JP2006001265A - Screw for thermoplastic resin molding - Google Patents

Screw for thermoplastic resin molding Download PDF

Info

Publication number
JP2006001265A
JP2006001265A JP2004270143A JP2004270143A JP2006001265A JP 2006001265 A JP2006001265 A JP 2006001265A JP 2004270143 A JP2004270143 A JP 2004270143A JP 2004270143 A JP2004270143 A JP 2004270143A JP 2006001265 A JP2006001265 A JP 2006001265A
Authority
JP
Japan
Prior art keywords
screw
end side
flight
thermoplastic resin
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004270143A
Other languages
Japanese (ja)
Inventor
Norifumi Osako
憲史 大迫
Yuuki Ujie
勇貴 氏江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2004270143A priority Critical patent/JP2006001265A/en
Publication of JP2006001265A publication Critical patent/JP2006001265A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/59Screws characterised by details of the thread, i.e. the shape of a single thread of the material-feeding screw
    • B29C48/60Thread tops

Abstract

<P>PROBLEM TO BE SOLVED: To provide a screw for a thermoplastic resin molding which inhibits heat generation by local shearing and improves mixing performance by the application of the mixing method by a straightening stream to a screw. <P>SOLUTION: A resin passage having the cross-sectional area reducing in the direction from the screw tip side to the rear end side is formed on a spiral flight of the screw. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、押出成形機用または射出成形機用等の熱可塑性樹脂成形用スクリューに関し、特に、塩化ビニル樹脂等の熱分解し易い熱可塑性樹脂成形用の二軸押出機用スクリューとして好適なものである。なお、上記熱可塑性樹脂成形とは熱可塑性樹脂発泡成形も含まれるものである。   The present invention relates to a thermoplastic resin molding screw for an extrusion molding machine or an injection molding machine, and particularly suitable as a screw for a twin-screw extruder for molding a thermoplastic resin that is easily thermally decomposed, such as a vinyl chloride resin. It is. The thermoplastic resin molding includes thermoplastic resin foam molding.

スクリューを内蔵した成形機においては、均質な成形品を得るために成形用樹脂組成物を十分に溶融混練することが必要であり、このために、従来はバレル内でスクリューを回転させて溶融樹脂に剪断力を作用させて混練することが行われている。また、成形品の軽量化、低コスト化、意匠性付与の点から、発泡体として成形することが旧来より行われている。この熱可塑性樹脂発泡成形(以下、単に「発泡成形」ともいう)においても、樹脂中に発泡剤を均一に分散混合させるために、上記と同様に剪断力を作用させてガス塊を砕き混練し、発泡セルを均一に分散することが行われている。
しかし、剪断力を作用させて混練すると、混合性能は向上するが、溶融樹脂が剪断力により発熱し、発熱により溶融樹脂が劣化して得られる成形品の品質等の性能が低下するという問題があった。
In a molding machine with a built-in screw, it is necessary to sufficiently melt and knead the molding resin composition in order to obtain a homogeneous molded product. The kneading is carried out by applying a shearing force to the material. Further, from the viewpoint of weight reduction, cost reduction, and designability of molded products, molding as a foam has been conventionally performed. In this thermoplastic resin foam molding (hereinafter also simply referred to as “foam molding”), in order to uniformly disperse and mix the foaming agent in the resin, the gas lump is crushed and kneaded by applying a shearing force in the same manner as described above. The foamed cells are uniformly dispersed.
However, when kneading is performed by applying a shearing force, the mixing performance is improved, but the molten resin generates heat due to the shearing force, and there is a problem that the performance such as the quality of a molded product obtained by the deterioration of the molten resin is deteriorated due to the heat generation. there were.

この溶融樹脂の発熱の問題を解消するものとして、塩化ビニル樹脂等の如く押出成形時にシリンダーとスクリューとの間の剪断による発熱が大きく、且つ熱による樹脂焼けの発生し易い樹脂の押出成形に好適なヒートパイプによる冷却機能を有した押出成形機のスクリューが提案されている。例えば、「スクリュー部と駆動部とからなるスクリュー本体において、該スクリュー本体の軸芯に、スクリュー本体の先端部付近から後端部に至る中空孔が設けられ、該中空孔におけるスクリュー部の両端部内周面に熱伝導層が各々形成され、中空孔におけるスクリュー部の略中央部内周面に熱絶縁層が形成されており、前記中空孔に前記スクリュー部の長さよりやや短い長さのヒートパイプが挿入され、該ヒートパイプを前記スクリュー本体の軸方向に移動せしめる操作機構がスクリュー本体の後端部に設けられ、且つ該後端部より操作可能とされてなることを特徴とする押出成形機のスクリュー。」が提案されている(例えば、特許文献1参照。)。   As a solution to the problem of heat generation of the molten resin, it is suitable for extrusion molding of resins such as vinyl chloride resin that generate a large amount of heat due to shearing between the cylinder and the screw during extrusion molding and are susceptible to resin burning due to heat. An extruder screw having a cooling function by a simple heat pipe has been proposed. For example, in a screw main body composed of a screw part and a driving part, a hollow hole extending from the vicinity of the front end of the screw main body to the rear end is provided in the axial center of the screw main body. A heat conduction layer is formed on each peripheral surface, a heat insulating layer is formed on an inner peripheral surface of a substantially central portion of the screw portion in the hollow hole, and a heat pipe having a length slightly shorter than the length of the screw portion is formed in the hollow hole. An extrusion machine, wherein an operating mechanism that is inserted and moves the heat pipe in the axial direction of the screw main body is provided at a rear end portion of the screw main body and is operable from the rear end portion. "Screw" has been proposed (see, for example, Patent Document 1).

特公平6−88308号公報 (特許請求の範囲、図1)Japanese Patent Publication No. 6-88308 (Claims, Fig. 1)

この特許文献1に記載の押出成形機のスクリューにおいては、樹脂の種類、押出量(スクリューの回転数)により、ヒートパイプ3の位置を設定しておけば、計量・熔融部12の熱を吸熱部31を通じて吸熱して予熱部14にて放熱部32を通じて放熱されるので、計量・熔融部12が冷却され、該計量・熔融部12の温度が上昇し過熱することなく常に最適条件に保つことができる、という作用効果を奏するが、スクリューの構造が複雑となり、スクリューの製作コストが高価につくことから、高価な設備となるという欠点がある。また、ヒートパイプの設定位置の調整やメンテナンスが必要で、維持管理が面倒であるという問題が生じる。   In the screw of the extrusion machine described in Patent Document 1, if the position of the heat pipe 3 is set according to the type of resin and the amount of extrusion (the number of rotations of the screw), the heat of the metering / melting section 12 is absorbed. Since the heat is absorbed through the part 31 and is radiated through the heat radiating part 32 in the preheating part 14, the metering / melting part 12 is cooled, and the temperature of the metering / melting part 12 rises and is always kept at the optimum condition without overheating. However, since the screw structure is complicated and the manufacturing cost of the screw is high, there is a disadvantage that it is an expensive equipment. In addition, adjustment of the setting position of the heat pipe and maintenance are necessary, and there is a problem that maintenance is troublesome.

そこで、この発明は、伸張流れによる混合方法をスクリューに応用することにより、局所剪断発熱を抑制し、かつ混合性能を向上した熱可塑性樹脂成形用スクリューを提供することを目的とする。   Accordingly, an object of the present invention is to provide a thermoplastic resin molding screw that suppresses local shearing heat generation and improves mixing performance by applying a mixing method by extension flow to the screw.

請求項1に記載の熱可塑性樹脂成形用スクリューは、フライトが螺旋状に設けられて形成されるスクリューのフライトに、スクリュー先端側から後端側に向けて断面積が縮小されてなる樹脂通路が形成されていることを特徴とする。
また、請求項2に記載の熱可塑性樹脂成形用スクリューは、請求項1記載の熱可塑性樹
脂成形用スクリューにおいて、断面積が縮小されてなる樹脂通路が、前記スクリューのフライト外周面高さがスクリュー先端側で低く、スクリュー後端側で高くなる傾斜面となされて形成されているものである。
The thermoplastic resin molding screw according to claim 1 has a resin passage in which a cross-sectional area is reduced from a screw front end side to a rear end side in a flight of a screw formed by forming a flight spirally. It is formed.
The thermoplastic resin molding screw according to claim 2 is the thermoplastic resin molding screw according to claim 1, wherein the resin passage having a reduced cross-sectional area has a height of a flight outer peripheral surface of the screw. The inclined surface is formed so as to be low on the front end side and high on the screw rear end side.

また、請求項3に記載の熱可塑性樹脂成形用スクリューは、請求項2記載の熱可塑性樹脂成形用スクリューにおいて、スクリュー先端側のフライト外周面とバレル内面とのクリアランスがスクリュー後端側のフライト外周面とバレルとのクリアランスの1.5〜3.5倍となされ、かつスクリュー底面とバレルとのクリアランスの0.05〜0.20倍となされているものである。   Further, the thermoplastic resin molding screw according to claim 3 is the thermoplastic resin molding screw according to claim 2, wherein the clearance between the flight outer peripheral surface on the screw front end side and the barrel inner surface is the flight outer periphery on the screw rear end side. The clearance between the surface and the barrel is 1.5 to 3.5 times, and the clearance between the screw bottom and the barrel is 0.05 to 0.20 times.

また、請求項4に記載の熱可塑性樹脂成形用スクリューは、請求項1記載の熱可塑性樹脂成形用スクリューにおいて、スクリューのフライトの周方向に所定間隔をおいて、スクリュー先端側から後端側に貫通する切欠からなる樹脂通路が形成されているものであり、請求項5に記載の熱可塑性樹脂成形用スクリューは、請求項4記載の熱可塑性樹脂成形用スクリューにおいて、前記切欠のスクリュー先端側の断面積がスクリュー後端側の断面積の1.5〜3.5倍となされ、かつフライトのスクリュー軸ひと回り当たりに存在する切欠のスクリュー先端側の断面積の合計が、スクリューのフライトのスクリュー軸ひと回り当たり断面積の0.05〜0.20倍となされているものである。   Further, the thermoplastic resin molding screw according to claim 4 is the thermoplastic resin molding screw according to claim 1, wherein the screw is formed at a predetermined interval in the circumferential direction of the flight of the screw from the screw front end side to the rear end side. A resin passage comprising a notch penetrating therethrough is formed, and the thermoplastic resin molding screw according to claim 5 is the thermoplastic resin molding screw according to claim 4, wherein the notch on the screw tip side of the notch is provided. The cross-sectional area is 1.5 to 3.5 times the cross-sectional area on the screw rear end side, and the total cross-sectional area on the screw front end side of the notch existing around one screw axis of the flight is the screw axis of the screw flight. The cross-sectional area per rotation is 0.05 to 0.20 times.

また、請求項6に記載の熱可塑性樹脂成形用スクリューは、請求項1〜5のいずれかに記載の熱可塑性樹脂成形用スクリューにおいて、断面積が縮小されてなる樹脂通路が、前記スクリューのメーターリングゾーンまたはコンプレッションゾーンに相当するフライトに設けられているものであり、請求項7に記載の熱可塑性樹脂成形用スクリューは、請求項1〜6のいずれかに記載の熱可塑性樹脂成形用スクリューにおいて、前記スクリューが二軸押出成形機用であるものである。   The thermoplastic resin molding screw according to claim 6 is the thermoplastic resin molding screw according to any one of claims 1 to 5, wherein a resin passage having a reduced cross-sectional area is a meter of the screw. The thermoplastic resin molding screw according to any one of claims 1 to 6, wherein the thermoplastic resin molding screw according to claim 7 is provided in a flight corresponding to a ring zone or a compression zone. The screw is for a twin-screw extruder.

この発明の請求項1記載の熱可塑性樹脂成形用スクリューにおいては、スクリューのフライトに、スクリュー先端側から後端側に向けて断面積が縮小されてなる樹脂通路が形成されているので、このスクリューを装着した成形機で熱可塑性樹脂を成形すると、溶融樹脂がこの樹脂通路を樹脂圧力の高い側から樹脂圧力の低い側へ流れる。即ち、スクリュー先端側から後端側に流れる。この樹脂通路はスクリュー先端側から後端側に向けて断面積が縮小されているので、樹脂通路を流れる溶融樹脂には伸張流動が生じて効果的な分散混合が行われ、得られる成形品は樹脂組成が均一に分散した均質なものであり、剪断発熱による焼け(劣化)のない品質性能に優れたものが得られる。また、発泡成形においても、上記同様の作用効果により発泡セルが均一に分散された成形品が得られる。   In the thermoplastic resin molding screw according to claim 1 of the present invention, a resin passage having a reduced cross-sectional area from the screw front end side to the rear end side is formed in the screw flight. When the thermoplastic resin is molded by the molding machine equipped with the, the molten resin flows through the resin passage from the high resin pressure side to the low resin pressure side. That is, it flows from the screw front end side to the rear end side. Since this resin passage has a cross-sectional area that is reduced from the screw front end side to the rear end side, the molten resin that flows through the resin passage undergoes elongational flow and effective dispersion mixing is performed. The resin composition is homogeneously dispersed and a product having excellent quality performance free from burning (deterioration) due to shearing heat generation is obtained. Also in foam molding, a molded product in which foam cells are uniformly dispersed can be obtained by the same effect as described above.

また、請求項2記載の熱可塑性樹脂成形用スクリューにおいては、断面積が縮小されてなる樹脂通路が、前記スクリューのフライト外周面高さがスクリュー先端側で低く、スクリュー後端側で高くなる傾斜面となされて形成されているので、スクリューの外周の周方向に渡って溶融樹脂に伸張流動が生じ、溶融樹脂の通路全体で効果的な分散混合が行われ、均質に分散した劣化のない優れた品質の成形品が得られ、上記効果は更に確実なものとなる。   The thermoplastic resin molding screw according to claim 2, wherein the resin passage having a reduced cross-sectional area is inclined such that the height of the flight outer peripheral surface of the screw is low on the screw front end side and higher on the screw rear end side. Since it is formed as a surface, the molten resin is stretched over the circumferential direction of the outer periphery of the screw, effective dispersion mixing is performed throughout the molten resin passage, and it is excellent without homogeneous deterioration As a result, the above-mentioned effect is further ensured.

また、請求項3に記載の熱可塑性樹脂成形用スクリューは、スクリュー先端側のフライト外周面とバレル内面とのクリアランスがスクリュー後端側のフライト外周面バレルとのクリアランスの1.5〜3.5倍となされ、かつスクリュー底面とバレルとのクリアランスの0.05〜0.20倍となされているので、剪断による発熱が大きく、熱による樹脂焼けの発生し易い樹脂であっても、均質に分散した劣化のない優れた品質の成形品が得られ、上記効果は更に確実なものとなる。   Further, in the thermoplastic resin molding screw according to claim 3, the clearance between the flight outer peripheral surface on the screw tip side and the barrel inner surface is 1.5 to 3.5 of the clearance between the flight outer peripheral barrel on the screw rear end side. Since it is doubled and 0.05 to 0.20 times the clearance between the screw bottom and the barrel, heat generated by shearing is large and even if the resin is susceptible to resin burning due to heat, it is uniformly dispersed Thus, an excellent quality molded product without deterioration is obtained, and the above effect is further ensured.

また、請求項4に記載の熱可塑性樹脂成形用スクリューは、スクリューのフライトの周方向に所定間隔をおいて、スクリュー先端側から後端側に貫通する切欠からなる樹脂通路が形成されているので、スクリューの底面に沿って流動する溶融樹脂に対して伸張流動を生じさせて効果的な混合分散が行われ、均質に分散した劣化のない優れた品質の成形品が得られ、上記効果は更に確実なものとなる。 Further, the thermoplastic resin molding screw according to claim 4 has a resin passage formed of a notch penetrating from the screw front end side to the rear end side at a predetermined interval in the circumferential direction of the flight of the screw. The molten resin that flows along the bottom surface of the screw is caused to generate an extension flow to effectively mix and disperse, and a homogeneously dispersed molded product having no deterioration can be obtained. It will be certain.

また、請求項5に記載の熱可塑性樹脂成形用スクリューは、前記切欠のスクリュー先端側の断面積がスクリュー後端側の断面積の1.5〜3.5倍となされ、かつフライトのスクリュー軸ひと回り当たりに存在する切欠のスクリュー先端側の断面積の合計が、スクリューのフライトのスクリュー軸ひと回り当たり断面積の0.05〜0.20倍となされているので、剪断による発熱が大きく、熱による樹脂焼けの発生し易い樹脂であっても、均質に分散した劣化のない優れた品質の成形品が得られ、上記効果は更に確実なものとなる。   Further, in the thermoplastic resin molding screw according to claim 5, the cross-sectional area of the notch on the screw front end side is 1.5 to 3.5 times the cross-sectional area on the screw rear end side, and the flight screw shaft The total cross-sectional area of the screw tip side of the notch existing per turn is 0.05 to 0.20 times the cross-sectional area per screw axis of the flight of the screw. Even with a resin that is susceptible to resin burning, a molded product of excellent quality that is homogeneously dispersed and has no deterioration can be obtained, and the above-described effect is further ensured.

また、請求項6に記載の熱可塑性樹脂成形用スクリューは、断面積が縮小されてなる樹脂通路が、前記スクリューのメーターリングゾーンまたはコンプレッションゾーンに相当するフライトに設けられているので、溶融樹脂に効果的な伸張流動を生じさせ、効果的な分散混合が行われ、得られる成形品は樹脂組成が均一に分散した均質なものであり、剪断発熱による焼け(劣化)のない品質性能に優れたものが得られ、上記効果は更に確実なものとなる。   Further, in the thermoplastic resin molding screw according to claim 6, since the resin passage having a reduced cross-sectional area is provided in a flight corresponding to the metering zone or the compression zone of the screw, Effective stretch flow is generated, effective dispersion mixing is performed, and the obtained molded product is a homogeneous product with a uniform resin composition, and excellent quality performance without burning (deterioration) due to shear heat generation Can be obtained, and the above-described effect is further ensured.

また、請求項7に記載の熱可塑性樹脂成形用スクリューは、二軸押出成形機用として使用されるものであり、熱分解し易い塩化ビニル樹脂等の熱可塑性樹脂を発熱による劣化を生じさせることなく、品質性能に優れた成形品が得られ、上記効果は更に確実なものとなる。   Moreover, the thermoplastic resin molding screw according to claim 7 is used for a twin screw extruder, and causes deterioration due to heat generation of a thermoplastic resin such as vinyl chloride resin which is easily thermally decomposed. Therefore, a molded product having excellent quality performance can be obtained, and the above effect can be further ensured.

次に、この発明を実施するための最良の形態について図面を参照しつつ説明する。
図1はこの発明の熱可塑性樹脂成形用スクリューの一例を一部断面で示す部分平面図である。
図で、1は熱可塑性樹脂成形用スクリューで、螺旋状にフライト2が形成され、フライト2、2の間にスクリュー溝3が形成されている。6は成形機のバレルである。
フライト2の外周面4にはスクリュー先端側のフライト外周面41の高さが低く、後端側のフライト外周面42の高さが高くなる傾斜面が設けられていて、スクリュー1をバレル6内に装着された状態では、スクリュー1のフライト2の外周面4とバレル6の内面との間に、スクリュー先端側から後端側に向けて断面積が縮小されてなる樹脂通路5が形成されている。図で矢印は押出方向(スクリュー先端部方向)を示す。
Next, the best mode for carrying out the present invention will be described with reference to the drawings.
FIG. 1 is a partial plan view showing, in a partial cross section, an example of a thermoplastic resin molding screw of the present invention.
In the figure, reference numeral 1 denotes a thermoplastic resin molding screw, in which a flight 2 is formed in a spiral shape, and a screw groove 3 is formed between the flights 2 and 2. 6 is a barrel of the molding machine.
The outer peripheral surface 4 of the flight 2 is provided with an inclined surface in which the height of the flight outer peripheral surface 41 on the screw front side is low and the height of the flight outer peripheral surface 42 on the rear end side is increased. In the state of being mounted on, the resin passage 5 is formed between the outer peripheral surface 4 of the flight 2 of the screw 1 and the inner surface of the barrel 6 and the cross-sectional area is reduced from the screw front end side to the rear end side. Yes. In the drawing, the arrow indicates the extrusion direction (screw tip direction).

この樹脂通路5は、成形機のメーターリングゾーンまたはコンプレッションゾーンに設けられていればよく、スクリュー1のメーターリングゾーンおよびコンプレッションゾーンの全長にわたって連続して設けられていても、部分的に設けられていてもよい。部分的に設けられる場合には、少なくともスクリュー1の外周面1.5周にわたって設けられていると、伸張流動による溶融樹脂の分散混合を全体の押出溶融樹脂に及ぼすことができる。断面積が縮小されてなる樹脂通路5を部分的に設ける場合には、押出機の先端部分のスクリューフライト部分に設けるのが効果的である。   The resin passage 5 only needs to be provided in the metering zone or compression zone of the molding machine. Even if the resin passage 5 is provided continuously over the entire length of the metering zone and compression zone of the screw 1, it is provided partially. May be. In the case where it is partially provided, if it is provided over at least 1.5 circumferences of the outer peripheral surface of the screw 1, it is possible to effect the dispersion and mixing of the molten resin by extension flow on the entire extruded molten resin. When the resin passage 5 having a reduced cross-sectional area is partially provided, it is effective to provide the resin flight 5 at the screw flight portion at the tip portion of the extruder.

また、この断面積が縮小されてなる樹脂通路5の具体的な寸法については、スクリュー1をバレル6に装着した状態で考慮することが必要で、粘度等の樹脂特性、押出量、フライト幅と高さ等を考慮して決められるが、フライト2のスクリュー先端側のフライト外周面41とバレル6内面とのクリアランス43がスクリュー後端側のフライト外周面42とバレル6内面とのクリアランス44の1.5〜3.5倍の範囲となされ、かつスクリュー底面とバレル6内面とのクリアランス45の0.05〜0.20倍の範囲となされているのが好ましい。   In addition, the specific dimensions of the resin passage 5 having a reduced cross-sectional area need to be considered in a state where the screw 1 is mounted on the barrel 6, and the resin characteristics such as viscosity, the extrusion amount, the flight width, The clearance 43 between the flight outer peripheral surface 41 on the screw tip side of the flight 2 and the inner surface of the barrel 6 is one of the clearances 44 between the flight outer peripheral surface 42 on the screw rear end side and the inner surface of the barrel 6. It is preferable to be in the range of 0.5 to 3.5 times and in the range of 0.05 to 0.20 times the clearance 45 between the screw bottom surface and the barrel 6 inner surface.

クリアランス43がクリアランス44の1.5倍より小さくなると溶融樹脂の伸張流動による分散混合の効果が少なくなり、溶融樹脂が発熱して樹脂焼けの生じる危険がある。また、3.5倍より大きくなると溶融樹脂の伸張流動による分散混合の効果が部分的になり、全体を均一に混合することができなくなるからである。
また、クリアランス43がクリアランス45の0.5倍より小さくなると、溶融樹脂の伸張流動による分散混合の効果が部分的になり、全体を均一に混合することができなくなり、また、0.20倍より大きくなるとスクリュー1の回転による溶融樹脂の押出量が減少するからである。
If the clearance 43 is smaller than 1.5 times the clearance 44, the effect of dispersion mixing due to the extension flow of the molten resin is reduced, and there is a risk that the molten resin generates heat and the resin is burnt. On the other hand, when the ratio is larger than 3.5 times, the effect of dispersion and mixing due to the extension flow of the molten resin becomes partial, and the whole cannot be mixed uniformly.
Also, if the clearance 43 is smaller than 0.5 times the clearance 45, the effect of dispersion mixing due to the extension flow of the molten resin becomes partial, and the whole cannot be mixed uniformly, and more than 0.20 times This is because the amount of extrusion of the molten resin by the rotation of the screw 1 decreases as the value increases.

尚、図1では、スクリュー1とバレル6との関係について説明しているが、この関係は単軸スクリュー押出機においても、二軸スクリュー押出機においても同様である。   In FIG. 1, the relationship between the screw 1 and the barrel 6 is described, but this relationship is the same in both a single screw extruder and a twin screw extruder.

図2および図3はこの発明の熱可塑性樹脂成形用スクリューの他の形態を示し、図2はスクリュー軸に垂直な面におけるスクリュー先端側から見た断面図であり、図3はフライトの部分平面図である。
熱可塑性樹脂成形用スクリュー1aには螺旋状のフライト2aが形成され、このフライト2aには周方向に所定間隔をおいてスクリュー1aの先端側から後端側に貫通する切欠5aが形成されている。3aはフライト2aと2aとの間に形成されるスクリュー溝であ
り、31aはスクリュー溝3aの底面である。
2 and 3 show another embodiment of the thermoplastic resin molding screw according to the present invention. FIG. 2 is a cross-sectional view of the plane perpendicular to the screw shaft viewed from the screw tip side. FIG. 3 is a partial plane of the flight. FIG.
A spiral flight 2a is formed in the thermoplastic resin molding screw 1a, and a notch 5a penetrating from the front end side to the rear end side of the screw 1a at a predetermined interval in the circumferential direction is formed in the flight 2a. . 3a is a screw groove formed between the flights 2a and 2a, and 31a is a bottom surface of the screw groove 3a.

この切欠5aはスクリュー1aの先端側51aの横幅が広く、後端側52aの横幅が狭くなされ、底面53aはスクリュー溝3aの底面31aより少し上側に形成されており、この切欠5aのスクリュー1aの先端側51aの断面積S1から、後端側52aの断面積S2に向けて断面積が縮小されている。   This notch 5a has a wide width on the front end side 51a of the screw 1a, a narrow width on the rear end side 52a, and a bottom surface 53a formed slightly above the bottom surface 31a of the screw groove 3a. The cross-sectional area is reduced from the cross-sectional area S1 on the front end side 51a toward the cross-sectional area S2 on the rear end side 52a.

この切欠5aは溶融樹脂の移送機能と伸張流動による分散混合機能とのバランスをとるために、切欠5aのスクリュー先端側51aの断面積S1がスクリュー後端側52aの断面積S2の1.5〜3.5倍となされ、かつフライト2aのスクリュー軸ひと回り当たりに存在する切欠5aのスクリュー先端側51aの断面積S1の合計がスクリュー1aのフライト2aのスクリュー軸ひと回り当たり断面積の0.05〜0.20倍となされているのが好ましい。   In order for this notch 5a to balance the transfer function of the molten resin and the dispersion and mixing function by extension flow, the cross-sectional area S1 of the screw front end 51a of the notch 5a is 1.5 to 1.5 of the cross-sectional area S2 of the screw rear end 52a. The total cross-sectional area S1 of the screw tip 51a of the notch 5a existing around the screw shaft of the flight 2a is 3.5 times the cross-sectional area of the screw 2a of the flight 2a of the screw 1a. .20 times is preferable.

切欠5aの寸法は、スクリュー1aの先端側51aの横幅がフライト2aの高さより狭く、底面53aがスクリュー溝の底面31aに近いもので、スクリュー先端側51aの断面積S1の合計がスクリュー1aのフライト2aのスクリュー軸ひと回り当たり断面積の0.05〜0.20倍となされるのが好ましい。即ち、切欠5aの寸法に応じて、切欠5aの周方向の間隔を決めればよいのである。
このような切欠5aを設けると、スクリューの回転により移送する溶融樹脂全体に伸張流動を生じさせて効果的な分散混合ができる。
The dimensions of the notch 5a are such that the lateral width of the tip side 51a of the screw 1a is narrower than the height of the flight 2a, the bottom surface 53a is close to the bottom surface 31a of the screw groove, and the total cross-sectional area S1 of the screw tip side 51a is The cross-sectional area per rotation of the screw shaft of 2a is preferably 0.05 to 0.20 times. That is, the circumferential interval of the notches 5a may be determined according to the dimensions of the notches 5a.
When such a notch 5a is provided, an extended flow is generated in the entire molten resin transported by the rotation of the screw, and effective dispersion mixing can be performed.

本発明の熱可塑性樹脂成形用スクリューは、上述のように構成されることで、スクリューのフライトに少しの加工を加えるだけで、スクリューで移送する溶融樹脂に伸張流動を生じさせ、局所的な剪断発熱を抑制して樹脂焼けを防止すると共に、発泡剤などを均一に分散混合でき、発泡セルが均一に分散された成形品を製造することができる。   The thermoplastic resin molding screw according to the present invention is configured as described above, so that only a little processing is applied to the flight of the screw to generate an extension flow in the molten resin transported by the screw, thereby causing local shearing. While suppressing heat generation and preventing resin burn, a foaming agent and the like can be uniformly dispersed and mixed, and a molded product in which foamed cells are uniformly dispersed can be produced.

以下に実施例および比較例を示すことにより、本発明を更に具体的に説明する。
尚、本発明は下記実施例のみに限定されるものではない。
(実施例1)
図1に示すスクリュー1を使用した2軸異方向回転スクリュー押出機での試験結果を説明する。
2軸異方向回転スクリュー押出機は、スクリュー1の外径50mm、押出機の長さLとスクリュー1の外径Dとの比L/Dが17、フライト2の高さ7.6mm、フライト幅10mmであり、フライト2の外周面4の傾斜面がクリアランス43が2.5mm、クリアランス44が1mm、クリアランス45が7.7mmとなされている。この傾斜面のあるフライト2はスクリュー1の先端部のスクリュー軸方向80mmの範囲に形成されているものであった。
Hereinafter, the present invention will be described more specifically by showing Examples and Comparative Examples.
In addition, this invention is not limited only to the following Example.
Example 1
The test result in the biaxial different direction rotation screw extruder using the screw 1 shown in FIG. 1 is demonstrated.
The biaxial counter-rotating screw extruder has an outer diameter of screw 1 of 50 mm, a ratio L / D of the length L of the extruder to the outer diameter D of screw 1 of 17, the height of flight 2 is 7.6 mm, and the flight width The inclined surface of the outer peripheral surface 4 of the flight 2 has a clearance 43 of 2.5 mm, a clearance 44 of 1 mm, and a clearance 45 of 7.7 mm. The flight 2 with the inclined surface was formed in a range of 80 mm at the tip of the screw 1 in the screw axial direction.

上記2軸異方向回転スクリュー押出機を使用して、塩化ビニル樹脂を設定樹脂温度180℃、押出量30kg/h、スクリュー回転数20rpm、で円筒体を押出成形した。また、押出機バレルにボンベより窒素ガスを圧力4MPaで導入したこと以外は上記と同様にして発泡円筒体を押出成形した。
得られた円筒体は樹脂組成が均一に溶融分散した均質なものであり、また、発泡円筒体は発泡セルが均一に分散されたものであり、何れも剪断発熱による焼け(劣化)のない品質性能に優れたものであった。
Using the above biaxial different direction rotating screw extruder, a cylindrical body was extruded at a set resin temperature of 180 ° C., an extrusion rate of 30 kg / h, and a screw rotation speed of 20 rpm. A foamed cylindrical body was extruded in the same manner as described above except that nitrogen gas was introduced into the extruder barrel from a cylinder at a pressure of 4 MPa.
The obtained cylindrical body is a homogeneous one in which the resin composition is uniformly melt-dispersed, and the foamed cylindrical body is one in which the foamed cells are uniformly dispersed, both of which are free from burning (deterioration) due to shearing heat generation. It was excellent in performance.

(比較例1)
フライト2の外周面が傾斜面のない円柱面である従来型の押出機を用いたこと以外は実施例1と同様にして円筒体及び発泡円筒体を押出成形した。
(Comparative Example 1)
A cylindrical body and a foamed cylindrical body were extruded in the same manner as in Example 1 except that a conventional extruder in which the outer peripheral surface of the flight 2 was a cylindrical surface having no inclined surface was used.

(比較例2)
スクリュー回転数を30rpmとしたこと以外は比較例1と同様にして円筒体及び発泡円筒体を押出成形した。
(Comparative Example 2)
A cylindrical body and a foamed cylindrical body were extrusion molded in the same manner as in Comparative Example 1 except that the screw rotation speed was 30 rpm.

得られた円筒体又は発泡円筒体について以下の評価を行った。
(ゲル化度)
得られた円筒体がどの程度均一に混練されているかをゲル化度で評価した。ゲル化度はキャピラリレオメータによって計測した。
粉体の塩化ビニル樹脂を押出した場合の押出圧力をP0、完全にゲル化した塩化ビニル樹脂を押出した場合の押出圧力をP100、塩化ビニル樹脂原料を押出した場合の押出圧力をPSとすると、
ゲル化度(%)=(PS−P0)/(P100−P0)×100
で算出される。
The following evaluation was performed about the obtained cylindrical body or foamed cylindrical body.
(Degree of gelation)
The degree of gelation evaluated how uniformly the obtained cylindrical body was kneaded. The degree of gelation was measured with a capillary rheometer.
When the extrusion pressure when extruding a powdered vinyl chloride resin is P0, the extrusion pressure when extruding a completely gelatinized vinyl chloride resin is P100, and the extrusion pressure when extruding a vinyl chloride resin raw material is PS,
Gelation degree (%) = (PS−P0) / (P100−P0) × 100
Is calculated by

(平均セル径及び径のばらつき)
得られた発泡円筒体の断面を、2次電子反射式電子顕微鏡により観察した。観察し撮影した断面写真を画像解析により白色部分(樹脂部分)と黒色部分(発泡セル部分)に二値化を行った。その黒色部分の面積を疑似円表面積とし、そこから発泡セル径を算出し平均値とセル径の標準偏差を算出した。算出したセル径の標準偏差を径のばらつきとした。
(Average cell diameter and variation in diameter)
The cross section of the obtained foamed cylindrical body was observed with a secondary electron reflection electron microscope. The cross-section photograph observed and photographed was binarized into a white portion (resin portion) and a black portion (foamed cell portion) by image analysis. The area of the black portion was defined as a pseudo circular surface area, and the foamed cell diameter was calculated therefrom, and the average value and the standard deviation of the cell diameter were calculated. The standard deviation of the calculated cell diameter was taken as the variation in diameter.

上記における成型条件と評価結果は表1に示した。なお、表1における溶融体樹脂温度は、押出機出口部における溶融体樹脂の温度を熱電対を用いて測定したものである。   The molding conditions and evaluation results in the above are shown in Table 1. The melt resin temperature in Table 1 is obtained by measuring the temperature of the melt resin at the exit of the extruder using a thermocouple.

Figure 2006001265
Figure 2006001265

表1から明らかなように、本発明の実施例においては、剪断発熱に起因する溶融体樹脂温度を抑制しつつも、良好なゲル化度が得られ、混合性能が向上することが確認できた。また、発泡体製造においても、混合性能が向上することで、発泡セルが均一に分散されうることが確認できた。   As is clear from Table 1, in the examples of the present invention, it was confirmed that a good gelation degree was obtained and the mixing performance was improved while suppressing the melt resin temperature due to the shear heat generation. . Moreover, also in foam manufacture, it has confirmed that a foaming cell could be disperse | distributed uniformly by mixing performance improving.

この発明の熱可塑性樹脂成形用スクリューの一例を一部断面で示す部分平面図である。It is a partial top view which shows an example of the thermoplastic resin molding screw of this invention in a partial cross section. この発明の熱可塑性樹脂成形用スクリューの他の実施例を示し、スクリュー軸に垂直な面におけるスクリュー先端側から見た断面図である。It is sectional drawing which showed the other Example of the thermoplastic resin molding screw of this invention, and was seen from the screw front end side in a surface perpendicular | vertical to a screw axis | shaft. 図2のA−A線におけるフライトの部分平面図である。It is a partial top view of the flight in the AA line of FIG.

符号の説明Explanation of symbols

1、1a 熱可塑性樹脂成形用スクリュー
2、2a フライト
3、3a スクリュー溝
31a スクリュー溝3aの底面
4 フライトの外周面
41 スクリュー先端側のフライト外周面
42 スクリュー後端側のフライト外周面
5 樹脂通路
5a 切欠
51a 切欠5aのスクリュー1aの先端側
52a 切欠5aのスクリュー1aの後端側
53a 切欠5aの底面
6 バレル
S1 切欠5aのスクリュー1aの先端側51aの断面積
S2 切欠5aのスクリュー1aの後端側52aの断面積
DESCRIPTION OF SYMBOLS 1, 1a Thermoplastic resin molding screw 2, 2a Flight 3, 3a Screw groove 31a Bottom surface of screw groove 3a 4 Flight outer peripheral surface 41 Flight outer peripheral surface 42 on the screw front end side Flight outer peripheral surface 5 on the screw rear end side Resin passage 5a Notch 51a Tip side 52a of screw 1a in notch 5a Rear end side 53a of screw 1a in notch 5a Bottom surface 6 of notch 5a Barrel S1 Cross sectional area S2 of tip side 51a of screw 1a in notch 5a Rear end side of screw 1a in notch 5a 52a cross-sectional area

Claims (7)

フライトが螺旋状に設けられて形成されるスクリューのフライトに、スクリュー先端側から後端側に向けて断面積が縮小されてなる樹脂通路が形成されていることを特徴とする熱可塑性樹脂成形用スクリュー。   A thermoplastic resin molding characterized in that a resin passage having a cross-sectional area reduced from a screw front end side to a rear end side is formed in a screw flight formed by forming a flight in a spiral shape. screw. 断面積が縮小されてなる樹脂通路が、前記スクリューのフライト外周面高さがスクリュー先端側で低く、スクリュー後端側で高くなる傾斜面となされて形成されている請求項1記載の熱可塑性樹脂成形用スクリュー。   2. The thermoplastic resin according to claim 1, wherein the resin passage having a reduced cross-sectional area is formed as an inclined surface in which a height of a flight outer peripheral surface of the screw is low on a screw front end side and is increased on a screw rear end side. Molding screw. スクリュー先端側のフライト外周面とバレル内面とのクリアランスがスクリュー後端側のフライト外周面とバレルとのクリアランスの1.5〜3.5倍となされ、かつスクリュー底面とバレルとのクリアランスの0.05〜0.20倍となされている請求項2記載の熱可塑性樹脂成形用スクリュー。   The clearance between the flight outer peripheral surface on the screw front end side and the inner surface of the barrel is 1.5 to 3.5 times the clearance between the flight outer peripheral surface on the screw rear end side and the barrel, and is 0. 0 of the clearance between the screw bottom surface and the barrel. The thermoplastic resin molding screw according to claim 2, wherein the screw is 0.5 to 0.20 times. スクリューのフライトの周方向に所定間隔をおいて、スクリュー先端側から後端側に貫通する切欠からなる樹脂通路が形成されている請求項1記載の熱可塑性樹脂成形用スクリュー。   The thermoplastic resin molding screw according to claim 1, wherein a resin passage formed of a notch penetrating from the screw front end side to the rear end side is formed at a predetermined interval in the circumferential direction of the screw flight. 前記切欠のスクリュー先端側の断面積がスクリュー後端側の断面積の1.5〜3.5倍となされ、かつフライトのスクリュー軸ひと回り当たりに存在する切欠のスクリュー先端側の断面積の合計が、スクリューのフライトのスクリュー軸ひと回り当たり断面積の0.05〜0.20倍となされている請求項4記載の熱可塑性樹脂成形用スクリュー。   The cross-sectional area on the screw front end side of the notch is 1.5 to 3.5 times the cross-sectional area on the screw rear end side, and the total cross-sectional area on the screw front end side of the notch existing around one screw axis of the flight is The thermoplastic resin molding screw according to claim 4, wherein the screw cross section is 0.05 to 0.20 times per screw axis of the flight of the screw. 断面積が縮小されてなる樹脂通路が、前記スクリューのメーターリングゾーンまたはコンプレッションゾーンに相当するフライトに設けられている請求項1〜5のいずれかに記載の熱可塑性樹脂成形用スクリュー。   The thermoplastic resin molding screw according to any one of claims 1 to 5, wherein a resin passage having a reduced cross-sectional area is provided in a flight corresponding to a metering zone or a compression zone of the screw. 前記スクリューが二軸押出成形機用である請求項1〜6のいずれかに記載の熱可塑性樹脂成形用スクリュー。   The screw for thermoplastic resin molding according to any one of claims 1 to 6, wherein the screw is for a twin screw extruder.
JP2004270143A 2004-05-18 2004-09-16 Screw for thermoplastic resin molding Pending JP2006001265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004270143A JP2006001265A (en) 2004-05-18 2004-09-16 Screw for thermoplastic resin molding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004148145 2004-05-18
JP2004270143A JP2006001265A (en) 2004-05-18 2004-09-16 Screw for thermoplastic resin molding

Publications (1)

Publication Number Publication Date
JP2006001265A true JP2006001265A (en) 2006-01-05

Family

ID=35770050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004270143A Pending JP2006001265A (en) 2004-05-18 2004-09-16 Screw for thermoplastic resin molding

Country Status (1)

Country Link
JP (1) JP2006001265A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161286A1 (en) * 2011-05-25 2012-11-29 株式会社神戸製鋼所 Continuous kneader
EP3275617A4 (en) * 2015-03-25 2018-12-12 Sumitomo Heavy Industries, Ltd. Injection device and screw
EP3278950A4 (en) * 2015-03-25 2018-12-12 Sumitomo Heavy Industries, Ltd. Injection device and screw

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161286A1 (en) * 2011-05-25 2012-11-29 株式会社神戸製鋼所 Continuous kneader
JP2012245643A (en) * 2011-05-25 2012-12-13 Kobe Steel Ltd Continuous kneader
CN103429408A (en) * 2011-05-25 2013-12-04 株式会社神户制钢所 Continuous kneader
EP3275617A4 (en) * 2015-03-25 2018-12-12 Sumitomo Heavy Industries, Ltd. Injection device and screw
EP3278950A4 (en) * 2015-03-25 2018-12-12 Sumitomo Heavy Industries, Ltd. Injection device and screw

Similar Documents

Publication Publication Date Title
TWI818021B (en) Kneading method for conductive composite material
JP4968828B2 (en) Screw for resin extruder, resin extruder, and pellet manufacturing method
JP2006001265A (en) Screw for thermoplastic resin molding
JP2601336B2 (en) Kneading extruder
JP6473098B2 (en) Screw for kneading and single screw extruder
JP2677685B2 (en) Continuous toner manufacturing method
JP6794171B2 (en) Manufacturing method for cylindrical extrusion dies and seamless tubes
KR102139497B1 (en) Screw extruder
JP4072820B2 (en) Pin type kneading continuous extrusion equipment cooling device
JP2018161860A (en) Production method of pellets of thermoplastic resin composition
JP2013139124A (en) Multi-spool kneading extruder, method for manufacturing wet master batch, material for tire, and tire
JP2002355879A (en) Conical screw for twin-screw extruder and extrusion molding method using the same
JPH10180755A (en) Manufacture of epoxy resin composition for sealing semiconductor
JPH05228920A (en) Screw type kneader
JP5255330B2 (en) screw
JP3320599B2 (en) Manufacturing method of carbon masterbatch
JP2002154148A (en) Screw for extruder
JP2014233865A (en) Apparatus and method for producing inorganic material-highly filled resin pellet
JP3208738B2 (en) Different direction twin screw kneading extruder
JP2004130522A (en) Kneading continuous extrusion apparatus for rubber material
JP4781725B2 (en) Continuous kneader
JP2000289087A (en) Molding machine
JP3598072B2 (en) Kneading ring and screw type kneading extruder
JP3086633U (en) Extrusion molding machine
JP2004130523A (en) Rubber kneading continuous extrusion apparatus directly connected to rubber product manufacturing machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100303