JP2005535550A - Carbon nanotube tip opening method and application - Google Patents
Carbon nanotube tip opening method and application Download PDFInfo
- Publication number
- JP2005535550A JP2005535550A JP2004528596A JP2004528596A JP2005535550A JP 2005535550 A JP2005535550 A JP 2005535550A JP 2004528596 A JP2004528596 A JP 2004528596A JP 2004528596 A JP2004528596 A JP 2004528596A JP 2005535550 A JP2005535550 A JP 2005535550A
- Authority
- JP
- Japan
- Prior art keywords
- carbon nanotubes
- carbon
- nitric acid
- stage
- concentrated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 52
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 44
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 29
- 230000003647 oxidation Effects 0.000 claims abstract description 27
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910017604 nitric acid Inorganic materials 0.000 claims abstract description 12
- 239000007791 liquid phase Substances 0.000 claims abstract description 10
- 239000002253 acid Substances 0.000 claims abstract description 8
- 239000002048 multi walled nanotube Substances 0.000 claims abstract description 8
- 239000012071 phase Substances 0.000 claims abstract description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 6
- 239000003054 catalyst Substances 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims description 4
- 238000010992 reflux Methods 0.000 claims description 4
- 239000001569 carbon dioxide Substances 0.000 claims description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 3
- 239000012153 distilled water Substances 0.000 claims description 3
- 238000004146 energy storage Methods 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- 238000003860 storage Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 2
- 239000002071 nanotube Substances 0.000 description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 239000010439 graphite Substances 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 3
- 230000001788 irregular Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000010574 gas phase reaction Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000002070 nanowire Substances 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 239000012286 potassium permanganate Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000010744 Boudouard reaction Methods 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002717 carbon nanostructure Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000000696 nitrogen adsorption--desorption isotherm Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/168—After-treatment
- C01B32/178—Opening; Filling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/06—Multi-walled nanotubes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/20—Nanotubes characterized by their properties
- C01B2202/36—Diameter
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本発明は、カーボンナノチューブを操作するための効率的であり、かつ、損傷がない方法に関する。この方法は、2段階の酸化段階を実施することからなる。第一段階は、濃縮された酸中の液体相で実施され、第二段階は、気体相中で実施される。本発明は、カーボンナノチューブが多層カーボンナノチューブであることが好ましい。また、本発明は、濃縮酸が硝酸であり、好適には過剰に使用されることが好ましい。また、本発明は、60〜75重量%の濃硝酸0.5〜2リットル、特に濃度約68〜70重量%の濃硝酸1リットルに対して、1gのカーボンナノチューブを使用することが好ましい。The present invention relates to an efficient and undamaged method for manipulating carbon nanotubes. This process consists of carrying out two oxidation steps. The first stage is carried out in the liquid phase in concentrated acid and the second stage is carried out in the gas phase. In the present invention, the carbon nanotube is preferably a multi-walled carbon nanotube. In the present invention, the concentrated acid is nitric acid, and it is preferably used in excess. In the present invention, it is preferable to use 1 g of carbon nanotubes for 0.5 to 2 liters of concentrated nitric acid of 60 to 75% by weight, particularly 1 liter of concentrated nitric acid having a concentration of about 68 to 70% by weight.
Description
本発明は、一般に、カーボンナノチューブの後処理とカーボンナノチューブの用途とに関する。本発明は、特に、カーボンナノチューブ、とりわけ多層カーボンナノチューブの先端の開口方法を対象とする。 The present invention generally relates to post-treatment of carbon nanotubes and uses of carbon nanotubes. The present invention is particularly directed to a method of opening the tips of carbon nanotubes, especially multi-walled carbon nanotubes.
大部分の合成方法では、先端が閉じたカーボンナノチューブが生産されているが、これにより、たとえばカーボンナノチューブの中央管路内に反応媒質によって生じる不純物を取り込むことがある。これは、特に、カーボンナノチューブの触媒合成時に発生する。しかも、カーボンナノチューブが最初から開いている場合、高温の後処理時に再び閉じることがある。 Most synthesis methods produce carbon nanotubes with closed ends, which can, for example, introduce impurities generated by the reaction medium into the central channel of the carbon nanotubes. This occurs particularly during the catalyst synthesis of carbon nanotubes. Moreover, if the carbon nanotubes are open from the beginning, they may be closed again during high temperature post-treatment.
開口されたカーボンナノチューブを得るメリットは、まず、特に導電性の多数の種(金属、導電性ポリマーなど)により中央管路を充填してナノ電子技術用の導電性ナノワイヤを製造できることにある。充填カーボンナノチューブには、また、触媒用途やエネルギー貯蔵用に、ますます大きな長所が見出されている。さらに、中空のカーボンナノチューブは、水素や天然ガス等を貯蔵する優れた気体貯蔵庫であることが判明する場合がある。 The merit of obtaining an open carbon nanotube is that a conductive nanowire for nanoelectronic technology can be manufactured by first filling a central conduit with a number of conductive species (metal, conductive polymer, etc.). Filled carbon nanotubes are also finding increasingly great advantages for catalyst applications and energy storage. Furthermore, hollow carbon nanotubes may prove to be an excellent gas storage for storing hydrogen, natural gas, and the like.
カーボンナノチューブ端のグラファイト面を閉鎖するために位相欠陥(defautstopologiques)の存在が必要であることは、今やよく知られている。オイラーの法則によれば、カーボンナノチューブの各端を閉鎖するには6箇所の五角形形状が必要である。もちろん、これらの歪んだ領域(Region de tension)は、特に一組の五角形形状を結合する二重結合において添加反応の際に最も有効な箇所である。 It is now well known that the presence of phase defects is necessary to close the graphite surface at the end of carbon nanotubes. According to Euler's law, six pentagonal shapes are required to close each end of the carbon nanotube. Of course, these distorted regions are the most effective points in the addition reaction, especially in the double bond that binds a set of pentagonal shapes.
ナノチューブを開口するために提案された方法としては、液相の強力な酸化剤(硝酸、硫酸、またはこの二つの酸の混合物、過マンガン酸カリウムなど)による化学酸化、温度500℃〜700℃で気流下での気相反応、また、ごく最近では、特にナノチューブをカットして短縮するための衝突粉砕あるいは超音波処理がある。 Proposed methods for opening nanotubes include chemical oxidation with a strong oxidizer in the liquid phase (nitric acid, sulfuric acid or a mixture of these two acids, potassium permanganate, etc.) at temperatures between 500 ° C and 700 ° C. There are gas phase reactions under air flow, and very recently there are impact grinding or sonication, especially for cutting and shortening nanotubes.
空中または酸素中での酸化は、十分に選択的ではない。これらの処理では材料が多量に失われ、反応を適切に制御できないために外側のグラファイト面の損傷がしばしば深刻である。 Oxidation in air or oxygen is not sufficiently selective. Damage to the outer graphite surface is often severe because these processes lose a large amount of material and the reaction cannot be adequately controlled.
推奨される他の作業は、CO2を850℃で使用することからなるが、炭素材料を活性化するための一般の使用条件に近いこのような温度では、開口ナノチューブの収量が非常に少ない上に質量の損失が大きく、グラファイトの外側の層が著しく損傷される。 Another recommended work consists of using CO 2 at 850 ° C., but at such temperatures close to the general use conditions for activating carbon materials, the yield of open nanotubes is very low. Mass loss is significant and the outer layer of graphite is significantly damaged.
酸化剤の溶液中にカーボンナノチューブを分散すると、酸化はずっと均質になる。たとえば、ゼオライトで担持されるコバルト粒子により600℃でアセチレンを分解して得られたカーボンナノチューブには、炭素不純物が含まれることがよくあり、その端は閉鎖している。その場合には、過マンガン酸カリウムにより腐食を行って、酸化によりこれらの不純物を部分的に除去すると同時にカーボンナノチューブの端の一部を開口する。 When carbon nanotubes are dispersed in an oxidizer solution, the oxidation becomes much more homogeneous. For example, carbon nanotubes obtained by decomposing acetylene at 600 ° C. with cobalt particles supported on zeolite often contain carbon impurities, and their ends are closed. In that case, corrosion is performed with potassium permanganate, and these impurities are partially removed by oxidation, and at the same time, a part of the end of the carbon nanotube is opened.
しかしながら、ここでもまた、効率および選択性に関する結果が甚だしく不十分であることが判明している。 Again, however, the results regarding efficiency and selectivity have been found to be very poor.
本発明者は、所定の条件で別々の2段階の酸化ステップをナノチューブに実施することにより、上記の不都合を解消できることを確認した。 The present inventor has confirmed that the above-mentioned inconvenience can be eliminated by performing two separate oxidation steps on the nanotube under predetermined conditions.
本発明は、形態、品質を保持し、損失を低減しながら、カーボンナノチューブを迅速かつ有効に開口する方法を提供することを目的とする。 An object of the present invention is to provide a method for opening carbon nanotubes quickly and effectively while maintaining the form and quality and reducing the loss.
従って、本発明によるカーボンナノチューブの開口方法は、濃縮酸における第一段階の液相酸化ステップと、第二段階の気相酸化ステップとの二つの酸化ステップを含むことを特徴とする。 Accordingly, the method for opening carbon nanotubes according to the present invention is characterized in that it includes two oxidation steps, ie, a first liquid phase oxidation step and a second vapor phase oxidation step in concentrated acid.
液相酸化ステップにより、開口ナノチューブが直接得られる。さらに、それによって、たとえば触媒の存在下で実施される合成後、閉じた端に残留していた金属不純物の大部分に接近できるという長所が提供される。 Open-wall nanotubes are obtained directly by the liquid phase oxidation step. Furthermore, it offers the advantage of being able to access most of the metal impurities remaining at the closed end, for example after synthesis carried out in the presence of a catalyst.
液相酸化反応時に生じる不規則な炭素は、第二段階の気相ステップ中に除去される。 Irregular carbon generated during the liquid phase oxidation reaction is removed during the second gas phase step.
有利には、カーボンナノチューブは多層カーボンナノチューブである。 Advantageously, the carbon nanotubes are multi-walled carbon nanotubes.
特に、濃縮酸は硝酸である。 In particular, the concentrated acid is nitric acid.
好適には、濃硝酸は過剰に使用される。 Preferably, concentrated nitric acid is used in excess.
かくして、0.5〜2リットルの濃HNO3、特に60〜75重量%の濃HNO3、とりわけ約68〜70重量%の濃度の硝酸1リットル中に1gのカーボンナノチューブを使用することにより、満足の行く結果が得られる。 Thus, by using 1 g of carbon nanotubes in 0.5 to 2 liters of concentrated HNO 3 , in particular 60 to 75% by weight of concentrated HNO 3 , especially in a concentration of about 68 to 70% by weight of nitric acid, The result of going is obtained.
本発明の特別な実施形態によれば、この酸化ステップは、攪拌条件での還流により実施される。 According to a special embodiment of the invention, this oxidation step is carried out by refluxing under stirring conditions.
有利には、加熱還流は、30〜50分間持続し、特に約35分間持続する。 Advantageously, the heated reflux lasts for 30-50 minutes, in particular for about 35 minutes.
精製するために、低温の気相酸化ステップを追加して実施する。 For purification, an additional low temperature gas phase oxidation step is performed.
特にこのステップでは、液相酸化による開口ステップ時にカーボンナノチューブ端の開口によって生じる不規則な炭素構造をゆるやかな酸化(Oxidation menagee)により除去できる。 In particular, in this step, the irregular carbon structure generated by the opening of the carbon nanotube end during the opening step by liquid phase oxidation can be removed by gentle oxidation (Oxidation management).
有利には、このステップの特定の実施形態は、特にCO2下で500〜600℃で約1〜2時間、また特に500〜550℃、とりわけ525℃で1時間〜1時間40分、処理することからなる。 Advantageously, certain embodiments of this step are treated for about 1-2 hours, particularly at 500-600 ° C., especially under CO 2 , and especially 500-550 ° C., especially 525 ° C., for 1 hour-1 hour 40 minutes. Consists of.
また特に、本発明による方法は、前記二酸化炭素の線速度が40〜100cm/分、特に50〜70cm/分、とりわけ約60cm/分で実施される。 More particularly, the process according to the invention is carried out with a linear velocity of the carbon dioxide of 40-100 cm / min, in particular 50-70 cm / min, especially about 60 cm / min.
有利には、本発明による方法は、前記第一段階の液相酸化ステップと前記第二段階の気相酸化ステップとの間に、特に蒸留水により開口カーボンナノチューブを濾過および洗浄する中間ステップを含む。本発明による方法は、最初は中央管路にトラップされていてナノチューブの開口時に放出される金属粒子を必要に応じて除去するように、塩酸処理の追加ステップを含むこともできる。 Advantageously, the method according to the invention comprises an intermediate step between the first stage liquid phase oxidation step and the second stage gas phase oxidation step, in particular filtering and washing open carbon nanotubes with distilled water. . The method according to the present invention can also include an additional step of hydrochloric acid treatment, if necessary, to remove metal particles that are initially trapped in the central conduit and released upon opening of the nanotubes.
液相反応と、その後の気相反応とを組み合わせた上記の構成を実施することにより得られる開口ナノチューブの収量は少なくとも90%であり、ナノチューブの表面の劣化はなく、純度は97%より高い率に留まり続ける。 The yield of open nanotubes obtained by implementing the above configuration combining a liquid phase reaction and a subsequent gas phase reaction is at least 90%, there is no degradation of the nanotube surface, and the purity is higher than 97%. Stay on.
本発明の有効性は、添付図面に関する以下の詳細な実施例を読めば、いっそう明らかになるであろう。 The effectiveness of the present invention will become more apparent upon reading the following detailed examples with reference to the accompanying drawings.
本発明の方法は、COxMg(1−x)Oの固溶体で600℃のアセチレン分解により合成される多層カーボンナノチューブを最適化する。 The method of the present invention optimizes multi-walled carbon nanotubes synthesized by acetylene decomposition at 600 ° C. in a solid solution of CO x Mg (1-x) O.
第一ステップでは、カーボンナノチューブを濃硝酸中に分散し、連続攪拌により35分間、還流酸化(130℃)する(69重量%の酸1リットル中にナノチューブ1g)。次に、混合物を濾過してから、濾過液のpHが中性になるまで蒸留水で固体を洗浄する。この第一の酸化ステップによりチューブが開口される。 In the first step, carbon nanotubes are dispersed in concentrated nitric acid and subjected to reflux oxidation (130 ° C.) for 35 minutes with continuous stirring (1 g of nanotubes in 1 liter of 69 wt% acid). The mixture is then filtered and the solid is washed with distilled water until the pH of the filtrate is neutral. This first oxidation step opens the tube.
その後、CO2流を用いて低温でゆっくりと酸化させる。この反応は、ブダー(Boudouard)反応に基づいて行われる(C+CO2→2CO(ΔH=+159kJ/モル))。 It is then slowly oxidized at a low temperature using a CO 2 stream. This reaction is carried out based on the Boudouard reaction (C + CO 2 → 2CO (ΔH = + 159 kJ / mol)).
温度525℃、線速度60cm/分の速度でCO2の上昇流を導入可能な多孔質焼結ガラス製の円板を備える石英るつぼ(Creuset en quartz)にカーボンナノチューブの粉末を入れる。 The carbon nanotube powder is placed in a quartz crucible (Creuset en quartz) equipped with a disk made of porous sintered glass capable of introducing an upward flow of CO 2 at a temperature of 525 ° C. and a linear velocity of 60 cm / min.
60〜100分間、反応させる。第一の酸化反応中に生じた不規則な炭素ナノ構造物は選択的に酸化される。 Let react for 60-100 minutes. Irregular carbon nanostructures generated during the first oxidation reaction are selectively oxidized.
累積質量損失は50%未満である。 The cumulative mass loss is less than 50%.
走査電子顕微鏡(Hitachi S 4200)を使用して、ナノチューブのサンプル量を推定できる(図1)。 A scanning electron microscope (Hitachi S 4200) can be used to estimate the sample volume of the nanotubes (FIG. 1).
200kVの透過電子顕微鏡(Philips CM20)による観察から、ナノチューブ先端の開口に関してこの方法の有効性が分かる(図2、3)。この観察には、サンプルを無水エタノール中で超音波分解し、カーボンフィルムで被覆した銅グリッドに一滴とる。 Observation of a 200 kV transmission electron microscope (Philips CM20) shows the effectiveness of this method with respect to the opening of the nanotube tip (FIGS. 2 and 3). For this observation, the sample is sonicated in absolute ethanol and dropped on a copper grid covered with a carbon film.
カーボンナノチューブの多孔質構造は、77°K(Micrometrics、ASAP 2000)での窒素吸着を特徴とする。吸着実験前に350℃(10−6mbar)で12時間サンプルを脱気する。 The porous structure of carbon nanotubes is characterized by nitrogen adsorption at 77 ° K (Micrometrics, ASAP 2000). The sample is degassed at 350 ° C. (10 −6 mbar) for 12 hours before the adsorption experiment.
開口後、1600〜2800℃の高温で数時間、窒素下で別の熱処理を実施して壁の芳香族化合物の層を黒鉛化し、金属Coを気化することができる。 After opening, another heat treatment can be performed under nitrogen at a high temperature of 1600-2800 ° C. for several hours to graphitize the wall aromatic compound layer and vaporize the metallic Co.
酸化処理後、チューブの直径はわずかに減少し、開口率は90%より大きくなる(図2参照:矢印は開口チューブを示す)。サンプルの品質は開口処理により損なわれず、ナノチューブ含有量は97%より大きくなる。 After the oxidation treatment, the tube diameter decreases slightly and the open area ratio is greater than 90% (see FIG. 2: arrows indicate open tubes). Sample quality is not compromised by the aperture treatment and the nanotube content is greater than 97%.
TEM(透過電子顕微鏡)による002格子サンプルの干渉縞モードの観察から、壁が損傷されていないことが分かる(図3)。 Observation of the interference fringe mode of the 002 lattice sample with a TEM (transmission electron microscope) shows that the wall is not damaged (FIG. 3).
使用されるカーボンナノチューブは、ひどく入り組んでいる。77Kにおける窒素吸着等温線は、膨張性のメソ多孔質の固体の特徴であるIV型である(図4)。BET面積は220m2/gであり、メソ多孔質容積は非常に大きく(約1cm3/g)、BJH径が約15nmであって、これは、ナノチューブの入り組み具合により決定されるメニスカス(menisques)に対応する。本発明による端の開口後、メソ多孔容積は約1.6cm3/gまで増加する。このとき、BET面積は約300m2/gとなるので、エネルギーまたは気体の貯蔵用にこれらのナノチューブが適していることが明らかになる。 The carbon nanotubes used are terribly complicated. The nitrogen adsorption isotherm at 77K is type IV, which is characteristic of expandable mesoporous solids (FIG. 4). The BET area is 220 m 2 / g, the mesoporous volume is very large (about 1 cm 3 / g) and the BJH diameter is about 15 nm, which is determined by the meniscuses of the nanotubes. ). After opening the edge according to the present invention, the mesoporous volume increases to about 1.6 cm 3 / g. At this time, since the BET area is about 300 m 2 / g, it becomes clear that these nanotubes are suitable for storing energy or gas.
上記の方法は、外径約7〜25mmのナノチューブに適用されるが、硝酸またはCO2処理時間を調整することにより、さらに大型直径のナノチューブにも適用可能である。 The above method is applied to nanotubes having an outer diameter of about 7 to 25 mm, but can also be applied to nanotubes of larger diameters by adjusting the nitric acid or CO 2 treatment time.
もちろん、触媒方法により得られる以外のカーボンナノチューブでもこの方法を使用できる。 Of course, this method can also be used with carbon nanotubes other than those obtained by the catalytic method.
結晶性が非常に高いカーボンナノチューブ、特にグラファイトの気化により合成されるナノチューブを開口するには、反応時間をもっと長くすることが必要である。 In order to open carbon nanotubes having very high crystallinity, particularly nanotubes synthesized by vaporization of graphite, it is necessary to make the reaction time longer.
本発明による方法は、カーボンナノチューブの開口において有効である。特に、本発明による方法は、多層カーボンナノチューブの開口に適用される。 The method according to the present invention is effective in opening carbon nanotubes. In particular, the method according to the invention is applied to the openings of multi-walled carbon nanotubes.
特に、本発明による方法は、外径7〜25nmの多層カーボンナノチューブに適用される。 In particular, the method according to the invention is applied to multi-walled carbon nanotubes with an outer diameter of 7 to 25 nm.
また特に、本発明による方法が適用される多層カーボンナノチューブは、好適にはCOxMg(1−x)Oの固溶体について600℃でアセチレン分解することにより得られる。 In particular, the multi-walled carbon nanotube to which the method according to the present invention is applied is preferably obtained by subjecting a solid solution of CO x Mg (1-x) O to acetylene decomposition at 600 ° C.
このように処理および開口された全てのカーボンナノチューブは、特に導電性ナノワイヤの製造用、エネルギー貯蔵用、気体の貯蔵または濾過用、および/または触媒担体の製造用に用いられる場合、経済的、産業的な利点が大きい。 All carbon nanotubes treated and opened in this way are economical, industrial, especially when used for the production of conductive nanowires, for energy storage, for gas storage or filtration, and / or for the production of catalyst supports. The major advantages are great.
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0210115A FR2843382B1 (en) | 2002-08-08 | 2002-08-08 | PROCESS FOR OPENING CARBON NANOTUBES AT THEIR END AND APPLICATIONS |
PCT/FR2003/002499 WO2004016550A2 (en) | 2002-08-08 | 2003-08-08 | Method for opening carbon nanotubes at the ends thereof and implementation |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005535550A true JP2005535550A (en) | 2005-11-24 |
Family
ID=30471027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004528596A Pending JP2005535550A (en) | 2002-08-08 | 2003-08-08 | Carbon nanotube tip opening method and application |
Country Status (7)
Country | Link |
---|---|
US (1) | US20050163697A1 (en) |
EP (1) | EP1527014A2 (en) |
JP (1) | JP2005535550A (en) |
AU (1) | AU2003274239A1 (en) |
CA (1) | CA2495094A1 (en) |
FR (1) | FR2843382B1 (en) |
WO (1) | WO2004016550A2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007513861A (en) * | 2003-12-09 | 2007-05-31 | カーボン ナノテクノロジーズ インコーポレーテッド | Method for purifying carbon nanotubes made on refractory oxide supports |
WO2012018117A1 (en) * | 2010-08-05 | 2012-02-09 | 独立行政法人産業技術総合研究所 | Cnt mass and assembly, and layered product |
JP2015038038A (en) * | 2008-12-30 | 2015-02-26 | 独立行政法人産業技術総合研究所 | Granular substrate and filament substrate |
US10910636B2 (en) | 2018-01-23 | 2021-02-02 | Tsinghua University | Method for making battery electrodes |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2898139B1 (en) * | 2006-03-06 | 2008-05-30 | Nanoledge Sa | METHOD FOR MANUFACTURING EXTRUDED COMPOSITE POLYMERIC AND CARBON NANOTUBE PRODUCTS |
WO2008035951A1 (en) * | 2006-09-22 | 2008-03-27 | Seoul National University Industry Foundation | Conductive polymer-carbon nanotube composite and manufacturing method thereof |
EP1990449B1 (en) * | 2007-05-11 | 2012-07-11 | Grupo Antolin-Ingenieria, S.A. | Carbon nanofibers and procedure for obtaining said nanofibers |
US9922745B2 (en) | 2013-02-28 | 2018-03-20 | Toray Industries, Inc. | Aggregate of carbon nanotubes, and production method therefor |
CN110065937B (en) * | 2018-01-23 | 2021-12-21 | 清华大学 | Method for oxidizing multi-walled carbon nanotubes |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0812310A (en) * | 1994-07-05 | 1996-01-16 | Nec Corp | Purifying-opening method of carbon-nanotube in liquid phase and introducing method of functional group |
JPH10125321A (en) * | 1996-10-18 | 1998-05-15 | Sony Corp | Battery negative electrode carbonaceous material and nonaqueous electrolyte secondary battery |
JP2000516708A (en) * | 1996-08-08 | 2000-12-12 | ウィリアム・マーシュ・ライス・ユニバーシティ | Macroscopically operable nanoscale devices fabricated from nanotube assemblies |
JP2002097008A (en) * | 2000-09-20 | 2002-04-02 | Japan Science & Technology Corp | Method for perforating monolayered carbon nanotube |
JP2002097010A (en) * | 2000-09-20 | 2002-04-02 | Japan Science & Technology Corp | Method for making hybrid monolayered carbon nanotube |
JP2002515847A (en) * | 1997-05-29 | 2002-05-28 | ウィリアム・マーシュ・ライス・ユニバーシティ | Carbon fibers formed from single-walled carbon nanotubes |
JP2003505332A (en) * | 1999-07-21 | 2003-02-12 | ハイピリオン カタリシス インターナショナル インコーポレイテッド | Method for oxidizing multi-walled carbon nanotubes |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5346683A (en) * | 1993-03-26 | 1994-09-13 | Gas Research Institute | Uncapped and thinned carbon nanotubes and process |
GB9418937D0 (en) * | 1994-09-20 | 1994-11-09 | Isis Innovation | Opening and filling carbon nanotubes |
US6869583B2 (en) * | 2001-04-12 | 2005-03-22 | The Penn State Research Foundation | Purification of carbon filaments and their use in storing hydrogen |
-
2002
- 2002-08-08 FR FR0210115A patent/FR2843382B1/en not_active Expired - Fee Related
-
2003
- 2003-08-08 EP EP03758222A patent/EP1527014A2/en not_active Withdrawn
- 2003-08-08 US US10/523,397 patent/US20050163697A1/en not_active Abandoned
- 2003-08-08 JP JP2004528596A patent/JP2005535550A/en active Pending
- 2003-08-08 WO PCT/FR2003/002499 patent/WO2004016550A2/en not_active Application Discontinuation
- 2003-08-08 AU AU2003274239A patent/AU2003274239A1/en not_active Abandoned
- 2003-08-08 CA CA002495094A patent/CA2495094A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0812310A (en) * | 1994-07-05 | 1996-01-16 | Nec Corp | Purifying-opening method of carbon-nanotube in liquid phase and introducing method of functional group |
JP2000516708A (en) * | 1996-08-08 | 2000-12-12 | ウィリアム・マーシュ・ライス・ユニバーシティ | Macroscopically operable nanoscale devices fabricated from nanotube assemblies |
JPH10125321A (en) * | 1996-10-18 | 1998-05-15 | Sony Corp | Battery negative electrode carbonaceous material and nonaqueous electrolyte secondary battery |
JP2002515847A (en) * | 1997-05-29 | 2002-05-28 | ウィリアム・マーシュ・ライス・ユニバーシティ | Carbon fibers formed from single-walled carbon nanotubes |
JP2003505332A (en) * | 1999-07-21 | 2003-02-12 | ハイピリオン カタリシス インターナショナル インコーポレイテッド | Method for oxidizing multi-walled carbon nanotubes |
JP2002097008A (en) * | 2000-09-20 | 2002-04-02 | Japan Science & Technology Corp | Method for perforating monolayered carbon nanotube |
JP2002097010A (en) * | 2000-09-20 | 2002-04-02 | Japan Science & Technology Corp | Method for making hybrid monolayered carbon nanotube |
Non-Patent Citations (1)
Title |
---|
A. C. DILLON ET AL.: "A Simple and Complete Purification of Single-Walled Carbon Nanotube Materials", ADVANCED MATERIALS, vol. 11, no. 16, JPN6009022929, 10 November 1999 (1999-11-10), pages 1354 - 1358, ISSN: 0001321061 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007513861A (en) * | 2003-12-09 | 2007-05-31 | カーボン ナノテクノロジーズ インコーポレーテッド | Method for purifying carbon nanotubes made on refractory oxide supports |
JP4797122B2 (en) * | 2003-12-09 | 2011-10-19 | 三星電子株式会社 | Method for purifying carbon nanotubes made on refractory oxide supports |
JP2015038038A (en) * | 2008-12-30 | 2015-02-26 | 独立行政法人産業技術総合研究所 | Granular substrate and filament substrate |
WO2012018117A1 (en) * | 2010-08-05 | 2012-02-09 | 独立行政法人産業技術総合研究所 | Cnt mass and assembly, and layered product |
CN103068730A (en) * | 2010-08-05 | 2013-04-24 | 独立行政法人产业技术综合研究所 | CNT mass and assembly, and layered product |
JP5605431B2 (en) * | 2010-08-05 | 2014-10-15 | 独立行政法人産業技術総合研究所 | CNT aggregate and laminate |
CN103068730B (en) * | 2010-08-05 | 2015-08-12 | 独立行政法人产业技术综合研究所 | CNT aggregate and duplexer |
US10910636B2 (en) | 2018-01-23 | 2021-02-02 | Tsinghua University | Method for making battery electrodes |
Also Published As
Publication number | Publication date |
---|---|
AU2003274239A1 (en) | 2004-03-03 |
EP1527014A2 (en) | 2005-05-04 |
WO2004016550A3 (en) | 2004-04-08 |
FR2843382A1 (en) | 2004-02-13 |
WO2004016550A2 (en) | 2004-02-26 |
CA2495094A1 (en) | 2004-02-26 |
US20050163697A1 (en) | 2005-07-28 |
FR2843382B1 (en) | 2005-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7494639B2 (en) | Purification of carbon nanotubes based on the chemistry of fenton's reagent | |
US7094385B2 (en) | Process for the mass production of multiwalled carbon nanotubes | |
Jeong et al. | A new purification method of single-wall carbon nanotubes using H2S and O2 mixture gas | |
JP2590442B2 (en) | Separation and purification method of carbon nanotube | |
JP2009040673A (en) | Method for manufacturing porous graphite carbon with high crystallinity and catalyst for fuel cell using the graphite carbon as carrier | |
Delpeux et al. | High yield of pure multiwalled carbon nanotubes from the catalytic decomposition of acetylene on in situ formed cobalt nanoparticles | |
CN101164874B (en) | Method for purifying multi-wall carbon nano pipe | |
WO2002064868A1 (en) | Gas-phase process for purifying single-wall carbon nanotubes and compositions thereof | |
WO2002060579A1 (en) | Carbon nanohorn adsorbent and process for producing the same | |
JP6969938B2 (en) | Method for purifying carbon nanotubes | |
JP4797122B2 (en) | Method for purifying carbon nanotubes made on refractory oxide supports | |
Zhao et al. | Study on purification and tip-opening of CNTs fabricated by CVD | |
JP2005535550A (en) | Carbon nanotube tip opening method and application | |
JP2003206117A (en) | Process for mass production of multiwalled carbon nanotubes | |
JP2007176767A (en) | Purifying method for composition containing carbon nanotube | |
JP6922893B2 (en) | Adsorbent | |
Delpeux et al. | An efficient two-step process for producing opened multi-walled carbon nanotubes of high purity | |
US6740224B1 (en) | Method of manufacturing carbon nanotubes | |
KR101197190B1 (en) | Axial heterostructure nanowires of metal oxides, and manufacturing method thereof | |
JP4466549B2 (en) | Method for producing single-walled carbon nanotubes with increased diameter | |
JP3874269B2 (en) | Carbon nanotube purification method | |
JP2006240938A (en) | Fluorine-modified double-walled carbon nanotube | |
JPH07247122A (en) | Activated manganese dioxide and method for producing the same | |
JP2008038301A (en) | Carbon fiber composite material having excellent desulfurization property and method for producing the same | |
KR101727643B1 (en) | Carbon Nanotube Sponge-Metal Composite, and Method for Manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060613 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090519 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20091020 |