブタンジオールモノカリウム塩−DMFスラリーに3−クロロメチルピリジン塩酸塩とカリウムtert−ブトキシドを交互に添加]
<Example 7>
[Synthesis of Compound (5-A): 3-Chloromethylpyridine Hydrochloride and Potassium Tert-Butoxide Added Alternately to 1,4-Butanediol Monopotassium Salt-DMF Slurry]

DMF250mlに1,4−ブタンジオール13.73g(0.1524mol)を加え、氷冷下カリウムtert−ブトキシド17.1g(0.1524mol)を添加し、室温で2時間撹拌した。このスラリーに−15〜−10℃で3−クロロメチルピリジン塩酸塩5.0g(30.48mmol)、カリウムtert−ブトキシド3.42g(30.48mmol)を交互に添加し、これを5回繰り返した。これ以降の添加は、−16〜−7℃で3−クロロメチルピリジン塩酸塩5.0g(30.48mmol)、カリウムtert−ブトキシド6.84g(60.96mmol)を交互に添加し、これを5回繰り返し、全量で3−クロロメチルピリジン塩酸塩50.0g(0.3048mol)、カリウムtert−ブトキシド51.3g(0.4572mol)を添加した。   1,4-butanediol (13.73 g, 0.1524 mol) was added to DMF (250 ml), and potassium tert-butoxide (17.1 g, 0.1524 mol) was added under ice cooling, followed by stirring at room temperature for 2 hours. To this slurry, 5.0 g (30.48 mmol) of 3-chloromethylpyridine hydrochloride and 3.42 g (30.48 mmol) of potassium tert-butoxide were alternately added at −15 to −10 ° C., and this was repeated 5 times. . Subsequent additions were carried out by alternately adding 5.0 g (30.48 mmol) of 3-chloromethylpyridine hydrochloride and 6.84 g (60.96 mmol) of potassium tert-butoxide at −16 to −7 ° C. Repeatedly, 50.0 g (0.3048 mol) of 3-chloromethylpyridine hydrochloride and 51.3 g (0.4572 mol) of potassium tert-butoxide were added in total.

添加終了後、反応混合物をHPLC(条件1)で分析すると、3−クロロメチルピリジンおよび前記化合物(3−A)のピークが確認されたので、3−クロロメチルピリジンのピークおよび前記化合物(3−A)のピークが消失するまで、3−クロロメチルピリジン塩酸塩とカリウムtert−ブトキシドを0℃以下で添加した。   After completion of the addition, the reaction mixture was analyzed by HPLC (condition 1). As a result, peaks of 3-chloromethylpyridine and the compound (3-A) were confirmed. Therefore, the peak of 3-chloromethylpyridine and the compound (3- 3-Chloromethylpyridine hydrochloride and potassium tert-butoxide were added at 0 ° C. or lower until the peak of A) disappeared.

追加した3−クロロメチルピリジン塩酸塩は2.65g(0.0366mol)、カリウムtert−ブトキシドは4.96g(0.0442mol)であった。反応混合物を固液分離し、ケークをDMF125mlで洗浄、ろ洗液からDMFを減圧下に留去した。   The added 3-chloromethylpyridine hydrochloride was 2.65 g (0.0366 mol), and potassium tert-butoxide was 4.96 g (0.0442 mol). The reaction mixture was separated into solid and liquid, the cake was washed with 125 ml of DMF, and DMF was distilled off from the filtrate under reduced pressure.

この濃縮残液にジクロロメタン200mlを添加し、溶解液を飽和食塩水で洗浄後、溶媒を留去し、油状の前記化合物(5−A)40.9g(粗収率(1,4−ブタンジオールより):98.6%)を得た。得られたオイルをHPLC(条件1)で分析すると、前記化合物(5−A)の面積%は89.2%であった。   To this concentrated residue, 200 ml of dichloromethane was added, and the solution was washed with saturated brine, and then the solvent was distilled off to obtain 40.9 g of the oily compound (5-A) (crude yield (1,4-butanediol). More): 98.6%). When the obtained oil was analyzed by HPLC (condition 1), the area% of the compound (5-A) was 89.2%.

得られた粗生成物2g(7.41mmol)をイソプロピルアルコール10gに溶解し、溶解液に塩化水素ガス0.27g(7.41mmol)を吹き込んだ。混合物を10℃に冷却し、析出した結晶をろ過、減圧乾燥して、前記化合物(5−A)の1塩酸塩1.1gを得た(収率:48.0%)。得られた結晶をHPLC(条件1)で分析すると、化合物の面積%は97.5%であった。   2 g (7.41 mmol) of the obtained crude product was dissolved in 10 g of isopropyl alcohol, and 0.27 g (7.41 mmol) of hydrogen chloride gas was blown into the solution. The mixture was cooled to 10 ° C., and the precipitated crystals were filtered and dried under reduced pressure to obtain 1.1 g of monohydrochloride of the compound (5-A) (yield: 48.0%). When the obtained crystal was analyzed by HPLC (condition 1), the area% of the compound was 97.5%.

<実施例8>
[前記化合物(5−A)の合成:1,4−ブタンジオール−カリウムtert−ブトキシド−DMFスラリーに3−クロロメチルピリジン塩酸塩−DMF溶液を滴下して前記化合物(3−A)を生成させ、その反応混合物に3−クロロメチルピリジン塩酸塩を加えたスラリーにカリウムtert−ブトキシド−DMF溶液を滴下]
DMF100mlに1,4−ブタンジオール13.73g(0.1524mol)を加え、氷冷下カリウムtert−ブトキシド34.2g(0.3048mol)を添加し、5℃以下で30分撹拌した。このスラリーに4〜10℃で3−クロロメチルピリジン塩酸塩25.0g(0.1524mol)のDMF(150ml)溶液を1.5時間かけて滴下した。
<Example 8>
[Synthesis of Compound (5-A): A 3-chloromethylpyridine hydrochloride-DMF solution was dropped into 1,4-butanediol-potassium tert-butoxide-DMF slurry to form the compound (3-A). The potassium tert-butoxide-DMF solution was added dropwise to the slurry obtained by adding 3-chloromethylpyridine hydrochloride to the reaction mixture.
To 100 ml of DMF, 13.73 g (0.1524 mol) of 1,4-butanediol was added, and 34.2 g (0.3048 mol) of potassium tert-butoxide was added under ice cooling, followed by stirring at 5 ° C. or lower for 30 minutes. To this slurry, a DMF (150 ml) solution of 25.0 g (0.1524 mol) of 3-chloromethylpyridine hydrochloride was added dropwise at 4 to 10 ° C. over 1.5 hours.

次に反応混合物に3−クロロメチルピリジン塩酸塩25.0g(0.1524mol)、カリウムtert−ブトキシド17.1g(0.1524mol)を0℃以下で添加後、カリウムtert−ブトキシド17.1g(0.1524mol)のDMF(100ml)溶液を−10〜0℃で30分かけて滴下した。滴下終了後、反応混合物をHPLC(条件1)で分析すると、3−クロロメチルピリジンおよび前記化合物(3−A)のピークが確認されたので、3−クロロメチルピリジンのピークおよび前記化合物(3−A)のピークが消失するまで、3−クロロメチルピリジン塩酸塩とカリウムtert−ブトキシドを0℃以下で添加した。   Next, 25.0 g (0.1524 mol) of 3-chloromethylpyridine hydrochloride and 17.1 g (0.1524 mol) of potassium tert-butoxide were added to the reaction mixture at 0 ° C. or lower, and then 17.1 g (0 of potassium tert-butoxide). .1524 mol) in DMF (100 ml) was added dropwise at −10 to 0 ° C. over 30 minutes. After completion of the dropwise addition, the reaction mixture was analyzed by HPLC (condition 1). As a result, peaks of 3-chloromethylpyridine and the compound (3-A) were confirmed. Therefore, the peak of 3-chloromethylpyridine and the compound (3- 3-Chloromethylpyridine hydrochloride and potassium tert-butoxide were added at 0 ° C. or lower until the peak of A) disappeared.

追加した3−クロロメチルピリジン塩酸塩は6.5g(0.0396mol)、カリウムtert−ブトキシドは8.89g(0.0792mol)であった。反応混合物を固液分離し、ケークをDMF150mlで洗浄、ろ洗液からDMFを減圧下に留去した。この濃縮残液にジクロロメタン200mlを添加し、溶解液を飽和食塩水で洗浄後、溶媒を留去し、油状の前記化合物(5−A)43.2g(粗収率(3−クロロメチルピリジン塩酸塩より):92.1%)を得た。得られたオイルをHPLC(条件1)で分析すると、前記化合物(5−A)の面積%は87.8%であった。   The added 3-chloromethylpyridine hydrochloride was 6.5 g (0.0396 mol), and potassium tert-butoxide was 8.89 g (0.0792 mol). The reaction mixture was separated into solid and liquid, the cake was washed with 150 ml of DMF, and DMF was distilled off from the filtrate under reduced pressure. To this concentrated residue, 200 ml of dichloromethane was added, and the solution was washed with saturated brine, and then the solvent was distilled off to obtain 43.2 g of the oily compound (5-A) (crude yield (3-chloromethylpyridine hydrochloride). From the salt): 92.1%). When the obtained oil was analyzed by HPLC (condition 1), the area% of the compound (5-A) was 87.8%.

<実施例9>
[前記化合物(5−A)の合成:DMF−1,4−ブタンジオール−3−クロロメチルピリジン塩酸塩のスラリーにカリウムtert−ブトキシドのDMF溶液を滴下]
DMF200mlに1,4−ブタンジオール6.87g(0.0762mol)、3−クロロメチルピリジン塩酸塩25.0g(0.1524mol)を加え、−11〜−5℃でカリウムtert−ブトキシド35.9g(0.3199mol)のDMF(100ml)溶液を1.5時間かけて滴下した。室温で一晩熟成後、反応混合物をHPLC(条件1)で分析すると、前記化合物(3−A)のピークが確認されたので、前記化合物(3−A)のピークが消失するまで、3−クロロメチルピリジン塩酸塩とカリウムtert−ブトキシドを0℃以下で添加した。追加した3−クロロメチルピリジン塩酸塩は2.5g(0.0152mol)、カリウムtert−ブトキシドは3.42g(0.0305mol)であった。反応混合物を固液分離し、ケークをDMF150mlで洗浄、ろ洗液からDMFを減圧下に留去した。この濃縮残液にジクロロメタン100mlを添加し、溶解液を飽和食塩水で洗浄後、溶媒を留去し、油状の前記化合物(5−A)20.1g(粗収率(1,4−ブタンジオールより):96.6%)を得た。得られたオイルをHPLC(条件1)で分析すると、前記化合物(5−A)の面積%は80.3%であった。
<Example 9>
[Synthesis of Compound (5-A): DMF solution of potassium tert-butoxide added dropwise to a slurry of DMF-1,4-butanediol-3-chloromethylpyridine hydrochloride]
To 200 ml of DMF, 6.87 g (0.0762 mol) of 1,4-butanediol and 25.0 g (0.1524 mol) of 3-chloromethylpyridine hydrochloride were added, and 35.9 g of potassium tert-butoxide was added at −11 to −5 ° C. 0.3199 mol) of DMF (100 ml) was added dropwise over 1.5 hours. After aging overnight at room temperature, the reaction mixture was analyzed by HPLC (condition 1). As a result, the peak of the compound (3-A) was confirmed. Therefore, until the peak of the compound (3-A) disappeared, Chloromethylpyridine hydrochloride and potassium tert-butoxide were added below 0 ° C. The added 3-chloromethylpyridine hydrochloride was 2.5 g (0.0152 mol), and potassium tert-butoxide was 3.42 g (0.0305 mol). The reaction mixture was separated into solid and liquid, the cake was washed with 150 ml of DMF, and DMF was distilled off from the filtrate under reduced pressure. To this concentrated residue was added 100 ml of dichloromethane, and the solution was washed with saturated brine, and then the solvent was distilled off. The oily compound (5-A) 20.1 g (crude yield (1,4-butanediol) More): 96.6%). When the obtained oil was analyzed by HPLC (condition 1), the area% of the compound (5-A) was 80.3%.

<実施例10>
[前記化合物(5−A)の合成:実施例7のスケールアップ]
DMF750mlに1,4−ブタンジオール41.2g(0.457mol)を加え、氷冷下カリウムtert−ブトキシド51.3g(0.457mol)を添加し、室温で1時間撹拌した。このスラリーに−5〜0℃で3−クロロメチルピリジン塩酸塩7.5g(45.72mmol)、カリウムtert−ブトキシド5.1g(45.45mmol)を交互に添加し、これを10回繰り返した。これ以降の添加は、−6〜−1℃で3−クロロメチルピリジン塩酸塩7.5g(45.72mmol)、カリウムtert−ブトキシド10.2g(90.9mmol)を交互に添加し、これを10回繰り返し、全量で3−クロロメチルピリジン塩酸塩150.0g(0.9145mol)、カリウムtert−ブトキシド153.0g(1.364mol)を添加した。
<Example 10>
[Synthesis of Compound (5-A): Scale Up of Example 7]
To 750 ml of DMF, 41.2 g (0.457 mol) of 1,4-butanediol was added, and 51.3 g (0.457 mol) of potassium tert-butoxide was added under ice cooling, followed by stirring at room temperature for 1 hour. To this slurry, 7.5 g (45.72 mmol) of 3-chloromethylpyridine hydrochloride and 5.1 g (45.45 mmol) of potassium tert-butoxide were alternately added at −5 to 0 ° C., and this was repeated 10 times. Subsequent addition was carried out by alternately adding 7.5 g (45.72 mmol) of 3-chloromethylpyridine hydrochloride and 10.2 g (90.9 mmol) of potassium tert-butoxide at −6 to −1 ° C. Repeatedly, 150.0 g (0.9145 mol) of 3-chloromethylpyridine hydrochloride and 153.0 g (1.364 mol) of potassium tert-butoxide were added in total.

添加終了後、反応混合物をHPLC(条件1)で分析すると、3−クロロメチルピリジンおよび前記化合物(3−A)のピークが確認されたので、3−クロロメチルピリジンのピークおよび前記化合物(3−A)のピークが消失するまで、3−クロロメチルピリジン塩酸塩とカリウムtert−ブトキシドを5℃以下で添加した。追加した3−クロロメチルピリジン塩酸塩はなく、カリウムtert−ブトキシドは10.3g(91.79mmol)であった。反応混合物を固液分離し、ケークをDMF300mlで洗浄、ろ洗液からDMFを減圧下に留去した。この濃縮残液にジクロロメタン500mlを添加し、溶解液を飽和食塩水で洗浄後、溶媒を留去し、油状の前記化合物(5−A)111.9g(粗収率(1,4−ブタンジオールより):89.9%)を得た。得られたオイルをHPLC(条件1)で分析すると、前記化合物(5−A)の面積%は93.9%であった。   After completion of the addition, the reaction mixture was analyzed by HPLC (condition 1). As a result, peaks of 3-chloromethylpyridine and the compound (3-A) were confirmed. Therefore, the peak of 3-chloromethylpyridine and the compound (3- 3-Chloromethylpyridine hydrochloride and potassium tert-butoxide were added at 5 ° C. or lower until the peak of A) disappeared. There was no added 3-chloromethylpyridine hydrochloride, and potassium tert-butoxide was 10.3 g (91.79 mmol). The reaction mixture was separated into solid and liquid, the cake was washed with 300 ml of DMF, and DMF was distilled off from the filtrate under reduced pressure. Dichloromethane (500 ml) was added to the concentrated residue, the solution was washed with saturated brine, and the solvent was distilled off to give 111.9 g of the oily compound (5-A) (crude yield (1,4-butanediol). More): 89.9%). When the obtained oil was analyzed by HPLC (condition 1), the area% of the compound (5-A) was 93.9%.

<実施例11>
[前記化合物(7−A)の合成:反応溶媒−メタノール/アセトニトリル混液]
メタノール/アセトニトリル=3:1(v/v)混液50gに前記化合物(5−A)10.0g(36.72mmol)とオクチルブロマイド70.9g(0.367mol)を加え、還流下135時間反応を行った。反応混合物をHPLC(条件2)で分析すると、前記化合物(5−A)のピークは消失していた。上層のオクチルブロマイド層を分離し、下層に酢酸エチルを添加して混合物を冷却、析出した結晶を−18℃で濾別、ケークを酢酸エチル10mlで洗浄し、減圧乾燥して前記化合物(7−A)20.3g(粗収率:83.9%)を得た。得られた結晶をHPLC(条件2)で分析すると、前記化合物(7−A)のピークの面積%は91.4%であった。
<Example 11>
[Synthesis of Compound (7-A): Reaction Solvent-Methanol / Acetonitrile Mixed Solution]
10.0 g (36.72 mmol) of the compound (5-A) and 70.9 g (0.367 mol) of octyl bromide were added to 50 g of a methanol / acetonitrile = 3: 1 (v / v) mixture, and the reaction was allowed to proceed for 135 hours under reflux. went. When the reaction mixture was analyzed by HPLC (condition 2), the peak of the compound (5-A) disappeared. The upper octyl bromide layer was separated, ethyl acetate was added to the lower layer, the mixture was cooled, the precipitated crystals were filtered off at −18 ° C., the cake was washed with 10 ml of ethyl acetate, dried under reduced pressure, and the compound (7- A) 20.3 g (crude yield: 83.9%) was obtained. When the obtained crystal was analyzed by HPLC (condition 2), the peak area% of the compound (7-A) was 91.4%.

<実施例12>
[前記化合物(7−A)の合成:反応溶媒−DMF]
DMF25mlに前記化合物(5−A)5.0g(18.36mmol)とオクチルブロマイド35.5g(0.184mol)を加え、50〜55℃で86時間反応を行った。反応混合物をHPLC(条件2)で分析すると、前記化合物(5−A)のピークは消失していた。反応混合物からDMFとオクチルブロマイドを減圧下で留去し、油状の前記化合物(7−A)12.9g(粗収率:106.6%)を得た。得られたオイルをHPLC(条件2)で分析すると、前記化合物(7−A)のピークの面積%は93.0%であった。
<Example 12>
[Synthesis of Compound (7-A): Reaction Solvent-DMF]
To 25 ml of DMF, 5.0 g (18.36 mmol) of the compound (5-A) and 35.5 g (0.184 mol) of octyl bromide were added, and the reaction was carried out at 50 to 55 ° C. for 86 hours. When the reaction mixture was analyzed by HPLC (condition 2), the peak of the compound (5-A) disappeared. From the reaction mixture, DMF and octyl bromide were distilled off under reduced pressure to obtain 12.9 g (crude yield: 106.6%) of the oily compound (7-A). When the obtained oil was analyzed by HPLC (condition 2), the peak area% of the compound (7-A) was 93.0%.

<実施例13>
[前記化合物(7−A)の合成:無溶媒での反応、反応温度45〜55℃]
前記化合物(5−A)10.0g(36.72mmol)にオクチルブロマイド70.9g(0.3671mol)を加え、49〜52℃で50時間反応を行った。反応混合物をHPLC(条件2)で分析すると、前記化合物(5−A)のピークは消失していた。反応混合物を冷却し、析出結晶を室温で濾別、酢酸エチル20mlで結晶を洗浄し、減圧乾燥して前記化合物(7−A)21.2g(粗収率:87.6%)を得た。得られた結晶をHPLC(条件2)で分析すると、前記化合物(7−A)のピークの面積%は93.3%であった。
<Example 13>
[Synthesis of Compound (7-A): Reaction without Solvent, Reaction Temperature 45-55 ° C.]
70.0 g (0.3671 mol) of octyl bromide was added to 10.0 g (36.72 mmol) of the compound (5-A), and the reaction was performed at 49 to 52 ° C. for 50 hours. When the reaction mixture was analyzed by HPLC (condition 2), the peak of the compound (5-A) disappeared. The reaction mixture was cooled, the precipitated crystals were filtered off at room temperature, washed with 20 ml of ethyl acetate, and dried under reduced pressure to obtain 21.2 g (crude yield: 87.6%) of the compound (7-A). . When the obtained crystal was analyzed by HPLC (condition 2), the area% of the peak of the compound (7-A) was 93.3%.

<実施例14>
[前記化合物(7−A)の合成:無溶媒での反応、反応温度75〜80℃、エタノール/酢酸エチル混液で結晶化]
前記化合物(5−A)10.0g(36.72mmol)にオクチルブロマイド70.9g(0.3671mol)を加え、75〜77℃で20時間反応を行った。反応混合物をHPLC(条件2)で分析すると、前記化合物(5−A)のピークは消失していた。反応混合物より上層のオクチルブロマイド層を分離し、下層にエタノール10mlを添加して溶解し、溶解液を酢酸エチル200ml中に注加した。混合物を冷却し、析出した結晶を−10℃で濾別、酢酸エチル10mlで結晶を洗浄、減圧乾燥して前記化合物(7−A)17.4g(粗収率:71.9%)を得た。得られた結晶をHPLC(条件2)で分析すると、前記化合物(7−A)のピークの面積%は95.2%であった。
<Example 14>
[Synthesis of Compound (7-A): Reaction without Solvent, Crystallization with Ethanol / Ethyl Acetate Mixture, Reaction Temperature 75-80 ° C.]
70.0 g (0.3671 mol) of octyl bromide was added to 10.0 g (36.72 mmol) of the compound (5-A), and the reaction was performed at 75 to 77 ° C. for 20 hours. When the reaction mixture was analyzed by HPLC (condition 2), the peak of the compound (5-A) disappeared. The upper octyl bromide layer was separated from the reaction mixture, 10 ml of ethanol was added to the lower layer to dissolve, and the solution was poured into 200 ml of ethyl acetate. The mixture was cooled, and the precipitated crystals were separated by filtration at -10 ° C, washed with 10 ml of ethyl acetate, and dried under reduced pressure to obtain 17.4 g (crude yield: 71.9%) of the compound (7-A). It was. When the obtained crystal was analyzed by HPLC (condition 2), the peak area% of the compound (7-A) was 95.2%.

<実施例15>
[前記化合物(7−A)の合成:エタノール/酢酸エチル混液の比率を変更し、反応条件を以下の通りにした他は実施例14と同様]
前記化合物(5−A)10.0g(36.72mmol)にオクチルブロマイド70.9g(0.3671mol)を加え、75〜77℃で20時間反応を行った。反応混合物をHPLC(条件2)で分析すると、前記化合物(5−A)のピークは消失していた。反応混合物にエタノール10mlを添加して静置すると、上層が前記化合物(7−A)のエタノール溶液層、下層がオクチルブロマイド層となり、下層を分離した。次に上層を酢酸エチル500ml中に注加した。混合物を冷却し、析出結晶を5℃で濾別、酢酸エチル10mlで結晶を洗浄、減圧乾燥して前記化合物(7−A)20.8g(粗収率:86.0%)を得た。得られた結晶をHPLC(条件2)で分析すると、前記化合物(7−A)のピークの面積%は90.8%であった。
<Example 15>
[Synthesis of Compound (7-A): Same as Example 14 except that the ratio of ethanol / ethyl acetate mixture was changed and the reaction conditions were as follows]
70.0 g (0.3671 mol) of octyl bromide was added to 10.0 g (36.72 mmol) of the compound (5-A), and the reaction was performed at 75 to 77 ° C. for 20 hours. When the reaction mixture was analyzed by HPLC (condition 2), the peak of the compound (5-A) disappeared. When 10 ml of ethanol was added to the reaction mixture and allowed to stand, the upper layer became an ethanol solution layer of the compound (7-A), the lower layer became an octyl bromide layer, and the lower layer was separated. The upper layer was then poured into 500 ml of ethyl acetate. The mixture was cooled, the precipitated crystals were filtered off at 5 ° C., washed with 10 ml of ethyl acetate, and dried under reduced pressure to obtain 20.8 g (crude yield: 86.0%) of the compound (7-A). When the obtained crystal was analyzed by HPLC (condition 2), the area% of the peak of the compound (7-A) was 90.8%.

<実施例16>
[前記化合物(7−A)の合成:エタノール/酢酸エチル混液の比率を変更し、反応条件を以下の通りにした他は実施例14と同様。粗生成物をアセトニトリル/酢酸エチル混液で再結晶]
前記化合物(5−A)100.0g(0.367mol)にオクチルブロマイド709.1g(3.67mol)を加え、75〜78℃で20時間反応を行った。反応混合物をHPLC(条件2)で分析すると、前記化合物(5−A)のピークは消失していた。反応混合物にエタノール97mlを添加して静置すると、上層が前記化合物(7−A)のエタノール溶液層、下層がオクチルブロマイド層となり、下層を分離した。次に上層を酢酸エチル2900ml中に注加した。混合物を冷却し、析出結晶を3℃で濾別、酢酸エチル100mlで結晶を洗浄、減圧乾燥して前記化合物(7−A)215.8g(粗収率:89.3%)を得た。得られた結晶をHPLC(条件2)で分析すると、前記化合物(7−A)のピークの面積%は93.1%であった。
<Example 16>
[Synthesis of Compound (7-A): Same as Example 14 except that the ratio of ethanol / ethyl acetate mixture was changed and the reaction conditions were as follows. Recrystallize crude product with acetonitrile / ethyl acetate mixture]
709.1 g (3.67 mol) of octyl bromide was added to 100.0 g (0.367 mol) of the compound (5-A), and the reaction was carried out at 75 to 78 ° C. for 20 hours. When the reaction mixture was analyzed by HPLC (condition 2), the peak of the compound (5-A) disappeared. When 97 ml of ethanol was added to the reaction mixture and allowed to stand, the upper layer was an ethanol solution layer of the compound (7-A), the lower layer was an octyl bromide layer, and the lower layer was separated. The upper layer was then poured into 2900 ml of ethyl acetate. The mixture was cooled, the precipitated crystals were filtered off at 3 ° C., washed with 100 ml of ethyl acetate, and dried under reduced pressure to obtain 215.8 g (crude yield: 89.3%) of the compound (7-A). When the obtained crystal was analyzed by HPLC (condition 2), the area% of the peak of the compound (7-A) was 93.1%.

得られた結晶212gをアセトニトリル592ml、酢酸エチル1953mlの混液で再結晶を行い、前記化合物(7−A)192.1g(精製収率:90.6%)を得た。得られた結晶をHPLC(条件2)で分析すると、前記化合物(7−A)のピークの面積%は96.4%であった。   212 g of the obtained crystals were recrystallized from a mixed liquid of 592 ml of acetonitrile and 1953 ml of ethyl acetate to obtain 192.1 g (purification yield: 90.6%) of the compound (7-A). When the obtained crystal was analyzed by HPLC (condition 2), the peak area% of the compound (7-A) was 96.4%.

<実施例17>
[前記化合物(7−A)の合成:3−クロロメチルピリジンのベンゼンスルホン酸塩から前記化合物(5−A)を合成。前記化合物(5−A)を単離せずに前記化合物(7−A)を合成]
DMF35gに1,4−ブタンジオール3.2g(0.035mol)を加え、10〜20℃でカリウムtert−ブトキシド3.9g(0.035mol)を添加した。このスラリーに10〜25℃で3−クロロメチルピリジン・ベンゼンスルホン酸塩20.0g(0.07mol)のDMF(55g)溶液を滴下し、同時にカリウムtert−ブトキシド16.8g(0.15mol)を分割して添加した。添加終了後、反応混合物をHPLC(条件1)で分析すると、3−クロロメチルピリジンおよび前記化合物(3−A)のピークが確認されたので、3−クロロメチルピリジンおよび前記化合物(3−A)のピークが消失するまで、カリウムtert−ブトキシドを20℃以下で添加した。追加したカリウムtert−ブトキシドは1.5g(0.01mol)であった。
<Example 17>
[Synthesis of Compound (7-A): Compound (5-A) was synthesized from benzenesulfonate of 3-chloromethylpyridine. Synthesis of Compound (7-A) without Isolating Compound (5-A)]
To 35 g of DMF, 3.2 g (0.035 mol) of 1,4-butanediol was added, and 3.9 g (0.035 mol) of potassium tert-butoxide was added at 10 to 20 ° C. To this slurry, a DMF (55 g) solution of 20.0 g (0.07 mol) of 3-chloromethylpyridine benzenesulfonate was added dropwise at 10 to 25 ° C., and simultaneously 16.8 g (0.15 mol) of potassium tert-butoxide was added. Added in portions. After completion of the addition, the reaction mixture was analyzed by HPLC (Condition 1). Since peaks of 3-chloromethylpyridine and the compound (3-A) were confirmed, 3-chloromethylpyridine and the compound (3-A) were confirmed. Potassium tert-butoxide was added at 20 ° C. or lower until the peak disappeared. The added potassium tert-butoxide was 1.5 g (0.01 mol).

反応混合物より無機塩を濾別、ケークを10gのDMFで洗浄した。ろ洗液にオクチルブロマイド96.0g(0.5mol)を添加、60℃で72時間反応を行った。反応混合物をHPLC(条件2)で分析すると、前記化合物(5−A)のピークは消失していた。反応混合物を固液分離し、ケークをDMF20gで洗浄、ろ洗液からDMFとオクチルブロマイドを減圧下に留去し、油状の前記化合物(7−A)41.1g(粗収率(3−クロロメチルピリジン・ベンゼンスルホン酸塩より):89.2%)を得た。得られたオイルをHPLC(条件2)で分析すると、前記化合物(7−A)のピークの面積%は87.8%であった。   Inorganic salts were filtered off from the reaction mixture, and the cake was washed with 10 g of DMF. 96.0 g (0.5 mol) of octyl bromide was added to the filtrate and the reaction was carried out at 60 ° C. for 72 hours. When the reaction mixture was analyzed by HPLC (condition 2), the peak of the compound (5-A) disappeared. The reaction mixture was subjected to solid-liquid separation, the cake was washed with 20 g of DMF, DMF and octyl bromide were distilled off from the filtrate under reduced pressure, and 41.1 g of the oily compound (7-A) was obtained (crude yield (3-chloro From methyl pyridine benzenesulfonate): 89.2%). When the obtained oil was analyzed by HPLC (condition 2), the area% of the peak of the compound (7-A) was 87.8%.

<実施例18>
[前記化合物(5−A)の合成:塩基をナトリウム−tert−ブトキシドに代え、反応条件を以下の通りにした他は実施例7と同様]
DMF250mlに1,4−ブタンジオール13.73g(0.1524mol)を加え、氷冷下ナトリウムtert−ブトキシド14.65g(0.1524mol)を添加し、室温で1時間撹拌した。このスラリーに−15〜−10℃で3−クロロメチルピリジン塩酸塩5.0g(30.48mmol)、ナトリウムtert−ブトキシド2.93g(30.48mmol)を交互に添加し、これを5回繰り返した。これ以降の添加は、−16〜−7℃で3−クロロメチルピリジン塩酸塩5.0g(30.48mmol)、ナトリウムtert−ブトキシド5.86g(60.97mmol)を交互に添加し、これを5回繰り返し、全量で3−クロロメチルピリジン塩酸塩50.0g(0.3048mol)、ナトリウムtert−ブトキシド43.95g(0.4573mol)を添加した。
<Example 18>
[Synthesis of Compound (5-A): Same as Example 7 except that the base was replaced with sodium tert-butoxide and the reaction conditions were as follows]
1,4-butanediol (13.73 g, 0.1524 mol) was added to DMF (250 ml), and sodium tert-butoxide (14.65 g, 0.1524 mol) was added under ice cooling, followed by stirring at room temperature for 1 hour. To this slurry, 5.0 g (30.48 mmol) of 3-chloromethylpyridine hydrochloride and 2.93 g (30.48 mmol) of sodium tert-butoxide were alternately added at −15 to −10 ° C., and this was repeated 5 times. . Subsequent addition was carried out by alternately adding 5.0 g (30.48 mmol) of 3-chloromethylpyridine hydrochloride and 5.86 g (60.97 mmol) of sodium tert-butoxide at −16 to −7 ° C. Repeatedly, 50.0 g (0.3048 mol) of 3-chloromethylpyridine hydrochloride and 43.95 g (0.4573 mol) of sodium tert-butoxide were added in total.

添加終了後、反応混合物をHPLC(条件1)で分析すると、3−クロロメチルピリジンおよび前記化合物(3−A)のピークが確認されたので、3−クロロメチルピリジンのピークおよび前記化合物(3−A)のピークが消失するまで、3−クロロメチルピリジン塩酸塩とナトリウムtert−ブトキシドを0℃以下で添加した。追加した3−クロロメチルピリジン塩酸塩は2.5g(0.0152mol)、ナトリウムtert−ブトキシドは2.93g(0.0305mol)であった。反応混合物を固液分離し、ケークをDMF125mlで洗浄、ろ洗液からDMFを減圧下に留去した。この濃縮残液にジクロロメタン200mlを添加し、溶解液を飽和食塩水で洗浄後、溶媒を留去し、油状の前記化合物(5−A)39.4g(粗収率(1,4−ブタンジオールより):94.9%)を得た。得られたオイルをHPLC(条件1)で分析すると、前記化合物(5−A)の面積%は88.3%であった。   After completion of the addition, the reaction mixture was analyzed by HPLC (condition 1). As a result, peaks of 3-chloromethylpyridine and the compound (3-A) were confirmed. Therefore, the peak of 3-chloromethylpyridine and the compound (3- 3-Chloromethylpyridine hydrochloride and sodium tert-butoxide were added at 0 ° C. or lower until the peak of A) disappeared. The added 3-chloromethylpyridine hydrochloride was 2.5 g (0.0152 mol), and sodium tert-butoxide was 2.93 g (0.0305 mol). The reaction mixture was separated into solid and liquid, the cake was washed with 125 ml of DMF, and DMF was distilled off from the filtrate under reduced pressure. To this concentrated residue, 200 ml of dichloromethane was added, and the solution was washed with saturated brine, and then the solvent was distilled off to obtain 39.4 g of the oily compound (5-A) (crude yield (1,4-butanediol). More): 94.9%). When the obtained oil was analyzed by HPLC (condition 1), the area% of the compound (5-A) was 88.3%.

<実施例19>
[前記化合物(5−A)の合成:3−ピリジンメタノールベンゼンスルホン酸エステルを使用した反応]
DMF15mlに1,4−ブタンジオール0.9g(9.99mmol)を加え、氷冷下カリウムtert−ブトキシド1.13g(10.07mmol)を添加し、室温で1時間撹拌した。このスラリーに−5〜0℃で3−ピリジンメタノールベンゼンスルホン酸エステル2.5g(10.03mmol)のDMF(5ml)溶液を滴下した。−5〜0℃で30分撹拌後、反応混合物にカリウムtert−ブトキシド1.13g(10.07mmol)を−5〜0℃で添加した。このスラリーに−5〜0℃で3−ピリジンメタノールベンゼンスルホン酸エステル2.5g(10.03mmol)のDMF(5ml)溶液を滴下した。
<Example 19>
[Synthesis of Compound (5-A): Reaction Using 3-Pyridinemethanolbenzenesulfonate]
1,4-butanediol (0.9 g, 9.99 mmol) was added to 15 ml of DMF, and 1.13 g (10.07 mmol) of potassium tert-butoxide was added under ice cooling, followed by stirring at room temperature for 1 hour. To this slurry, a DMF (5 ml) solution of 2.5 g (10.03 mmol) of 3-pyridinemethanolbenzenesulfonate was added dropwise at -5 to 0 ° C. After stirring at −5 to 0 ° C. for 30 minutes, 1.13 g (10.07 mmol) of potassium tert-butoxide was added to the reaction mixture at −5 to 0 ° C. To this slurry, a DMF (5 ml) solution of 2.5 g (10.03 mmol) of 3-pyridinemethanolbenzenesulfonate was added dropwise at -5 to 0 ° C.

滴下終了後、反応混合物をHPLC(条件1)で分析すると、3−ピリジンメタノールベンゼンスルホン酸エステルのピークおよび前記化合物(3−A)のピークが確認されたので、3−ピリジンメタノールベンゼンスルホン酸エステルのピークおよび前記化合物(3−A)のピークが消失するまで、3−ピリジンメタノールベンゼンスルホン酸エステル化合物とカリウムtert−ブトキシドを0℃以下で添加した。追加した3−ピリジンメタノールベンゼンスルホン酸エステルは0.25g(1.00mmol)、カリウムtert−ブトキシドは0.22g(1.96mmol)であった。反応混合物を固液分離し、ケークをDMF10mlで洗浄、ろ洗液からDMFを減圧下に留去した。この濃縮残液にジクロロメタン20mlを添加し、溶解液を飽和食塩水で洗浄後、溶媒を留去し、油状の前記化合物(5−A)2.4g(粗収率(1,4−ブタンジオールより):88.2%)を得た。得られたオイルをHPLC(条件1)で分析すると、前記化合物(5−A)の面積%は85.8%であった。   After completion of the dropwise addition, the reaction mixture was analyzed by HPLC (condition 1). As a result, the peak of 3-pyridinemethanolbenzenesulfonate and the peak of the compound (3-A) were confirmed. The 3-pyridinemethanolbenzenesulfonic acid ester compound and potassium tert-butoxide were added at 0 ° C. or lower until the above peak and the peak of the compound (3-A) disappeared. The added 3-pyridinemethanolbenzenesulfonic acid ester was 0.25 g (1.00 mmol), and potassium tert-butoxide was 0.22 g (1.96 mmol). The reaction mixture was separated into solid and liquid, the cake was washed with 10 ml of DMF, and DMF was distilled off from the filtrate under reduced pressure. To this concentrated residue was added 20 ml of dichloromethane, and the solution was washed with saturated brine, and then the solvent was distilled off to obtain 2.4 g of the oily compound (5-A) (crude yield (1,4-butanediol). More): 88.2%). When the obtained oil was analyzed by HPLC (condition 1), the area% of the compound (5-A) was 85.8%.

<実施例20>
[下記構造式で示される化合物(3−B)の合成:3−クロロメチルピリジン塩酸塩から4−クロロメチルピリジン塩酸塩に代え、反応条件を以下の通りにした他は実施例1と同様]

Figure 0004381220
DMF75mlに1,4−ブタンジオール8.24g(91.43mmol)を加え、氷冷下カリウムtert−ブトキシド10.3g(91.79mmol)を添加し、室温で1時間撹拌した。このスラリーに−10〜−5℃で4−クロロメチルピリジン塩酸塩1.5g(9.14mmol)、カリウムtert−ブトキシド1.03g(9.18mmol)を交互に添加し、これを10回繰り返した。 <Example 20>
[Synthesis of Compound (3-B) Represented by Structural Formula: Same as Example 1 except that 3-chloromethylpyridine hydrochloride was replaced with 4-chloromethylpyridine hydrochloride and the reaction conditions were as follows]
Figure 0004381220
To 75 ml of DMF, 8.24 g (91.43 mmol) of 1,4-butanediol was added, and 10.3 g (91.79 mmol) of potassium tert-butoxide was added under ice cooling, followed by stirring at room temperature for 1 hour. To this slurry, 1.5 g (9.14 mmol) of 4-chloromethylpyridine hydrochloride and 1.03 g (9.18 mmol) of potassium tert-butoxide were alternately added at −10 to −5 ° C., and this was repeated 10 times. .

添加終了後、反応混合物をHPLC(条件1)で分析すると、4−クロロメチルピリジンのピークが確認されたので、4−クロロメチルピリジンのピークが消失するまでカリウムtert−ブトキシドを10℃以下で添加した。追加したカリウムtert−ブトキシドは1.03g(9.18mmol)であった。反応混合物を固液分離し、ケークをDMF20mlで洗浄、ろ洗液からDMFを減圧下に留去し油状の粗生成物17.0gを得た。得られたオイルをHPLC(条件1)で分析すると、前記化合物(3−B)の面積%は63.0%であった。   After completion of the addition, the reaction mixture was analyzed by HPLC (condition 1). As a result, a peak of 4-chloromethylpyridine was confirmed, so potassium tert-butoxide was added at 10 ° C. or lower until the peak of 4-chloromethylpyridine disappeared. did. The added potassium tert-butoxide was 1.03 g (9.18 mmol). The reaction mixture was subjected to solid-liquid separation, the cake was washed with 20 ml of DMF, and DMF was distilled off from the filtrate under reduced pressure to obtain 17.0 g of an oily crude product. When the obtained oil was analyzed by HPLC (condition 1), the area% of the compound (3-B) was 63.0%.

粗生成物を水30mlに溶解し、トルエンで洗浄した。その後、水層に食塩6gを加え、ジクロロメタン20ml×2で抽出し、無水硫酸マグネシウムで脱水後、溶媒を留去し、油状の前記化合物(3−B)9.21g(収率(1,4−ブタンジオールより):57.2%)を得た。得られたオイルをHPLC(条件1)で分析すると、面積%は99.4%であった。(1H−NMR(CDCl3):δ1.65−1.80(4H,m,−(C 2 2−)、δ2.4(1H,s,O)、δ3.54−3.58(2H,t,J=5.9Hz,C 2 )、δ3.66−3.70(2H,t,J=5.9Hz,C 2 )、δ4.53(2H,s,C 2 )、δ7.24−7.26(2H,dd,J=1.5Hz,4.5Hz,arom ×2)、δ8.55−8.57(2H,dd,J=1.5Hz,4.5Hz,arom ×2)、MS(APCl):m/z=182[M+H]+The crude product was dissolved in 30 ml of water and washed with toluene. Thereafter, 6 g of sodium chloride was added to the aqueous layer, followed by extraction with 20 ml of dichloromethane × 2, dehydration with anhydrous magnesium sulfate, the solvent was distilled off, and 9.21 g of the oily compound (3-B) (yield (1,4 -From butanediol): 57.2%). When the obtained oil was analyzed by HPLC (Condition 1), the area% was 99.4%. (1 H-NMR (CDCl 3 ): δ1.65-1.80 (4H, m, - (C H 2) 2 -), δ2.4 (1H, s, O H), δ3.54-3. 58 (2H, t, J = 5.9 Hz, C H 2 ), δ 3.66-3.70 (2H, t, J = 5.9 Hz, C H 2 ), δ 4.53 (2H, s, C H 2 ), δ 7.24-7.26 (2H, dd, J = 1.5 Hz, 4.5 Hz, arom H × 2), δ 8.55-8.57 (2H, dd, J = 1.5 Hz, 4 .5 Hz, arom H × 2), MS (APCl): m / z = 182 [M + H] + )

<実施例21>
[下記構造式で示される化合物(5−B)の合成:3−クロロメチルピリジン塩酸塩から4−クロロメチルピリジン塩酸塩に代え、反応条件を以下の通りにした他は実施例7と同様]

Figure 0004381220
DMF49mlに1,4−ブタンジオール2.7g(30.0mmol)を加え、氷冷下カリウムtert−ブトキシド3.4g(30.0mmol)を添加し、室温で1時間撹拌した。このスラリーに−5〜−3℃で4−クロロメチルピリジン塩酸塩0.98g(6mmol)、カリウムtert−ブトキシド0.68g(6mmol)を交互に添加し、これを5回繰り返した。これ以降の添加は、−5〜−2℃で4−クロロメチルピリジン塩酸塩0.98g(6mmol)、カリウムtert−ブトキシド1.36g(12mmol)を交互に添加し、これを5回繰り返し、全量で4−クロロメチルピリジン塩酸塩9.8g(60mmol)、カリウムtert−ブトキシド10.2g(90mmol)を添加した。 <Example 21>
[Synthesis of Compound (5-B) Represented by Structural Formula below: Same as Example 7 except that 3-chloromethylpyridine hydrochloride was replaced by 4-chloromethylpyridine hydrochloride and the reaction conditions were as follows]
Figure 0004381220
To 49 ml of DMF, 2.7 g (30.0 mmol) of 1,4-butanediol was added, and 3.4 g (30.0 mmol) of potassium tert-butoxide was added under ice cooling, followed by stirring at room temperature for 1 hour. To this slurry, 0.98 g (6 mmol) of 4-chloromethylpyridine hydrochloride and 0.68 g (6 mmol) of potassium tert-butoxide were alternately added at −5 to −3 ° C., and this was repeated 5 times. Thereafter, 0.98 g (6 mmol) of 4-chloromethylpyridine hydrochloride and 1.36 g (12 mmol) of potassium tert-butoxide were alternately added at −5 to −2 ° C., and this was repeated five times. Then, 9.8 g (60 mmol) of 4-chloromethylpyridine hydrochloride and 10.2 g (90 mmol) of potassium tert-butoxide were added.

添加終了後、反応混合物をHPLC(条件1)で分析すると、4−クロロメチルピリジンおよび前記化合物(3−B)のピークが確認されたので、4−クロロメチルピリジンのピークおよび前記化合物(3−B)のピークが消失するまで、4−クロロメチルピリジン塩酸塩とカリウムtert−ブトキシドを10℃以下で添加した。追加した4−クロロメチルピリジン塩酸塩は2.0g(12mmol)、カリウムtert−ブトキシドは2.6g(24mmol)であった。反応混合物を固液分離し、ケークをDMF20mlで洗浄、ろ洗液からDMFを減圧下に留去した。   After completion of the addition, the reaction mixture was analyzed by HPLC (condition 1). As a result, peaks of 4-chloromethylpyridine and the compound (3-B) were confirmed, and therefore the peak of 4-chloromethylpyridine and the compound (3- 4-Chloromethylpyridine hydrochloride and potassium tert-butoxide were added at 10 ° C. or lower until the peak of B) disappeared. The added 4-chloromethylpyridine hydrochloride was 2.0 g (12 mmol), and potassium tert-butoxide was 2.6 g (24 mmol). The reaction mixture was separated into solid and liquid, the cake was washed with 20 ml of DMF, and DMF was distilled off from the filtrate under reduced pressure.

この濃縮残液に酢酸エチル50mlを添加し、溶解液を水で洗浄後、溶媒を留去し、黄色結晶の前記化合物(5−B)を得た。該化合物の結晶をHPLC(条件1)で分析すると、前記化合物(5−B)の面積%は70.5%であった。得られた粗生成物5g(18mmol)をイソプロピルアルコール23.3gで再結晶を行い、白色結晶の前記化合物(5−B)2.7gを得た。(m.p.98.6〜100.2℃、1H−NMR(CDCl3):δ1.75−1.79(4H,m,−(C 22−)、δ3.53−3.57(4H,m,C 2×2)、δ4.52(4H,s,C 2×2)、δ7.23−7.27(4H,dd,J=0.8Hz,6.0Hz,arom×4)、δ8.55−8.57(4H,dd,J=1.6Hz,6.0Hz,arom×4)、MS(APCl):m/z=273[M+H]+50 ml of ethyl acetate was added to the concentrated residue, and the solution was washed with water, and then the solvent was distilled off to obtain the compound (5-B) as yellow crystals. When the crystals of the compound were analyzed by HPLC (Condition 1), the area% of the compound (5-B) was 70.5%. 5 g (18 mmol) of the obtained crude product was recrystallized with 23.3 g of isopropyl alcohol to obtain 2.7 g of the compound (5-B) as white crystals. (Mp 98.6 to 100.2 ° C., 1 H-NMR (CDCl 3 ): δ 1.75-1.79 (4H, m, — (C H 2 ) 2 —), δ 3.53-3 .57 (4H, m, C H 2 × 2), δ 4.52 (4H, s, C H 2 × 2), δ 7.23-7.27 (4H, dd, J = 0.8 Hz, 6.0 Hz) , Arom H × 4), δ 8.55-8.57 (4H, dd, J = 1.6 Hz, 6.0 Hz, arom H × 4), MS (APCl): m / z = 273 [M + H] + )

<実施例22>
[下記構造式の化合物(7−B)の合成:前記化合物(5−B)を4−クロロメチルピリジン塩酸塩から誘導したものに代え、反応条件を以下の通りにした他は実施例3と同様]

Figure 0004381220
前記化合物(5−B)2.0g(7.34mmol)にオクチルブロマイド21.3g(110.3mmol)を加え、70〜80℃で53時間反応を行った。反応混合物をHPLC(条件2)で分析すると、前記化合物(5−B)のピークは消失していた。反応混合物からオクチルブロマイドを減圧下で留去し、油状の前記化合物(7−B)5.2g(粗収率:107.7%)を得た。得られたオイルをHPLC(条件2)で分析すると、化合物(7−B)のピークの面積%は81.3%であった。 <Example 22>
[Synthesis of compound (7-B) having the following structural formula: Example 3 and Example 3 except that the compound (5-B) was replaced with one derived from 4-chloromethylpyridine hydrochloride and the reaction conditions were as follows: Same]
Figure 0004381220
21.3 g (110.3 mmol) of octyl bromide was added to 2.0 g (7.34 mmol) of the compound (5-B), and the reaction was performed at 70 to 80 ° C. for 53 hours. When the reaction mixture was analyzed by HPLC (condition 2), the peak of the compound (5-B) disappeared. Octyl bromide was distilled off from the reaction mixture under reduced pressure to obtain 5.2 g (crude yield: 107.7%) of the oily compound (7-B). When the obtained oil was analyzed by HPLC (condition 2), the area% of the peak of the compound (7-B) was 81.3%.

<実施例23>
[前記化合物(5−B)の精製:塩酸塩での精製。(塩酸モル比:前記化合物(5−B)に対して1.5)]
前記化合物(5−B)5.0g(18.36mmol、面積比90.5%)をイソプロピルアルコール15.0gに溶解し、溶解液に塩化水素ガス1.01g(27.70mmol)を20〜40℃で吹き込んだ。混合物を10℃に冷却し、析出した結晶をろ過、減圧乾燥して、前記化合物(5−B)の2塩酸塩4.4gを得た(収率:69.8%)。得られた結晶をHPLC(条件1)で分析すると、前記化合物(5−B)の面積%は97.9%であった。
<Example 23>
[Purification of Compound (5-B): Purification with hydrochloride. (Molar ratio of hydrochloric acid: 1.5 with respect to the compound (5-B))]
5.0 g (18.36 mmol, area ratio 90.5%) of the compound (5-B) was dissolved in 15.0 g of isopropyl alcohol, and 1.01 g (27.70 mmol) of hydrogen chloride gas was added to 20-40 in the solution. Blowed at ℃. The mixture was cooled to 10 ° C., and the precipitated crystals were filtered and dried under reduced pressure to obtain 4.4 g of the dihydrochloride salt of the compound (5-B) (yield: 69.8%). When the obtained crystal was analyzed by HPLC (condition 1), the area% of the compound (5-B) was 97.9%.

<実施例24>
[前記化合物(5−B)の精製:塩酸塩での精製。(塩酸モル比:前記化合物(5−B)に対して2.0)]
前記化合物(5−B)5.0g(18.36mmol、面積比90.5%)をイソプロピルアルコール15.0gに溶解し、溶解液に塩化水素ガス1.34g(36.75mmol)を20〜40℃で吹き込んだ。混合物を10℃に冷却し、析出した結晶をろ過、減圧乾燥して、前記化合物(5−B)の2塩酸塩5.7gを得た(収率:90.5%)。得られた結晶をHPLC(条件1)で分析すると、前記化合物(5−B)の面積%は96.1%であった。
<Example 24>
[Purification of Compound (5-B): Purification with hydrochloride. (Molar ratio of hydrochloric acid: 2.0 with respect to the compound (5-B))]
5.0 g (18.36 mmol, area ratio 90.5%) of the compound (5-B) was dissolved in 15.0 g of isopropyl alcohol, and 1.34 g (36.75 mmol) of hydrogen chloride gas was added to 20-40 in the solution. Blowed at ℃. The mixture was cooled to 10 ° C., and the precipitated crystals were filtered and dried under reduced pressure to obtain 5.7 g of the dihydrochloride salt of the compound (5-B) (yield: 90.5%). When the obtained crystal was analyzed by HPLC (condition 1), the area% of the compound (5-B) was 96.1%.

<実施例25>
[前記化合物(5−B)の精製:塩酸の吹き込み温度を60〜65℃に代え、反応条件を以下の通りにした他は実施例23と同様]
前記化合物(5−B)15.0g(55.08mmol、面積比90.5%)をイソプロピルアルコール45.0gに溶解し、溶解液に塩化水素ガス4.0g(0.1097mol)を60〜65℃で吹き込んだ。混合物を5℃に冷却し、析出した結晶をろ過、減圧乾燥して、前記化合物(5−B)の2塩酸塩17.2gを得た(収率:90.5%)。得られた結晶をHPLC(条件1)で分析すると、前記化合物(5−B)の面積%は97.9%であった。
<Example 25>
[Purification of Compound (5-B): Same as Example 23, except that the blowing temperature of hydrochloric acid was changed to 60-65 ° C. and the reaction conditions were as follows]
15.0 g (55.08 mmol, area ratio 90.5%) of the compound (5-B) was dissolved in 45.0 g of isopropyl alcohol, and 4.0 g (0.1097 mol) of hydrogen chloride gas was added to 60-65 in the solution. Blowed at ℃. The mixture was cooled to 5 ° C., and the precipitated crystals were filtered and dried under reduced pressure to obtain 17.2 g of the dihydrochloride salt of the compound (5-B) (yield: 90.5%). When the obtained crystal was analyzed by HPLC (condition 1), the area% of the compound (5-B) was 97.9%.

<実施例26>
[前記化合物(5−B)の精製:硫酸塩での精製(硫酸モル比:前記化合物(5−B)に対して1.0)]
前記化合物(5−B)15.0g(55.08mmol、面積比90.5%)をイソプロピルアルコール22.5gに溶解し、溶解液に98%硫酸5.5g(54.96mmol)を70〜75℃で滴下した。混合物を5℃に冷却し、析出した結晶をろ過、減圧乾燥して、前記化合物(5−B)の2硫酸塩17.2gを得た(収率:47.5%)。得られた結晶をHPLC(条件1)で分析すると、前記化合物(5−B)の面積%は94.6%であった。
<Example 26>
[Purification of Compound (5-B): Purification with Sulfate (Sulfuric Acid Molar Ratio: 1.0 with respect to Compound (5-B)]]
15.0 g (55.08 mmol, area ratio 90.5%) of the compound (5-B) was dissolved in 22.5 g of isopropyl alcohol, and 5.5 g (54.96 mmol) of 98% sulfuric acid was added to 70 to 75 in the solution. It was dripped at ° C. The mixture was cooled to 5 ° C., and the precipitated crystals were filtered and dried under reduced pressure to obtain 17.2 g of the disulfate salt of the compound (5-B) (yield: 47.5%). When the obtained crystal was analyzed by HPLC (condition 1), the area% of the compound (5-B) was 94.6%.

<実施例27>
[前記化合物(5−B)の精製:硫酸塩での精製(硫酸モル比:前記化合物(5−B)に対して1.5)]
前記化合物(5−B)10.0g(36.72mmol、面積比90.5%)をイソプロピルアルコール20mlに溶解し、溶解液に98%硫酸5.5g(54.96mmol)を45〜60℃で滴下した。混合物を5℃に冷却し、析出した結晶をろ過、減圧乾燥して、前記化合物(5−B)の2硫酸塩10.6gを得た(収率:61.6%)。得られた結晶をHPLC(条件1)で分析すると、前記化合物(5−B)の面積%は94.9%であった。
<Example 27>
[Purification of Compound (5-B): Purification with Sulfate (Sulfuric Acid Molar Ratio: 1.5 with respect to Compound (5-B))]
10.0 g (36.72 mmol, area ratio 90.5%) of the compound (5-B) was dissolved in 20 ml of isopropyl alcohol, and 5.5 g (54.96 mmol) of 98% sulfuric acid was added to the solution at 45-60 ° C. It was dripped. The mixture was cooled to 5 ° C., and the precipitated crystals were filtered and dried under reduced pressure to obtain 10.6 g of the disulfate salt of the compound (5-B) (yield: 61.6%). When the obtained crystal was analyzed by HPLC (condition 1), the area% of the compound (5-B) was 94.9%.

<実施例28>
[前記化合物(5−B)の精製:硫酸塩での精製(硫酸モル比:前記化合物(5−B)に対して2.0)]
前記化合物(5−B)20.0g(73.43mmol、面積比90.5%)をイソプロピルアルコール40mlに溶解し、溶解液に98%硫酸14.7g(0.1468mol)を60〜80℃で滴下した。混合物を5℃に冷却し、析出した結晶をろ過、減圧乾燥して、前記化合物(5−B)の2硫酸塩27.5gを得た(収率:79.9%)。得られた結晶をHPLC(条件1)で分析すると、前記化合物(5−B)の面積%は94.7%であった。
<Example 28>
[Purification of Compound (5-B): Purification with Sulfate (Sulfuric Acid Molar Ratio: 2.0 with respect to Compound (5-B))]
20.0 g (73.43 mmol, area ratio 90.5%) of the compound (5-B) was dissolved in 40 ml of isopropyl alcohol, and 14.7 g (0.1468 mol) of 98% sulfuric acid was dissolved in the solution at 60 to 80 ° C. It was dripped. The mixture was cooled to 5 ° C., and the precipitated crystals were filtered and dried under reduced pressure to obtain 27.5 g of the disulfate salt of the compound (5-B) (yield: 79.9%). When the obtained crystal was analyzed by HPLC (condition 1), the area% of the compound (5-B) was 94.7%.

<実施例29>
[前記化合物(5−B)の合成:1,4−ブタンジオールのモノナトリウム塩スラリーに4−クロロメチルピリジン塩酸塩−DMFスラリーとナトリウム−tert−ブトキシドのDMF溶液を同時に滴下]
DMF80mlに1,4−ブタンジオール8.43g(0.0935mol)を加え、氷冷下ナトリウムtert−ブトキシド9.0g(0.0936mol)を添加し、室温で1時間撹拌した。このスラリーに0〜5℃で4−クロロメチルピリジン塩酸塩34.1g(45.72mmol)/DMF100mlのスラリーとナトリウムtert−ブトキシド37.0g(0.3850mol)/DMF60mlの溶液を同時に滴下した。
<Example 29>
[Synthesis of Compound (5-B): 4-chloromethylpyridine hydrochloride-DMF slurry and DMF solution of sodium tert-butoxide are added dropwise to 1,4-butanediol monosodium salt slurry]
To 80 ml of DMF, 8.43 g (0.0935 mol) of 1,4-butanediol was added, and 9.0 g (0.0936 mol) of sodium tert-butoxide was added under ice cooling, followed by stirring at room temperature for 1 hour. To this slurry, a solution of 34.1 g (45.72 mmol) of 4-chloromethylpyridine hydrochloride / 100 ml of DMF and a solution of 37.0 g (0.3850 mol) of sodium tert-butoxide / 60 ml of DMF were simultaneously added dropwise at 0 to 5 ° C.

滴下終了後、室温で1時間反応して、反応混合物をHPLC(条件1)で分析すると、4−クロロメチルピリジンのピークは検出されず、前記化合物(3−B)のピークもほぼ消失した。反応混合物を固液分離し、ケークをDMF60mlで洗浄、ろ洗液からDMFを減圧下に留去した。得られた残液28.3gにイソプロピルアルコール84.9gを加えて溶解し、溶解液に塩化水素ガス6.9g(0.1892mol)を60〜65℃で吹き込んだ。混合物を5℃に冷却し、析出した結晶をろ過、イソプロピルアルコール14.2mlで結晶を洗浄して、前記化合物(5−B)の2塩酸塩の湿体36.1gを得た。得られた湿体を水18.1gで溶解後、液苛性ソーダでpH10〜11.5に調整し、トルエン100mlで抽出、トルエン層を水20mlで洗浄後、トルエンを減圧下に留去して油状の前記化合物(5−B)22.2g(収率(1,4−ブタンジオールより):87.2%)を得た。得られたオイルをHPLC(条件1)で分析すると、前記化合物(5−B)の面積%は97.5%であった。   After completion of the dropwise addition, the mixture was reacted at room temperature for 1 hour, and when the reaction mixture was analyzed by HPLC (condition 1), the peak of 4-chloromethylpyridine was not detected, and the peak of the compound (3-B) almost disappeared. The reaction mixture was subjected to solid-liquid separation, the cake was washed with 60 ml of DMF, and DMF was distilled off from the filtrate under reduced pressure. To 28.3 g of the obtained residual liquid, 84.9 g of isopropyl alcohol was added and dissolved, and 6.9 g (0.1892 mol) of hydrogen chloride gas was blown into the solution at 60 to 65 ° C. The mixture was cooled to 5 ° C., the precipitated crystals were filtered, and the crystals were washed with 14.2 ml of isopropyl alcohol to obtain 36.1 g of a wet dihydrochloride salt of the compound (5-B). The obtained wet substance was dissolved in 18.1 g of water, adjusted to pH 10 to 11.5 with liquid caustic soda, extracted with 100 ml of toluene, the toluene layer was washed with 20 ml of water, and then toluene was distilled off under reduced pressure to give an oil. Of the compound (5-B) was obtained (yield (from 1,4-butanediol): 87.2%). When the obtained oil was analyzed by HPLC (condition 1), the area% of the compound (5-B) was 97.5%.

<実施例30>
[前記化合物(7−B)の合成:精製した前記化合物(5−B)を使用し、反応条件を以下の通りにした他は実施例14と同様]
前記化合物(5−B)20.0g(0.0734mol、HPLC(条件1):98.2面積%)にオクチルブロマイド141.8g(0.7343mol)を加え、75〜78℃で20.5時間反応を行った。反応混合物をHPLC(条件2)で分析すると、前記化合物(5−B)のピークは消失していた。反応混合物にアセトニトリル19.3mlを添加して静置すると、上層が前記化合物(7−B)のアセトニトリル溶液層、下層がオクチルブロマイド層となり、下層を分離した。次に上層を80℃10Torrまで減圧濃縮し、油状の前記化合物(7−B)44.9g(粗収率:93.0%)を得た。得られた油状物をHPLC(条件2)で分析すると、前記化合物(7−B)のピークの面積%は97.5%であった。(1H−NMR(d6−DMSO):δ0.86−0.90(6H,t,J=5.5Hz,C 3×2)、δ1.26−1.35(20H,m,−(C 25−×2)、δ1.80−1.85(4H,m,−(C 22−×2)、δ2.05−3.02(4H,m,C 2×2)、δ3.72−3.75(4H,m,C 2×2)、δ4.68−4.72(4H,m,C 2×2)、δ4.85(4H,s,C 2×2)、δ8.13(4H,dd,J=0.8Hz,6.5Hz,arom×4)、δ8.85(4H,dd,J=1.6Hz,6.5Hz,arom×4)
<Example 30>
[Synthesis of Compound (7-B): Same as Example 14 except that purified compound (5-B) was used and reaction conditions were as follows]
141.8 g (0.7343 mol) of octyl bromide was added to 20.0 g (0.0734 mol, HPLC (condition 1): 98.2 area%) of the compound (5-B), and the mixture was heated at 75 to 78 ° C. for 20.5 hours. Reaction was performed. When the reaction mixture was analyzed by HPLC (condition 2), the peak of the compound (5-B) disappeared. When 19.3 ml of acetonitrile was added to the reaction mixture and allowed to stand, the upper layer was an acetonitrile solution layer of the compound (7-B), the lower layer was an octyl bromide layer, and the lower layer was separated. Next, the upper layer was concentrated under reduced pressure to 80 ° C. and 10 Torr to obtain 44.9 g (crude yield: 93.0%) of the oily compound (7-B). When the obtained oily substance was analyzed by HPLC (condition 2), the area% of the peak of the compound (7-B) was 97.5%. ( 1 H-NMR (d 6 -DMSO): δ0.86-0.90 (6H, t, J = 5.5 Hz, C H 3 × 2), δ1.26-1.35 (20H, m, − (C H 2 ) 5- × 2), δ 1.80-1.85 (4H, m,-(C H 2 ) 2- × 2), δ 2.05-3.02 (4H, m, C H 2 × 2), δ 3.72-3.75 (4H, m, C H 2 × 2), δ 4.68-4.72 (4H, m, C H 2 × 2), δ 4.85 (4H, s, C H 2 × 2), δ 8.13 (4H, dd, J = 0.8 Hz, 6.5 Hz, arom H × 4), δ 8.85 (4H, dd, J = 1.6 Hz, 6.5 Hz, arom) H x 4)

試験例1<本発明の前記化合物(7−A)の各種細菌に対する静菌活性>
対照化合物には塩化ベンザルコニウムを用いて最小発育阻止濃度(MIC)を測定した。
最小発育阻止濃度(MIC)の測定は一般的なブロス希釈法に従い、ニュトリエントブロスを用いて、菌懸濁濃度が106cell/mlになるように調整した定常期状態の菌液を段階希釈した薬剤溶液と混合し、37℃、24時間静置培養後、増殖の有無によりMIC値を決定した。
供試菌としてグラム陰性菌10種およびグラム陽性菌6種を用いた。その結果を表1に示す。
Test Example 1 <Bacteriostatic activity against various bacteria of the compound (7-A) of the present invention>
The minimum inhibitory concentration (MIC) was measured using benzalkonium chloride as a control compound.
The minimum inhibitory concentration (MIC) was measured according to a general broth dilution method. Using a nutrient broth, a steady-state bacterial solution adjusted to a cell suspension concentration of 10 6 cells / ml was serially diluted. The MIC value was determined based on the presence or absence of proliferation after mixing with the drug solution and standing culture at 37 ° C. for 24 hours.
Ten gram-negative bacteria and six gram-positive bacteria were used as test bacteria. The results are shown in Table 1.

Figure 0004381220
Figure 0004381220

試験例2<本発明の化合物(7−A)の各種細菌に対する殺菌活性(MBC)>
対照化合物には、ヨウ化ベンザルコニウムを用いた。供試菌としてグラム陰性菌5種およびグラム陽性菌4種を用い、前記と同様にして最小殺菌濃度(MBC)を測定した。その結果を表2に示す。
Test Example 2 <Bactericidal activity (MBC) against various bacteria of the compound (7-A) of the present invention>
Benzalkonium iodide was used as a control compound. Using 5 kinds of gram-negative bacteria and 4 kinds of gram-positive bacteria as test bacteria, the minimum bactericidal concentration (MBC) was measured in the same manner as described above. The results are shown in Table 2.

Figure 0004381220
Figure 0004381220

試験例3<本発明の化合物(7−A)の真菌に対する最小発育阻止濃度(MIC)の測定>
対照化合物にはTBZ(2−(4’−チアゾリル)ベンズイミダゾール)を用いた。最小発育阻止濃度(MIC)の測定は、一般的なブロス希釈法に従い、サブロー培地を用い、前培養した供試菌を湿潤剤添加殺菌水で胞子液を調製した。希釈薬剤溶液1mlと胞子液1mlを混合し、インキュベーダー中で30℃、1週間培養後、増殖の有無を濁度で判定し、濁度を生じていないところをMICとした。その結果を表3に示す。
Test Example 3 <Measurement of Minimum Growth Inhibitory Concentration (MIC) of Fungus of Compound (7-A) of the Present Invention>
TBZ (2- (4′-thiazolyl) benzimidazole) was used as a reference compound. The minimum inhibitory concentration (MIC) was measured according to a general broth dilution method, using a Sabouraud medium, and preparing a spore solution of pre-cultured test bacteria with humectant-added sterilized water. Diluted drug solution (1 ml) and spore solution (1 ml) were mixed, cultured in an incubator at 30 ° C. for 1 week, the presence or absence of growth was determined by turbidity, and the place where no turbidity occurred was defined as MIC. The results are shown in Table 3.

Figure 0004381220
Figure 0004381220

試験例4<本発明の前記化合物(7−B)の各種細菌に対する静菌活性>
前記試験例1と同様にして表4に記載の結果を得た。

Figure 0004381220
Test Example 4 <Bacteriostatic activity of the compound (7-B) of the present invention against various bacteria>
The results shown in Table 4 were obtained in the same manner as in Test Example 1.
Figure 0004381220

試験例5<本発明の化合物(7−B)の各種細菌に対する殺菌活性(MBC)>
前記試験例2と同様にして表5に記載の結果を得た。

Figure 0004381220
Test Example 5 <bactericidal activity (MBC) against various bacteria of the compound (7-B) of the present invention>
The results shown in Table 5 were obtained in the same manner as in Test Example 2.
Figure 0004381220

試験例6<本発明の化合物(7−B)の真菌に対する最小発育阻止濃度(MIC)の測定>
前記試験例3と同様にして表6に記載の結果を得た。

Figure 0004381220
Test Example 6 <Measurement of Minimum Growth Inhibitory Concentration (MIC) of Fungus of Compound (7-B) of the Present Invention>
The results shown in Table 6 were obtained in the same manner as in Test Example 3.
Figure 0004381220

次に、本発明の(請求項1)の実施形態を列挙する。
〔請求項2〕
前記一般式(1)で表わされる化合物と前記一般式(4)で表わされる化合物とが同一である請求項1に記載の殺菌性ピリジン化合物の製造方法。
〔請求項3〕
前記一般式(1)と前記一般式(4)におけるR1およびR4が、CH2基であり、R2およびR5が、水素原子である請求項1に記載の殺菌性ピリジン化合物の製造方法。
〔請求項4〕
前記一般式(2)で表されるジオール類が、1,4−ブタンジオールである請求項1に記載の殺菌性ピリジン化合物の製造方法。
〔請求項5〕
前記一般式(1)〜(7)におけるR1およびR4が、CH2基であり、R2およびR5が水素原子であり、R3が、炭素数2〜12の直鎖もしくは分岐のアルキル基であり、AおよびBが塩素原子、臭素原子またはヨウ素原子であり、XおよびYが塩素アニオン、臭素アニオン、ヨウ素アニオン、低級アルキルスルホニルオキシアニオン、置換もしくは無置換のベンゼンスルホニルオキシアニオン、低級アルキルカルボキシアニオン、置換もしくは無置換のベンゼンカルボキシアニオンまたはアセトキシアニオンであり、mおよびnが0〜1である請求項1に記載の殺菌性ピリジン化合物の製造方法。
〔請求項6〕
前記AおよびBが、塩素原子であり、前記XおよびYが塩素アニオン、ベンゼンスルホニルオキシアニオンまたはアセトキシアニオンである請求項5に記載の殺菌性ピリジン化合物の製造方法。
〔請求項7〕
前記強塩基が、アルカリ金属またはその水素化物、アルキルリチウム、フェニルリチウムおよびアルカリ金属アルコキサイドのうちの少なくとも1種である請求項1に記載の殺菌性ピリジン化合物の製造方法。
〔請求項8〕
前記強塩基が、ナトリウムターシャリブトキサイドもしくはカリウムターシャリブトキサイドである請求項1に記載の殺菌性ピリジン化合物の製造方法。
〔請求項9〕
前記反応を溶媒中で行ない、該溶媒が、非プロトン性極性溶媒である請求項1に記載の殺菌性ピリジン化合物の製造方法。
〔請求項10〕
前記溶媒が、ジメチルホルムアミドである請求項9に記載の殺菌性ピリジン化合物の製造方法。
〔請求項11〕
前記一般式(3)で表される化合物を単離することなく、連続的に一般式(4)で表される化合物と反応させる請求項1に記載の殺菌性ピリジン化合物の製造方法。
〔請求項12〕
前記一般式(3)におけるR1が、炭素数1〜4の直鎖もしくは分岐のアルキル基であり、R2が、水素原子、ハロゲン原子、低級アルキル基または低級アルコキシ基であり、R3が、炭素数2〜12の直鎖もしくは分岐のアルキル基である請求項1に記載の殺菌性ピリジン化合物の製造方法。
〔請求項13〕
前記R1がCH2基であり、R2が水素原子である請求項12に記載の殺菌性ピリジン化合物の製造方法。
〔請求項14〕
前記R1が、CH2基であり、R2が、水素原子であり、R3が、炭素数4の直鎖のアルキル基である請求項12に記載の殺菌性ピリジン化合物の製造方法。
〔請求項15〕
前記R1が、炭素数1〜4の直鎖もしくは分岐のアルキル基であり、前記R2が水素原子、ハロゲン原子、低級アルキル基または低級アルコキシ基であり、前記R3が、炭素数2〜12の直鎖もしくは分岐のアルキル基であり、R4が炭素数1〜4の直鎖もしくは分岐のアルキル基であり、前記R5が、水素原子、ハロゲン原子、低級アルキル基または低級アルコキシ基である請求項1に記載の殺菌性ピリジン化合物の製造方法。
〔請求項16〕
前記R1およびR4が、CH2基であり、前記R2およびR5が、水素原子である請求項15に記載の殺菌性ピリジン化合物の製造方法。
〔請求項17〕
前記R3が、炭素数4の直鎖のアルキル基である請求項15に記載の殺菌性ピリジン化合物の製造方法。
〔請求項18〕
前記R6が、炭素数1〜18の直鎖もしくは分岐のアルキル基であり、前記Zが、塩素原子、臭素原子またはヨウ素原子である請求項1に記載の殺菌性ピリジン化合物の製造方法。
〔請求項19〕
前記R6が、炭素数8の直鎖のアルキル基である請求項18に記載の殺菌性ピリジン化合物の製造方法。
〔請求項20〕
前記R6が、炭素数8の直鎖のアルキル基であり、前記Zが、臭素原子である請求項18に記載の殺菌性ピリジン化合物の製造方法。
〔請求項21〕
前記一般式(5)で表されるピリジン化合物と前記一般式(6)で表されるハロゲン化合物もしくはスルホン酸エステル化合物の反応に使用する溶媒が、低級脂肪族アルコールまたは非プロトン性極性溶媒である請求項1に記載の殺菌性ピリジン化合物の製造方法。
〔請求項22〕
前記溶媒が、ジメチルホルムアミドである請求項21に記載の殺菌性ピリジン化合物の製造方法。
〔請求項23〕
前記溶媒を使用せず、前記一般式(6)で表されるハロゲン化合物もしくはスルホン酸エステル化合物を過剰に使用する請求項1に記載の殺菌性ピリジン化合物の製造方法。
〔請求項24〕
前記一般式(5)で表されるピリジン化合物を単離することなく、前記一般式(6)で表されるハロゲン化合物もしくはスルホン酸エステル化合物と反応させる請求項1に記載の殺菌性ピリジン化合物の製造方法。
Next, embodiments of (Claim 1) of the present invention will be enumerated.
[Claim 2]
The method for producing a bactericidal pyridine compound according to claim 1, wherein the compound represented by the general formula (1) and the compound represented by the general formula (4) are the same.
[Claim 3]
The bactericidal pyridine compound according to claim 1, wherein R 1 and R 4 in the general formula (1) and the general formula (4) are CH 2 groups, and R 2 and R 5 are hydrogen atoms. Method.
[Claim 4]
The method for producing a bactericidal pyridine compound according to claim 1, wherein the diol represented by the general formula (2) is 1,4-butanediol.
[Claim 5]
R 1 and R 4 in the general formulas (1) to (7) are CH 2 groups, R 2 and R 5 are hydrogen atoms, and R 3 is a linear or branched group having 2 to 12 carbon atoms. An alkyl group, A and B are chlorine atoms, bromine atoms or iodine atoms, X and Y are chlorine anions, bromine anions, iodine anions, lower alkylsulfonyloxy anions, substituted or unsubstituted benzenesulfonyloxy anions, lower The method for producing a bactericidal pyridine compound according to claim 1, which is an alkylcarboxy anion, a substituted or unsubstituted benzenecarboxy anion or an acetoxy anion, wherein m and n are 0 to 1.
[Claim 6]
The method for producing a bactericidal pyridine compound according to claim 5, wherein A and B are chlorine atoms, and X and Y are a chlorine anion, a benzenesulfonyloxy anion or an acetoxy anion.
[Claim 7]
The method for producing a bactericidal pyridine compound according to claim 1, wherein the strong base is at least one of an alkali metal or a hydride thereof, alkyl lithium, phenyl lithium, and an alkali metal alkoxide.
[Claim 8]
The method for producing a bactericidal pyridine compound according to claim 1, wherein the strong base is sodium tertiary riboxide or potassium tertiary riboxide.
[Claim 9]
The method for producing a bactericidal pyridine compound according to claim 1, wherein the reaction is carried out in a solvent, and the solvent is an aprotic polar solvent.
[Claim 10]
The method for producing a bactericidal pyridine compound according to claim 9, wherein the solvent is dimethylformamide.
[Claim 11]
The manufacturing method of the bactericidal pyridine compound of Claim 1 made to react with the compound represented by General formula (4) continuously, without isolating the compound represented by said General formula (3).
[Claim 12]
R 1 in the general formula (3) is a linear or branched alkyl group having 1 to 4 carbon atoms, R 2 is a hydrogen atom, a halogen atom, a lower alkyl group or a lower alkoxy group, and R 3 is The method for producing a bactericidal pyridine compound according to claim 1, which is a linear or branched alkyl group having 2 to 12 carbon atoms.
[Claim 13]
The method for producing a bactericidal pyridine compound according to claim 12, wherein R 1 is a CH 2 group and R 2 is a hydrogen atom.
[Claim 14]
The method for producing a bactericidal pyridine compound according to claim 12, wherein R 1 is a CH 2 group, R 2 is a hydrogen atom, and R 3 is a linear alkyl group having 4 carbon atoms.
[Claim 15]
R 1 is a linear or branched alkyl group having 1 to 4 carbon atoms, R 2 is a hydrogen atom, a halogen atom, a lower alkyl group, or a lower alkoxy group, and R 3 is 2 to 2 carbon atoms. 12 linear or branched alkyl groups, R 4 is a linear or branched alkyl group having 1 to 4 carbon atoms, and R 5 is a hydrogen atom, a halogen atom, a lower alkyl group or a lower alkoxy group. A method for producing a bactericidal pyridine compound according to claim 1.
[Claim 16]
The method for producing a bactericidal pyridine compound according to claim 15, wherein R 1 and R 4 are CH 2 groups, and R 2 and R 5 are hydrogen atoms.
[Claim 17]
The method for producing a bactericidal pyridine compound according to claim 15, wherein R 3 is a linear alkyl group having 4 carbon atoms.
[Claim 18]
The method for producing a bactericidal pyridine compound according to claim 1, wherein R 6 is a linear or branched alkyl group having 1 to 18 carbon atoms, and Z is a chlorine atom, a bromine atom or an iodine atom.
[Claim 19]
The method for producing a bactericidal pyridine compound according to claim 18, wherein R 6 is a linear alkyl group having 8 carbon atoms.
[Claim 20]
The method for producing a bactericidal pyridine compound according to claim 18, wherein R 6 is a linear alkyl group having 8 carbon atoms, and Z is a bromine atom.
[Claim 21]
The solvent used for the reaction of the pyridine compound represented by the general formula (5) and the halogen compound or sulfonate compound represented by the general formula (6) is a lower aliphatic alcohol or an aprotic polar solvent. The manufacturing method of the bactericidal pyridine compound of Claim 1.
[Claim 22]
The method for producing a bactericidal pyridine compound according to claim 21, wherein the solvent is dimethylformamide.
[Claim 23]
The method for producing a bactericidal pyridine compound according to claim 1, wherein the halogen compound or sulfonic acid ester compound represented by the general formula (6) is used excessively without using the solvent.
[Claim 24]
The bactericidal pyridine compound according to claim 1, wherein the pyridine compound represented by the general formula (5) is reacted with the halogen compound or the sulfonate compound represented by the general formula (6) without isolation. Production method.

本発明によれば、入手の容易なピリジン化合物を出発原料として、簡便、かつ安価に新規な殺菌性ピリジン化合物を提供することができる。   According to the present invention, a novel bactericidal pyridine compound can be provided simply and inexpensively using a readily available pyridine compound as a starting material.

Claims (24)

下記一般式(1)
Figure 0004381220
で表されるピリジン化合物と、下記一般式(2)
Figure 0004381220
で表されるジオール類とを、強塩基の存在下に反応させることにより、下記一般式(3)
Figure 0004381220
で表されるピリジン化合物を製し、該化合物と下記一般式(4)
Figure 0004381220
で表されるピリジン化合物とを強塩基の存在下に反応させることにより下記一般式(5)
Figure 0004381220
で表されるピリジン化合物を製し、該化合物と下記一般式(6)
Figure 0004381220
で表されるハロゲン化合物もしくはスルホン酸エステル化合物とを反応させることを特徴とする下記一般式(7)
Figure 0004381220
(但し、上記一般式(1)〜(7)において、AおよびBは塩基の作用により脱離基として機能し、アルキルカチオンを生成し得る置換基であり、XおよびYは無機、もしくは有機のプロトン酸の対アニオンであり、mおよびnは0〜1であり、R1およびR4は、炭素数1〜4の直鎖もしくは分岐の同一または異なるアルキル基であり、R2およびR5は、水素原子、同一または異なるハロゲン原子、低級アルキル基または低級アルコキシ基であり、R3は、炭素数2〜12の直鎖もしくは分岐のアルキル基であり、R6は、炭素数1〜18の直鎖もしくは分岐のアルキル基であり、Zは、塩素原子、臭素原子、ヨウ素原子もしくはOSO27基(R7は、低級アルキル基もしくは置換あるいは無置換のフェニル基である)である。)で表される殺菌性ピリジン化合物の製造方法。
The following general formula (1)
Figure 0004381220
And a pyridine compound represented by the following general formula (2)
Figure 0004381220
Is reacted in the presence of a strong base to give the following general formula (3):
Figure 0004381220
A pyridine compound represented by the formula:
Figure 0004381220
Is reacted with a pyridine compound represented by the following general formula (5):
Figure 0004381220
A pyridine compound represented by the formula:
Figure 0004381220
The following general formula (7), characterized by reacting with a halogen compound or a sulfonic acid ester compound represented by the formula:
Figure 0004381220
(However, in the above general formulas (1) to (7), A and B are substituents capable of functioning as a leaving group by the action of a base and generating an alkyl cation, and X and Y are inorganic or organic. A counter anion of a protonic acid, m and n are 0 to 1 , R 1 and R 4 are linear or branched, identical or different alkyl groups having 1 to 4 carbon atoms, and R 2 and R 5 are , A hydrogen atom, the same or different halogen atom, a lower alkyl group or a lower alkoxy group, R 3 is a linear or branched alkyl group having 2 to 12 carbon atoms, and R 6 is a C 1-18 carbon atom. A linear or branched alkyl group, and Z is a chlorine atom, bromine atom, iodine atom or OSO 2 R 7 group (R 7 is a lower alkyl group or a substituted or unsubstituted phenyl group). Represented by A method for producing a bactericidal pyridine compound.
前記一般式(1)で表わされる化合物と前記一般式(4)で表わされる化合物とが同一である請求項1に記載の殺菌性ピリジン化合物の製造方法。   The method for producing a bactericidal pyridine compound according to claim 1, wherein the compound represented by the general formula (1) and the compound represented by the general formula (4) are the same. 前記一般式(1)と前記一般式(4)におけるR1およびR4が、CH2基であり、R2およびR5が、水素原子である請求項1に記載の殺菌性ピリジン化合物の製造方法。 The bactericidal pyridine compound according to claim 1, wherein R 1 and R 4 in the general formula (1) and the general formula (4) are CH 2 groups, and R 2 and R 5 are hydrogen atoms. Method. 前記一般式(2)で表されるジオール類が、1,4−ブタンジオールである請求項1に記載の殺菌性ピリジン化合物の製造方法。   The method for producing a bactericidal pyridine compound according to claim 1, wherein the diol represented by the general formula (2) is 1,4-butanediol. 前記一般式(1)〜(7)におけるR1およびR4が、CH2基であり、R2およびR5が水素原子であり、R3が、炭素数2〜12の直鎖もしくは分岐のアルキル基であり、AおよびBが塩素原子、臭素原子またはヨウ素原子であり、XおよびYが塩素アニオン、臭素アニオン、ヨウ素アニオン、低級アルキルスルホニルオキシアニオン、置換もしくは無置換のベンゼンスルホニルオキシアニオン、低級アルキルカルボキシアニオン、置換もしくは無置換のベンゼンカルボキシアニオンまたはアセトキシアニオンであり、mおよびnが0〜1である請求項1に記載の殺菌性ピリジン化合物の製造方法。 R 1 and R 4 in the general formulas (1) to (7) are CH 2 groups, R 2 and R 5 are hydrogen atoms, and R 3 is a linear or branched group having 2 to 12 carbon atoms. An alkyl group, A and B are chlorine atoms, bromine atoms or iodine atoms, X and Y are chlorine anions, bromine anions, iodine anions, lower alkylsulfonyloxy anions, substituted or unsubstituted benzenesulfonyloxy anions, lower The method for producing a bactericidal pyridine compound according to claim 1, which is an alkylcarboxy anion, a substituted or unsubstituted benzenecarboxy anion or an acetoxy anion, wherein m and n are 0 to 1. 前記AおよびBが、塩素原子であり、前記XおよびYが塩素アニオン、ベンゼンスルホニルオキシアニオンまたはアセトキシアニオンである請求項5に記載の殺菌性ピリジン化合物の製造方法。   The method for producing a bactericidal pyridine compound according to claim 5, wherein A and B are chlorine atoms, and X and Y are a chlorine anion, a benzenesulfonyloxy anion or an acetoxy anion. 前記強塩基が、アルカリ金属またはその水素化物、アルキルリチウム、フェニルリチウムおよびアルカリ金属アルコキサイドのうちの少なくとも1種である請求項1に記載の殺菌性ピリジン化合物の製造方法。   The method for producing a bactericidal pyridine compound according to claim 1, wherein the strong base is at least one of an alkali metal or a hydride thereof, alkyl lithium, phenyl lithium, and an alkali metal alkoxide. 前記強塩基が、ナトリウムターシャリブトキサイドもしくはカリウムターシャリブトキサイドである請求項1に記載の殺菌性ピリジン化合物の製造方法。   The method for producing a bactericidal pyridine compound according to claim 1, wherein the strong base is sodium tertiary riboxide or potassium tertiary riboxide. 前記反応を溶媒中で行ない、該溶媒が、非プロトン性極性溶媒である請求項1に記載の殺菌性ピリジン化合物の製造方法。   The method for producing a bactericidal pyridine compound according to claim 1, wherein the reaction is carried out in a solvent, and the solvent is an aprotic polar solvent. 前記溶媒が、ジメチルホルムアミドである請求項9に記載の殺菌性ピリジン化合物の製造方法。   The method for producing a bactericidal pyridine compound according to claim 9, wherein the solvent is dimethylformamide. 前記一般式(3)で表される化合物を単離することなく、連続的に一般式(4)で表される化合物と反応させる請求項1に記載の殺菌性ピリジン化合物の製造方法。   The manufacturing method of the bactericidal pyridine compound of Claim 1 made to react with the compound represented by General formula (4) continuously, without isolating the compound represented by said General formula (3). 前記一般式(3)におけるR1が、炭素数1〜4の直鎖もしくは分岐のアルキル基であり、R2が、水素原子、ハロゲン原子、低級アルキル基または低級アルコキシ基であり、R3が、炭素数2〜12の直鎖もしくは分岐のアルキル基である請求項1に記載の殺菌性ピリジン化合物の製造方法。 R 1 in the general formula (3) is a linear or branched alkyl group having 1 to 4 carbon atoms, R 2 is a hydrogen atom, a halogen atom, a lower alkyl group or a lower alkoxy group, and R 3 is The method for producing a bactericidal pyridine compound according to claim 1, which is a linear or branched alkyl group having 2 to 12 carbon atoms. 前記R1がCH2基であり、R2が水素原子である請求項12に記載の殺菌性ピリジン化合物の製造方法。 The method for producing a bactericidal pyridine compound according to claim 12, wherein R 1 is a CH 2 group and R 2 is a hydrogen atom. 前記R1が、CH2基であり、R2が、水素原子であり、R3が、炭素数4の直鎖のアルキル基である請求項12に記載の殺菌性ピリジン化合物の製造方法。 The method for producing a bactericidal pyridine compound according to claim 12, wherein R 1 is a CH 2 group, R 2 is a hydrogen atom, and R 3 is a linear alkyl group having 4 carbon atoms. 前記R1が、炭素数1〜4の直鎖もしくは分岐のアルキル基であり、前記R2が水素原子、ハロゲン原子、低級アルキル基または低級アルコキシ基であり、前記R3が、炭素数2〜12の直鎖もしくは分岐のアルキル基であり、R4が炭素数1〜4の直鎖もしくは分岐のアルキル基であり、前記R5が、水素原子、ハロゲン原子、低級アルキル基または低級アルコキシ基である請求項1に記載の殺菌性ピリジン化合物の製造方法。 R 1 is a linear or branched alkyl group having 1 to 4 carbon atoms, R 2 is a hydrogen atom, a halogen atom, a lower alkyl group, or a lower alkoxy group, and R 3 is 2 to 2 carbon atoms. 12 linear or branched alkyl groups, R 4 is a linear or branched alkyl group having 1 to 4 carbon atoms, and R 5 is a hydrogen atom, a halogen atom, a lower alkyl group or a lower alkoxy group. A method for producing a bactericidal pyridine compound according to claim 1. 前記R1およびR4が、CH2基であり、前記R2およびR5が、水素原子である請求項15に記載の殺菌性ピリジン化合物の製造方法。 The method for producing a bactericidal pyridine compound according to claim 15, wherein R 1 and R 4 are CH 2 groups, and R 2 and R 5 are hydrogen atoms. 前記R3が、炭素数4の直鎖のアルキル基である請求項15に記載の殺菌性ピリジン化合物の製造方法。 The method for producing a bactericidal pyridine compound according to claim 15, wherein R 3 is a linear alkyl group having 4 carbon atoms. 前記R6が、炭素数1〜18の直鎖もしくは分岐のアルキル基であり、前記Zが、塩素原子、臭素原子またはヨウ素原子である請求項1に記載の殺菌性ピリジン化合物の製造方法。 The method for producing a bactericidal pyridine compound according to claim 1, wherein R 6 is a linear or branched alkyl group having 1 to 18 carbon atoms, and Z is a chlorine atom, a bromine atom or an iodine atom. 前記R6が、炭素数8の直鎖のアルキル基である請求項18に記載の殺菌性ピリジン化合物の製造方法。 The method for producing a bactericidal pyridine compound according to claim 18, wherein R 6 is a linear alkyl group having 8 carbon atoms. 前記R6が、炭素数8の直鎖のアルキル基であり、前記Zが、臭素原子である請求項18に記載の殺菌性ピリジン化合物の製造方法。 The method for producing a bactericidal pyridine compound according to claim 18, wherein R 6 is a linear alkyl group having 8 carbon atoms, and Z is a bromine atom. 前記一般式(5)で表されるピリジン化合物と前記一般式(6)で表されるハロゲン化合物もしくはスルホン酸エステル化合物の反応に使用する溶媒が、低級脂肪族アルコールまたは非プロトン性極性溶媒である請求項1に記載の殺菌性ピリジン化合物の製造方法。   The solvent used for the reaction of the pyridine compound represented by the general formula (5) and the halogen compound or sulfonate compound represented by the general formula (6) is a lower aliphatic alcohol or an aprotic polar solvent. The manufacturing method of the bactericidal pyridine compound of Claim 1. 前記溶媒が、ジメチルホルムアミドである請求項21に記載の殺菌性ピリジン化合物の製造方法。   The method for producing a bactericidal pyridine compound according to claim 21, wherein the solvent is dimethylformamide. 前記溶媒を使用せず、前記一般式(6)で表されるハロゲン化合物もしくはスルホン酸エステル化合物を過剰に使用する請求項1に記載の殺菌性ピリジン化合物の製造方法。   The method for producing a bactericidal pyridine compound according to claim 1, wherein the halogen compound or sulfonic acid ester compound represented by the general formula (6) is used excessively without using the solvent. 前記一般式(5)で表されるピリジン化合物を単離することなく、前記一般式(6)で表されるハロゲン化合物もしくはスルホン酸エステル化合物と反応させる請求項1に記載の殺菌性ピリジン化合物の製造方法。   The bactericidal pyridine compound according to claim 1, wherein the pyridine compound represented by the general formula (5) is reacted with the halogen compound or the sulfonate compound represented by the general formula (6) without isolation. Production method.
JP2004142749A 2003-11-11 2004-05-12 Method for producing bactericidal pyridine compound Expired - Lifetime JP4381220B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2004142749A JP4381220B2 (en) 2003-11-11 2004-05-12 Method for producing bactericidal pyridine compound
ES04818219T ES2384386T3 (en) 2003-11-11 2004-11-08 Method for producing a bactericidal pyridine compound and a bactericidal pyridine compound
US10/578,870 US7612097B2 (en) 2003-11-11 2004-11-08 Method for producing bactericidal pyridine compound and bactericidal pyridine compound
EP04818219A EP1683787B1 (en) 2003-11-11 2004-11-08 Method for producing bactericidal pyridine compound and bactericidal pyridine compound
AT04818219T ATE553081T1 (en) 2003-11-11 2004-11-08 METHOD FOR PRODUCING A BACTERICIDAL PYRIDINE COMPOUND, AND BACTERICIDAL PYRIDINE COMPOUND
CN2004800326458A CN1875000B (en) 2003-11-11 2004-11-08 Method for producing bactericidal pyridine compound and bactericidal pyridine compound
KR1020067009103A KR100770517B1 (en) 2003-11-11 2004-11-08 Method for producing bactericidal pyridine compound and bactericidal pyridine compound
AU2004287705A AU2004287705B2 (en) 2003-11-11 2004-11-08 Method for producing bactericidal pyridine compound and bactericidal pyridine compound
CA2543254A CA2543254C (en) 2003-11-11 2004-11-08 Method for producing bactericidal pyridine compound and bactericidal pyridine compound
PCT/JP2004/016540 WO2005044800A1 (en) 2003-11-11 2004-11-08 Method for producing bactericidal pyridine compound and bactericidal pyridine compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003380664 2003-11-11
JP2004142749A JP4381220B2 (en) 2003-11-11 2004-05-12 Method for producing bactericidal pyridine compound

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004142788A Division JP4381221B2 (en) 2003-11-11 2004-05-12 Bactericidal pyridine compound

Publications (2)

Publication Number Publication Date
JP2005162731A JP2005162731A (en) 2005-06-23
JP4381220B2 true JP4381220B2 (en) 2009-12-09

Family

ID=34741614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004142749A Expired - Lifetime JP4381220B2 (en) 2003-11-11 2004-05-12 Method for producing bactericidal pyridine compound

Country Status (1)

Country Link
JP (1) JP4381220B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5108334B2 (en) * 2007-03-05 2012-12-26 タマ化学工業株式会社 Antiviral agent
JP5441536B2 (en) * 2009-07-17 2014-03-12 大日本除蟲菊株式会社 Water-based fungicide
JP6775341B2 (en) * 2016-07-13 2020-10-28 イビデン株式会社 Veneer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3457028B2 (en) * 1993-05-17 2003-10-14 大塚化学ホールディングス株式会社 Quaternary ammonium salt compound having antibacterial activity and method for producing the same
US5424176A (en) * 1993-11-09 1995-06-13 Eastman Kodak Company Acceleration of silver removal by thioether compounds in sulfite fixer
JPH08301703A (en) * 1995-05-10 1996-11-19 Otsuka Chem Co Ltd Quaternary ammonium compound having antimicrobial activity
JPH1095773A (en) * 1996-09-19 1998-04-14 Inui Kk Bisquaternary ammonium salt compound having antimicrobial activity and its production
JP2000159608A (en) * 1998-11-30 2000-06-13 Otsuka Chem Co Ltd Antimicrobial composition
JP2003146956A (en) * 2001-11-14 2003-05-21 Toagosei Co Ltd New quaternary ammonium salt and method for producing the same
JP2003267953A (en) * 2002-03-15 2003-09-25 Koma Hiroki Bis type quaternary ammonium salt compound and antimicrobial agent
JP2004345953A (en) * 2003-01-16 2004-12-09 Hiroki Koma New quaternary ammonium salt compound having anti-bacterial activity and method for producing the same

Also Published As

Publication number Publication date
JP2005162731A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
JP6947749B2 (en) Methods for Producing Tyrosine Kinase Inhibitors and Their Derivatives
KR102128127B1 (en) Improved process for manufacturing 5-(2,6-di-4-morp holinyl-4-pyrimidinyl)-4-trifluoromethylpyridin-2-amine
JP6513105B2 (en) Novel process for producing triazine, pyrimidine and pyridine derivatives
WO2014163932A1 (en) Preparation of haloalkoxyarylhydrazines and intermediates therefrom
KR101728443B1 (en) Method for Producing Benzyl Ester 2-aminonicotinicotinate Derivative
JP4381220B2 (en) Method for producing bactericidal pyridine compound
KR20140013232A (en) Process for the preparation of n-(2-hydroxyethyl)nicotinamide and nicorandil
JP4152353B2 (en) Bactericidal pyridine compound
KR100770517B1 (en) Method for producing bactericidal pyridine compound and bactericidal pyridine compound
JP4381221B2 (en) Bactericidal pyridine compound
KR101041551B1 (en) Novel intermediates useful for the preparation of aripiprazole and methods for the preparation of the novel intermediates and aripiprazole
JP2005325036A6 (en) Bactericidal pyridine compound
EP4029861A1 (en) Method for producing pyrimidinyl bipyridine compound and intermediate therefor
KR101435741B1 (en) Novel voriconazole intermediate and synthesis of voriconazole
JP2019501913A (en) Synthetic method of efinaconazole
JP5205971B2 (en) Method for producing tetrahydropyran compound
TWI542578B (en) Preparation of Benzyl Nicotinic Acid Benzyl Ester Derivatives
US20040054185A1 (en) Process for preparing amine-substituted benzofurans
US8802860B2 (en) Method for producing substituted pyridin-2-one
JP2014185091A (en) Method of manufacturing 3-amine-4-piperidone derivative
JP2007284416A (en) Process for producing optically active piperazine compound
JP2016175859A (en) Production method related to optically active uracil derivative and intermediate thereof
JP2012197254A (en) Process for producing benzyl 2-haloethylcarbamate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4381220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term